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Boundary conditions for three-body scattering in configuration space
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The asymptotic behavior of three-body scattering wave functions in configuration space is studied by
considering a model equation that has the same asymptotic form as the Faddeev equations. Boundary condi-
tions for the wave function are derived, and their validity is verified by numerical calculations. It is shown that
these boundary conditions for the partial differential equation can be used to obtain accurate numerical solu-
tions for the wave function.

PACS number~s!: 21.45.1v, 02.30.Jr, 02.60.Lj, 24.10.2i
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I. INTRODUCTION

In a previous paper@1# ~hereafter referred to as paper I!,
we studied the asymptotic form of a three-body wave fu
tion, which results in the propagation of three free partic
from various types of sources. The goal was to determine
boundary conditions appropriate for the three-body scat
ing equations in configuration space. In particular, we w
to establish the values of

r5
1

2
A(

i 51

3

~xi2xc.m.!
2

for which the leading asymptotic form of an outgoing wa
would be valid and to investigate the correction terms to t
form. For a complete discussion of three-body scattering
configuration space see Ref.@2#, which also contains refer
ences to earlier work on this problem

In paper I two sources were studied. The first was a
calized source corresponding to the elastic-scattering driv
term in the three-body Faddeev equation and is determ
by the overlap of a two-body force in one pair and a tw
body bound-state wave function in another pair. The ot
was an extended model source that mimics the real so
term in the Faddeev equation including the breakup proc
in the Faddeev amplitude. The latter source reaches far o
the distancey between one particle and the center of mass
the other two particles; it decreases only asO(y23/2). How-
ever, the presence of the pair interaction limits the exten
the distancex between the other two particles. As expect
in the case of the extended source, the leading form
reached only at a much larger radius than the locali
source, specifically whenx is small andy is large.

By inverting the free propagator, one can determine
propagating wave function using a partial differential equ
tion with the given source terms. We established suita
boundary conditions that could be used to solve this prob
efficiently. A matching radius of about 100 fm was found
be sufficient.
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In this article we extend our previous study of the e
tended source to allow one pair interaction to be pres
while the three particles propagate from the given sourc
which is exactly what happens in the Faddeev formulati
We use the same notation as in paper I. In Sec. II we ev
ate the three-body Green’s function including one pair int
action, apply it to the extended source, and study
asymptotic behavior in the two- and three-body fragmen
tion channels. In Sec. III we solve the related partial diffe
ential equation as an exercise for applying that technique~in
a forthcoming article! to the Faddeev equation itself. Finally
we conclude in Sec. IV.

II. THREE-BODY PROPAGATION FROM GIVEN
SOURCES WITH A PAIR INTERACTION

In order to avoid unnecessary complications, we restric
our considerations in paper I to three identical bosons in
acting by spin-independents-wave pairwise interactions in a
state with total angular momentum of zero. For this case
Faddeev equation for the channel with incident waveF,

C5F1G~E!VPC, ~1!

whereP5P11P2 is the permutation operator, reads in e
plicit notation as

c~x,y!5f~x,y!1E
0

`

dx8E
0

`

dy8g~x,y;x8,y8!Q~x8,y8!.

~2!

We have introduced in Eq.~2! the reduced Faddeev ampl
tudec(x,y) and the corresponding reduced Green’s funct
g(x,y;x8,y8). The coordinatesx and y are the standard Ja
cobi variables

x[x15r22r3 , ~3!

y[y15r12
1

2
~r21r3! ~4!
©2000 The American Physical Society05-1
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expressed in terms of the individual position vectors.
The source term in Eq.~2! is given by

Q~x,y!5V~x!E
21

1

dm
xy

x2y2
c~x2 ,y2!, ~5!

wherex2 , y2 , andm in Eq. ~5! result from Eqs.~3! and ~4!
by the cyclical permutations, and are explicitly given by

x25A1

4
x21y21xym, ~6!

y25A 9

16
x21

1

4
y22

3

4
xym, ~7!

wherem is the cosine of the angle betweenx andy. The total
wave function is given by the sum of the three Fadde
amplitudes. In Eq.~1! C is one of the Faddeev amplitude
the other two are generated by cyclical permutations of
particles,P1C and P2C, and they appear in the sourc
term asPC. The pair interaction isV(x) and this interaction
also occurs in the Green’s functions

G~E!5
1

E2~H01V!1 i«
.

We refer to Ref.@3# for the general background and deta
on the notation.

The source term has a short-range component ari
from the elastic-scattering piece of the Faddeev amplitu
and a long-range component from the breakup piece of
Faddeev amplitude. In paper I we studied the effects of b
components; however, for the long-range component
used a model source term. Using the asymptotic form of
Faddeev amplitude derived by the stationary phase appr
mation, one finds@2# that the asymptotic form of the sourc
term for three equal mass particles with total energyE is

Q~x,y!→CV~x!
xeiA4/3k0y

y3/2 , ~8!

wherek0
25mE and the constantC is given by the magnitude

of the wave function in the asymptotic region. Therefore,
study the effects of this long-range behavior, we used
model source term

Qmodel~x,y!5V~x!
xyeiA4/3k0y

~y1y0!5/2 , ~9!

with y052 fm. This source term has the same asympto
form as Eq.~8!, and we have setC to be unity for conve-
nience.

In paper I we neglected the final-state interaction betw
one pair in the propagator. As required by the Fadd
scheme, this will now be included. We will study the seco
term in Eq.~2! with the source term replaced by the mod
source. Thus, we write
02400
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F~x,y!5E
0

`

dx8E
0

`

dy8g~x,y;x8,y8!Qmodel~x8,y8!.

~10!

To simplify the numerical calculations we follow the proc
dure used in paper I, and use the Bargmann two-body po
tial

V~x!52
V0e2lx

~11be2lx!2 ,

where

V052bS \2l2

M D .

The bound-state wave function for this potential is given

ud~x!5A2kb
~12e2lx!

~11be2lx!
e2kx,

wherek is the bound-state wave number for a two-body st
with the energye52\2k2/m and

b5
l12k

l22k
.

For our model calculations we use the valuesk
50.2316 fm21 andl50.7 fm21. We also need the two-bod
scattering statesuk(x) for this potential. They are given by

uk~x!5
1

2i
$eid~k!eikxh~k,x!2e2 id~k!e2 ikxh* ~k,x!%,

with

h~k,x!5

11S 2k2 il

2k1 il Dbe2lx

11be2lx ,

and

eid~k!5A2k1 il

2k2 il
Ak1 ik

k2 ik
.

In addition, we use the arbitrary but fixed laboratory ener
of the incident particle of Elab514 MeV and \2/m
541.47 MeV fm which corresponds to the case for thr
nucleons. For this casek050.41403 fm21. Henceforth, we
set\51.

For three equal-mass particles with massm and total en-
ergyE, the three-body Green’s functiong(x,y;x8,y8) for the
case with one pair interaction has the well-known form
5-2
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BOUNDARY CONDITIONS FOR THREE-BODY . . . PHYSICAL REVIEW C61 024005
g~x,y;x8,y8!5ud~x!S 2
4m

3
eiq0y.

sinq0y,

q0
Dud~x8!

1
2

p E
0

`

dkuk~x!

3S 2
4m

3

eiqky.sinqky,

qk
Duk~x8!, ~11!

where q05A4m/3(E2e), qk5A4/3(k0
22k2), and k0

2

5mE. Obviously the propagation from the source can n
proceed not only into the unbound states but also into
deuteron channel. Moreover, the two-body scattering st
uk(x) include the interactionV(x). It is the purpose of this
paper to study the additional effects ofV(x) in the propaga-
tor, in contrast to paper I where only the free propagator w
considered. The numerical evaluation of the second par
Eq. ~11! containing uk(x) requires some explanation. W
were not able to find an analytical expression such as
found for g0 in paper I, and had to perform thek integral
numerically. Clearly at the upper end of the integral the
tegrand has rapid oscillations that make the integral diffic
to evaluate numerically. Sinceuk(x) approaches sinkx for
k→`, it appears natural to subtract the free propaga
g0(x,y;x8,y8), and add it back in a separate term. Then
k→` the integrand has a stronger fall off and, moreover,
path of integration can be rotated into the complex pla
similar to the procedure used in Ref.@4#.

Let us start with the propagation in the deuteron chan

Fd~x,y![2
4m

3
ud~x!E

0

`

dy8
eiq0y. sinq0y,

q0

3E
0

`

dx8ud~x8!Qmodel~x8,y8!

52
4m

3
ud~x!eiq0yE

0

`

dy8
sinq0y8

q0

FIG. 1. The behavior off d
corr(y) normalized to its asymptotic

value fory→`.
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3E
0

`

dx8ud~x8!Qmodel~x8,y8!

2
4m

3
ud~x!E

y

`

dy8
sinq0~y2y8!

q0

3E
0

`

dx8ud~x8!Qmodel~x8,y8!. ~12!

We see that this consists of a flux-conserving term

Fd
asy~x,y!5ud~x!eiq0yf d , ~13!

with

f d52
4m

3 E
0

`

dy8
sinq0y8

q0
E

0

`

dx8ud~x8!Qmodel~x8,y8!,

and a correction term

Fd
corr~x,y![2

4m

3
ud~x!E

y

`

dy8
sinq0~y2y8!

q0

3E
0

`

dx8ud~x8!Qmodel~x8,y8!. ~14!

Inserting Eq.~9! into Eq. ~14! and performing one partia
integration in they8 variable, one arrives easily at the fo
lowing asymptotic form:

Fd
corr~x,y! ——→

y→`

2
eiA4/3k0y

y3/2 ud~x!
1

e

3E
0

`

dx8ud~x8!x8V~x8!. ~15!

Clearly the long-range source behavior carries over int
corresponding long-range correction term in the deute
channel. We rewrite Eq.~14! in the form

FIG. 2. Comparison of the absolute value off d(y) to its
asymptotic form.
5-3
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Fd
corr~x,y!5

eiA4/3k0y

y3/2 ud~x! f d
corr~y!, ~16!

and show in Fig. 1 the behavior off d
corr(y) as it approaches

its asymptotic value given by

f d
corr~y! ——→

y→`

2
1

e E0

`

dx8ud~x8!x8V~x8!. ~17!

To illustrate the convergence, we have normalized the plo
the asymptotic valuef d

corr(`)5223.325 fm3/2.
To illustrate the error in the elastic term that results fro

matching to the asymptotic boundary conditions at a fin
distance, we plot in Fig. 2 the absolute value off d(y)
ot

02400
to

e

[Fd(x,y)/ud(x) and its asymptotic form given by Eq.~13! and
Eq. ~15!. The difference is less than 2% fory greater than 50
fm and less than 1% fory greater than 75 fm.

The propagation into the unbound statesuk(x) is more
complicated, since

Fscat~x,y![2
4m

3

2

p E
0

`

dkuk~x!E
0

`

dy8
eiqky. sinqky,

qk

3E
0

`

dx8uk~x8!Qmodel~x8,y8! ~18!

can be written in the form
Fscat~x,y!52
4m

3

2

p E
0

k0
dkuk~x!eiqyE

0

`

dy8
sinqky8

qk
E

0

`

dx8uk~x8!Qmodel~x8,y8!2
4m

3

2

p

3E
0

k0
dkuk~x!E

y

`

dy8
sinqk~y2y8!

qk
E

0

`

dx8uk~x8!Qmodel~x8,y8!2
4m

3

2

p

3E
k0

`

dkuk~x!e2KyE
0

y

dy8
sinhKy8

K E
0

`

dx8uk~x8!Qmodel~x8,y8!2
4m

3

2

p E
k0

`

dkuk~x!
sinhKy

K

3E
y

`

dy8e2Ky8E
0

`

dx8uk~x8!Qmodel~x8,y8! ~19!

[Fscat
~1! ~x,y!1Fscat

~2! ~x,y!1Fscat
~3! ~x,y!1Fscat

~4! ~x,y!. ~20!
e
ust

er-
In the third and fourth termsK[A4/3Ak22k0
2.

Let us first examine the asymptotic behavior for fixedx
andy approaching infinity. One has

Fscat
~1! ~x,y!5E

0

k0
dkuk~x!eiqkyT~k! ~21!

with

T~k!52
4m

3

2

p E
0

`

dy8
sinqky8

qk

3E
0

`

dx8uk~x8!Qmodel~x8,y8!. ~22!

There is no saddle-point for this case; thus, the asympt
form arises from the leading end-point contribution atk
50, which is easily evaluated to be

Fscat
~1! ~x,y!uk'0→2

Ap

4
33/4k0

3/2eip/4
eiA4/3k0y

y3/2 ũ0~x!T̃0 ,

~23!
ic

where ũ0(x)[uk(x)/kuk50 and T̃0[T(k)/kuk50 . We find
that

T̃052
4m

3

2

p
E

0

`

dy8

sinA4

3
k0y8

A4

3
k0

3E
0

`

dx8ũ0~x8!Qmodel~x8,y8!. ~24!

This term has the same dependence ony as the correction

term, Eq.~15!, in the deuteron channel. Note thatT̃0 is given
by the analytical expression, Eq.~22!, differentiated with re-
spect tok under the integral. This is obviously true for th
localized source; however, for the extended source, one m
rewrite the integral using a contour deformation before p
forming the differentiation.

Let us now considerFscat
(2) (x,y) in Eq. ~19! for the model

source term given by Eq.~9!
5-4
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Fscat
~2! ~x,y!→2

4m

3

2

p E
0

k0
dkuk~x!E

0

`

dx8uk~x8!x8V~x8!

3E
y

`

dy8
sinqk~y2y8!

qk

eiA4/3k0y8

y83/2 . ~25!

After one partial integration one finds

Fscat
~2! ~x,y! ——→

y→`
x fixed

2
2

p E
0

k0
dkuk~x!

m

k2

3E
0

`

dx8uk~x8!x8V~x8!
eiA4/3k0y

y3/2 . ~26!

The term Fscat
(3) (x,y), as it stands, is less obvious in i

asymptotic behavior. The contributions to they8 integral
keep growing towards the upper limity. Because of the fac
tor exp(2Ky), only contributions from the upper end of th
y8 integral have to be considered. Again by partial integ
tion, one easily finds

Fscat
~3! ~x,y! ——→

y→`
x fixed

2
4m

3

2

p

eiA4/3k0y

y3/2 E
k0

`

dkuk~x!
1

2K

3
1

K1 iA4/3k0
E

0

`

dx8uk~x8!x8V~x8!.

~27!

Finally, the last piece,Fscat
(4) (x,y), can again be handled in

straightforward manner with the result

Fscat
~4! ~x,y! ——→

y→`
x fixed

2
4m

3

2

p

eiA4/3k0y

y3/2

3E
k0

`

dkuk~x!
1

2K

1

K2 iA4/3k0

3E
0

`

dx8uk~x8!x8V~x8!. ~28!

Adding Eqs.~26!, ~27!, and~28! we obtain the concise resu
given in Ref.@5#,

Fscat
~2! 1Fscat

~3! 1Fscat
~4! → 2

p

eiA4/3k0y

y3/2 E
0

`

dkuk~x!
m

k2

3E
0

`

dx8uk~x8!x8V~x8!. ~29!

This can be simplified by using a technique suggested
Gignoux @6#. Writing the two-body Green’s function in th
form
02400
-

y

g2~x,x8;z![ud~x!
1

z2e
ud~x8!

1
2

p E
0

`

dkuk~x!
1

z2k2/m
uk~x8!, ~30!

the integral overk occurring in Eq.~29! can be rewritten as

2
2

p E
0

`

dkuk~x!
m

k2 uk~x8!5g2~x,x8;0!1ud~x!
1

e
ud~x8!.

~31!

Thus, we are led to the function

ũ~x![E
0

`

dx8g2~x,x8;0!x8V~x8!, ~32!

which obeys the inhomogeneous equation

F2
1

m

d2

dx2 1V~x!G ũ~x!52xV~x!. ~33!

Using the explicit form forg2(x,x8;0), oneeasily derives

ũ~x! ——→
x→`

2E
0

`

dx8ũ0~x8!x8V~x8!5a, ~34!

wherea is the scattering length defined byd(k) approaching
2ka ask goes to zero. From Eqs.~33! and ~34! follows

ũ~x!5ũ0~x!2x. ~35!

We now have the concise form

Fscat
~2! 1Fscat

~3! 1Fscat
~4!

——→
y→`
x fixed

eiA4/3k0y

y3/2 F ũ~x!1ud~x!
1

e

3E
0

`

dx8ud~x8!x8V~x8!G . ~36!

AltogetherFscat(x,y) has the asymptotic form

Fscat~x,y! ——→
y→`
x fixed

eiA4/3k0y

y3/2 F2ũ0~x!Ap

4
33/4k0

3/2eip/4T̃0

1ũ0~x!2x1ud~x!
1

e

3E
0

`

dx8ud~x8!x8V~x8!. ~37!

The x dependence is therefore built up of the zero-ene
scattering state, a linear term inx, and the two-body bound
5-5
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state. The last term cancels exactly against the correc
term, Eq.~15!, in the deuteron channel and the total amp
tudeF(x,y) behaves as1

F~x,y! ——→
y→`
x fixed

ud~x!eiq0yf d1
eiA4/3k0y

y3/2

3F2ũ0~x!Ap

4
33/4k0

3/2eip/4T̃0

1ũ0~x!2xG . ~38!

For x outside the range ofV(x), the expression in the brack
ets in Eq.~38! reduces to

2~x2a!
Ap

4
33/4k0

3/2eip/4T̃02a. ~39!

To verify the validity of the asymptotic term in Eq.~37!,
we use Eq.~10! to numerically evaluateF(x,y) for several
values ofy using only the breakup component of the Gree
function given in Eq.~11!. We show the convergence to th
asymptotic result by rewritingFscat(x,y) in the form

Fscat~x,y!5
eiA4/3k0y

y3/2 a~x,y!, ~40!

where from Eq.~37! a(x,y) has the asymptotic form

2ũ0~x!Ap

4
33/4k0

3/2eip/4T̃01ũ~x!

1ud~x!
1

e E0

`

dx8ud~x8!x8V~x8!. ~41!

The results for several values ofy and the asymptotic form
are shown in Fig. 3, where one can see thata(x,y) ap-
proaches its asymptotic form for large values ofy. To better
illustrate the convergence, in Fig. 4 we plota(x,y) versus
1/y for x53. As 1/y goes to zero the plot approaches
asymptotic valuea(3,̀ )56.86324.005i given by Eq.~41!.

Let us now regard the asymptotic form ofFscat(x,y) for
bothx andy going to infinity at a certain fixed angleu in the
first quadrant. For this case only the breakup part contribu
Its first termFscat

(1) receives contributions from a saddle poi
and from the two end points. The result is

Fscat~x,y!→ eik0r

~k0r!1/2FA~u!1
1

k0r
B~u!1•••G , ~42!

whereu andr are defined byx5r cosu, y5A3/4r sinu, and

1An alternate derivation of this result is given in Sec. 6.3 of R
@2#; however, the solutiong(x)521 of Eq. ~2.6.19! in Ref. @2# is
not given explicitly.
02400
on
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s

s.

A~u!52k0eip/4Ap

2
sinueid~k0 cosu!T~k0 cosu!, ~43!

B~u!5
1

2i F1

4
A~u!1A9~u!G . ~44!

In the following discussion we use~x,y! and ~r,u! inter-
changeably. The end-point contributions are ofO(r22) and
are beyond what is displayed in Eq.~42!. The relation be-
tween B(u) and A(u) is the same as found for the fre
propagation case considered in paper I. A tedious analyt
study reveals that for this case the only contributions up
orderr23/2 are fromFscat

(1) . Thus the two leading terms in Eq
~42! result solely fromFscat

(1) in Eq. ~20!. The same is of
course true for the free propagatorg0 studied in paper I.

It is clear that the first term alone in Eq.~42!, the flux-
conserving breakup behavior, is not a valid representatio
Fscat at small r values. The correction term is suppress
only by O@(k0r)21#, and depending upon the size ofB(u)
relative toA(u) the value ofr may have to be very large
before one can neglect the second- and higher-order term
Eq. ~42!. To illustrate this property we numerically evalua
Eq. ~21! at rm andrm610 fm for a fixed value ofu, which is
then fit to the function

Fam1
bm

k0r
1

cm

~k0r!2G eik0r

~k0r!1/2. ~45!

.

FIG. 3. Thex dependence ofa(x,y) defined in Eq.~40! for fixed
values ofy and its asymptotic form.
5-6
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BOUNDARY CONDITIONS FOR THREE-BODY . . . PHYSICAL REVIEW C61 024005
Theam for three values ofu along with the asymptotic value
A(u) are given in Table I.

From Table I one can see that Eq.~45! provides an accu-
rate approximation toFscatt(x,y) at reasonable values ofr. In
addition, we note that the value ofrm required for conver-
gence increases asu increases. This feature is due to th
property that large values ofu correspond to small values o
x, and forx small one must use Eq.~37!. From the Taylor-
series expansion inx of Eq. ~37! one finds that forx greater
than the range of the bound state and (x/r)2 small

FIG. 4. The real and imaginary parts ofa(x,y) for x53 plotted
versus 1/y. The triangles are the calculated values and the solid
is a fit to a polynomial in 1/y.
02400
Fscat~x,y!→A~u!
eik0r

~k0r!1/2.

For u580° the value ofr must be larger than 200 fm for thi
approximation to be valid.

III. THE PARTIAL-DIFFERENTIAL EQUATION
APPROACH

To test the accuracy of solving the differential form of th
Faddeev equations in configuration space we solve the
tial differential equation

g21F5Q, ~46!

FIG. 5. Comparison of thef (r,u) evaluated using the Green’
function integral and thef (r,u) obtained from solving the partia
differential equation forr525 fm.

e

TABLE I. Values of am determined from Eq.~45! for u530°, u560°, andu580°. The values for
rm5` were determined from Eq.~43!.

rm

80° 60° 30°
Real Imag Real Imag Real Imag

50.0 20.2112 0.1240 0.0595 0.2159 0.0173 0.0657
90.0 20.1088 0.1718 0.0137 0.1921 0.0152 0.0642

140.0 20.0737 0.1651 0.0083 0.1969 0.0155 0.0642
190.0 20.0678 0.1609 0.0074 0.1980 0.0156 0.0642
240.0 20.0665 0.1586 0.0070 0.1984 0.0157 0.0642
290.0 20.0660 0.1578 0.0069 0.1986 0.0157 0.0642
340.0 20.0659 0.1574 0.0068 0.1988 0.0157 0.0642

` 20.0657 0.1560 0.0066 0.1990 0.0157 0.0642
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which has the explicit form

F2
1

m S ]2

]r2 1
1

r

]

]r
1

1

r2

]2

]u2D1V~r cosu!2EGF~r,u!

52Q~r,u!, ~47!

and impose boundary conditions along a quarter circle in
first x-y quadrant atr5rmax. To solve the partial differen-
tial equation, we write

F~r,u![
eik0r

~k0r1b!1/2 f ~r,u! ~48!

and solve the resulting partial differential equation f
f (r,u). The constantb is a parameter introduced to avo
singular behavior at the origin. We solved this equation
ing the spline expansion methods described in Ref.@7# for
r,rmax with the boundary condition thatF(r,u) have the
form at rmax specified by Eq.~45!.

To show that this procedure can be used to obtain ac
rate results for the scattering wave function, we solved
partial differential equation numerically for various values
rmax and compared the results to those obtained by num
cally integrating the Green’s function integral in Eq.~21!.
We found that values ofrmax on the order of 100 fm can b
used to obtain good wave functions. Larger values ofrmax
yield more accurate solutions. In Figs. 5 and 6 we have p
ted examples of the comparisons for fixedr values of 25 and
50 fm. One can see that in both cases the agreement is
cellent.

FIG. 6. Same as for Fig. 5 forr550 fm.
02400
e

-

u-
e
f
ri-

t-

ex-

For the three-body scattering problem one wants to ob
accurate values of the breakup amplitudeA(u). Since this
corresponds to the amplitude of the scattering wave func
at infinity, its value cannot be obtained by evaluating t
Faddeev amplitude at large values ofrmax. In Fig. 7 we
compare the ‘‘exact’’ result forA(u) evaluated using Eq
~43! and the integral form forT(k) given in Eq.~22! to the
values extracted from the wave function evaluated atrmax

5200 fm. To demonstrate again that the boundary conditi
for the partial differential equation have been treated c
rectly, we show theA(u) extracted from the numerical solu
tion of the Faddeev equation and the evaluation of
Green’s function integral withr5rmax. While the wave
function results are similar to the ‘‘exact’’ values, one c
see that for large values ofu they are different for the reason
discussed in the previous section. TheA(u) obtained from
the wave function atrmax still exhibits the smallx behavior
of the wave function foru near 90°. Thus, to obtain accura
results forA(u) one must use the integral expression. Th
was the procedure followed in Ref.@8# where it was shown
that configuration-space Faddeev calculations gave resul
excellent agreement with the momentum-space calculati

FIG. 7. Comparison of the breakup amplitudeA(u) evaluated
using the integral form forT(k) with the A(u) extracted from the
wave function atrmax5200 fm. Wave function results for both th
numerical solution of the Faddeev equation and the Green’s fu
tion integral are shown.
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IV. CONCLUSIONS

Using a model source that mimics the real source term
the configuration-space Faddeev equations, the validity
the expressions for the asymptotic behavior of the w
function has been verified by numerically integrating the
tegral representation of the Green’s function integral. Us
the asymptotic expressions as the boundary conditions
the partial differential equation in configuration space, it
possible to obtain an accurate solution of the scattering e
tion for reasonable values ofrmax. While larger values of
rmax are required to obtain more accurate solutions, val
m

02400
in
of
e
-
g
or

a-

s

on the order of 100 fm yield good solutions. The break
amplitude corresponding to small values ofx cannot be ob-
tained from the wave function evaluated at large values or;
theT-matrix integral must be used to determineA(u) in this
region.
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@3# W. Glöckle, The Quantum Mechanical Few-Body Proble
~Springer-Verlag, Berlin, 1983!.
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