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Boundary conditions for three-body scattering in configuration space
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The asymptotic behavior of three-body scattering wave functions in configuration space is studied by
considering a model equation that has the same asymptotic form as the Faddeev equations. Boundary condi-
tions for the wave function are derived, and their validity is verified by numerical calculations. It is shown that
these boundary conditions for the partial differential equation can be used to obtain accurate numerical solu-
tions for the wave function.

PACS numbgs): 21.45+v, 02.30.Jr, 02.60.Lj, 24.16.

I. INTRODUCTION In this article we extend our previous study of the ex-
In a previous papeid] (hereafter referred to as papér | tended source to allow one pair interaction to be present
b hap Paper !\ hile the three particles propagate from the given sources,

we studied the asymptotic form of a three-body wave func'which is exactly what happens in the Faddeev formulation.

tion, Whi.Ch results in the propagation of three free particles\Ne use the same notation as in paper I. In Sec. Il we evalu-
from various types of sources. The goal was to determine thgte the three-body Green’s function including one pair inter-

o e o Soalfcton, aply 't 1o the extended source, and sty tr
g €q 9 pace. Inp ' symptotic behavior in the two- and three-body fragmenta-

o establish the values of tion channels. In Sec. Il we solve the related partial differ-
ential equation as an exercise for applying that technigue
1 2 2 a forthcoming articleto the Faddeev equation itself. Finally,
Pm2 N & (4= Xe.m) we conclude in Sec. IV.

for which the leading asymptotic form of an outgoing wave Il. THREE-BODY PROPAGATION FROM GIVEN
would be valid and to investigate the correction terms to that SOURCES WITH A PAIR INTERACTION
form. For a complete discussion of three-body scattering in

configuration space see R¢E], which also contains refer- our considerations in paper | to three identical bosons inter-

entlzr?s ;O g?:“tev\rl(;'vggtr%g;hﬁe%oglj;?e d. The first was a IO_a(:ting by spin-independestwave pairwise interactions in a
pap i state with total angular momentum of zero. For this case the

cahze@ source corresponding to the ela.stlc-scat_termg drl\_/ln&addeev equation for the channel with incident wee
term in the three-body Faddeev equation and is determined

by the overlap of a two-body force in one pair and a two- V=d+G(E)VPVY, (1)

body bound-state wave function in another pair. The other

was an extended model source that mimics the real souraghereP=P" + P~ is the permutation operator, reads in ex-

term in the Faddeev equation including the breakup processlicit notation as

in the Faddeev amplitude. The latter source reaches far out in

the distance/ between one particle and the center of mass of U R o .

the other two particles; it decreases onlyag ~*?). How- Pxy)=p(xy)+ JO dx JO dy’g(x,y;x",y")Q(x",y").

ever, the presence of the pair interaction limits the extent in 2)

the distancex between the other two particles. As expected

in the case of the extended source, the leading form i§Ve have introduced in Eq2) the reduced Faddeev ampli-

reached only at a much larger radius than the localizedude(X,y) and the corresponding reduced Green'’s function

source, specifically wher is small andy is large. g(x,y;x",y"). The coordinatex andy are the standard Ja-
By inverting the free propagator, one can determine thecobi variables

propagating wave function using a partial differential equa-

tion with the given source terms. We established suitable X=X1=T2— I3, ©)

boundary conditions that could be used to solve this problem

efficiently. A matching radius of about 100 fm was found to

be sufficient.

In order to avoid unnecessary complications, we restricted

1
YEY1:r1_§(r2+r3) (4)
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expressed in terms of the individual position vectors. o %
The source term in Eq2) is given by F(xy)= fo dx’ fo dy’ g(x,¥;X",y") QmogelX",Y")-
Q) =V | du iz yo) ) v
X,Y)=V(X M P(X2,Y2),
-1 XaY2 To simplify the numerical calculations we follow the proce-

) dure used in paper I, and use the Bargmann two-body poten-
wherex,, y,, andu in Eq. (5) result from Eqs(3) and(4)  tjal

by the cyclical permutations, and are explicitly given by
—\X

1 v B Voe
Xo= \/Zx2+y2+xy,u, (6) (x)= (1+Be )2’

BNE . 1, 3 , where
Y2=\1gX T 7Y T 7 Xym (7 122
whereu is the cosine of the angle betwerandy. The total

wave function is given by the sum of the three Faddeev

amplitudes. In Eq(1) ¥ is one of the Faddeev amplitudes, The bound-state wave function for this potential is given by
the other two are generated by cyclical permutations of the

particles,P*¥ and P~ W, and they appear in the source (1—e™™)

term asPW. The pair interaction i%/(x) and this interaction Ug(X) = szﬁm e ",
also occurs in the Green’s functions

wherex is the bound-state wave number for a two-body state

G(E)= with the energye= —#%2«?/m and

E—(Hot+V)fie"

We refer to Ref[3] for the general background and details _ A2k
on the notation. N—2k"
The source term has a short-range component arising
from the elastic-scattering piece Of the Faddeev amplitudq;or our mode| Ca|cu|ations we use the Va|ues

and a long-range component from the breakup piece of the 9 2316 fn! and\=0.7 fm . We also need the two-body

Faddeev amplitude. In paper | we studied the effects of botlcattering states,(x) for this potential. They are given by
components; however, for the long-range component we

used a model source term. Using the asymptotic form of the 1

Faddeev amplitude derived by the stationary phase approxi- y,(x)= — el 0ekxn(k x) — e 19K kxp* (K )1,
mation, one find$2] that the asymptotic form of the source 2i

term for three equal mass particles with total endegg

with
x & A3koy
Q(x,y)—>CV(x)7,2—, 8 2k—iN)
2k
wherekj=mE and the constar€ is given by the magnitude h(k,x)= 1+ pBe M ’

of the wave function in the asymptotic region. Therefore, to
study the effects of this long-range behavior, we used th%n
model source term

xy d oy - P2k+in  [k+ik
QmodelX,Y) =V(X) ©) e'?= 2k—iN VKk—ik

(y+yo)>*’

d

with yo=2 fm. This source term has the same asymptotidn addition, we use the arbitrary but fixed laboratory energy
form as Eq.(8), and we have se€ to be unity for conve- of the incident particle of E,=14MeV and #2/m
nience. =41.47 MeV fm which corresponds to the case for three
In paper | we neglected the final-state interaction betweemnucleons. For this cade,=0.41403 fm®. Henceforth, we
one pair in the propagator. As required by the Faddeeset/i=1.
scheme, this will now be included. We will study the second For three equal-mass particles with massind total en-
term in Eq.(2) with the source term replaced by the model ergyE, the three-body Green'’s functig{x,y;x’,y’) for the
source. Thus, we write case with one pair interaction has the well-known form
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FIG. 1. The behavior of (y) normalized to its asymptotic w
value fory—oo. XJ dx"ug(X")QmodelX"+Y")
0
dm sinqey < .
(xy;x",y")=u (X)(——e'q°y>— Uug(x") 4m = singo(y—y’)
gReyxy d 3 Yo ¢ - Ug(x) | dy'———
3 y Jo
2 o0
+—f dku(x) e ) L
™Jo X 0 dx Ud(x )Qmode(x Y ) (12)
4m e'9>singyy - ,
3 a0 u(x), (1D we see that this consists of a flux-conserving term
where qo=\4m/3(E—¢), q=+43(K3—k?), and k2 Fa(x,y)=ug(x)e'9ofy, (13
=mE. Obviously the propagation from the source can now
proceed not only into the unbound states but also into thavith
deuteron channel. Moreover, the two-body scattering states am sindgy’
i i i i i - ! O * ! ! ! !
ug(x) include the mtergt_:ﬂor\/(x). It is the_purpose of this fy=—— | dy J dx Ug(x") Qmogel X'+Y"),
paper to study the additional effects\6§x) in the propaga- 3 o 0

tor, in contrast to paper | where only the free propagator was

considered. The numerical evaluation of the second part iand a correction term

Eqg. (11) containingu,(x) requires some explanation. We

were not able to find an analytical expression such as we corr _4m = sindo(y—y’)
found for gq in paper |, and had to perform tHeintegral Fa (xy)=- ?ud(x) L dy o
numerically. Clearly at the upper end of the integral the in-

tegrand has rapid oscillations that make the integral difficult © L, , .

to evaluate numerically. Since,(x) approaches sikx for X fo X’ Ug(X") Qmodel X",Y")-
k—oo, it appears natural to subtract the free propagator

go(X,y;x",y"), and add it back in a separate term. Then for |nserting Eq.(9) into Eq.(14) and performing one partial

k— oo the integrand has a stronger fall off and, moreover, thentegration in they’ variable, one arrives easily at the fol-
path of integration can be rotated into the complex planejowing asymptotic form:

similar to the procedure used in Ré#].

(14)

Let us start with the propagation in the deuteron channel: el VA3Koy 1
: _ F&(xy) — —gaz Ua(X) =
d0Y> sinqgy « y—o y €

4m > €
Fd(x,y)E—?ud(X)JO dy %

% X fwdx’ud(x’)x’V(x’). (15
x fo dX'Ug(x') QocelX'y") 0

4 . , . Clearly the long-range source behavior carries over into a
:__mud(x)eiqoyJ' dy’ SiNGoy corresponding long-range correction term in the deuteron
3 0 do channel. We rewrite Eq14) in the form
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gl V#T3koy =F4(x,y)/uy(x) and its asymptotic form given by E(L3) and
FPM(x,y) = vz—ud(x) My, (16)  Eg.(15). The difference is less than 2% fpgreater than 50

fm and less than 1% foy greater than 75 fm.
and show in Fig. 1 the behavior 6§°"(y) as it approaches ~ 1he propagation into the unbound statggx) is more
its asymptotic value given by complicated, since

1 (= i .
corr _ = / 1y’ / dm 2 (= o e'dY>sinqy
fd (y) Yo € fO dx Ud(X )X V(X ) (17) Fsca(X,y)E— T—J dkuk(X)J dyl—<
- mJo 0 Ak

To illustrate the convergence, we have normalized the plot to %

the asymptotic valug$®"(s) = — 23.325 fni’2. X J . dX"Uk(X") Qmmode(X",Y") (18)
To illustrate the error in the elastic term that results from

matching to the asymptotic boundary conditions at a finite

distance, we plot in Fig. 2 the absolute value ffy) can be written in the form

. ~4m kaodk ‘qyfwd ,sinqky’fwd , ) ., 4m?2
scal XoY) =~ 3~ — . U(x)e 0 VY g o & Uk(X") Qmodel X",Y") — 3~ —
ko = osingy=y') (= | , ., 4m2
x [ Pakuo [ Ty 2 w6 Quocel 'y - 5
0 y Ak 0 3 7

o v [Y,., SinhKy’ (= dm 2 (= sinhKy
% | “akuooe |y = [0 ) Qo ) - = | a0
ko 3 7 ko K

0 K 0
x f:dy'e‘Ky' | ) Qe 1) (19
=F{00Y) +FEGY) +F ) +FGXY). (20
[
In the third and fourth term& = \4/3/k?— k3. where To(x)=U(X)/Klx_o and To=T(K)/K|x_o. We find

Let us first examine the asymptotic behavior for fixed that
andy approaching infinity. One has

ko . 4
Fooa(X,y)= f dku (X)€W T(K) (1) sin \ﬁkoy’
0 5 4am 2 [« 3
To==75 ‘f dy =
with mJo \/%k
3 0

T(k)=—4—mE wdy'—smqky, &
3 7)o Ak Xfo dXTo(X") Qmodel X", Y")- (29

X JO dX,uk(X,)Qmode(X,iy,)- (22)
This term has the same dependenceyaas the correction

There is no saddle-point for this case; thus, the asymptoti%erm’ Eq.(15),_ in the deutgron channe_l. NOte.tﬁEﬁ IS given
form arises from the leading end-point contribution kat y the analytical expression, EQ.Z)’. d|ffer§nt|ated with re-
— 0, which is easily evaluated to be spect tok under lthe integral. This is obviously true for the
localized source; however, for the extended source, one must
rewrite the integral using a contour deformation before per-
forming the differentiation.
Let us now consideF2)(x,y) in Eq. (19) for the model

(23)  source term given by Ed9)

(1) \/; 3/4k3/2 i7l4 Nmoy" T
FocalXY)lk=o———-3"kp e —7 W) To,
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) am 2 (ko T (e , 1 ,
FEO0) == — | “dku) | dx'ugx)x'V(x') 92(X,X";2) = Ug(X) = Ug(X')
T Jo 0 Z—€
; ’ iV ! 2 (= 1
» o singy—y’) e _J :
X fy dy o v (25) + 7o dku(x) 1 m /muk(x ), (30
After one partial integration one finds the integral ovek occurring in Eq.(29) can be rewritten as
2) 2 (ko m —Edeku (x)mu (X" )=g,(x,x";0)+u (X)Eu (x).
Fsca{xiy) - T dkuk(X)F T Jo K k2 K 2R d € d
Voo ° (31)
x fixed
el T30y Thus, we are led to the function

dx U(X" X'V (X’ )T (26)

TJ(X)EJ dx'gs(x,x";0)x"V(x'), (32
The term FE)(x,y), as it stands, is less obvious in its °
asymptotic behavior. The contributions to tlgé integral

which obeys the inhomogeneous equation
keep growing towards the upper linyit Because of the fac- y g g

tor exp(=Ky), only contributions from the upper end of the d2
y’ integral have to be considered. Again by partial integra- B +V(X) |U(x) = —xV(X). (33
tion, one easily finds om

am 2 o \7§k0y Using the explicit form forg,(x,x’;0), oneeasily derives
(3) —
Fscal X,Y) :) 3 f dek(X) 2K B
x fixed TU(X) —— —f dx'Ty(x")x'V(x')=a, (34
X—300 0
1 . . , .
J dx up(x")x"V(x"). wherea is the scattering length defined Idyk) approaching
K+|\/ 13Kq J0 @7 —ka ask goes to zero. From Eq§33) and (34) follows
. . 4 . . T(x) =To(x) = X. (35
Finally, the last piecef{?)(x,y), can again be handled in a
straightforward manner with the result We now have the concise form
4m 2 e ¥y )
Fg;?;;(X,Y) _ ? - . Fscat+ Fscat+ Fscat
—® m .y el VaT3Koy 1
x fixed ~
Ty U(x) + ug(x) <
1 Q/&gd
><J dku(x )
2K K —i Ja/3k. o
K=iv4/3ko xf dx' ug(x" )x'V(x")|. (36
0
><J dx up(x")x"V(x"). (28
0 AltogetherFg.{X,y) has the asymptotic form
Adding Eqgs.(26), (27), and(28) we obtain the concise result el VoY 3, 4_
given in Ref.[5], FscafX,y) —— I ~Tip(X) 33’4k il
y—»m
e' Ry x fixed

Fioai Foubit Fiche T y? dkuk(x) 1
+Uo(x)—x+ud(x);
xf dx u (X" )x'V(x"). (29 w0
0 XJ dx’ ug(x")x'V(x"). (37
0
This can be simplified by using a technique suggested by

Gignoux[6]. Writing the two-body Green’s function in the The x dependence is therefore built up of the zero-energy
form scattering state, a linear term %y and the two-body bound
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state. The last term cancels exactly against the correctiot

. 8 — Real
term, Eq.(15), in the deuteron channel and the total ampli- o - |n$:g
tude F(x,y) behaves ds | -

g2 1 I N )
. el VAT3koy SO S
F(X,y) —— ug(x)e'9of + T L e
;&ed -4
-6
~ T 314y, 312 7/
X | =Tg(x) \/ = 3% %' T,
4 6 = Real
4 -—-- Imag 3
+Tg(x)—X]|. (38 527 ; 5 ey
B0 S=rs

-
\\\\\

For x outside the range of (x), the expression in the brack- ®-2 ]
ets in Eq.(38) reduces to 47

n .
—(x—a) g33’4k8/2e' T - a. (39

6 ] —— Real | |

4 --—-Imag | |

To verify the validity of the asymptotic term in E¢37), | -
we use Eq(10) to numerically evaluaté& (x,y) for several ?2 /,/"

<0 1 5 > 9 [

values ofy using only the breakup component of the Green’s £ ° T~

function given in Eq(11). We show the convergence to the 2] S~ - =
asymptotic result by rewritingr s.o{X,y) in the form o
-6 1
el VaT3Koy y
Fscal X,Y) = le_a(XrY)a (40)

FIG. 3. Thex dependence ai(x,y) defined in Eq(40) for fixed

. | i ic f .
where from Eq(37) a(x,y) has the asymptotic form values ofy and its asymptotic form

& 32 i i A(O) = —k iﬁ/4\/E in gel 9(ko cOsOT (K 0). (43
~Tig(X) Z33’4|<0 e T+ TU(X) (0)=—koe 5 Singe (kocos®), (43

1 * ’ ! ! ! 1
+ud(x);fo dx"ug(x")x"V(x"). (41) B(6)= 5

%A( 0)+A”(9)}. (44)

The results for several values pfand the asymptotic form In the following discussion we us&,y) and (p,6) inter-

are shown in Fig. 3, where one can see thét,y) ap- changeably. The end-point contributions areQdp %) and

proaches its asymptotic form for large valuesyofro better  are beyond what is displayed in E@2). The relation be-

illustrate the convergence, in Fig. 4 we pl{x,y) versus tween B(#) and A(#) is the same as found for the free

1l for x=3. As 1k goes to zero the plot approaches its propagation case considered in paper I. A tedious analytical

asymptotic valuea(3,0)=6.863-4.005 given by Eq.(41). study reveals that for this case the only contributions up to
Let us now regard the asymptotic form Bf.,(X,y) for  orderp~%?are fromF{),. Thus the two leading terms in Eq.

bothx andy going to infinity at a certain fixed angin the  (42) result solely fromF{%) in Eq. (20). The same is of

first quadrant. For this case only the breakup part contributeg,qrse true for the free propagatgy studied in paper I.

Its first termFg(l:;treceives contributions from a saddle point |t is clear that the first term alone in E¢42), the flux-

and from the two end points. The result is conserving breakup behavior, is not a valid representation of

Fscar @t small p values. The correction term is suppressed

ikop 1 1 . .
. = only by O[ (kgp) " *], and depending upon the size Bf6)
FscalX,¥) (kop) 2 ACO)+ Kop B(O)F+|, (42 relative toA(#) the value ofp may have to be very large

before one can neglect the second- and higher-order terms in
whered andp are defined byx= p cosé, y=/3/4p sin 6, and Eq. (42). To illustrate this property we numerically evaluate

Eq.(21) atp,, andp,,= 10 fm for a fixed value of), which is

then fit to the function

An alternate derivation of this result is given in Sec. 6.3 of Ref.

- , : b c ekor
[2]; however, the solutiog(x)=—1 of Eq.(2.6.19 in Ref.[2] is a+—m 4 m 45
not given explicitly. ™ kop  (Kop)?|(kop) ' 49
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7.0
6.8 r
=66 | -8
<) Q
E =
& 6.4 1 -
0.1 1 Green's Function
6.2 I
0 20 40 60 80
6.0 T T T r ‘
0.000 0.002 0.004 0.006 0.008 0.010 ) ‘
1/y /’_‘\\
-1
2 F
=
L2
% -3 7 r ] Faddeev Equation
4 L 0 20 40 60 80
6(deg)
5 FIG. 5. Comparison of thé(p, ) evaluated using the Green’s
) ' ‘ ' ' ‘ function integral and thé(p, ined from solving th rtial
0.000 0.002 0.004 0.006 0.008 0.010 unctio tegral and thé(p, f) obtained from solving the partia

1y differential equation fop =25 fm.

FIG. 4. The real and imaginary parts afx,y) for x=3 plotted g'kor
versus 1y. The triangles are the calculated values and the solid line FscalX,y)—A() W'
is a fit to a polynomial in 3.
For 6=80° the value op must be larger than 200 fm for this
Thea,, for three values ob along with the asymptotic value approximation to be valid.
A(0) are given in Table I.

From Table | one can see that E45) provides an accu-
rate approximation t& ..{X,y) at reasonable values pf In
addition, we note that the value of, required for conver-
gence increases asincreases. This feature is due to the To test the accuracy of solving the differential form of the
property that large values efcorrespond to small values of Faddeev equations in configuration space we solve the par-
x, and forx small one must use E¢37). From the Taylor- tial differential equation
series expansion ir of Eq. (37) one finds that fox greater
than the range of the bound state amdlp)? small g F=0Q, (46)

lll. THE PARTIAL-DIFFERENTIAL EQUATION
APPROACH

TABLE I. Values of a,, determined from Eq(45) for §=30°, §=60°, and#=80°. The values for
pPm= were determined from Ed43).

80° 60° 30°

Pm Real Imag Real Imag Real Imag
50.0 —0.2112 0.1240 0.0595 0.2159 0.0173 0.0657
90.0 —0.1088 0.1718 0.0137 0.1921 0.0152 0.0642
140.0 —0.0737 0.1651 0.0083 0.1969 0.0155 0.0642
190.0 —0.0678 0.1609 0.0074 0.1980 0.0156 0.0642
240.0 —0.0665 0.1586 0.0070 0.1984 0.0157 0.0642
290.0 —0.0660 0.1578 0.0069 0.1986 0.0157 0.0642
340.0 —0.0659 0.1574 0.0068 0.1988 0.0157 0.0642
© —0.0657 0.1560 0.0066 0.1990 0.0157 0.0642
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FIG. 6. Same as for Fig. 5 fgr=50 fm. Integral
0.1 ‘ ‘ ‘ -
which has the explicit form 0 20 40 60 80
6(deg)
1(6> 19 1 & _ _
ol 3.2 +— 7 +— o5 +V(pcosh)—E|F(p,0) FIG. 7. Comparison of the b_reakup amplitudéd) evaluated
p- pop p using the integral form foff (k) with the A(6) extracted from the
=—Q(p,0) (47) wave function aip,,,=200 fm. Wave function results for both the

numerical solution of the Faddeev equation and the Green’s func-

. o . . tion integral are shown.
and impose boundary conditions along a quarter circle in the

first Xx-y quadrant ap = p,ax- TO Solve the partial differen-

tial equation, we write For the three-body scattering problem one wants to obtain
accurate values of the breakup amplitudlgd). Since this

eikop corresponds to the amplitude of the scattering wave function

F(p,H)EWf(p,H) (48)  at infinity, its value cannot be obtained by evaluating the

Faddeev amplitude at large values @f... In Fig. 7 we
d solve th i tial diff tial tion f compare the “exact” result foA(6) evaluated using Eg.
and solve the resufting partial diflerential equation tor (43) and the integral form foff (k) given in Eq.(22) to the

f(p,6). The constangs is a parameter introduced to avoid values extracted from the wave function evaluateg at
singular behavior at the origin. We solved this equation us-_200f To d rat in that the bound dx't'
ing the spline expansion methods described in Réffor m. 10 demonstrate again that the boundary conditions

p< prmay With the boundary condition tha(p,6) have the for the partial differential equation have been treated cor-
formmz;txpma specified by Eq(45) ' rectly, we show thé\(6) extracted from the numerical solu-
X .

To show that this procedure can be used to obtain accdlon of the Faddeev equation and the evaluation of the
rate results for the scattering wave function, we solved thé>reen’s function integral withp=pma.. While the wave
partial differential equation numerically for various values of function results are similar to the “exact” values, one can
pmax @nd compared the results to those obtained by numergee that for large values éfthey are different for the reasons
cally integrating the Green's function integral in E@1).  discussed in the previous section. TAg6) obtained from
We found that values g, on the order of 100 fm can be the wave function ap,, still exhibits the smalk behavior
used to obtain good wave functions. Larger valuepgf,  of the wave function fo® near 90°. Thus, to obtain accurate
yield more accurate solutions. In Figs. 5 and 6 we have plotresults forA(6) one must use the integral expression. This
ted examples of the comparisons for fixedalues of 25 and was the procedure followed in Rd8] where it was shown
50 fm. One can see that in both cases the agreement is ettiat configuration-space Faddeev calculations gave results in
cellent. excellent agreement with the momentum-space calculations.
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V. CONCLUSIONS on the order of 100 fm yield good solutions. The breakup
Using a model source that mimics the real source term iamplitude corresponding to small valuesxotannot be ob-

9 . . s ined from the wave function evaluated at large values of
the configuration-space Faddeev equations, the validity o - . o

. ; . the T-matrix integral must be used to determifgd) in this
the expressions for the asymptotic behavior of the wave .
; o . . . . fegion.

function has been verified by numerically integrating the in-
tegral representation of the Green’s function integral. Using
the asymptotic expressions as _the bo_unda(y condmon_s _for ACKNOWLEDGMENTS
the partial differential equation in configuration space, it is
possible to obtain an accurate solution of the scattering equa- The work of J.L.F. was performed under the auspices of
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