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Two-nucleon one-loop corrections to pion double charge exchange within heavy baryon chiral
perturbation theory
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One-loop corrections at the two-nucleon level to pion double charge exchange scattering off a nuclear target
at threshold are calculated within the framework of heavy baryon chiral perturbation theory. An estimate for
the (two-nucleon one-loop correction is obtained in the static limit and using an impulse approximation. We
find a small(1.6% increase relative to the leading order tree graphs.

PACS numbds): 12.39.Fe, 13.75.Gx, 25.80.Gn

. INTRODUCTION —14C) because while the former involves only the valence
nucleons, the latter involves a coherent scattering of the core
The effective field theory used most extensively to studyand the valence nucleons.

QCD at low energies is generically referred to as chiral per- The reason for considering DCX at threshold is that it is
turbation theory(ChPT). With the inclusion of baryons, the dominated by two-nucleon processes, since singlé scat-
effective theory is called baryon ChRBChPT), whose non-  tering cannot contribute. It has been shown that the contri-
relativistic limit (with respect to the baryohis referred to as  bution of meson exchange curref8EC) to DCX, although
heavy BChPT(HBChPT). So far, pion-nucleus scattering less than double scattering, is not all that sm@&ke[5] and
and production processes involving multiple nucleons with'eferences thereinin the context of HBChPT, these results

an arbitrary number of pions have been considered withifre at the leading ord.er, or tree I.evel. The second motivation
HBChPT up to the tree level, with one-loop corrections onIyOf the present paper is to establish the size of the next-order
. ’ X . correction to the two-nucleon MEC contribution to DCX.
at the single-nucleon levéVertex corrections[1,2]. In this In Sec. Il we introduce the theoretical backaround of
paper, we perform a two-nucleon—one-loop calculation in-_. s . . 9 .
) . . ; ; : single- and multinucleon HBChPT and discuss a chiral
volving pion loops, with the pions being emitted and ab-

sorbed at different nucleons, which we believe has not beeR°OVer g;lpuntlfng rulﬁ dueh'toh Welnbe(mp!ud|r1|g 'SSU?.S qf
done before. reducibility of graphs, which is an additional complication

The qoal of this paper is to determine the size of the‘arising at the multinucleon levelin Sec. I, we discuss the

one-loog contributioﬁspto ion double charge exchan eapproximations involved in gettin¢analytical and numeri-
P ) P 9 \ang cal) estimates of the amplitudes for the tree and one-loop

(DCX) scattering at threshold on a nuclear target, relative tq - :

the tree graphs, in the framework of HBChPT. One of thegr"’lphS for pion DCX. The relevant leading order tree graphs

motivations for this study is the fact that sizable one—loop:Le Z;ﬁ::?tiglgnurggof;ar?ﬁwst)erlé O];VH Bv(\i:Pe-E/ZITth orph%ars/\cli Ot_o

(pion) contributions tow-# scattering andr-N scattering : PR

) . nucleon one-loop corrections to the tree graphs of Sec. Ill.
h_ave been obtained in the frame_work(be)ChPT by pre- We then make a numerical estimate of the finite parts of the
vious authorg 3,4]. Therefore it is natural to ask whether

S N two-nucleon one-loop graphs, and make comparison with
similar large contributions are found for a two-nucleon cal—( 0 b grap P

o e . . . the tree graphs of Sec. Ill. In Sec. V, we discuss the renor-
culation involving pions in HBChPT to one loop. We shall malization of the one-loo raphs of Sec. IV usin
find that this is not the case; the loop correction to the two- b grap i 9

; - .~ 2a7—two-nucleon contact terms. Section VI summarizes and
nucleon process is small, as expected for a chiral expansiof. . ,
i . ' iscusses the findings for the DCX problem. We include an
The two-nucleon process considered is pion DCX:

estimate of the effect of vertex corrections on the tree graph

amplitudes, based on earlier published work. There are two

at4ntnoa +p+p, (1) appendices: Appendix A presents the vertices written in
terms of =, 70 [rather than their Cartesian counterpdes

in [6]) as the former are more readily useful for calculation

where the nucleons are in bound nuclear states. We considBHPose$ (Appendix A1), and combinatoric factors Appen-

only transitions to the DIASdouble isobaric analog stajes dix A2 for the one-loop7-NN graphs. Appendix B dis-
e.g., “C(m", 7 )0 (DIAS). The DIAS is that(normal-  CUSses the various one-loop integrals and related identities

ized state obtained by operating with |, on the target in_vol\_/ing_ them, relevant to the DCX one-loop calculation,
ground state, wherkis the total isospin operator. The DCx Nighlighting the ones that are new.

contribution is much smaller than elastic scatteringC( Il THEORETICAL BACKGROUND
In this section, we discuss the basic elements of HBChPT

*Electronic address: aalok@iitk.ac.in at the single- and multinucleon level that will be required
Electronic address: koltun@urhep.pas.rochester.edu later in the paper.
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FIG. 1. Elementary vertices.

The leading orde(LO) HBChPT Lagrangian that will be
used in the calculations of the LO tree and one-loop graphs is

PHYSICAL REVIEW C61 024003

@iv)

g%HS- u-3H (6)

given by

_ F2
H(iv-D+g8S u)H+ Z((&“UT&MU)+M<U+UT—2)), term:

(where the supersgript oun, represents the powers of the
pion field. The 27-NN vertex is constructed from the Dirac

@)

wheregﬁE axial-vector coupling constang= pion-decay

constant andl= pion mass in the chiral limit. The trace in
the nucleon isospin space is denoted(by in Eqg. (2).
The HBChPT Lagrangian is written in terms of the “up-

per component” H and its covariant adjoﬁ Exponentially

parametrized matrix-valued meson fields), u=U,
baryon(*v,,S,”) and pion-field-dependeitD , ,u,,x+")

building blocks defined below:

o1
H=e™ 2 (1+¥)y,

where s is the Dirac spinor andh is the nucleon mass,

v, =nucleon four-velocity parameter,

S,= > 7f5avpv”E Pauli-Lubanski spin operator; (4)

U=ex%iF£), where ¢p=1-1,

m

iHv-D@H=iHv-I'®H @)

(where the superscripts on,andI", represent the powers
of the pion field.

The four-pion vertex is constructed from the nonlinear
sigma model Lagrangias LO ChPT Lagrangian:

F wy T 2 )
Z((a U'9,U)y+M4U+U"-2)). 8

For more details, refer to Appendix A.

The elementary vertices from which the tree and the one-
loop graphs of Secs. Il and Il have been constructed, are
drawn in Fig. 1. However, the calculations in the chiral per-
turbation expansion are renormalized to the chiral order of
the expansion. The Weinberg chiral power counting relation
(WCPCR,[7,8)) is used for a systematic classification of the
relevant tree and one-loop graphs. The relation determines
the overall chiral order of irreducible graphs in terms of the
total number of incoming or outgoing nucleotike two are
the same because of baryon number conservatibe total
number of loops, the chiral order of the vertices, and con-
nectedness of the graphs, as discussed below. Here is the
WCPCR:

where 7 are the nucleon isospin generators, 59, + I’
wherel",=3[u’,4,u]; u,=i(u’9,u—ug,u’).

The m7-NN vertices,m=1,3, are constructed from the
Yukawa term:

"
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wherev= overall chiral order of a grapiN= total number large as 10—-30%3,4,11. So we know the order of magni-
of incoming/outgoing nucleond,= number of loopsC= tude of thev=2 corrections to the LO DCXtree ampli-
number of separately connected pieces of the graggh,the  tudes from the one-loop vertex contributions, but cannot de-
number of vertices of type, n;= the number of incoming termine these corrections completely, without the
and outgoing nucleons at thigh vertex andd;= is the num-  undetermined LECs.
ber of derivatives or powers d¥l .. From baryon number For that reason, we shall use the vertid®s-(8), with the
conservationn;=2 or 0. renormalized valuesl0) for the tree calculation in Sec. I,

Graphs which violate relatio(®) because of anomalously omitting unknown(but significant corrections of the same
small denominators are referred to as reducible by Weinbergrder. The one-loop corrections at thé&l 2evel are calcu-
[8]. This class includes graphs whose energy denominatolgted in Sec. IV with the same vertices.
in old-fashioned time-ordered perturbation theory are of the
order ofoT/m rather thanM .. These graphs arise in the
context ofNN or many-nucleon scattering, without external
pions. (For a recent treatment of tHéN scattering problem In this section we discuss the approximations that will be
which deals with problems of the Weinberg scheme, segnade in evaluation of tree and one-loop graphs for DCX
[9,10].) However, for pion scattering oNN pairs, as in the scattering of pions off a nuclear target, set up the notations
present paper, all graphs are irreducible, as can be seen fraand calculate the amplitudes for the leading o(@sCX) tree
the discussion of8]. In Secs. Il and 1V, WCPCR will be graphs.
used to determine the overall chiral order of the tree and
one-loop graphs.

The lowest order tree graphs for DCX, based on the LO

Ill. DCX SCATTERING AMPLITUDES; TREE GRAPHS

A. Notations and approximations

vertices (6)—(8), will be shown to be of chiral order=0 The scattering matrix elemef; is defined as

(see Sec. llIB. The one-loop corrections at theN2level, 1

which are the main subject of this paper, are of orger2 Sii=—i(2m)*6W(Ps—P;)s—g M. (12)
(see Sec. IY. To this same order, there are also corrections " oV em™,

to the LO vertices, which have already been obtained in

(HB)ChPT (see[3,4,11)) as renormalized effective interac- In Eq. (12), the nuclear scattering amplitudé is defined
tions, with a number of low-energy constat&ECs). These as the matrix element of a two-body operator

LECs are to be fixed from experiment, but are not in fact all

know”n. (For the - Vertex, the LECs ofv=2_ar§ “al- M={(ho 1 =1, l3=1|TAD D]y 1=1, 1,=—1)
most” all determined3]. For 7—N, the information is less
complete, but has been supplemented by theoretical argu- = (| T|ih) X {(I=1, 13=1|7PP|I=1, 13=-1),

ments[4,6,11] for on-shell nucleons.

However, we do know the renormalized values of the
pion and nucleon masses, the axial-vector coupling constant, . )
and the pion-decay constant. For the purpose of numericdfhéré we assume a target witm2 isoscalar core I(
calculation of the analytical expressions for the tree and one= 1. 13=—1); then the DIAS has @+ isoscalar core I(

13

loop graphs later in the paper, we use =1, I3=1). The isospin matrix element in the second line
of Eq. (13) equals unity, and will be omitted in the follow-
M,=139.57 MeV, F_ =93 MeV, g,=1.26. ing.
(10 If p4,were the four-momenta of the incoming nucleons,

4 4 the four-momenta of the outgoing nucleons, ayfd the
our-momenta of the incoming and outgoing piainespec-
etively) then

Renormalizing these constants, including the nucleo
massm, to one-loop(in the 7-N and 7~ interaction$ gives
the following relations to the corresponding quantities in th
chiral limit g% ,m°,M,F:

4
ga= %L1+ pM2], M:f Il;[l d*pi(o(P3. P TIHi(P1,P2)). (14

m=m[ 1+ p,,M?], , _ .
The nucleons are in a relatiVe- 0 state (=0 state being the

1D dominant partial wave for ground statesnd hence from
Mi: M?[1+pyM?], Pauli’s exclusion principle, the spin of the incoming and out-
going nuclear states must be equal to zero. Hence, from here
F.=F[1+peM?], on, for both tree and one-loop graphs, we will simplify the
structure of the transition operatdrassuming that eventu-
where thep; include some of théHB)ChPT LECs. ally one is going to take it's expectation value with respect to
It is also known that the one-loop corrections to ther || =S=0) nuclear states.
vertex give contributions of about 25% of order 2. Simi- The following will be used extensively in the same con-

lar corrections to thenw-N vertices(with m=1,2,3) are as text:
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(a) ®) ©)

FIG. 2. Tree graphs.

, , az , B. Tree graphs
— (1) AV~ S — /2. — 5
(8=0|(aM-q)(c?-q)|S=0)= (V. o )>s=0§—_q : The connected tree graphs are of ovef{q®), as fol-
(15)  lows from the chiral counting law9), because for theril
=2, L=0,C=1, nj=2 or 0,d;=1 or 2. The tree graphs

Following [1] and[2], first the velocity parameters of the have been constructed from the first three and the fifth el-
two participating nucleons are both chosen to have the statfgMentary vertices of Fig. 1. They are drawn in Fig. 2. For
limit values, with only a nonvanishing time component, i.e.,-Q graphs, all the vertmgs have to pe of '—O_’ 1@(q)mm
v#=v&=(1,0). Second, the nucleons will be treated as if ~ NN(m=1,2,3) andO(q®) 4  vertices. Using the expo-
they were on shellsometimes referred to as impulse ap- nential parametrization for the matrix-valued meson field,

proximation. In the HBChPT formalismp® denotes only ~Hscner @nd Leper are written down explicitly in terms of

; ; ; 0+ :
the contribution to the time component of the total nucleon:)heengi'glt;]'plet fields:r™, =, andp, n fields[refer to Ap-

momenta Emv + p), in additionto the rest mass energy ) . .
(for the choice of the nucleon velocity to possess only a The Smatrix for Eq.(1) can be calculated in perturbation

nonzero time componentIn the present cas@®=Epg. theory using standard Feyn_man-qliagram .techn.iques..For the
ponen i ® B nth order term,S(™, a combinatoric factof is defined via

which as stated above, we drop. Then if we go to the c.m.
frame of the nucleons, in n n
s<“>=—J I1 d“ka(H > ﬁ}(xo)
n'J) k=1 =19

pL=(0,p); p4=(0,—p); p4=(0,p");

n n
- - —fin 4 Iy
P4=(0.-p"); af=a5=(M,.0). (16 - f 11, d XJ(E Wxﬂ) (19
(Note: The external pions are at zero kinetic endthyesh- (7= time-ordering operatdr where one uses7(AB)
old].) =7(BA), whereA,B= bosonic fields or fermionic bilinears.
For this paper, we shall only evalugt®=0|T|S=0). M One can show that the combinatoric factors for tree
will be estimated by calculatingS=0|T|S=0) at a typical graphs of Fig. 2 are
int:
poin contact graph, Fig.@): f=1,
P2=M2, 17) 1
Pole graph, Fig.@): f= > (20

where P=p’ —p. This is a reasonable kinematic point be-
cause the internucleon separation in a nucleus averaged over

. . 1
the nuclear wave function is roughM 1. Then double-scattering graph Fig(@: =7

M~(S=0|T(P2=M?2)|S=0) The amplitudes for the tree graphs are written in terms of
4 Pauli spinors(to which H and Hreduce in the static limjt
_ _ and the pionic fieldp™ 7, [see Eq(54)].
xf iﬂl d*pio(P3:Pa) [ i(P1:P2)) Using also Egs(16), (17), and (20), the amplitudes for
the tree graphs are expressed as operators written in terms of
=(S=0|T(P?=M?2)|S=0), (18 1ande™.Pg?.P,

What follows are expressions fof and (S=0|T(F32
where the last line follows because the overlap integral infT)|S:O).
unity for s,= DIAS of ;. (a) Contact graph, Fig.(@):

024003-4
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(b)(1)

Y T

(@)

(@1

B2 oW.Bs@.p

T =2(v2)*

which using Egs(15) and(17), gives

(S=0|T}4(P?=M2)[S=0)

9a

—-_ 6?‘7‘,_
(b) Pole graph, Fig. @):

9a

24F%

T[b]:(\/z)6

which using Egs(15) and(17), gives

i

12F%

(S| Ty (P?=M?2)|S=0)=—

(c) Double-scattering graph, Fig(@:

Tig=—(V2)*

which using Eq(17), gives

24F7 M2+ P2

= =—1.42x10 8MeV 4.

V. Bs).p

2|\/|2—|32 — =
(oM}~ F

=-6.3x10"° MeV ™4

M2 1
8F% p2’

(21)

(D@

PHYSICAL REVIEW@&1 024003

FIG. 3. Two-nucleon—one-
loop graphg@—(d).

(S=0|T;y(P?=M2)|S=0)

—2.67<10°8 MeV 4  (26)

Thus, the total tree-graph amplitude is

(22

(S=0|Typl tre€l(P2=M2)|S=0)

1
(ga+2)=—-4.81X10"8 MeV 4

(27)

An older form of chiral Lagrangian that predates QCD
was given by Olsson and Turné®T) [12], and has been
used for tree calculations, e.g., of DQX]. It consists of the
minimum number of derivatives of the pion and nucleon

fields, with two undeterminedmodel dependeptparam-

(24) eters. It can be easily shown that the OT effective Lagrang-
ian is equivalent to the LO vertices obtained from E@s.

and (8), with the OT parameters taken to be&, %" =(3,

—1). Therefore, the tree-graph calculations of this section

should agregas they indeed dowith the expressions ob-
(25)  tained in[5] for the transition operators for “forward scat-

tering” for the “pion-contact” and “pion-pole” graphs, us-

ing the same values of the OT parameters. This provides a

check on the tree-level calculation using HBChPT.
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I~ -~ -

®

_____________

(h)(1) (h)(2)
FIG. 4. Two-nucleon—one-loop grapte—(h).

IV. ONE-LOOP GRAPHS FOR #-NN =(2, 1) or (0, 2). The vertices corresponding to the in-
teraction of an even number of piofisvo or four for our

purpose with nucleons, are obtained from the Dirac term
(7), while the vertices corresponding to the interaction of an

In this section, we discuss how to evaluate one-loop cor
rections to the tree graphthat were evaluated in Sec. )l
for pion DCX, in the framework of HBChPT. Loop graphs, odd number of piongone or three for our purposavith
in the present context, involve the emission of two or more_ |\ jeons. are obtained from the Yukawa teB). The
pions from one nucleon leg and their absorption at anothe[O(Eo(dz)) ChPT Lagrangiar(8), which is equivalent to
nucleon leg(for multinucleon processgsFor evaluation of the nonlinears model, is used for,the# vertex. However,
the one-loop integrals that occur in the two-nucleon—oneyse g yse the renormalized constafits), which introduces
loop graphs, use has been made of dimensional regularizasme corrections of higher order. For details refer to Appen-
tion in which the space-time dimensiord™ is allowed to  gix A 1.
vary continuously, and expressions obtained after integration The one-loop amplitudes are written using standard Feyn-
are expanded arourt=4. man rules. The expressions for thematrix elements for the

One gets eight one-loop graphs using all five of the eleight one-loop graphs for fixed momenta of the external
ementarymm-NN(m=1,2,3,4) and 4= vertices of Fig. 1. nucleons legs are given below. For notational convenience,
They are drawn in Figs. 3 and 4. The uncrossed counterpaHeurofP1,2) is represented as(py ), and HyoiodP34) iS
of Fig. 3(d) is not included because it belongs to the class ofepresented ap(ps,). Including the combinatoric factors
multiple-scattering graphs involving at least three nucleons; f” of Eq. (19), one arrives at the expressions below for

which are not considered in this paper. For Fi¢h)4if the Tijp» i1=a, ... ,h. They are first written in a covariant no-
two pions exchanged were®s, then the amplitudes would tation except that the two velocities of the two nucleons are
vanish in the static limit. chosen to be the same, i.e,=v,=v (as in Sec. Ill. Then

The leading order connected two-nucleon one-loop graphthe static limit kinematic$16) is applied.(The combinatoric
(for DCX) are of O(g?), as can be seen from E(Q), be-  factors are given first for each diagram, and are obtained in
cause for these graphs,N=2, L=C=1, (n;, d,) Appendix A2)

024003-6
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@
L _(2°GR1 - d% [p(Py)v- (2p,=2pa)n(Py)P(P4)S?: (Pa= o+ kISP kn(p,) 28
I 96r® i) (2m)9  (v-(k—py)—ie)(M2—K’>—ie)(M2—(ps—pptk)2—ie) |
Using Eq.(16), Eq. (28) vanishes because (p,—p4)—0.
(b)
. _2<ﬁ>69i1 d¥k [p(pa)SY-kSY- (g1 —qo+2ps—2p2+2K)N(P1)P(Py)V - (Pa— P2+ 2K)N(Py)
1= 96r® i) (2m)9 (v-(k—p3)—i€)(M2—k?>—ie)[M2— (k+ps—p,)°—ie]
P(p3)SY- (1= 0y +2ps—2p,— 2K) S kn(py) p(Pa)V - (ps— P2 —2K)N(py) 29
(v-(k—pp)—ie)(M2—k?—ie)[M2—(k+p,—pa)’—ie] '
(©
_(V2)%giM7 1 f d% [p(pg)S™)- (ps—pstk)SD-kn(py) +Rpa)sm-ks”-(ps—pﬁk)n(pl)}
[eI™ 96F8 (2m)9| (v-(k=p1)—ie) (v-(k+p3z)—ie)
{ [40y- G+ 2K- (03— G2+ K) IP(P4)V - (01— da+ P3— Py +2K)N(Py) } -
[MZ—(k+a1—d2) —ie]l(M5—k*—ie)[M5— (k—[p1—ps])®—ie]]

(d) One can show that the contributions af)(1) and d)(2) [in Fig. 3(d)] are equal, giving an overall factor of 2:

293V2)°1 [ d% [p(p3)v-(qu—pa+pa—K)v- (k= 02)N(p)P(Pa)V- (P2~ Pa+ 2K)N(P2)

M= 73726685 1) 2m)9 (v (K- ta—pr)— 1) (MZ—K2—Te)[M2— (K—[pa—ps])°—ic] 3
(e
_(\/5)81 d | [401-02+2K- (01— 02+ K) ]
(7 384F% 1 ) (2m) 9 (M2—K2—i€e)[M2—(a;—qp+k)?>—i€el[MZ—(k—[p;—ps])?—ie]
X[F(ps)V-(pl—p3—2k)n(p1)5(p4)V-(ql—q2+ps—p1+2k)n(pz)]- (32
(f)
T (V2)°1 [ d% [EV'(Qz A1+ 2p2—2pa+2K)N(Pp1)p(P4)V - (P2~ p4+2k)n(p2) 33
123857 ) (2m)| (M5—=K2—ie)[M5—(k—[ps—pa])?—ie]
(9
T 2(\/_)6 d% [ p(p3)SY- (p;— pa+a1)n(P1)p(pa)SP- (p1— pa+a:)n(p,)
(@0~ " 98124557 | (279 (MZ=K2=ie)[MZ—(k—[ay+ p1—Psl)2—ie]
+p(los)S”(los, p1+3K)N(p1)p(pa)S?- (2p,—2p,s— 3qz+3k)n(pz)) 34
(M2—k?*—i€e)[M3—(k—[a,+p:1—ps))?—ie]
(h
_OA2)°1 1 d% (p(pg)S™- (Pp— pat Gy~ 2+ 3K)N(P1)P(Pa) S kv- (k+ Py~ Pa—20,)n(P2)
M="96r i) (2m)9) (V- (K—pg)—i€©[M5—(k—[ps—Pa+az])>—iel(M7—k*—ie)
_H(p3>s<l>-<pz—p4+q1—q2—3k>n<p1>5(p4>v-<p4—p2—2q1+k>8-kn(p»)+ - -
(- (k—p2) -1 )(MZ—KP—i€)[M2—(K—[ s+ po— pal)P—ie] R
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TABLE I. List of one-loop integrals in Eq937)—(47).

I Integrals of Appendix B Equation Numerical value
of UV-finite part
atu=1 GeV
s J7(=MZ ,M?) (B9) 0.018
I JT(—MZ,M2) (B19) 0.009
E J3"(—M2,M2) (B23) 0.014v2
4 J57(— M3 ,M2) (B25) 0.006
& —
's I (M2 M)y 2 (B2Y) ~0.00M?
Jd
le 2 T3 (=ML M) a2 (B27) 0.002
d
7 I3 (= ME M) a2 (829 ~0.004
lg J™"(0M?) (B10) 0.019
lo J3T(0M?2) (B8),(B17) 0.013
10 J5T(OM?2) (B10),(B18) 0.006
lg Yo(—M,,0,-M?2) (B13) 0.01aM;*
Iz ¥2(0,— M ;,0)—2(0M ;,0) (B3Y) 0.029v;*
|13 VS(OI_MWO)_ 73(O!M 77!0) (834) _0022\47
l14 ¥5(0,~M,0)— y5(0.M ;,0) (B37) 0.02M '

The amplitudes for the eight one-loop graphs are no &5

. . ! . t Isl;, i=1,...,14inth -l litud€37)—
written in terms of 11 of the 13 one-loop integrals discusse Z%Q?hsel',] ulsing the resJ?ts ;g\npepeonodg?xagg |aundé B7)2 the

in Egs.(B1)—(B3) of Appendix B. They, like the tree graphs jntegrals and hence the amplitudes are written down as a
of Sec. lll, are evaluated in Eq17). The Pauli matrices |inear combination of the UV-finite L(-independent and
o come from the nonrelativistic reduction &), UV-divergent (-dependentterms. In Table | we identify
The expressions below are written in terms of Pauli spirthe equation in Appendix B used to evaluate each of the 14
operators, and will be evaluated f¢6=0|T|S=0). For one-loop integrals. The numerical values of the UV-finite
graphs(a)—(f), the spin operator is unity; fdig) and (h), we parts are also given in Table |, for completeness, so that the

use Eq.(15) calculation can be reconstructed by the reader, or for appli-
029 . o " cation of the relevant parts to problems other than DCX.
Using dimensional regularization, the_" in the expres- a)

sions below is the UV-divergent portion of the loop integrals
and is defined by

becauses- (p,—p,4)=0.
b
i Lar)+inam]], @ 2
=1672\d—4 2 niam 1], g
lomid—4 2 Tin=2(12)°,_Z5[= 315+ M21,—M21]

’M2[29 85 5

— 6
whered is the dimension parameter apdis the renormal- =2(:/2) 48F6 EL_ @Jrﬁ
ization point, which is taken to be of the order of the nucleon 7
mass. Followind11] we useu=1 GeV, and also vary the \/§+1 29 Mi
value by +0.5 GeV to test the sensitivity of the results to X In + In—-|. (38
this choice. ( \E—l) 1927° ,uzl

The momentum loop integrals are then rewritten in terms
of the one-loop integrals of Eqgs.(B1)—(B3): the

2m-propagator integrals are represented 6y",J7 7 5 and The notations of6] and[13], where similar integrals have been
the one-nucleon—2-propagator integrals are represented byevaluated, have been modified for this paper; see Appendix B.
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(¢))

(V2)%3[[ 3 L
gA \/_)8 ) T[g]:—W _§|8+9|10 0'(1)'P0'(2)-P
Tig= [—6M2(—M2I5—3lg+M2I5) m
’ —91.0M. 5@
+2(M21,+315— M2l )] 9lgo™™- 7). (43)
@M2(V2)][ 41 23 415 [5+1 Using
=— | ——L- — In
96FS 3 288r° 1200° | \5-1 1
M2 |10:§|8; _EAﬂ.(O,quT), (44)
25 2
4872 Nz (39 one gets
Lo G20 3
(d [0~ " 57688 32m2
M2
2(v2)8 1 , , X 1+|nM—§))o<1>-Po<2>-P
Trg=— — 13— 4M21,+4M3]
[d] 3 128:6[ 3 'l 771]] 2 ,
2 ) 2, 2(2)
- 6 2t o2 2
3 64F%| 6 576m% 19272 One thus gets
53( Vs+1) 1 | 1+5 (V2)%2 1
Inf ——|+—1In . (40 = =0)=— - =5
19242 J5-1) 2= 2 (40 (S=0|T,|S=0) 5762 24+ oo
(e 3— 24In—” (46)
) (h)
8 2
Tig=—(V2)8—[15+3M2I4] 2(J2)°
48F° . _2(V2)g 1) @)
Tim=2X% 384°° [( 6lg—6M l350 " o
Mi(V2)f 8 1 2 o
= g0 [5"_96772 11_8"]? +(—1g—2M ;| 15+ 61 19+ 6M 1 1) V. P& P]
2(\2)%03 M7 1
7\5 [ \B+1 XA —eL— 62" 7 2
+——In| —— (41) 384 m
967 \/g—l
37 3
X 3_T M O' (2)+ —ZL—W
O 1 M2 3
—Fln—;-F— (;'(1)45(;'(2)45}. (47)
2(\2)° .
Tin= 96FfT I3 One thus gets
6712 9a 1
(2w ot (S=0| Ty S=0)=( \/_)GW—[ZOL—EZ(BS—SWZ)
48F° 6  576m° i
o M2
M2\ 55 [B+1 "’ﬁ'n’uz} (48)
—29+21In— | ———In| —— |.
s 1927 \/g—l

Finally, the total one-loop contribution to the DCX ampli-

(42 tude is given by
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TABLE Il. Amplitudes for one-loop graphs.

(S=0|T|S=0) UV-finite integral (units of MeV~4) UV-divergent portion
2)5Mm2
coefficient of \/—)6 ZL
F’TT
a p— p—
b —7.7x10° 10 2><299i
288
c 10°° 4192
Cox 195
288
d 1x10 % 55
1152
e —2.9x10°1° 1
9
f 7x10° 1 7
288
g 1.9x10°1° izz
24
h -10° 59_22
24
Total —(7.9+1.6)x1071° 1 5
2—4>< 1—6+49A)
for u=1+0.5 GeV
(\2)6Mm?2 15 From Table II, one sees that the dominant one-loop con-
(S=0|TotalONe-loop|S=0)= T‘aﬂ( 4gf\+ R}L tributions come from graph&), (c), and(h). This is prob-
™ ably related to the following observations. First, as is clear
181 3 from Table I, the one-nucleon-2propagator loop integrals
+| - 25672 + 64 gf\ dominate over the 2-propagator integralsSecond, graphs
(b), (c), and (h) are proportional t(g2A>1, as compared to
157 . 1 I M2 15+5 n J5 I J5+1 graphs(d), (e), and(f) (which do not have @3 dependende
1536r”  64n” ' 2|8 oA 2477 | -1
V. RENORMALIZATION BY CONTACT TERMS
x—1—12+§’—im L+15 . (49) : . . -
102" 64| 167 2 In this section we discuss the renormalization of the one-

loop graphs evaluated in Sec. IV. To remove the UV diver-

The numerical values of the UV-finite parts of the one-gence in (3+1)-dimensional space, one has to look for
loop amplitudes and their UV-divergent portions are given interms whose contributions precisely cancel the coefficient of

Table Il

the “L” in the (two-nucleon one-loop amplitudes. Given

Hence, comparing the numerical values of E27) and  the structure of the UV-divergent parts of the one-loop am-
Eq. (49) one sees that the one-loop graphs contribute an iNplitudes, 2r—two-nucleon contact term&ig. 5 of O(q?)
crease of about a 1.6% relative to the tree graphs, after reshould do the job as the correct counter terms, as will be-
moval of divergent termgsee Sec. Y. This agrees with the come clear from Eqs51) and(52) below.
expectation that the second-order correction in the chiral ex- The contact terms are defined by

pansion should be smaller by a factor lvffT/(47rFW)2

=0.014 than the leading order. The suppression of the two- _ _

nucleon graphs relative to the leading order tree graphs can lim(a'[HOH(x)|a)(B'[HO.H(y)|B), (50

be seen explicitly by comparing expressid2s) and (49). x=y

(This is in contrast to the large one-loop corrections for the

- and-N vertices, which are discussed in Sec.)\Also

note the relative insensitivity of the totélinite) one-loop 2Graph(d) also has a one-nucleon#2propagator structure, but
amplitude to the choice of the renormalization point as  the corresponding loop integrals occur in such a way in the ampli-
shown in the last line of Table Il; a 50% changeungives  tude that there is large cancellation between the contributions of
a 20% change in amplitude. I, k=1,3,11.
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with e@=p,l3. From the expressions for the amplitudes for . ;.

the eight one-loop graphs in Sec. IV, before setittg=q, [ D, =(d,+T,)+(-T,); x+=M2(U+U"]. The fi-
-q,=M2, one can show that the UV-divergent terms havenite parts of these nine terms will not contribute, as ex-
the following structure§omitting the overall isospin factor Plained later in this section.

7172 from Eq. (51)] One needs to include at leagt explicitly as a building
block for DCX for the following reason. Theé in Eq. (A2)
(P2 or g;-q, or M2)x1, can be expanded in terms of the generators of the nucleon
isospin group as
52 . 2y s (1), 5(2) -
(P2 or g;-g; or M) X o' o', (51) b=130°+\2(1 0 +T_d"), (54
o). P2 .. where 7. =3(7,*i7,), and ¢ either annihilatesr~ or

createsrt, and¢~ either annihilatesr™ or createsr—. In
On taking the Fourier transform of the amplitud&é4), one DCX, a #" goes over tor~, implying that one requires

gets the local forms: O(x) and O,(y) in Eq. (50) to consist at least of
- - ¢_(X)p_(y) (or derivatives theregf or in terms of the isos-
2 1.2\ o3 —0O(n2
~(M7.0:-02.919,) 0%, =x)=0(0®). (52 pin generators,* 7, where the superscripts refer to
. 2 2 5 nucleons 1 and 2. Further, using Table 1ll one can construct
Thus one (rl?q(tzjgrt_esO(q ¢7) 2 2m—2-nucleon  contact Table IV for O;(x)O,(y) relevant to DCX(again omitting
terms with 7’7"’ isospin structure. A1)

For the purpose of renormalization, one needs to conS|de>r<+Is(T;\f/e)C£g?'Ch has to include terms of the type isovector
nine 27 —two-nucleon contact terms, written in terms of

Note thatS-u(x)S- u(y) will not contribute in the static
—to limit and at thresholduse Eq.(16) and v¥,=(1, 0)]. The
u,, D, ,x+, and ¢, (53 relevant counter terms are listed below:
|
(x) B(y)

I|m F4H(x) H(X)H(y)—H(y)<X+(X)>

+ ZEHO0UL OO HOOH(Y) () HY) 25 HOOV - UG HOOH(Y)V-u(y) H(y)

d(x) - d(y) ¢(x)

D~ (x)H(x)H(y)— D, (y>H<y>+ H(x) s<1>H< X)H(y )d’(”

F“ —7H(x )E SPEH(Y)(x+ (X))

7T

+ EaH00U, 0 SPHOOHY () SP H(y) + £1HO0v-uS OHOOH(y) V- u(y) SPH(Y)

m

+ 22HO0SP T D 0ROy $P+ 22 D, (y)Hiy) + £ FH(x 0 %M. D, (oM
<y 252, D (). (55)
|
The coupling constantsy;} have been made dimensionless Eﬂpvapﬁ(x)s(l)u (X)H(X)H(y) B(y)DyH(Y)
v 1 ’

by construction of the terms.
It should be noted that the following five types of UV- o T 1) —
finite 27—two-nucleonO(g?) contact terms will also con- "M H(X)u,,DyS;7H(X)H(Y) d(y)H(Y),
tribute to off-threshold DCX:
_ _ "™, HO) U, ()DHOOH(Y) SPH(Y)].  (56)
lim[ e#7My  H(x)u, () HOOH(Y) SPu, (y) H(Y),

x=y By renormalization of loop-graph integrals, one gets a
N = _ 2) constraint on a linear combination of the UV-divergent parts
7P v H(x)u,, (X)) HO)OH(Y) b (y) SIPDH(y), of LECs of seven of the nine 2-two-nucleon contact
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counter terms of Eq55). First one calculates the amplitudes  The two-nucleon—one-loop graphs give a threshold con-
T corresponding to the contact terms of Eg5). Then, writ-  tribution of about 0.016 relative to the leading order tree
ing aj=aj+\L [whereL was defined in Eq(36)], and  graphs at the same kinematigsith (p’ —p)2=M?2]. Both

comparing with the UV-divergent portion of the total one- calculations are done in the static limit and the impulse ap-
loop amplitude(49) and Table I, one gets the following proximation for the nucleons, and using the renormalized
conditions[suppressing the two pairs of Pauli spinors andvalues of the axial-vector coupling, pion-decay constants,

using Egs(15—(17)]: and the pion and nucleon masses. As noted at the end of Sec.
(1) spin-independent renormalizatidgraphs[(a)+--- v, these corrections are of the order ®2/(4=F )32
+(f)1): ~0.014 times the tree graphs in L@ #£0). This is as ex-
2 5 pected for a chiral correction of=2.
A

(57) As noted in Sec. Il, there are also corrections to the LO
tree graphs to order=2 arising from corrections to the-7
and 7-N vertices, which have been studied in the literature.
The -7 vertex has been determined to the required order
3 g2 (to one loop [3], with the LECs fixed phenomenologically.
(\/5)2(3)\5+—)\6+6)\7—2)\9)=—(\/§)6—A, (58) However, although ther-N vertex corrections have also
2 4 been studied through one lod@,11], the LECs have only
been determined for the on-shell threshold casesrof
scattering lengthp4] and 7= production on a single nucleon
3 [11]. Therefore, there is not enough information from these
AN1+2N,—2N3+3N5t+ E)\6+ 6)\7—2)\9) studies to fix all the vertex LECs required to carry out the
full »=2 calculation of the DCX tree graphs.
However, the one-loop calculations cited do show large
. (59 corrections to the vertices. We can estimate how much this
would change the DCX tree-graph amplitudes by using the
on-shell results as follows. First, we characterize the three
amplitudes of Eqs(21), (23), and (25) in terms of vertex
coefficients:

(ﬁ>2<4x1+2x2—2x3>=<ﬁ>6( S T

(2) spin-dependent renormalizatiégraphs| (g)+ (h)]):

which on addition gives

(V2)?
_ (@6(15 )

T2z |16 9

Note that thex,,\ g terms do not contribute at the kinematic
point (17). So, it is clear that the renormalization of the loop
integrals can be accomplished by the-2two-nucleon con-
tact terms.

. . Tray~D19a,
Because the nucleon-nucleon interaction has a strong
short range repulsion, the nucleon-nucleon wave function Ty ~Ag> (60)
vanishes at short relative distances. Since the contact terms el A
in Egs.(55) and(56) behave a$®)(x—y), one does not get Tig~(a)2.

any contribution from these 2—two-nucleon contact terms,
as well as from the UV-divergent parts of the one-loop inte- The amplitudeD; is the sN— 77N threshold amplitude
grals. Hence, only UV-finite parts of the loop integrals con-[11] that contributes to the DCX tree graphl. To leading
tribute to the DCX loop amplitudes after renormalization. order,D,(LO)~ga/F2%. The corrections through one loop
give [11]
VI. SUMMARY AND DISCUSSION
D,=D,(LO)(1+0.67). (61)
The goal of this paper has been to calculate the one-loop
correction to the two-nucleon amplitudes for pion doubleThe loop correction is actually 0.15; the larger correction,
charge exchangéDCX) scattering by a nuclear target, at 0.52, is from a “recoil” term of ordeﬂVIfT/m.
threshold, in the framework of HBChPT. For a numerical

estimate of the two-nucleon—one-loop correction, the ampli- TABLE IV. O1(x)O,(y) relevant to DCX.
tudes are evaluated at a typical kinematic pdiif). These
are compared to the leading order amplitudies the tree  Momentum-spin form Coordinate-spin operators
raphg, obtained in the same theoretical framework.
S M2x1 (9 B(9) (x+ ()
TABLE lIl. Properties of building blocks. G1-G2%1 u,(x)u(y); v-u(x)v-u(y)
P2x1 —t PR
Building block Isospin nature Chiral order L ‘75(()?) D (Xz) ¢(y) D" (y)
: M2x g1, g2 S b(x)SPHh(y)(x+)
D, |§oscalar(5aﬂ) O(q) Q-G X oD 512 u, () SPurs"@; v u(x) SOy - u(y) s
+|sovector(EFM) B2y o). 5@ A R
i 1), 2 v
u, |.sovector O(qz) H(x)SV# D, (X)¢(Y)SEL) D” (y)
X+ isoscalar Oo(q?) G0 .ps2.p . o
& isovector 0(1) d(X)SY. D (X)p(y)SP- D (y)
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The amplitudeA gives the DCX contribution to tree graph ~ The second conclusion is that the one-loop corrections to
[b] from the 7-7r vertex, and can easily be shown to be to thethe -7 and -N vertices produce the largest corrections at
two s-wave scattering lengthe, , with isospinsl =0,2, by orderv=2 to the LO tree amplitudes. The large correction to

the 7~ vertex has been related to the pion radi@is that is,
A=(2aptay)/3. (62)  to the correction for the LO assumption of a point pion.
Presumably, similar effects, including resonant contribu-
To LO, A(LO)~M,/F%. The one-loop correction§3]  tions, give the larger-N vertex corrections. It is clear that

change this to these corrections are anomalously large, while the one-loop
corrections to the two-nucleon amplitudes are of expected
A=A(LO)(1+0.30. (63 size for theO(g?) terms. The latter may reflect the fact that
the N-N system is already of finite size.
The isovectormN scattering lengtta™ contributes to the However, as noted above, the vertex corrections for the

double-scattering tree grapHc]. To LO, a (LO)  z-N amplitudes have not been fixed sufficiently for a com-
~M . /FZ. With corrections through one-loop, this becomesplete calculation of the DCX tree amplitudes. This would
(4] require an extension of the one-loop theory of the various
7-N amplitudes to off-shell kinematics, beyond what has
a =a (LO)(1+0.046. (64)  already been done in the literature. As a practical matter, the
) ) o 7-N on-shell constants could be taken directly from experi-
This small correction masks a 20% contribution of the |°°pvment, as in the impulse approximation, rather than from
partially cancelled by the “recoil” correction. higher orders in chiral perturbation theory.
If we now use these corrected values for the vertices in
the expression$60), we obtain the following estimates of

their effect to ordew=2 on the tree-graph amplitudes: ACKNOWLEDGMENTS
Tia=1.67 Ti5(LO), We would like to thank N. Kaiser and UIf-G. Meissner for
their continuous help, in terms of clarifications and preprints.
Tipy=1.30 Tj(LO), (65)  This research was supported in part by the U.S. Department
of Energy under Grant No. DE-FG02-88ER40425 with the
T =1.092 T((LO). University of Rochester.

These corrections are much larger than the one-loop correc- i
tions of this paper, which involve both nucleons participating APPENDIX A: VERTICES AND F's FOR ONE-LOOP

in the DCX reaction. However, the vertex corrections are GRAPHS FOR a-NN

only estimates, since not all the off-shell vertex coefficients The pion field is represented as a matrix-valued(Z3U

are determined. _ _ field U defined as following:
So we are led to two conclusions about corrections to

DCX to orderv=2. First, the one-loop correction to the tree _

graph amplitudes is small, whether compared to the LO tree eWFd=y(m), (A1)
amplitudes, or to those amplitudes also corrected to one-loop

order. The dominant contributiorfgraphs 8b), 3(c), and ) ] ) )

4(h)] all have one nucleon propagator, and are proportionavhere is a traceles¢as det) =1) matrix written in terms
to g2>1. The largest, @), is clearly a correction to the ©f the pion triplet as

largest tree graph,(@), for double scattering.Triple scatter-

ing on two nucleons has not been included; it belongs with 0

other triple scattering graphs on three nuclepmhe result is m ot

weakly dependent on the choice of the renormalization point J2

. V2 6 (A2)
For the purpose of renormalization of the loop graphs, we o — -

found that nine Zr—two-nucleon contact terms are required, J2

of which seven contribute at the specific kinematic point

considered17). However, since we have assumed that the

nuclear wave functions vanish near zérelative distance of ~ The matrix is written in a space that corresponds to the stan-
nucleon separation, none of theV-finite partg of the con-  dard (p/n) isospinors which are implied in the H notation.

tact terms will contribute, because of té&)(x—vy) in the
forms of contact terms of Eq$55) and (56). If this anticor-
relation assumption were relaxed, then one would have nine
unknown LECs for Eq(55) [seven for the kinematic point ~ The leading order terms itH)ChPT, written using Egs.
(17)], and five for Eq(56), to be determined empirically, to (A1) and (A2), that are used for the evaluation of
the order considereO(g?)]. mw-NN(m=1,2,3,4) and 4# vertices, are written out:

1. Vertices
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L g
17NN:guHS- uDH= —(\/E)F—A

m

V2

i
8F

27NN:iHv- D@H=Hv - I ®H=(/2)?

2
— = 9a
37NN:gaHS- u®H=( Jzﬁm

2
+atwl=S 97 hn
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1

1_ _ _ _
[—ps-aw°p+ps-&w+n+ns-&wn——nS-&TrOn ,

V2

5 [pr“v c9m 1+ \2pnalOv- 971+ 2np7l v am+nnal-v. a1,
w

1 _
—pl27" 7S 97— 77w S om + 7S ant)]p+p(w°?S- ot — 7t 70S. 97°

1
+Hc+ —=n[-27" 7 S 9n’+ 7+ 77 S-d9nt + 7S 97w )In|,

2

H 02
. _ | T _ _
47rNN:Hiv - D(4)HEHiv~F(4)H(\/§)4—(—+ w+w—)[ppw[—v.aw+1+( 2pnaltv. 7%+ H.c)+nnmltv. o717,

96F* | 2

w

F2
A T“[(aﬂuTaﬂu)Jr M2((UT+U—-2))]¥=({2)*

24F%

[

27" 7T_19M7T+¢9M’7T_+(7T_)2((9M’7T+)2+(7T+)2((9’u7T_)2

+ME(7H)2(77)?]. (A3)

2. Combinatoric factors for one-loop graphs
The combinatoric factors “f” of Eq.(19) for one-loop
graphs, are evaluated. FirS"™ [see Eq(19)] is written out
in terms of “H¢™H,” m=1,2,3,4 and ‘%*,” which repre-
sent thems — n; nucleon vertices witim=1,2,3,4n,=2 and

APPENDIX B: ONE-LOOP INTEGRALS

There are 11 one-loop integrals defined and evaluated in
this appendix. The integralg, ¢ do not occur in the one-loop
DCX amplitudes as discussed later. The notations used,
though similar to the ones used p§] and[13], are slightly

m=4;n;=0. Then, using the time ordering properties of different.

bosonic and fermionic bilinear fields, those terms relevant to Four of those integrals are referred to as basic integrals:
the DCX one-loop graphs are picked out. Then on comparid ,(0M?), J™, 777 vy, evaluated at different kinematic
son with Eq.(19), the combinatoric factors are read off for points.[The 0inA ,(0,M?) implies that the “external” four-
the eight two-nucleon one-loop graphs. They are listed alongnomentum squaredP?” that appears in other integrals, is

with the corresponding forms of E¢L9) in Table V.

1

zero] They are defined below:

=A,(0M?),

1J d%
i) 2mIMZI—KZ—ie

1( d%

1

™(w),

i) 2mI(vk-w—ie)(M2—K2—ie) =

1 d% 1

EJWW(PZ; MZ)’

i) 2m% (M?=K2—ie)(M2—(k—P)—ie)

1( d% 1

=70(@,Q,P?), (B1)

i) 2m¥(v-k—w—ie)(MZ—KZ=ie)(M2—(k—P)2—i¢)
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TABLE V. Combinatoric factors for the one-loop graphs.

= Lt
7[Hin=12j£}(xi)]

fiM [T, dx,

T ,L{(x)]
relevant tox

i3 3 3 4
ML, B . ”ix' '
[H(p+ ¢+ ¢*)HI(x)] T(HPH) (x1) (HH?H) (x,)
(Hp®H) (x3)]
4 4 4 2 1 4 4 1
7 fd*% I [H( o+ $H)H ST A TL(HH) (x2) (HpH) (%) >
+¢*(x)] (Hp?H) (x3) *(x4)]
" _
ST T T (HOH) () LIS Sa TS (x) <
(Hep?H) (%) (Hp2H) (x3)] (H¢2H)(x2)(H¢2H)(x3)]
5 o .
an LA TR (HgPH+ %) (x)] 7 L[ d% T (HA?H) (x0) >
(Hp?H) (x,) ¢ (x3)]
P2
S T2 A TR+ $HI0) AT HEH ) '
[H($2+ ¢ H](x,)] (Ho*H) (x2)]
i2 2 4 a3 iz 2 4 a3 1
Enizlfd X[ (Hp"H) (xq) EHizlfd X 7L (Hp"H) (xy) 5
(He*H) (x2)] (HpH) (x2)]
h _'g [T 711 i3fd4ilfd4x2fd4x_3T[(Fqu)(xl) 1
H( ¢+ ¢2+ ¢ H] (%)) (Hp?H) (x2) (HH) (x3)]
with Q=v-P. In [13], P? that figures in7""(P? M?) is 1 d9% k, or k,k,

=0. In this paper, one requirg®?<0.

The integralsA ,(0,M?),77™(P%M?) andJ™(w) have
already been evaluated in the literatyfe13], where they
were denoted byA (0), J(s or t) and Jo(w), respec-
tively. We have alterred the notation fdr, andJ to intro- or g, 75 (PZ%M

2 . . . uvd 2 ’
duceM* as a variable, because we need to differentiate these
expressions with respect M2, as in Eqs(B11) and(B20). 10 d%
The form of yo(w,Q,P?), required for DCX, has not been .—J —
evaluated previously. It is a generalization of the integral' (2m)
denoted byyo(w) in [6], for which @=0, P?=0, P—
—P (Q used in this paper is denoted by»™ in [6]). The
reason for introducing) and P2 in addition to w in the
argument ofy, becomes clear from the pointa) and(b) in
the paragraph after EdB3). Also, note that the indexing
(i=1,2,...) of ji’”’(PZ;MZ) and yi(»,Q,P?) in Egs. or g,,73(0,Q, P +V,V,74(0,Q,P)+P,P,vs
(B2) and (B3) below differs from that used for the corre- 5 )
sponding integralg%"(s or t) and y;(w) in [6,13]. X(@0,Q,P)+ (v, P+, P ve(@,Q,P7),

The above four integrals are referred to as “basic” be- (B3)
cause the integrands have no momentum dependence in their
numerators, and are the most basic ef firopagator, one- where alternative numeratorshr or k,k, have been shown
nucleon-1r propagators, 2 propagators, and one- in each case.
nucleon—2r propagators integrals, respectively. Other than notational differences, there are also the fol-

The remaining integrals have momentum dependence ilowing kinematical differences between the integrals of Eq.
numeratorsiand hence have a tensorial charagtand are  (B3) and those figuring ifi6]: (a) Our P2 does not vanish, in
defined as general, unlike the case f¢6], in which P2 is the four-

2m* (M2=k2—ie)(M2—(k—P)%—ie€)
=P, J7"(P*M?),

)+ P, P.IZT(PEM?),  (B2)

k, or k,k,
(v k—w—ie)(M2—k?— |e)(|v|2 (k—=P)%—ie€)

EV#’)/]_((I),Q,,P )+P,u.})/2(w1917) )1
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1 d% f(k,)
_f(2w)d(Mf,—kz—ie)Z(Mi—(k—P)Z—ie)’ B4
which can rewritten as
o 1 d' f(k,)
_o’!MZi_f (2m) 9 (M?—K2—ie)(M2—(k—P)%—ie)’
(B5)

whereM? is set equal tdV2 after differentiation.

(b) Use is also made of some identities involving the loop
integrals, which are valid only in the static limit and impulse
approximation(16):

FIG. 5. 2r—two-nucleon contact graph. Yolw=*M_,Q=*M_,P?=(p,~—p,*+012)%

— — —_ - 2_ - 2
momentum squared of an on-shell photdb) w+#0;Q ro(@=00=My P"=(p2~Pa¥01)")
=v.P+w; (c) we consider k—P)? instead of k+P)? in = y(@=00=FM,,P?=(ps—P,+012?
the integrals. _ 2 2

Of the nine, two do not contribute to DCXy,6. The = v(0= =M 0==EM; PT= (P2 Pa™ 1)),
reason is that because these two integrals can occur only in (B6)
graphs(g) and (h) with integrands having numerators of the
type SM.kS?)-k, their coefficients will have at least one where  p“~(0,—p), p~(0,—p’), v#=(1,0), v-S-2
SM:(). v, which vanishes in the static lim{tThat is because =g

in the static limitv#=(1,0) andS*=(0,/2).] The remain- We also use the following the identity:
ing seven can be rewritten as linear combinations of the four
basic integrals of Eq(B1). Yolw=*M_,Q=+*M_,P?>=M 727_ P2)
All the integrals for the calculation are real, and hence so
are all the one-loop amplitudes. This is because the elastic =y(w=00=7F Mw,PzzMi— P?). (B7)

scattering amplitude becomes real at threshold.

Two further simplifications of the calculation are obtained
by the following.

(a) The 37-propagator integrals that occur in the one-loop  The results after evaluation of the basic integrals of Eq.

1. Basic integrals

graph, Fig. 4e), using Eq.(16), are of the type (B1) are given below:
|
2 MZ
AW(O,M2)=2M2L+16W2In —+0(d—4),
)= —aLar =2 1-nM7| - L a2 2 )+od-4
(a))—— w+877_ n? m - W~ arcco _M_,n. + ( — ),
, P X I MZ (A—PZ) MZ Allz(Pz;Mz,Mi.) (AI/Z_PZ)Z_AZ
O=PHTT(PEMI)=—2L— 70| —1+ Nz op7 nM_f,+ —>p? N ATZ p2)Z_ A2
(A=M2-M%; A(PEMZM2)=[P?~(M—M)2][P?~(M+M,)?]), (B8)
1 V5+1
lL=J""(—M2,M2)= 1+In—+\/—ln e ) (BY)
1
2
=T "(P2=0;M?=M%) =~ 2L~ 7| 1+In—7 |+ O(d~4), (B10)
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L, 1 (1 1 VAM2 - P24 /- p?
6(— P) J (PZ;M2,M2)| 2= 2= a2 M_37+\/(—7?2)(4Mf,—7?2)n JavE P , (B1Y
1
(i) 7o(w=0,Q=M7,,’PZ=O)—yo(wZO,QZ—Mﬂ,P2=0)=—32M , (B12)
(i) (0=—M_ .Q=0P2=—M2) ) W O 3+V5| (V5+1) |(1 \/3_\@)((\@_1)]
i)l 1= yo(0=—-M,,Q=0P?=-M?%)= ————| In| 1+ —In| 1+
wm s, |2 o AR
1 1++5
= In . (B13)
87M., 2

l,, is a newintegral that one needs to evaluate for the DCX one-loop graphs. For valugé+0,—M?

-, one gets the
following expressions, which are als@w

(i) yo(w=—M,,Q=—-M_,P?=M2—P?)— y5(0=M,, Q=M ,P?=M2—-P?)

1 M., |P| g (2k)! 3 p2 M2
=———| arctal Fi k+112———
27| P NIYE=E \/M L+ p2 k=0 2%(k1)?(2k+1) 2’ M2 [2M2+P?]
(B14)
where
Fi(a,b,c,d;x,y)=Appell functions (i=1,2,3,9,
am+n an X y
1<abcdxy>—2 Zoﬁm!m' (B15)
B2 |P| p2 [
+————\[ 4+ —
s 2M7 M, M2 % (2K)! 1
i =-M;, Q=0P=—-P)= 2B| k+2,-| oF1| k+2,1k
( ) 70((0 ) ISZ “ (k|)222k(2k+1) 2 21
1672|P| 4+—
|32 |32
5 2M7 M2
+-
2 & (P?)
S|+ \/4+—
7 M2
p2 B2 )
— 5 4+_
1 3 2M7 M2
—B|k+1-| Fy| k+1,1k+—;
2 2 2 P2 P2
|1+t +—
- M2
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1 ” (2k)! 1 xK(2x—-1)

X————

p2 koo (k)22 (2k+1)Jo 1o«

16772||5| 4+ —
M

X ) (B16)

2. Other integrals

The results obtained after evaluation of other integrals of E8@). and (B3) are given below.

(a) 27r-propagator integrals The following relations(B20), (B22), (B24), (B26), and(B28), are not explicitly given in the
literature. These relations are absolutely general and become relevant when evaluating the off-threshold one-loop amplitudes
for kinematic points away from Eq$17):

) 1
IgEng(O,Mﬂ_):_EA,ﬂ-(MZ,O), (B]'?)
T 2 1 2 1
1= T57(0M7) = 3T ™(0M7) =35, (B18)

1
jf”(Pz,Mz)z2—732[A,T(O,M2)—AW(O,Mi)+(A+P2)J(P2,M2)],

V5+1
V5-1

1
3272

(B19)

1 MZ
|25jgﬂ(—M§T,M§T):EJW(—MET,MET):—L— —1+In—+ 5In<
o

2 2 J T 1 J 2 2 J T 1 T 2 2
_MWISE_MWWJI |M2=Mi;P2=*M§T:_ WA,T(O,M )_M — 27 +§*7 (_Mw’Mﬂ')

2 moM* M2=M2 ;p2=—M2
(B20)
L 3 5 [5+1
=——+ - In , B21
2 327° 407 | 51 (821
7)2
[(2Mi—7)J”<P2>—AW<0,M§T>}
T 2.M2—-NM2)—
JIT(P%EM2=M2) =) , (B22)
which for P2=—M?2 gives
S, TV 20 7 M2 55 [5+1
l3=J3"(—M2 ,M2)=— L+ M2 — M2In————In| ——| +O(d—4), B23
=21 (= MG M) 6  576r? 7 19272 " u? 1927% |\ \5—1 (d=4) (829
dP2—4M?%)J™"(P?)+2(2—d)A (OM2)
T (PEMR=M2) = 57(P7) = : ] (B24)

4(d-1)P? '
which for P?2=—M?2 gives
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- 19 1 M2 5 [5+1
L, =J7"(—M2 M2)=— —L+ ———ln +0O(d—4), B25
ST EME M= S een? 282 u? 24w\ \5_1 (d=4) (B2
2 2 J 2 2 2 1 1 2 19 2
0(— PHP2——TI"(PLZM2)=0(— P — J™T— —(4M 2T S 58 ,(0M
L 1 P2 1 M2
=——- -—|- In
2 19277 Mi 64m?  u?
1 [flam2- 2] Vam2—p2+ [ p2
- +0O(d—4). B26
s N p " ] O (B26)
So,
g o, L 1 1 M2 s 541
le=——5J3"(—~M2,M2)|y2p2=— = — —— ——In————1In , B2
6 &szz ( T 7T)|M2 Mﬂ_ 2 96#2 6477 qu 64772 \/g_l ( 7)
2 T J T 2 J T T
N [ R v v A | A (529
M<=M
So,

(B29)

l7=—=J3"(— Mi’Mi”MZ:Mi:_g

+ In
62 16\/% \/—_

(b) 2m—one-nucleorpropagator integralsThe following relations(B30), (B32), and(B35), are not explicitly given in the
literature, and are absolutely general and become relevant when evaluating the off-threshold one-loop amplitudes for kinematic
points away from Eq(17).

&MZ

[2P2)™(P?)+ P?(20— Q) yo(0,Q,P?)— Q0™ (w)—I™(w—Q))]

71((‘)19-7)2): 2(7)2_92)
7N __1mN _ _ T 2 2_
yg(w,Q,'PZ)Z[J (0)—=I™(w—Q) Z(ZJ 2( )Y+ (P ZwQ)yo(wQP)] (B30
(P?—Q%)
Hence,
|1257’2(0:_Mm0)_72(0,'\/'#,0):4M o2 (B31)
[2M2y5(@,Q,P?) =20 y1(0,Q,P?) = P2yy(0,Q,P?) - I™(w—Q)]
’)’3((1),9,7)2): 2(d_2)
20—Q
:—[2|v| Yol @,Q,P?) =20 y,(0,Q,P?) = P2y,(0,0,P?) - I™(w— Q)]—(“’z—z)+c9(d—4).
(B32)
Hence,
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y3s(@=00=—M_,P?=M2-P?) — y5(0=00=M,,P?=M2—P?)
1 2 52
ZZ (’)/O(O,_MW,MW_P)

[MZ+P?]2 [MZ+P?]
_|_

—¥o(OM ,,MZ—P?)—"— QA™(=M,)—=I™(M )

2P? 2P?
Ma O(d—4 B33
~ 16,2 TOWd—4). (B33
Thus,
I 19=7v4(0,—M _,0 OM_,0)=2LM_+M ! ! M“lMi O(d-4 B34
13=v3(0,—M,0)— y3(0M ,0) = Mo 527 82 +mzn?+ (d—4). (B34
Now,
1
2y _ _ T 2 2 _ 2 _ _ N _
—20y1(0,Q,P?) +2M2yo(0,Q,P?)]
1
= 37— | 207(@.0,P%) = 2037 (3P~ 400) ,(0,0,PH) — I (w0 - Q)
) (2o—Q)
—ZMWYO((D,Q.PZHT +0O(d—4). (B35)
Hence,
ys(@=00=—M_,P?=M2-P?) — y5(0=00=M_,P2=M2—P?)
1| [3MZ-5P?%] (3[M2—P?]2+4M2P?) R
= | - ———0™M=M ) =I™M )~ — = 0,—M, ,M2-Pp?
252 52 @™ ) (M,)) 252 (vo( =~ P?)
, - 2M,[5M2—3P?] , =, M,
—v(0OM . ,M2—P?))+ _ T™(MZ2—=P?)+ —5|+0O(d—4). (B36)
™ B2 u A
Thus,
l1.=v:(0,—M _,0 OM_,0)= ! d—4 B3
14=v5(0,—M,0)—y5(OM , )_16772M,T+64MW+O( —4). (B37)
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