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Two-nucleon one-loop corrections to pion double charge exchange within heavy baryon chiral
perturbation theory
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One-loop corrections at the two-nucleon level to pion double charge exchange scattering off a nuclear target
at threshold are calculated within the framework of heavy baryon chiral perturbation theory. An estimate for
the ~two-nucleon! one-loop correction is obtained in the static limit and using an impulse approximation. We
find a small~1.6%! increase relative to the leading order tree graphs.

PACS number~s!: 12.39.Fe, 13.75.Gx, 25.80.Gn
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I. INTRODUCTION

The effective field theory used most extensively to stu
QCD at low energies is generically referred to as chiral p
turbation theory~ChPT!. With the inclusion of baryons, the
effective theory is called baryon ChPT~BChPT!, whose non-
relativistic limit ~with respect to the baryons! is referred to as
heavy BChPT~HBChPT!. So far, pion-nucleus scatterin
and production processes involving multiple nucleons w
an arbitrary number of pions have been considered wi
HBChPT up to the tree level, with one-loop corrections on
at the single-nucleon level~vertex corrections! @1,2#. In this
paper, we perform a two-nucleon–one-loop calculation
volving pion loops, with the pions being emitted and a
sorbed at different nucleons, which we believe has not b
done before.

The goal of this paper is to determine the size of
one-loop contributions to pion double charge exchan
~DCX! scattering at threshold on a nuclear target, relative
the tree graphs, in the framework of HBChPT. One of
motivations for this study is the fact that sizable one-lo
~pion! contributions top-p scattering andp-N scattering
have been obtained in the framework of~HB!ChPT by pre-
vious authors@3,4#. Therefore it is natural to ask whethe
similar large contributions are found for a two-nucleon c
culation involving pions in HBChPT to one loop. We sha
find that this is not the case; the loop correction to the tw
nucleon process is small, as expected for a chiral expans

The two-nucleon process considered is pion DCX:

p11n1n→p21p1p, ~1!

where the nucleons are in bound nuclear states. We con
only transitions to the DIAS~double isobaric analog states!,
e.g., 14C(p1,p2)14O ~DIAS!. The DIAS is that~normal-
ized! state obtained by operating withI 1I 1 on the target
ground state, whereI is the total isospin operator. The DC
contribution is much smaller than elastic scattering (14C
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→14C) because while the former involves only the valen
nucleons, the latter involves a coherent scattering of the c
and the valence nucleons.

The reason for considering DCX at threshold is that it
dominated by two-nucleon processes, since singlep-N scat-
tering cannot contribute. It has been shown that the con
bution of meson exchange currents~MEC! to DCX, although
less than double scattering, is not all that small.~See@5# and
references therein.! In the context of HBChPT, these resul
are at the leading order, or tree level. The second motiva
of the present paper is to establish the size of the next-o
correction to the two-nucleon MEC contribution to DCX.

In Sec. II, we introduce the theoretical background
single- and multinucleon HBChPT and discuss a ch
power counting rule due to Weinberg~including issues of
reducibility of graphs, which is an additional complicatio
arising at the multinucleon level!. In Sec. III, we discuss the
approximations involved in getting~analytical and numeri-
cal! estimates of the amplitudes for the tree and one-lo
graphs for pion DCX. The relevant leading order tree grap
are evaluated in the framework of HBChPT and compared
an earlier calculation. In Sec. IV, we evaluate the tw
nucleon one-loop corrections to the tree graphs of Sec.
We then make a numerical estimate of the finite parts of
~two-nucleon! one-loop graphs, and make comparison w
the tree graphs of Sec. III. In Sec. V, we discuss the ren
malization of the one-loop graphs of Sec. IV usin
2p –two-nucleon contact terms. Section VI summarizes a
discusses the findings for the DCX problem. We include
estimate of the effect of vertex corrections on the tree gr
amplitudes, based on earlier published work. There are
appendices: Appendix A presents the vertices written
terms ofp6,p0 @rather than their Cartesian counterparts~as
in @6#! as the former are more readily useful for calculati
purposes# ~Appendix A 1!, and combinatoric factors Appen
dix A 2 for the one-loopp-NN graphs. Appendix B dis-
cusses the various one-loop integrals and related ident
involving them, relevant to the DCX one-loop calculatio
highlighting the ones that are new.

II. THEORETICAL BACKGROUND

In this section, we discuss the basic elements of HBCh
at the single- and multinucleon level that will be requir
later in the paper.
©2000 The American Physical Society03-1
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FIG. 1. Elementary vertices.
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The leading order~LO! HBChPT Lagrangian that will be
used in the calculations of the LO tree and one-loop graph
given by

H̄~ iv•D1gA
0S•u!H1

F2

4
~^]mU†]mU&1M ^U1U†22&!,

~2!

wheregA
0[ axial-vector coupling constant,F[ pion-decay

constant andM[ pion mass in the chiral limit. The trace i
the nucleon isospin space is denoted by^ & in Eq. ~2!.

The HBChPT Lagrangian is written in terms of the ‘‘up
per component’’ H and its covariant adjoint H,̄ exponentially
parametrized matrix-valued meson fieldsU, u[AU,
baryon~‘‘ vm ,Sn’’ ! and pion-field-dependent~‘‘D m ,un ,x6’’ !
building blocks defined below:

H[eimv•x
1

2
~11v” !c, ~3!

wherec is the Dirac spinor andm is the nucleon mass,

vm[nucleon four-velocity parameter,

Sn[
i

2
g5snrvr[Pauli-Lubanski spin operator; ~4!

U5expS i
f

Fp
D , where f[pW •tW , ~5!

where tW are the nucleon isospin generators; Dm5]m1Gm
whereGm[ 1

2 @u†,]mu#; um[ i (u†]mu2u]mu†).
The mp-N̄N vertices,m51,3, are constructed from th

Yukawa term:
02400
is
gA

0H̄S•u(1,3)H ~6!

~where the superscript onum represents the powers of th
pion field!. The 2p-N̄N vertex is constructed from the Dira
term:

i H̄v•D(2)H[ i H̄v•G (2)H ~7!

~where the superscripts on Dm andGm represent the power
of the pion field!.

The four-pion vertex is constructed from the nonline
sigma model Lagrangian[ LO ChPT Lagrangian:

F2

4
~^]mU†]mU&1M2^U1U†22&!. ~8!

For more details, refer to Appendix A.
The elementary vertices from which the tree and the o

loop graphs of Secs. II and III have been constructed,
drawn in Fig. 1. However, the calculations in the chiral pe
turbation expansion are renormalized to the chiral order
the expansion. The Weinberg chiral power counting relat
~WCPCR,@7,8#! is used for a systematic classification of th
relevant tree and one-loop graphs. The relation determ
the overall chiral order of irreducible graphs in terms of t
total number of incoming or outgoing nucleons~the two are
the same because of baryon number conservation!, the total
number of loops, the chiral order of the vertices, and c
nectedness of the graphs, as discussed below. Here is
WCPCR:

n542N12~L2C!1(
i

v i S ni

2
1di22D , ~9!
3-2
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wheren[ overall chiral order of a graph,N[ total number
of incoming/outgoing nucleons,L[ number of loops,C[
number of separately connected pieces of the graph,v i[ the
number of vertices of typei , ni[ the number of incoming
andoutgoing nucleons at thei th vertex anddi[ is the num-
ber of derivatives or powers ofMp . From baryon number
conservation,ni[2 or 0.

Graphs which violate relation~9! because of anomalousl
small denominators are referred to as reducible by Weinb
@8#. This class includes graphs whose energy denomina
in old-fashioned time-ordered perturbation theory are of
order of Mp

2 /m rather thanMp . These graphs arise in th
context ofNN or many-nucleon scattering, without extern
pions.~For a recent treatment of theNN scattering problem
which deals with problems of the Weinberg scheme,
@9,10#.! However, for pion scattering onNN pairs, as in the
present paper, all graphs are irreducible, as can be seen
the discussion of@8#. In Secs. III and IV, WCPCR will be
used to determine the overall chiral order of the tree a
one-loop graphs.

The lowest order tree graphs for DCX, based on the
vertices~6!–~8!, will be shown to be of chiral ordern50
~see Sec. III B!. The one-loop corrections at the 2N level,
which are the main subject of this paper, are of ordern52
~see Sec. IV!. To this same order, there are also correctio
to the LO vertices, which have already been obtained
~HB!ChPT ~see@3,4,11#! as renormalized effective interac
tions, with a number of low-energy constants~LECs!. These
LECs are to be fixed from experiment, but are not in fact
known. ~For the p-p vertex, the LECs ofn52 are ‘‘al-
most’’ all determined@3#. For p2N, the information is less
complete, but has been supplemented by theoretical a
ments@4,6,11# for on-shell nucleons.!

However, we do know the renormalized values of t
pion and nucleon masses, the axial-vector coupling cons
and the pion-decay constant. For the purpose of nume
calculation of the analytical expressions for the tree and o
loop graphs later in the paper, we use

Mp5139.57 MeV, Fp593 MeV, gA51.26.
~10!

Renormalizing these constants, including the nucle
massm, to one-loop~in thep-N andp-p interactions! gives
the following relations to the corresponding quantities in
chiral limit gA

0 ,m0,M ,F:

gA5gA
0@11rgM2#,

m5m0@11rmM2#,
~11!

Mp
2 5M2@11rMM2#,

Fp5F@11rFM2#,

where ther i include some of the~HB!ChPT LECs.
It is also known that the one-loop corrections to thep-p

vertex give contributions of about 25% of ordern52. Simi-
lar corrections to themp-N vertices~with m51,2,3) are as
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large as 10–30 %@3,4,11#. So we know the order of magni
tude of then52 corrections to the LO DCX~tree! ampli-
tudes from the one-loop vertex contributions, but cannot
termine these corrections completely, without t
undetermined LECs.

For that reason, we shall use the vertices~6!–~8!, with the
renormalized values~10! for the tree calculation in Sec. III
omitting unknown~but significant! corrections of the same
order. The one-loop corrections at the 2N level are calcu-
lated in Sec. IV with the same vertices.

III. DCX SCATTERING AMPLITUDES; TREE GRAPHS

In this section we discuss the approximations that will
made in evaluation of tree and one-loop graphs for DC
scattering of pions off a nuclear target, set up the notati
and calculate the amplitudes for the leading order~DCX! tree
graphs.

A. Notations and approximations

The scattering matrix elementSf i is defined as

Sf i52 i ~2p!4d (4)~Pf2Pi !
1

~2p!9Mp
M. ~12!

In Eq. ~12!, the nuclear scattering amplitudeM is defined
as the matrix element of a two-body operatorT:

M[^co ,I 51, I 351uTt1
(1)t1

(2)uc i ,I 51, I 3521&

5^couTuc i&3^I 51, I 351ut1
(1)t1

(2)uI 51, I 3521&,

~13!

where we assume a target with 2n1 isoscalar core (I
51, I 3521); then the DIAS has 2p1 isoscalar core (I
51, I 351). The isospin matrix element in the second li
of Eq. ~13! equals unity, and will be omitted in the follow
ing.

If p1,2
m were the four-momenta of the incoming nucleon

p3,4
m the four-momenta of the outgoing nucleons, andq1,2

m the
four-momenta of the incoming and outgoing pions~respec-
tively! then

M5E )
i 51

4

d3pi^co~p3 ,p4!uTuc i~p1 ,p2!&. ~14!

The nucleons are in a relativel 50 state (l 50 state being the
dominant partial wave for ground states! and hence from
Pauli’s exclusion principle, the spin of the incoming and o
going nuclear states must be equal to zero. Hence, from
on, for both tree and one-loop graphs, we will simplify th
structure of the transition operatorT assuming that eventu
ally one is going to take it’s expectation value with respect
u l 5S50& nuclear states.

The following will be used extensively in the same co
text:
3-3
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FIG. 2. Tree graphs.
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^S50u~sW (1)
•qW !~sW (2)

•qW !uS50&5^sW (1)
•sW (2)&S50

qW 2

3
52qW 2.

~15!

Following @1# and@2#, first the velocity parameters of th
two participating nucleons are both chosen to have the s
limit values, with only a nonvanishing time component, i.

v1
m5v2

m5(1,0W ). Second, the nucleons will be treated as
they were on shell~sometimes referred to as impulse a
proximation!. In the HBChPT formalism,p0 denotes only
the contribution to the time component of the total nucle
momenta ([mv1p), in addition to the rest mass energym
~for the choice of the nucleon velocity to possess only
nonzero time component!. In the present casep05EB ,
which as stated above, we drop. Then if we go to the c
frame of the nucleons,

p1
m5~0,pW !; p2

m5~0,2pW !; p3
m5~0,pW 8!;

p4
m5~0,2pW 8!; q1

m5q2
m5~Mp ,0W !. ~16!

~Note: The external pions are at zero kinetic energy@thresh-
old#.!

For this paper, we shall only evaluate^S50uTuS50&. M
will be estimated by calculatinĝS50uTuS50& at a typical
point:

PW 25Mp
2 , ~17!

where PW [pW 82pW . This is a reasonable kinematic point b
cause the internucleon separation in a nucleus averaged
the nuclear wave function is roughlyMp

21 . Then

M'^S50uT~PW 25Mp
2 !uS50&

3E )
i 51

4

d3pi^co~p3 ;p4!uc i~p1 ;p2!&

5^S50uT~PW 25Mp
2 !uS50&, ~18!

where the last line follows because the overlap integra
unity for co[ DIAS of c i .
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B. Tree graphs

The connected tree graphs are of overallO(q0), as fol-
lows from the chiral counting law~9!, because for themN
52, L50, C51, ni52 or 0, di51 or 2. The tree graphs
have been constructed from the first three and the fifth
ementary vertices of Fig. 1. They are drawn in Fig. 2. F
LO graphs, all the vertices have to be of LO, i.e.,O(q)mp

2N̄N(m51,2,3) andO(q2) 4 p vertices. Using the expo
nential parametrization for the matrix-valued meson fie
LHBChPT and LChPT are written down explicitly in terms of
the pion triplet fields:p0,p6, andp, n fields @refer to Ap-
pendix A 1#.

TheSmatrix for Eq.~1! can be calculated in perturbatio
theory using standard Feynman-diagram techniques. For
nth order term,S(n), a combinatoric factorf is defined via

S(n)5
i n

n! E )
k51

n

d4xkT S )
i 51

n

(
j

L j
I~xi !D

5 f i nE )
k51

n

d4xkT S )
i 51

n

L i
I~xi !D ~19!

(T[ time-ordering operator!, where one usesT(AB)
5T(BA), whereA,B[ bosonic fields or fermionic bilinears

One can show that the combinatoric factors for tr
graphs of Fig. 2 are

contact graph, Fig. 2~a!: f 51,

Pole graph, Fig. 2~b!: f 5
1

2
, ~20!

double-scattering graph Fig. 2~c!: f 5
1

2
.

The amplitudes for the tree graphs are written in terms
Pauli spinors~to which H and H̄reduce in the static limit!
and the pionic fieldf2t1 @see Eq.~54!#.

Using also Eqs.~16!, ~17!, and ~20!, the amplitudes for
the tree graphs are expressed as operators written in term
1 andsW (1)

•PW sW (2)
•PW .

What follows are expressions forT and ^S50uT(PW 2

5Mp
2 )uS50&.

~a! Contact graph, Fig. 2~a!:
3-4
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FIG. 3. Two-nucleon–one-
loop graphs~a!–~d!.
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T[a]52~A2!4
gA

2

24Fp
4

sW (1)
•PW sW (2)

•PW

Mp
2 1PW 2

, ~21!

which using Eqs.~15! and ~17!, gives

^S50uT[a]~PW 25Mp
2 !uS50&

52
gA

2

6Fp
4 521.4231028MeV24. ~22!

~b! Pole graph, Fig. 2~b!:

T[b]5~A2!6
gA

2

24Fp
4 @2Mp

2 2PW 2#
sW (1)

•PW sW (2)
•PW

@Mp
2 1PW 2#2

, ~23!

which using Eqs.~15! and ~17!, gives

^SuT[b]~PW 25Mp
2 !uS50&52

gA
2

12Fp
4 526.331029 MeV24.

~24!

~c! Double-scattering graph, Fig. 2~c!:

T[c]52~A2!4
Mp

2

8Fp
4

1

PW 2
, ~25!

which using Eq.~17!, gives
02400
^S50uT[c]~PW 25Mp
2 !uS50&

52
1

2Fp
4 522.6731028 MeV24. ~26!

Thus, the total tree-graph amplitude is

^S50uTtotal@ tree#~PW 25Mp
2 !uS50&

52
1

4Fp
4 ~gA

212!524.8131028 MeV24.

~27!

An older form of chiral Lagrangian that predates QC
was given by Olsson and Turner~OT! @12#, and has been
used for tree calculations, e.g., of DCX@5#. It consists of the
minimum number of derivatives of the pion and nucle
fields, with two undetermined~model dependent! param-
eters. It can be easily shown that the OT effective Lagra
ian is equivalent to the LO vertices obtained from Eqs.~6!

and ~8!, with the OT parameters taken to be ‘‘j,h ’’ 5( 2
3 ,

2 1
6 ). Therefore, the tree-graph calculations of this sect

should agree~as they indeed do! with the expressions ob
tained in @5# for the transition operators for ‘‘forward sca
tering’’ for the ‘‘pion-contact’’ and ‘‘pion-pole’’ graphs, us-
ing the same values of the OT parameters. This provide
check on the tree-level calculation using HBChPT.
3-5
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FIG. 4. Two-nucleon–one-loop graphs~e!–~h!.
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IV. ONE-LOOP GRAPHS FOR p-NN

In this section, we discuss how to evaluate one-loop c
rections to the tree graphs~that were evaluated in Sec. III!
for pion DCX, in the framework of HBChPT. Loop graph
in the present context, involve the emission of two or mo
pions from one nucleon leg and their absorption at ano
nucleon leg~for multinucleon processes!. For evaluation of
the one-loop integrals that occur in the two-nucleon–o
loop graphs, use has been made of dimensional regula
tion in which the space-time dimension ‘‘d’’ is allowed to
vary continuously, and expressions obtained after integra
are expanded aroundd54.

One gets eight one-loop graphs using all five of the
ementarymp-N̄N(m51,2,3,4) and 4-p vertices of Fig. 1.
They are drawn in Figs. 3 and 4. The uncrossed counter
of Fig. 3~d! is not included because it belongs to the class
multiple-scattering graphs involving at least three nucleo
which are not considered in this paper. For Fig. 4~h!, if the
two pions exchanged werep0’s, then the amplitudes would
vanish in the static limit.

The leading order connected two-nucleon one-loop gra
~for DCX! are of O(q2), as can be seen from Eq.~9!, be-
cause for these graphs,N52, L5C51, (ni , di)
02400
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5(2, 1) or (0, 2). The vertices corresponding to the
teraction of an even number of pions~two or four for our
purpose! with nucleons, are obtained from the Dirac ter
~7!, while the vertices corresponding to the interaction of
odd number of pions~one or three for our purpose! with
nucleons, are obtained from the Yukawa term~6!. The
LO„[O(q2)… ChPT Lagrangian~8!, which is equivalent to
the nonlinears model, is used for the 4p vertex. However,
we do use the renormalized constants~10!, which introduces
some corrections of higher order. For details refer to App
dix A 1.

The one-loop amplitudes are written using standard Fe
man rules. The expressions for theT-matrix elements for the
eight one-loop graphs for fixed momenta of the exter
nucleons legs are given below. For notational convenien
Hneutron(p1,2) is represented asn(p1,2), and H̄proton(p3,4) is
represented asp̄(p3,4). Including the combinatoric factors
‘‘ f ’’ of Eq. ~19!, one arrives at the expressions below f
T[ j ] , j 5a, . . . ,h. They are first written in a covariant no
tation except that the two velocities of the two nucleons
chosen to be the same, i.e.,v15v2[v ~as in Sec. III!. Then
the static limit kinematics~16! is applied.~The combinatoric
factors are given first for each diagram, and are obtaine
Appendix A 2.!
3-6
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~a!

T[a]5
~A2!6gA

2

96Fp
6

1

i E ddk

~2p!dF p̄~p3!v•~2p222p4!n~p1!p̄~p4!S(2)
•~p42p21k!S(2)

•kn~p2!

~v•~k2p2!2 i e!~Mp
2 2k22 i e!~Mp

2 2~p42p21k!22 i e!
G . ~28!

Using Eq.~16!, Eq. ~28! vanishes becausev•(p22p4)→0.
~b!

T[b]52
~A2!6gA

2

96Fp
6

1

i E ddk

~2p!dF p̄~p3!S(1)
•kS(1)

•~q12q212p422p212k!n~p1! p̄~p4!v•~p42p212k!n~p2!

„v•~k2p3!2 i e…~Mp
2 2k22 i e!@Mp

2 2~k1p42p2!22 i e#

1
p̄~p3!S(1)

•~q12q212p422p222k!S(1)
•kn~p1!p̄~p4!v•~p42p222k!n~p2!

„v•~k2p1!2 i e…~Mp
2 2k22 i e!@Mp

2 2~k1p22p4!22 i e#
G . ~29!

~c!

T[c]5
~A2!8gA

2Mp
2

96Fp
6

1

i E ddk

~2p!dF p̄~p3!S(1)
•~p32p11k!S(1)

•kn~p1!

„v•~k2p1!2 i e…
1

p̄~p3!S(1)
•kS(1)

•~p32p11k!n~p1!

„v•~k1p3!2 i e…
G

3F @4q1•q212k•~q12q21k!# p̄~p4!v•~q12q21p32p112k!n~p2!

@Mp
2 2~k1q12q2!2 i e#~Mp

2 2k22 i e!@Mp
2 2~k2@p12p3# !22 i e#

G . ~30!

~d! One can show that the contributions of (d)(1) and (d)(2) @in Fig. 3~d!# are equal, giving an overall factor of 2:

T[d]52
2

3

gA
2~A2!6

256Fp
6

1

i E ddk

~2p!dF p̄~p3!v•~q12p21p42k!v•~k2q2!n~p1!p̄~p4!v•~p22p412k!n~p2!

„v•~k1q22p1!2 i e…~Mp
2 2k22 i e!@Mp

2 2~k2@p42p2# !22 i e#
G . ~31!

~e!

T[e]5
~A2!8

384Fp
6

1

i E ddk

~2p!dF @4q1•q212k•~q12q21k!#

~Mp
2 2k22 i e!@Mp

2 2~q12q21k!22 i e#@Mp
2 2~k2@p12p3# !22 i e#G

3@ p̄~p3!v•~p12p322k!n~p1!p̄~p4!v•~q12q21p32p112k!n~p2!#. ~32!

~f!

T[ f ]52
~A2!6

384Fp
6

1

i E ddk

~2p!dF p̄v•~q22q112p222p412k!n~p1! p̄~p4!v•~p22p412k!n~p2!

~Mp
2 2k22 i e!@Mp

2 2~k2@p42p2# !22 i e#
G . ~33!

~g!

T[g]52gA
2 ~A2!6

144F6

1

i E ddk

~2pd! S p̄~p3!S(1)
•~p12p31q1!n~p1! p̄~p4!S(2)

•~p12p31q1!n~p2!

~Mp
2 2k22 i e!@Mp

2 2~k2@q11p12p3# !22 i e#

1
p̄~p3!S(1)

•~p32p113k!n~p1!p̄~p4!S(2)
•~2p222p423q213k!n~p2!

~Mp
2 2k22 i e!@Mp

2 2~k2@q11p12p3# !22 i e#
D . ~34!

~h!

T[h]52
gA

2~A2!6

96Fp
6

1

i E ddk

~2p!dS p̄~p3!S(1)
•~p22p41q12q213k!n~p1!p̄~p4!S(2)

•kv•~k1p22p422q2!n~p2!

„v•~k2p4!2 i e…@Mp
2 2~k2@p42p21q2# !22 i e#~Mp

2 2k22 i e!

2
p̄~p3!S(1)

•~p22p41q12q223k!n~p1! p̄~p4!v•~p42p222q11k!S•kn~p2!

„v•~k2p2!2 i e…~Mp
2 2k22 i e!@Mp

2 2~k2@q11p22p4# !22 i e#
D 1q1↔2q2 . ~35!
024003-7
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TABLE I. List of one-loop integrals in Eqs.~37!–~47!.

I k Integrals of Appendix B Equation Numerical valu
of UV-finite part

at m51 GeV

I 1 J pp(2Mp
2 ,Mp

2 ) ~B9! 0.018
I 2 J 1

pp(2Mp
2 ,Mp

2 ) ~B19! 0.009
I 3 J 2

pp(2Mp
2 ,Mp

2 ) ~B23! 0.014Mp
2

I 4 J 3
pp(2Mp

2 ,Mp
2 ) ~B25! 0.006

I 5
]

]M2 J 1
pp~2Mp

2 ,M2!M25M
p
2 ~B21! 20.004Mp

22

I 6
]

]M2 J 2
pp~2Mp

2 ,M2!uM25M
p
2 ~B27! 0.002

I 7
]

]M2 J 3
pp~2Mp

2 ,M2!uM25M
p
2 ~B29! 20.004

I 8 J pp(0,Mp
2 ) ~B10! 0.019

I 9 J 2
pp(0,Mp

2 ) ~B8!,~B17! 0.013
I 10 J 3

pp(0,Mp
2 ) ~B10!,~B18! 0.006

I 11 g0(2Mp ,0,2Mp
2 ) ~B13! 0.019Mp

21

I 12 g2(0,2Mp,0)2g2(0,Mp,0) ~B31! 0.025Mp
21

I 13 g3(0,2Mp,0)2g3(0,Mp,0) ~B34! 20.022Mp

I 14 g5(0,2Mp,0)2g5(0,Mp,0) ~B37! 0.022Mp
21
ow
e
s

pi

ls

o

to

m

b

14

he
s a

14
ite
the
pli-

n

The amplitudes for the eight one-loop graphs are n
written in terms of 11 of the 13 one-loop integrals discuss
in Eqs.~B1!–~B3! of Appendix B. They, like the tree graph
of Sec. III, are evaluated in Eq.~17!. The Pauli matrices

sW (1),(2) come from the nonrelativistic reduction ofSm
(1),(2) .

The expressions below are written in terms of Pauli s
operators, and will be evaluated for^S50uTuS50&. For
graphs~a!–~f!, the spin operator is unity; for~g! and~h!, we
use Eq.~15!.

Using dimensional regularization, the ‘‘L ’’ in the expres-
sions below is the UV-divergent portion of the loop integra
and is defined by

L[
md24

16p2 S 1

d24
2

1

2
@11G8~1!1 ln~4p!# D , ~36!

whered is the dimension parameter andm is the renormal-
ization point, which is taken to be of the order of the nucle
mass. Following@11# we usem51 GeV, and also vary the
value by60.5 GeV to test the sensitivity of the results
this choice.

The momentum loop integrals are then rewritten in ter
of the one-loop integrals of Eqs.~B1!–~B3!: the
2p-propagator integrals are represented byJ pp,J 1,2,3

pp and
the one-nucleon–2p-propagator integrals are represented
02400
d

n

n

s

y

g0,1,2,3,4,5.
1 For convenience, they are represented by the

integralsI i , i 51, . . . ,14 in the one-loop amplitudes~37!–
~47!. Then using the results of Appendix B 1 and B 2, t
integrals and hence the amplitudes are written down a
linear combination of the UV-finite (L-independent! and
UV-divergent (L-dependent! terms. In Table I we identify
the equation in Appendix B used to evaluate each of the
one-loop integrals. The numerical values of the UV-fin
parts are also given in Table I, for completeness, so that
calculation can be reconstructed by the reader, or for ap
cation of the relevant parts to problems other than DCX.

~a!

T[a]50 ~37!

becausev•(p22p4)50.
~b!

T[b]52~A2!6
gA

2

48F6 @23I 31Mp
2 I 42Mp

2 I 2#

52~A2!6
gA

2Mp
2

48Fp
6 F29

6
L2

85

576p2 1
A5

8p2

3 lnS A511

A521
D 1

29

192p2 ln
Mp

2

m2 G . ~38!

1The notations of@6# and @13#, where similar integrals have bee
evaluated, have been modified for this paper; see Appendix B.
3-8
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~c!

T[c]5
gA

2~A2!8

96Fp
6 @26Mp

2 ~2Mp
2 I 523I 61Mp

2 I 7!

12~Mp
2 I 213I 32Mp

2 I 4!#

5
gA

2Mp
2 ~A2!8

96Fp
6 F2

41

3
L2

23

288p2 2
41A5

120p2 lnS A511

A521
D

2
25

48p2 ln
Mp

2

m2 G . ~39!

~d!

T[d]52
2~A2!6

3

1

128Fp
6 @2I 324Mp

2 I 114Mp
3 I 11#

52
~A2!6

3

Mp
2

64Fp
6 F55

6
L2

173

576p2 1
55

192p2 ln
Mp

2

m2

1
53A5

192p2 lnS A511

A521
D 1

1

2p
lnS 11A5

2
D G . ~40!

~e!

T[e]52~A2!8
1

48Fp
6 @ I 313Mp

2 I 6#

5
Mp

2 ~A2!8

48Fp
6 F8

3
L2

1

96p2 S 1128ln
Mp

2

m2 D
1

7A5

96p2 lnS A511

A521
D G . ~41!

~f!

T[ f ]5
2~A2!6

96Fp
6 I 3

5
~A2!6Mp

2

48Fp
6 F2

7

6
L2

1

576p2

3S 229121 ln
Mp

2

m2 D 2
5A5

192p2 lnS A511

A521
D G .

~42!
02400
~g!

T[g]52
~A2!6gA

2

576Fp
6 F S 2

3

2
I 819I 10DsW (1)

•PW sW (2)
•PW

29I 9sW (1)
•sW (2)G . ~43!

Using

I 105
1

3
I 8 ; I 952

1

2
Dp~0,Mp

2 !, ~44!

one gets

T[g]52
~A2!6gA

2

576Fp
6 F S 23L2

3

32p2

3S 11 ln
Mp

2

m2 D DsW (1)
•PW sW (2)

•PW

1S 9Mp
2 L1

9Mp
2

32p2 ln
Mp

2

m2 DsW (1)
•sW (2)G . ~45!

One thus gets

^S50uT[h] uS50&52
~A2!6gA

2

576Fp
2 F224L1

1

32p2

3S 3224 ln
Mp

2

m2 D G . ~46!

~h!

T[h]523
2~A2!6gA

2

384Fp
6 @~26I 926MpI 13!sW

(1)
•sW (2)

1~2I 822MpI 1216I 1016MpI 14!sW
(1)
•PW sW (2)

•PW #

523
2~A2!6gA

2

384Fp
6 F S 26L2

3

16p2 ln
Mp

2

m2 1
1

4p2

3F32
3p2

8 G D Mp
2 sW (1)

•sW (2)1S 22L2
3

16p2

2
1

16p2 ln
Mp

2

m2 1
3

32DsW (1)
•PW sW (2)

•PW G . ~47!

One thus gets

^S50uT[h] uS50&5~A2!6
gA

2Mp
2

96Fp
6 F20L2

1

16p2 ~3323p2!

1
5

8p2 ln
Mp

2

m2 G . ~48!

Finally, the total one-loop contribution to the DCX ampl
tude is given by
3-9
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TABLE II. Amplitudes for one-loop graphs.

^S50uT[x] uS50& UV-finite integral ~units of MeV24) UV-divergent portion

Scoefficient of
~A2!6Mp

2

Fp
6 D L

a – –
b 27.7310210

23
29gA

2

288
c 1029

223
41gA

2

288
d 1310211

2
55

1152
e 22.9310210

1

9
f 7310211

2
7

288
g 1.9310210

gA
02

24
h 21029

5gA
02

24
Total 2(7.961.6)310210

1

24
3S 15

16
14gA

2 D
for m5160.5 GeV
e
in

i
r r

e

w
c

th

on-

ar

ne-
er-
or
t of

m-

be-

t
pli-
s of
^S50uTtotal~one-loop!uS50&5
~A2!6Mp

2

24Fp
6 S F4gA

21
15

16GL
1F2

181

256p2 1
3

64GgA
2

2
157

1536p21
1

64p2 ln
Mp

2

m2 F15

8
15gA

2 G1
A5

24p2 lnS A511

A521
D

3F2
11

10
gA

21
39

64G2
1

16p
lnF11A5

2 G D . ~49!

The numerical values of the UV-finite parts of the on
loop amplitudes and their UV-divergent portions are given
Table II.

Hence, comparing the numerical values of Eq.~27! and
Eq. ~49! one sees that the one-loop graphs contribute an
crease of about a 1.6% relative to the tree graphs, afte
moval of divergent terms~see Sec. V!. This agrees with the
expectation that the second-order correction in the chiral
pansion should be smaller by a factor ofMp

2 /(4pFp)2

.0.014 than the leading order. The suppression of the t
nucleon graphs relative to the leading order tree graphs
be seen explicitly by comparing expressions~27! and ~49!.
~This is in contrast to the large one-loop corrections for
p-p andp-N vertices, which are discussed in Sec. VI.! Also
note the relative insensitivity of the total~finite! one-loop
amplitude to the choice of the renormalization pointm, as
shown in the last line of Table II; a 50% change inm gives
a 20% change in amplitude.
02400
-
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From Table II, one sees that the dominant one-loop c
tributions come from graphs~b!, ~c!, and ~h!. This is prob-
ably related to the following observations. First, as is cle
from Table I, the one-nucleon–2p-propagator loop integrals
dominate over the 2p-propagator integrals.2 Second, graphs
~b!, ~c!, and ~h! are proportional togA

2.1, as compared to
graphs~d!, ~e!, and~f! ~which do not have agA

2 dependence!.

V. RENORMALIZATION BY CONTACT TERMS

In this section we discuss the renormalization of the o
loop graphs evaluated in Sec. IV. To remove the UV div
gence in (311)-dimensional space, one has to look f
terms whose contributions precisely cancel the coefficien
the ‘‘L ’’ in the ~two-nucleon! one-loop amplitudes. Given
the structure of the UV-divergent parts of the one-loop a
plitudes, 2p –two-nucleon contact terms~Fig. 5! of O(q2)
should do the job as the correct counter terms, as will
come clear from Eqs.~51! and ~52! below.

The contact terms are defined by

lim
x→y

^a8uH̄O1H~x!ua&^b8uH̄O2H~y!ub&, ~50!

2Graph ~d! also has a one-nucleon–2p-propagator structure, bu
the corresponding loop integrals occur in such a way in the am
tude that there is large cancellation between the contribution
I k ,k51,3,11.
3-10
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with a[p,I 3. From the expressions for the amplitudes f
the eight one-loop graphs in Sec. IV, before settingPW 25q1

•q25Mp
2 , one can show that the UV-divergent terms ha

the following structures@omitting the overall isospin factor
t1

(1)t1
(2) from Eq. ~51!#

~PW 2 or q1•q2 or Mp
2 !31,

~PW 2 or q1•q2 or Mp
2 !3sW (1)

•sW (2), ~51!

sW (1)
•PW sW (2)

•PW .

On taking the Fourier transform of the amplitudes~51!, one
gets the local forms:

;~Mp
2 ,q1•q2 ,] i

1] j
2!d (3)~xW12xW2![O~q2!. ~52!

Thus one requiresO(q2,f2) 2 2p – 2-nucleon contact
terms witht1

(1)t1
(2) isospin structure.

For the purpose of renormalization, one needs to cons
nine 2p –two-nucleon contact terms, written in terms of

um , Dm

←1→
,x1 , and f, ~53!
ss

-
-

02400
r

e

er

@ Dm

←1→
[(]m1Gm)1(]Q2Gm); x15M2(U1U†)#. The fi-

nite parts of these nine terms will not contribute, as e
plained later in this section.

One needs to include at leastf explicitly as a building
block for DCX for the following reason. Thef in Eq. ~A2!
can be expanded in terms of the generators of the nuc
isospin group as

f5t3f01A2~t1f21t2f1!, ~54!

where t65 1
2 (t16 i t2), and f1 either annihilatesp2 or

createsp1, andf2 either annihilatesp1 or createsp2. In
DCX, a p1 goes over top2, implying that one requires
O1(x) and O2(y) in Eq. ~50! to consist at least of
f2(x)f2(y) ~or derivatives thereof!, or in terms of the isos-
pin generators,t1

(1)t1
(2) , where the superscripts refer t

nucleons 1 and 2. Further, using Table III one can const
Table IV for O1(x)O2(y) relevant to DCX~again omitting
t1

(1)t1
(2)) which has to include terms of the type isovect

3 isovector.
Note thatS•u(x)S•u(y) will not contribute in the static

limit and at threshold@use Eq.~16! and v1,2
m 5(1,0W )#. The

relevant counter terms are listed below:
lim
x→y

F a1

Fp
4 H̄~x!

f~x!

Fp
H~x!H̄~y!

f~y!

Fp
H~y!^x1~x!&

1
a2

Fp
4 H̄~x!um~x!H~x!H̄~y!um~y!H~y!

a3

Fp
4 H̄~x!v•u~x!H~x!H̄~y!v•u~y!H~y!

3
a4

Fp
4 H̄~x!

f~x!

Fp
Dm

←1→
~x!H~x!H̄~y!

f~y!

Fp
Dm

←1→
~y!H~y!1

a5

Fp
4 H̄~x!

f~x!

Fp
Sm

(1)H~x!H̄~y!
f~y!

Fp
S(2),mH~y!^x1~x!&

1
a6

Fp
4 H̄~x!um~x!Sn

(1)H~x!H̄~y!um~y!S(2),nH~y!1
a7

Fp
4 H̄~x!v•uSm,(1)H~x!H̄~y!v•u~y!Sm

(2)H~y!

1
a8

Fp
4 H̄~x!Sm

(1) f~x!

Fp
Dn

←1→
~x!H~x!H̄~y!S(2),m

f~y!

Fp
Dn

←1→
~y!H~y!1

a9

Fp
4 H̄~x!

f~x!

Fp
S(1)

• Dn

←1→
~x!H~x!

3H̄~y!
f~y!

Fp
S(2)

• D
←1→

~y!H~y!G . ~55!
a
rts
The coupling constants$a i% have been made dimensionle
by construction of the terms.

It should be noted that the following five types of UV
finite 2p –two-nucleonO(q2) contact terms will also con
tribute to off-threshold DCX:

lim
x→y

@emnrlvrH̄~x!um~x!H~x!H̄~y!Sn
(2)ul~y!H~y!,

emnrlvrH̄~x!um~x!H~x!H̄~y!f~y!Sn
(2)DlH~y!,
emnrlvrH̄~x!Sn
(1)um~x!H~x!H̄~y!f~y!DlH~y!,

emnrlvrH̄~x!umDlSn
(1)H~x!H̄~y!f~y!H~y!,

emnrlvrH̄~x!um~x!DlH~x!H̄f~y!Sn
(2)H~y!]. ~56!

By renormalization of loop-graph integrals, one gets
constraint on a linear combination of the UV-divergent pa
of LECs of seven of the nine 2p –two-nucleon contact
3-11
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counter terms of Eq.~55!. First one calculates the amplitude
T corresponding to the contact terms of Eq.~55!. Then, writ-
ing a i5a i

r1l iL @where L was defined in Eq.~36!#, and
comparing with the UV-divergent portion of the total on
loop amplitude~49! and Table II, one gets the following
conditions @suppressing the two pairs of Pauli spinors a
using Eqs.~15!–~17!#:

~1! spin-independent renormalization~graphs@(a)1•••

1(f) #):

~A2!2~4l112l222l3!5~A2!6S 2
gA

2

12
2

5

128D , ~57!

~2! spin-dependent renormalization~graphs@(g)1(h)#):

~A2!2S 3l51
3

2
l616l722l9D52~A2!6

gA
2

4
, ~58!

which on addition gives

~A2!2S 4l112l222l313l51
3

2
l616l722l9D

52
~A2!6

24 S 15

16
14gA

2 D . ~59!

Note that thel4 ,l8 terms do not contribute at the kinemat
point ~17!. So, it is clear that the renormalization of the loo
integrals can be accomplished by the 2p –two-nucleon con-
tact terms.

Because the nucleon-nucleon interaction has a str
short range repulsion, the nucleon-nucleon wave func
vanishes at short relative distances. Since the contact te
in Eqs.~55! and~56! behave asd (3)(xW2yW ), one does not ge
any contribution from these 2p –two-nucleon contact terms
as well as from the UV-divergent parts of the one-loop in
grals. Hence, only UV-finite parts of the loop integrals co
tribute to the DCX loop amplitudes after renormalization.

VI. SUMMARY AND DISCUSSION

The goal of this paper has been to calculate the one-l
correction to the two-nucleon amplitudes for pion doub
charge exchange~DCX! scattering by a nuclear target,
threshold, in the framework of HBChPT. For a numeric
estimate of the two-nucleon–one-loop correction, the am
tudes are evaluated at a typical kinematic point~17!. These
are compared to the leading order amplitudes~for the tree
graphs!, obtained in the same theoretical framework.

TABLE III. Properties of building blocks.

Building block Isospin nature Chiral orde

Dm isoscalar([]m) O(q)
1 isovector([Gm)

um isovector O(q)
x1 isoscalar O(q2)
f isovector O(1)
02400
g
n
ms

-
-

p

l
i-

The two-nucleon–one-loop graphs give a threshold c
tribution of about 0.016 relative to the leading order tr
graphs at the same kinematics@with (pW 82pW )25Mp

2 #. Both
calculations are done in the static limit and the impulse
proximation for the nucleons, and using the renormaliz
values of the axial-vector coupling, pion-decay constan
and the pion and nucleon masses. As noted at the end of
V, these corrections are of the order ofMp

2 /(4pFp)2

.0.014 times the tree graphs in LO (n50). This is as ex-
pected for a chiral correction ofn52.

As noted in Sec. II, there are also corrections to the
tree graphs to ordern52 arising from corrections to thep-p
andp-N vertices, which have been studied in the literatu
The p-p vertex has been determined to the required or
~to one loop! @3#, with the LECs fixed phenomenologically
However, although thep-N vertex corrections have als
been studied through one loop@4,11#, the LECs have only
been determined for the on-shell threshold cases ofp-N
scattering lengths@4# andp6 production on a single nucleo
@11#. Therefore, there is not enough information from the
studies to fix all the vertex LECs required to carry out t
full n52 calculation of the DCX tree graphs.

However, the one-loop calculations cited do show lar
corrections to the vertices. We can estimate how much
would change the DCX tree-graph amplitudes by using
on-shell results as follows. First, we characterize the th
amplitudes of Eqs.~21!, ~23!, and ~25! in terms of vertex
coefficients:

T[a];D1gA ,

T[b];AgA
2 , ~60!

T[c];~a2!2.

The amplitudeD1 is thepN→ppN threshold amplitude
@11# that contributes to the DCX tree graph@a#. To leading
order,D1(LO);gA /Fp

2 . The corrections through one loo
give @11#

D15D1~LO!~110.67!. ~61!

The loop correction is actually 0.15; the larger correctio
0.52, is from a ‘‘recoil’’ term of orderMp

2 /m.

TABLE IV. O1(x)O2(y) relevant to DCX.

Momentum-spin form Coordinate-spin operators

Mp
2 31 f(x)f(y)^x1(x)&

q1•q231 um(x)um(y); v•u(x)v•u(y)

PW 231
f(x) Dm

←1→
(x)f(y) Dm

←1→
(y)

Mp
2 3sW (1)

•sW (2) Sm
(1)f(x)S(2),mf(y)^x1&

q1•q23sW (1)
•sW (2) um(x)Sn

(1)umSn,(2); v•u(x)Sm,(1)v•u(y)Sm
(2)

PW 23sW (1)
•sW (2)

f(x)S(1),m Dn

←1→
(x)f(y)Sm

(2) Dn
←1→

(y)

sW (1)
•PW sW (2)

•PW
f(x)S(1)

• D
←1→

(x)f(y)S(2)
• D

←1→
(y)
3-12
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The amplitudeA gives the DCX contribution to tree grap
@b# from thep-p vertex, and can easily be shown to be to t
two s-wave scattering lengthsaI , with isospinsI 50,2, by

A5~2a01a2!/3. ~62!

To LO, A(LO);Mp /Fp
2 . The one-loop corrections@3#

change this to

A5A~LO!~110.30!. ~63!

The isovectorpN scattering lengtha2 contributes to the
double-scattering tree graph@c#. To LO, a2(LO)
;Mp /Fp

2 . With corrections through one-loop, this becom
@4#

a25a2~LO!~110.046!. ~64!

This small correction masks a 20% contribution of the loo
partially cancelled by the ‘‘recoil’’ correction.

If we now use these corrected values for the vertices
the expressions~60!, we obtain the following estimates o
their effect to ordern52 on the tree-graph amplitudes:

T[a]51.67 T[a]~LO!,

T[b]51.30 T[b]~LO!, ~65!

T[c]51.092 T[c]~LO!.

These corrections are much larger than the one-loop cor
tions of this paper, which involve both nucleons participati
in the DCX reaction. However, the vertex corrections a
only estimates, since not all the off-shell vertex coefficie
are determined.

So we are led to two conclusions about corrections
DCX to ordern52. First, the one-loop correction to the tre
graph amplitudes is small, whether compared to the LO
amplitudes, or to those amplitudes also corrected to one-
order. The dominant contributions@graphs 3~b!, 3~c!, and
4~h!# all have one nucleon propagator, and are proportio
to gA

2.1. The largest, 4~h!, is clearly a correction to the
largest tree graph, 2~c!, for double scattering.~Triple scatter-
ing on two nucleons has not been included; it belongs w
other triple scattering graphs on three nucleons.! The result is
weakly dependent on the choice of the renormalization p
m.

For the purpose of renormalization of the loop graphs,
found that nine 2p –two-nucleon contact terms are require
of which seven contribute at the specific kinematic po
considered~17!. However, since we have assumed that
nuclear wave functions vanish near zero~relative! distance of
nucleon separation, none of the~UV-finite parts! of the con-
tact terms will contribute, because of thed (3)(xW2yW ) in the
forms of contact terms of Eqs.~55! and~56!. If this anticor-
relation assumption were relaxed, then one would have n
unknown LECs for Eq.~55! @seven for the kinematic poin
~17!#, and five for Eq.~56!, to be determined empirically, to
the order considered@O(q2)#.
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The second conclusion is that the one-loop correction
the p-p andp-N vertices produce the largest corrections
ordern52 to the LO tree amplitudes. The large correction
thep-p vertex has been related to the pion radius@3#, that is,
to the correction for the LO assumption of a point pio
Presumably, similar effects, including resonant contrib
tions, give the largep-N vertex corrections. It is clear tha
these corrections are anomalously large, while the one-l
corrections to the two-nucleon amplitudes are of expec
size for theO(q2) terms. The latter may reflect the fact th
the N-N system is already of finite size.

However, as noted above, the vertex corrections for
p-N amplitudes have not been fixed sufficiently for a co
plete calculation of the DCX tree amplitudes. This wou
require an extension of the one-loop theory of the vario
p-N amplitudes to off-shell kinematics, beyond what h
already been done in the literature. As a practical matter,
p-N on-shell constants could be taken directly from expe
ment, as in the impulse approximation, rather than fr
higher orders in chiral perturbation theory.
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APPENDIX A: VERTICES AND F ’s FOR ONE-LOOP
GRAPHS FOR p-NN

The pion field is represented as a matrix-valued SU~2!
field U defined as following:

ei (f/Fp)[U~p!, ~A1!

wheref is a traceless~as detU51) matrix written in terms
of the pion triplet as

A2S p0

A2
p1

p2
2

p0

A2

D . ~A2!

The matrix is written in a space that corresponds to the s
dard (p/n) isospinors which are implied in the H notation

1. Vertices

The leading order terms in~H!ChPT, written using Eqs
~A1! and ~A2!, that are used for the evaluation o
mp-N̄N(m51,2,3,4) and 4-p vertices, are written out:
3-13
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1pN̄N:gAH̄S•u(1)H52~A2!
gA

Fp
F 1

A2
p̄S•]p0p1 p̄S•]p1n1n̄S•]p2n2

1

A2
n̄S•]p0nG ,

2pN̄N: i H̄v•D(2)H[H̄v•G (2)H5~A2!2
i

8Fp
2 @ p̄pp [ 1v•]p2]1A2p̄np [0v•]p1]1A2n̄pp [ 2v•]p0]1n̄np [ 2v•]p1] #,

3pN̄N:gAH̄S•u(3)H5~A2!3
gA

2

12Fp
3 F 1

A2
p̄@2p1p2S•]•p02p0~p1S•]p21p2S•]p1!#p1 p̄~p02S•]p12p1p0S•]p0

1p1p [ 2S•]p1] !n

1H.c.1
1

A2
n̄@22p1p2S•]p01p01p0~p2S•]p11p1S•]p2!#nG ,

4pN̄N:H̄iv•D (4)H[H̄iv•G (4)H~A2!4
i

96Fp
4 S p02

2
1p1p2D @ p̄pp [ 2v•]p1]1~A2p̄np [ 1v•]p0]1H.c.!1n̄np [ 1v•]p2] #,

4p:
Fp

2

4
@^]mU†]mU&1Mp

2 ^~U†1U22!&# (4)5~A2!4
1

24Fp
2 @22p1p2]mp1]mp21~p2!2~]mp1!21~p1!2~]mp2!2

1Mp
2 ~p1!2~p2!2#. ~A3!
of
t t
ar
r

on

d in

ed,

als:
c

s

2. Combinatoric factors for one-loop graphs

The combinatoric factors ‘‘f’’ of Eq.~19! for one-loop
graphs, are evaluated. First,S(n) @see Eq.~19!# is written out
in terms of ‘‘H̄fmH,’’ m51,2,3,4 and ‘‘f4,’’ which repre-
sent themp2ni nucleon vertices withm51,2,3,4;ni52 and
m54;ni50. Then, using the time ordering properties
bosonic and fermionic bilinear fields, those terms relevan
the DCX one-loop graphs are picked out. Then on comp
son with Eq.~19!, the combinatoric factors are read off fo
the eight two-nucleon one-loop graphs. They are listed al
with the corresponding forms of Eq.~19! in Table V.
02400
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APPENDIX B: ONE-LOOP INTEGRALS

There are 11 one-loop integrals defined and evaluate
this appendix. The integralsg4,6 do not occur in the one-loop
DCX amplitudes as discussed later. The notations us
though similar to the ones used by@6# and @13#, are slightly
different.

Four of those integrals are referred to as basic integr
Dp(0,M2), JpN, J pp,g0, evaluated at different kinemati
points.@The 0 inDp(0,M2) implies that the ‘‘external’’ four-
momentum squared ‘‘P 2’’ that appears in other integrals, i
zero.# They are defined below:
1

i E ddk

~2p!d

1

M22k22 i e
[Dp~0,M2!,

1

i E ddk

~2p!d

1

~v•k2v2 i e!~Mp
2 2k22 i e!

[JpN~v!,

1

i E ddk

~2p!d)

1

~M22k22 i e!~Mp
2 2~k2P!22 i e!

[J pp~P 2;M2!,

1

i E ddk

~2p!d

1

~v•k2v2 i e!~M22k22 i e!~M22~k2P!22 i e!
[g0~v,V,P 2!, ~B1!
3-14
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TABLE V. Combinatoric factors for the one-loop graphs.

x
S[x]

(n)5
in

n!
*)k51

n d4xk

f i n*)k51
n d4xk f

T@) i 51
n ( jL j

I (xi)# T @) i 51
n L i

I(xi)#

relevant tox

a – – –

b i 3

6
*) i 51

3 d4xiT@) i 51
3 i 3) i 51

3 *d4xi 1

@H̄(f1f21f3)H#(xi)] T@(H̄fH)(x1)(H̄f2H)(x2)

(H̄f3H)(x3)]

c i 4

24
) i 51

4 *d4xiT@) i 51
4 @H̄(f1f2)H

1
2

) i 51
4 *d4xiT@(H̄fH)(x1)(H̄fH)(x2)

1
2

1f4](xi)] (H̄f2H)(x3)f4(x4)]

d i 3

6
) i 51

3 *d4xiT@(H̄f2H)(x1)
i 3

6
) i 51

3 *d4xiT@(H̄f2H)(x1)
1
6

(H̄f2H)(x2)(H̄f2H)(x3)] (H̄f2H)(x2)(H̄f2H)(x3)]

e i 3

6
*) i 51

3 d4xiT@) i 51
3 (H̄f2H1f4)(xi)#

i 3

2
) i 51

3 *d4xiT@(H̄f2H)(x1)
1
2

(H̄f2H)(x2)f4(x3)]

f i 2

2
) i 51

2 *d4xiT@@H̄(f21f4)H#(x1)
i 2) i 51

4 *d4xiT@(H̄f2H)(x1) 1

@H̄(f21f4)H#(x2)] (H̄f4H)(x2)]

g i 2

2
) i 51

2 *d4xiT@(H̄f3H)(x1)
i 2

2
) i 51

2 *d4xiT@(H̄f3H)(x1)
1
2

(H̄f3H)(x2)] (H̄f3H)(x2)]

h i 3

6
*) i 51

3 d4xiT@) i 51
3 i 3*d4x1*d4x2*d4x3T@(H̄fH)(x1) 1

H̄(f1f21f3)H](xi) (H̄f2H)(x2)(H̄f3H)(x3)]
e

n
ra

-

e
th

-

e
fol-
q.
with V[v•P. In @13#, P 2 that figures inJ pp(P 2,M2) is
>0. In this paper, one requiresP 2<0.

The integralsDp(0,M2),J pp(P 2;M2) andJpN(v) have
already been evaluated in the literature@6,13#, where they
were denoted byDp(0), J(s or t) and J0(v), respec-
tively. We have alterred the notation forDp andJ to intro-
duceM2 as a variable, because we need to differentiate th
expressions with respect toM2, as in Eqs.~B11! and~B20!.
The form ofg0(v,V,P 2), required for DCX, has not bee
evaluated previously. It is a generalization of the integ
denoted byg0(v) in @6#, for which v50, P 250, P→
2P (V used in this paper is denoted by ‘‘v ’’ in @6#!. The
reason for introducingV and P 2 in addition to v in the
argument ofg0 becomes clear from the points~a! and~b! in
the paragraph after Eq.~B3!. Also, note that the indexing
( i 51,2, . . . ) of J i

pp(P 2;M2) and g i(v,V,P 2) in Eqs.
~B2! and ~B3! below differs from that used for the corre
sponding integralsJ2i

pp(s or t) andg i(v) in @6,13#.
The above four integrals are referred to as ‘‘basic’’ b

cause the integrands have no momentum dependence in
numerators, and are the most basic of 1p propagator, one-
nucleon–1p propagators, 2p propagators, and one
nucleon–2p propagators integrals, respectively.

The remaining integrals have momentum dependenc
numerators~and hence have a tensorial character!, and are
defined as
02400
se

l

-
eir

in

1

i E ddk

~2p!d

km or kmkn

~M22k22 i e!„Mp
2 2~k2P!22 i e…

[PmJ 1
pp~P 2;M2!,

or gmnJ 2
pp~P 2;M2!1PmPnJ 3

pp~P 2;M2!, ~B2!

1

i E ddk

~2p!d

3
km or kmkn

~v•k2v2 i e!~M22k22 i e!„M22~k2P!22 i e…

[vmg1~v,V,P 2!1Pmg2~v,V,P 2!,

or gmng3~v,V,P 2!1vmvng4~v,V,P 2!1PmPng5

3~v,V,P 2!1~vmPn1vnPm!g6~v,V,P 2!,

~B3!

where alternative numerators inkm or kmkn have been shown
in each case.

Other than notational differences, there are also the
lowing kinematical differences between the integrals of E
~B3! and those figuring in@6#: ~a! OurP 2 does not vanish, in
general, unlike the case for@6#, in which P 2 is the four-
3-15
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momentum squared of an on-shell photon;~b! vÞ0;V
[v•PÞv; ~c! we consider (k2P)2 instead of (k1P)2 in
the integrals.

Of the nine, two do not contribute to DCX:g4,6. The
reason is that because these two integrals can occur on
graphs~g! and ~h! with integrands having numerators of th
type S(1)

•kS(2)
•k, their coefficients will have at least on

S(1),(2)
•v, which vanishes in the static limit.@That is because

in the static limitvm5(1,0W ) andSm5(0,sW /2).# The remain-
ing seven can be rewritten as linear combinations of the f
basic integrals of Eq.~B1!.

All the integrals for the calculation are real, and hence
are all the one-loop amplitudes. This is because the ela
scattering amplitude becomes real at threshold.

Two further simplifications of the calculation are obtain
by the following.

~a! The 3p-propagator integrals that occur in the one-lo
graph, Fig. 4~e!, using Eq.~16!, are of the type

FIG. 5. 2p –two-nucleon contact graph.
02400
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1

i E ddk

~2p!d

f ~km!

~Mp
2 2k22 i e!2

„Mp
2 2~k2P!22 i e…

, ~B4!

which can rewritten as

2
]

]M2

1

i E ddk

~2p!d

f ~km!

~M22k22 i e!„Mp
2 2~k2P!22 i e…

,

~B5!

whereM2 is set equal toMp
2 after differentiation.

~b! Use is also made of some identities involving the lo
integrals, which are valid only in the static limit and impuls
approximation~16!:

g0„v56Mp ,V56Mp ,P 25~p42p26q1,2!
2
…

5g0„v50,V57Mp ,P 25~p22p47q1,2!
2
…

5g0„v50,V57Mp ,P 25~p42p27q1,2!
2
…

5g0„v56Mp ,V56Mp ,P 25~p22p46q1,2!
2
…,

~B6!

where p2
m'(0,2pW ), p4

m'(0,2pW 8), vm5(1,0W ), v•S1,2

50.
We also use the following the identity:

g0~v56Mp ,V56Mp ,P 25Mp
2 2PW 2!

5g0~v50,V57Mp ,P 25Mp
2 2PW 2!. ~B7!

1. Basic integrals

The results after evaluation of the basic integrals of E
~B1! are given below:
Dp~0,M2!52M2L1
M2

16p2 ln
M2

m2 1O~d24!,

JpN~v!524Lv1
v

8p2 S 12 ln
Mp

2

m2 D 2
1

4p2AMp
2 2v2 arccosS 2

v

Mp
D1O~d24!,

u~2P 2!J pp~P 2;M2!522L2
1

16p2 S 211 ln
M2

m2 2
~D2P 2!

2P 2 ln
M2

Mp
2 1

L1/2~P 2;M2,Mp
2 !

22P 2 lnF ~L1/22P 2!22D2

~L1/21P 2!22D2G D ,

„D[M22Mp
2 ; L~P 2;M2,Mp

2 ![@P 22~M2Mp!2#@P 22~M1Mp!2#…, ~B8!

I 1[J pp~2Mp
2 ,Mp

2 !522L2
1

16p2 F211 ln
Mp

2

m2 1A5 lnS A511

A521
D G , ~B9!

I 8[J pp~P 250;M25Mp
2 !522L2

1

16p2 S 11 ln
Mp

2

m2 D 1O~d24!, ~B10!
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u~2P2!
]

]M2J pp~P 2;M2,Mp
2 !uM25M

p
2 52

1

16p2 S 1

Mp
2 1

1

A~2P 2!~4Mp
2 2P 2!

lnFA4Mp
2 2P 21A2P 2

A4Mp
2 2P 22A2P 2G D , ~B11!

~ i! g0~v50,V5Mp ,P 250!2g0~v50,V52Mp ,P 250!52
1

32Mp
, ~B12!

~ ii !I 11[g0~v52Mp ,V50,P 252Mp
2 !5

1

8A2pMp
F lnS 11

31A5

2
D ~A511!

A31A5
2 lnS 11A32A5

2
D S ~A521!

A32A5
G

5
1

8pMp

lnF11A5

2
G . ~B13!

I 11 is a new integral that one needs to evaluate for the DCX one-loop graphs. For values ofP 2Þ0,2Mp
2 , one gets the

following expressions, which are alsonew:

~ i! g0~v52Mp ,V52Mp ,P 25Mp
2 2PW 2!2g0~v5Mp ,V5Mp ,P 25Mp

2 2PW 2!

52
1

2puPW u F arctanF Mp

AMp
2 1PW 2G2

uPW u

AMp
2 1PW 2

(
k50

`
~2k!!

22k~k! !2~2k11!
F1S 3

2
,k11,1,2;2

PW 2

Mp
2

,
Mp

2

@2Mp
2 1PW 2#

D G ,

~B14!

where

Fi~a,b,c,d;x,y![Appell functions ~ i 51,2,3,4!,

F1~a,b,c,d;x,y!5 (
m50

`

(
n50

`
am1nbmcn

cm1n

xmyn

m!n!
, ~B15!

~ ii ! g0~v52Mp ,V50,P 252PW 2!5

F 11
PW 2

2Mp
2 2

uPW u

Mp
A41

PW 2

Mp
2 G

16p2uPW uA41
PW 2

Mp
2

(
k50

`
~2k!!

~k! !222k~2k11! F 2BS k12,
1

2
D 2F1S k12,1;k

1
5

2
;

F2
PW 2

2Mp
2 1A41

PW 2

Mp
2 G

F2S 11
PW 2

2Mp
2 D 1A41

~PW 2!

Mp
2 G D

2BS k11,
1

2
D

2

F1S k11,1;k1
3

2
;

F2
PW 2

2Mp
2 1A41

PW 2

Mp
2 G

F2S 11
PW 2

2Mp
2 D 1A41

PW 2

Mp
2 G D G
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2
1

16p2uPW uA41
PW 2

Mp
2

(
k50

`
~2k!!

~k! !222k~2k11!
E

0

1

dx
xk~2x21!

A12x

3
1

S x2

F S 11
PW 2

2Mp
2 D 1A41

PW 2

Mp
2

uPW u

Mp
G

F PW 2

2Mp
2

1A41
PW 2

Mp
2

uPW u

Mp
G D

. ~B16!

2. Other integrals

The results obtained after evaluation of other integrals of Eqs.~B2! and ~B3! are given below.
~a! 2p-propagator integrals. The following relations,~B20!, ~B22!, ~B24!, ~B26!, and~B28!, are not explicitly given in the

literature. These relations are absolutely general and become relevant when evaluating the off-threshold one-loop a
for kinematic points away from Eqs.~17!:

I 9[J 2
pp~0,Mp

2 !52
1

2
Dp~M2,0!, ~B17!

I 10[J 3
pp~0,Mp

2 !5
1

3
J pp~0,Mp

2 ![
1

3
I 8 , ~B18!

J 1
pp~P 2,M2!5

1

2P 2 @Dp~0,M2!2Dp~0,Mp
2 !1~D1P 2!J~P 2,M2!#,

I 2[J 1
pp~2Mp

2 ,Mp
2 !5

1

2
J pp~2Mp

2 ,Mp
2 !52L2

1

32p2 F211 ln
Mp

2

m2 1A5 lnS A511

A521
D G ~B19!

2Mp
2 I 5[2Mp

2 ]

]M2J 1
ppuM25M

p
2 ;P 252M

p
2 5

1

2 S ]

]M2 Dp~0,M2!2Mp
2 ]

]M2J ppD
M25M

p
2 ;P 252M

p
2
1

1

2
J pp~2Mp

2 ,Mp
2 !

~B20!

52
L

2
1

3

32p2 2
A5

40p2 lnS A511

A521
D , ~B21!

J 2
pp~P 2;M25Mp

2 !5

F S 2Mp
2 2

P 2

2 D Jpp~P 2!2Dp~0,Mp
2 !G

2~d21!
, ~B22!

which for P 252Mp
2 gives

I 3[J 2
pp~2Mp

2 ,Mp
2 !52

7Mp
2

6
L1

29

576p2 Mp
2 2

7

192p2 Mp
2 ln

Mp
2

m2 2
5A5

192p2 lnS A511

A521
D 1O~d24!, ~B23!

J 3
pp~P 2;M25Mp

2 ![J3
pp~P2!5

@~dP 224Mp
2 !Jpp~P 2!12~22d!Dp~0,Mp

2 !#

4~d21!P 2 , ~B24!

which for P 252Mp
2 gives
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I 4[J 3
pp~2Mp

2 ,Mp
2 !52

2

3
L1

19

288p22
1

48p2 ln
Mp

2

m2 2
A5

24p2 lnS A511

A521
D 1O~d24!, ~B25!

u~2P 2!P 2
]

]M2J 2
pp~P 2;M2!5u~2P 2!

1

2~12d!
F2J pp2

1

2
~4Mp

2 2P 2!
]

]M2J pp1
1

2

]

]M2 Dp~0,M2!G
52

L

2
2

1

192p2 S 12
P 2

Mp
2 D 2

1

64p2 ln
Mp

2

m2

2
1

64p2
A@4Mp

2 2P 2#

2P 2 lnFA4Mp
2 2P 21A2P 2

A4Mp
2 2P 22A2P 2G1O~d24!. ~B26!

So,

I 6[
]

]M2J 2
pp~2Mp

2 ,Mp
2 !uM25M

p
2 52

L

2
2

1

96p2 2
1

64p2 ln
Mp

2

m2 2
A5

64p2 lnS A511

A521
D , ~B27!

Mp
2 ]

]M2J 3
ppUM25M

p
2 5S d

]

]M2J 2
pp2M2

]

]M2J ppD U
M25M

p
2
2J pp. ~B28!

So,

I 7[
]

]M2J 3
pp~2Mp

2 ,Mp
2 !uM25M

p
2 52

7

96p2 1
1

16A5
lnS A511

A521
D . ~B29!

~b! 2p –one-nucleon–propagator integrals. The following relations,~B30!, ~B32!, and~B35!, are not explicitly given in the
literature, and are absolutely general and become relevant when evaluating the off-threshold one-loop amplitudes for k
points away from Eq.~17!.

g1~v,V,P 2!5
@2P 2Jpp~P 2!1P 2~2v2V!g0~v,V,P 2!2V„JpN~v!2JpN~v2V!…#

2~P 22V2!
,

g2~v,V,P 2!5
@JpN~v!2JpN~v2V!22VJpp~P 2!1~P 222vV!g0~v,V,P 2!#

2~P 22V2!
. ~B30!

Hence,

I 12[g2~0,2Mp,0!2g2~0,Mp,0!5
1

4Mpp2 , ~B31!

g3~v,V,P 2!5
@2Mp

2 g0~v,V,P 2!22vg1~v,V,P 2!2P2g2~v,V,P 2!2JpN~v2V!#

2~d22!

5
1

4
@2Mp

2 g0~v,V,P 2!22vg1~v,V,P2!2P2g2~v,V,P 2!2JpN~v2V!#2
~2v2V!

32p2 1O~d24!.

~B32!

Hence,
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g3~v50,V52Mp ,P 25Mp
2 2PW 2!2g3~v50,V5Mp ,P 25Mp

2 2PW 2!

5
1

4 F „g0~0,2Mp ,Mp
2 2PW 2!

2g0~0,Mp ,Mp
2 2PW 2!…

@Mp
2 1PW 2#2

2PW 2
1

@Mp
2 1PW 2#

2PW 2
„JpN~2Mp!2JpN~Mp!…G

2
Mp

16p2 1O~d24!. ~B33!

Thus,

I 13[g3~0,2Mp ,0!2g3~0,Mp,0!52LMp1MpS 1

64
2

1

8p2D1
Mp

16p2 ln
Mp

2

m2 1O~d24!. ~B34!

Now,

g5~v,V,P 2!52
1

2~d22!~P 22V2!
@~d22!VJpp~P 2!12g2~v,V,P 2!@~d21!P 21vV~d22!#1~d23!JpN~v2V!

22vg1~v,V,P 2!12Mp
2 g0~v,V,P 2!#

5
1

4~P 22V2! F2vg1~v,V,P 2!22VJpp1~3P 224vV!g2~v,V,P 2!2JpN~v2V!

22Mp
2 g0~v,V,P 2!1

~2v2V!

8p2 G1O~d24!. ~B35!

Hence,

g5~v50,V52Mp ,P 25Mp
2 2PW 2!2g5~v50,V5Mp ,P 25Mp

2 2PW 2!

52
1

4PW 2 F2
@3Mp

2 25PW 2#

2PW 2
„JpN~2Mp!2JpN~Mp!…2

~3@Mp
2 2PW 2#214Mp

2 PW 2!

2PW 2
„g0~0,2Mp ,Mp

2 2PW 2!

2g0~0,Mp ,Mp
2 2PW 2!…1

2Mp@5Mp
2 23PW 2#

PW 2
J pp~Mp

2 2PW 2!1
Mp

4p2G1O~d24!. ~B36!

Thus,

I 14[g5~0,2Mp ,0!2g5~0,Mp ,0!5
1

16p2Mp
1

1

64Mp
1O~d24!. ~B37!
K.
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