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Quadrupole shape invariants in the interacting boson model
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In terms of the interacting boson model~IBM !, shape invariants for the ground state, formed by quadrupole
moments up to sixth order, are studied in the dynamical symmetry limits and over the whole structural range
of the IBM-1. The results are related to the effective deformation parameters and their fluctuations in the
geometrical model. New signatures that can distinguish vibrator andg-soft rotor structures, and one that is
related to shape coexistence, are identified.

PACS number~s!: 21.10.Ky, 21.60.Ev, 21.60.Fw
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Nuclei are often regarded as drops of nuclear matter a
the geometrical model of Bohr and Mottelson. Having
view of nuclei as such geometrical objects leads directly
the importance of possible deformations of nuclei. The m
important deformation of nuclei at low energies is the qu
rupole deformation to which we restrict our discussio
These quadrupole deformations are of special interest as
enable us to make predictions of nuclear properties, suc
energies orE2 transition strengths of the lowest excite
states.

Conversely one can deduce information about nuclear
formations by observingE2 transition matrix elements. In
deed from a complete set ofE2 matrix elements one ca
calculate model independent moments and higher order
ments of the quadrupole operator, tensorially coupled t
scalar—the shape invariants. Shape invariants were firs
troduced by Kumar@1# and Cline@2# in the discussion of a
large set ofE2 matrix elements obtained in Coulomb exc
tation experiments. Calculating shape invariants in the g
metrical model shows their connection to the deformat
parametersb and g used by Bohr and Mottelson or, to b
more precise, to effective valuesbeff andgeff , and the fluc-
tuations of those. Recently Joloset al. @3,4# have introduced
approximation formulas to the lowest shape invariants in
framework of the newly developedQ-phonon scheme@5–8#.
These approximations now make it possible to determ
approximate values of the shape invariants from data by
ing only a few absoluteB(E2) values.

This is a substantial result since the advent of radioac
beams opens up entirely new nuclear regions for study bu
the same time, the very low intensities of such beams m
that data will be sparse and that nuclear structure informa
must be obtained from fewer and simpler-to-obtain da
Therefore, the approximations to theQ invariants are impor-
tant. They allow estimates not only of basic deformation
rameters such asb and g, but also of higher moments, re
lated to the stiffness of the potential inb and g and to the
amount of zero point motion. Such information has seldom
ever been available from any nuclear data. With these
proximation formulas, they are now accessible from sim
data.

It is therefore important to develop a global view of ho
these shape invariants behave as a function of structur
0556-2813/2000/61~2!/021301~5!/$15.00 61 0213
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that they can be effectively used as signatures of structur
is the purpose of this Rapid Communication to map out
behavior of the five essential invariants, as well as sev
related quantities, over the full range of nuclear structure.
do so we will use the algebraic interacting boson mo
~IBM ! @9,10# to study the behavior of shape invariants in a
between the dynamical symmetry limits of the IBM. Form
las will be given to transform the shape invariants into effe
tive deformation parametersb and g. The values derived
from the algebraic model will be compared to values in t
appropriate limiting cases of the geometrical model.

Shape invariants are formed by the isoscalar elec
quadrupole operator, which is also theE2 transition operator
in the consistentQ formalism ~CQF! @11#,

T~E2!5Q5eB QIBM, ~1!

whereQIBM is the quadrupole operator in the IBM,

QIBM5Qx5s1d̃1d1s1x@d1d̃# (2), ~2!

and eB is the effective boson charge which is fixed for
given nucleus. We define moments up to sixth order of
quadrupole operator in the ground state as

q25^01
1u~Q•Q!u01

1&, ~3!

q35A35

2
u^01

1u@QQQ# (0)u01
1&u, ~4!

q45^01
1u~Q•Q!~Q•Q!u01

1&, ~5!

q55A35

2
u^01

1u~Q•Q!@QQQ# (0)u01
1&u, ~6!

q65
35

2
^01

1u@QQQ# (0)@QQQ# (0)u01
1&, ~7!

where a dot denotes a scalar product and@QQQ# (0) abbre-
viates the tensor coupling†Q3@Q3Q# (2)

‡

(0) . We should
note thatq2 is equal to the total absoluteE2 excitation
strength from the ground state
©2000 The American Physical Society01-1



b

-
ia

n

-
m
i

,

en

or
ou

e
a

m
r

ha

ca
n-
ar

es-

i-

ma-
ore
of

e-

-
ef-

RAPID COMMUNICATIONS

V. WERNERet al. PHYSICAL REVIEW C 61 021301~R!
q25(
j

B~E2;01
1→2 j

1!. ~8!

q2 will be the only quantity in our discussion where an a
solute value, namely the effective boson chargeeB , appears.

With the moments~3!–~7! we define the relative dimen
sionless shape invariants by normalizing to an appropr
power ofq2,

Kn5
qn

q2
n/2

for nP$3,4,5,6%. ~9!

The quantitiesKn do not depend on the effective boso
chargeeB . The shape invariantsKn differ from earlier defi-
nitions of Joloset al. @3# by normalization constants or ten
sor coupling. In the present definitions no value may beco
infinite and all shape invariants are exactly equal to unity
the limit of the rigid symmetric rotor or, in terms of the IBM
the SU(3) limit for any boson numberN.

For the calculation of the shape invariants it is conveni
to write the expressions for the quadrupole moments~3!–~7!
as sums overE2 matrix elements. Therefore, the tens
properties of the quadrupole operator are taken into acc
and the unity operator15(J,i ,MuJiM &^JiM u is inserted be-
tween every pair of quadrupole operators. Using the Wign
Eckert theorem and the unitarity relation of Clebsch Gord
coefficients it is possible to write the momentsqn as

q25(
i

^01
1iQi2i

1&^2i
1iQi01

1&, ~10!

q35A 7

10U(i , j ^01
1iQi2i

1&^2i
1iQi2 j

1&^2 j
1iQi01

1&U,
~11!

q45(
i , j ,k

^01
1iQi2i

1&^2i
1iQi0 j

1&^0 j
1iQi2k

1&^2k
1iQi01

1&,

~12!

q55A 7

10U (
i , j ,k,l

^01
1iQi2i

1&^2i
1iQi2 j

1&^2 j
1iQi0k

1&

3^0k
1iQi2l

1&^2l
1iQi01

1&U, ~13!

q65
7

10 (
i , j ,k,l ,m

^01
1iQi2i

1&^2i
1iQi2 j

1&^2 j
1iQi0k

1&

3^0k
1iQi2l

1&^2l
1iQi2m

1&^2m
1iQi01

1&, ~14!

involving reduced matrix elements between 01 and 21 states
only. In general only the lowest states contribute to the su
because convergence of theQ-phonon expansion of nuclea
states is fast@8#. Matrix elements between nuclear states t
differ by severalQ phonons are usually small@5#.

In the model of a quadrupole deformed rotor analyti
expressions forE2 matrix elements and thus for shape i
variants can be obtained. In the rigid rotor the shape inv
02130
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ants are functions of the fixed deformation parametersb and
g. If we assume a nonrigid deformation, we can give expr
sions for the shape invariants as

q25S 3ZeR2

4p D 2

^b2&[S 3ZeR2

4p D 2

beff
2, ~15!

K35
^b3cos 3g&

^b2&3/2
[cos 3geff , ~16!

K45
^b4&

^b2&2
, ~17!

K55
^b5cos 3g&

^b2&5/2
, ~18!

K65
^b6cos2 3g&

^b2&3
, ~19!

explicitly using expectation values ofb and cos 3g. We can
define effective values of the deformation parametersbeff
and geff by Eqs. ~15! and ~16!. The parametergeff
5 1

3 arccosK3 is given in Table I for the appropriate dynam
cal symmetry limits of the IBM, whereSU(3) corresponds
to a symmetric rigid rotor,O(6) to a g-soft nucleus with
maximal triaxiality andU(5) to a vibrator.

The shape invariants are measures of effective defor
tion parameters and their fluctuations. This is made m
explicit by defining the following quantities as measures
the fluctuations ofb and cos 3g :

sb5
^b4&2^b2&2

^b2&2
5K421, ~20!

sg5
^b6cos2 3g&2^b3cos 3g&2

^b2&3
5K62K3

2 . ~21!

Using expressions~10!–~14!, ~20!, ~21! one can analyti-
cally calculate the shape invariants in the dynamical symm

TABLE I. Shape invariants and fluctuations, calculated forN
5` in thesd-IBM-1 for the dynamical symmetry limits using ana
lytical expressions. For comparison, corresponding values of an
fective g deformation are given.

N5` U(5) SU(3) O(6)

geff 30° 0° 30°
K3 0 1 0
K4

7
5 1 1

K5 0 1 0
K6

21
25 1 1

3

sb
2
5 0 0

sg
21
25 0 1

3
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try limits of the IBM-1. In this paper we will employ the
extended consistentQ formalism~ECQF! @12# of the IBM-1,
using the IBM-1 Hamiltonian

HECQF5aF ~12z!nd2
z

4N
Qx

•QxG , ~22!

with Qx taken from Eq.~2!. This simple Hamiltonian con-
tains three parameters (a,z,x). While one parameter~a! sets
the absolute energy scale, the wave functions depend on
two structural constants (z,x). For a given nucleus the bo
son numberN is fixed. The ECQF Hamiltonian covers th
three dynamical symmetry limits as indicated in Fig. 1. W
note that the structural parameterx appearing in the shap
invariants through theE2 transition operator is fixed in th
SU(3) limit (x52A7/2) and in theO(6) limit ~x50!,
while it is unspecified by the Hamiltonian in theU(5) limit.
Therefore, shape invariants in theU(5) limit are functions of
the structural parameterx. The analytical expressions for th
shape invariants and the fluctuations in theU(5) limit as
functions of the boson numberN and the structural paramete
x are

K3
U(5)5A 7

10

1

AN
uxu, ~23!

K4
U(5)5

7

5 S 12
2

7ND , ~24!

K5
U(5)5A7

2

~11N26!

~5N!3/2
uxu, ~25!

K6
U(5)5

21

25

~N21!

N2 S 3x21N221
5Nx2

6~N21! D , ~26!

sb
U(5)5

2

5 S 12
1

ND , ~27!

sg
U(5)5

21

25

~N21!

N2
~3x21N22!. ~28!

For completeness we also giveK6 as a function of the boson
numberN in the O(6) limit,

K6
O(6)5

1

3

~N22!~N21!~N15!~N16!

@N~N14!#2
. ~29!

FIG. 1. The ECQF square for transition matrix elements in
IBM-1. U(5) converges to one single point forN5`.
02130
on

These results enlarge the well-known symmetry triangle
wave functions of the IBM-1 to a structural ECQF square
shape invariants and thus for the interpretation of nucl
shapes. This fact is illustrated in Fig. 1. The use of a sim
rectangular representation of the parameter space has
been suggested by Bucurescuet al. @13#. Known typical ex-
amples for particular points of the ECQF square are, e
172Yb for SU(3), 196Pt for O(6), 116Cd for U(5) with x50,
and 152Sm for largex and moderate values ofz ~see@14–16#
and the discussion below!.

From Eqs.~23!, ~25!, ~26!, and~28! we note that the nec
essary extension of the IBM-1 symmetry triangle to t
ECQF square is a finite-N effect, because the shape inva
ants ofU(5) wave functions converge in the limitN→` for
any value ofx. Table I shows the values of the shape inva
ants and their fluctuations in the dynamical symmetry lim
of the IBM-1 for an infinite boson numberN5`. Only the
quantities given in Eqs.~23!–~29! depend on the boson num
ber N.

As we would expect the values ofgeff in the symmetry
limits are 0° and 30°, while the effective triaxiality fluctuate
in the O(6) and theU(5) limits. In the SU(3) rigid rotor
and O(6) g-soft limits theb deformation is rigid, while it
fluctuates in theU(5) vibrator limit.

We have discussed the shape invariants and fluctuat
in the dynamical symmetry limits of the IBM using analyt
cal expressions. These values provide useful benchmark
the geometrical interpretation of IBM ground state wa
functions. However, the dynamical symmetry limits of th
IBM and the corresponding geometrical models are ide
ized, analytically solvable limits. More accurate descriptio
of the low energy structure of collective nuclei can usua
be obtained by IBM Hamiltonians outside the dynamic
symmetry limits. To gain insight into the structure of actu
nuclei the quantities of interest have been calculated betw
the symmetry limits, using the ECQF Hamiltonian~22!. The
shape invariants and their fluctuations have been calcul
gridwise over the whole IBM parameter space forN510
bosons as functions of the structural parametersz andx. All
calculations have been performed by diagonalizing
Hamiltonian numerically using the computer codePHINT

@17#. Calculations of the shape invariants have been done
a FORTRAN code~QINVAR!, which evaluates thePHINT out-
put.

All quantities behave smoothly and one obtains an i
pression of how the quantities vary outside of the dynam
symmetry limits. Figure 2 represents the numerical results
this work presenting the variation of the most importa
quadrupole invariants over all ranges of structure. The
havior of the invariants,q2 , K3-K6, between the symmetrie
is interesting. Strong variations towards and for deform
nuclei are typical. The invariantK4, which is related to fluc-
tuations inb via Eq. ~20!, is one of the few observables tha
can distinguishU(5) from O(6). This can be useful in
newly accessible exotic nuclei sinceK4 can be approxi-
mately obtained from the simple expression@3#

K4'
7

10

B~E2;41
1→21

1!

B~E2;21
1→01

1!
[K4

appr., ~30!

e

1-3
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FIG. 2. ~a!–~e! Shape invari-
ants q2 and K3-K6 . ~c! The in-
variant K4 also determines the
fluctuation sb5K421. ~f! The
fluctuation sg . All quantities
shown in ~a!–~f! are calculated
gridwise over the ECQF param
eter space of the IBM forN510
bosons.
b

o
le

la-
re

el

.
he

n-

a

fo

rta
rm

ex-
,

een
del

.
is

nd

ters
e
nd
ape

rom
ay.
red
a

ing
uch

no-
sed

s for
the
est
-
e
n
and
which involves two observables, easily measured, e.g.,
Coulomb excitation experiments. The approximation~30! is
valid within about 10% for the ECQF square and bos
numbersN>5. This was numerically checked for the who
ECQF square and for boson numbersN55,7,10,16. For a
detailed analysis an experimental value ofK4

appr.can serve as
a benchmark for starting points of numerical IBM calcu
tions, which can be optimized to reproduce the measu
transition strengths. The actual value ofK4 can then be de-
termined from the complete set of calculatedE2 transition
matrix elements.

For largeN, K6 and sg are quite different inU(5) and
O(6) which is evident from Table I. The bottom right pan
of Fig. 2 showssg , which gives the fluctuations ing, grid-
wise over the full structural range. Note, however, that Fig
is calculated for a finite boson number which lowers t
value of K6 and sg in the U(5) and O(6) limits as seen
from Eqs.~25!, ~28!, and ~29!. In the SU(3) limit sg van-
ishes, which characterizes theSU(3) limit as a model for a
rigid rotor, also in theg degree of freedom. In contrast, no
vanishing triaxiality fluctuations occur in theU(5) andO(6)
limits, indicating that these limits and the whole transition
region between them modelg-soft nuclei.

Finally, we note that all shape invariants, especiallysg ,
change strongly betweenSU(3)- andU(5)-like values in an
unusual region of the IBM-1 parameter space, namely
moderate values ofz and x52A7/2. Interestingly, this is
just the region appropriate to the nucleus152Sm (z
50.57,x52A7/2) @14,15#. The case of152Sm is currently
under active discussion and it seems that it shows a ce
degree of shape coexistence between spherical and defo
shapes with large effective triaxiality@16#.
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Above, we discussed the numerical calculation of the
act shape invariants within thesd-IBM-1 parameter space
using the ECQF Hamiltonian~22!. One aspect of this work is
to establish the shape invariants as a convenient link betw
the geometrical model and any other nuclear structure mo
which is able to calculateE2 transition matrix elements
Here we have chosen the algebraical IBM. Our ansatz
alternative to the intrinsic state formalism by Ginocchio a
Kirson @18# which was used much earlier to link the IBM
Hamiltonian to the geometrical Bohr Hamiltonian.

We note that the effective values of the shape parame
beff and geff , in general, do not exactly coincide with th
minima of a corresponding energy surface for the grou
state in the deformation parameter plane. However, the sh
invariants can easily be used to compare the predictions f
different nuclear models in a geometrically transparent w

In principle, the shape invariants can also be measu
directly from extensive nuclear structure data, providing
direct test of nuclear structure models. Much more intrigu
is the common case when only a few key observables, s
as E2 branching ratios from low-lying 01 states and 21

states, are known experimentally and when a phenome
logical nuclear structure model, such as the IBM, can be u
to extrapolate the data to a complete set ofE2 transition
matrix elements.

To summarize, we have presented analytic expression
moments up to sixth order of the quadrupole operator in
ground state and we have given definitions for the low
shape invariants up toK6 . The shape invariants were calcu
lated analytically in the dynamical symmetry limits of th
IBM-1. Formulas were given to derive effective deformatio
parameters and their fluctuations from shape invariants,
1-4
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thus from IBM-1 calculations. A study, using the ECQ
Hamiltonian ~22!, of the behavior of the shape invarian
over a full range of structures, has been performed for
first time. It shows the smooth but yet widely varying beha
ior of the invariants. Thus they can be used to determine
properties of nuclei by comparing the calculated invariants
experimentally obtained values or to results of fits. Mo
over, approximate values of these invariants can be obta
experimentally simply fromB(E2) values involving just the
21

1 , 22
1 , and 41

1 states, and, forK5 and K6, a B(E2)
branching ratio from the appropriate excited 01 states.
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The invariantK4, as well as the fluctuationsg5K62K3
2,

are of special interest as they are observables that allow
distinguish betweenO(6) and U(5) symmetries which is
rather difficult otherwise@19#. Finally, the values ofsg
change most rapidly for IBM-1 Hamiltonians that sho
shape coexistence.
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ported by the Deutsche Forschungsgemeinschaft under C
tract Nos. Br 799/9-1 and Pi 393/1-1, and by the U.S. DO
under Grant No. DE-FG02-91ER40609.
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