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Quadrupole shape invariants in the interacting boson model
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In terms of the interacting boson mod#&M ), shape invariants for the ground state, formed by quadrupole
moments up to sixth order, are studied in the dynamical symmetry limits and over the whole structural range
of the IBM-1. The results are related to the effective deformation parameters and their fluctuations in the
geometrical model. New signatures that can distinguish vibratorjasaft rotor structures, and one that is
related to shape coexistence, are identified.

PACS numbs(s): 21.10.Ky, 21.60.Ev, 21.60.Fw

Nuclei are often regarded as drops of nuclear matter as ithat they can be effectively used as signatures of structure. It
the geometrical model of Bohr and Mottelson. Having ais the purpose of this Rapid Communication to map out the
view of nuclei as such geometrical objects leads directly tdoehavior of the five essential invariants, as well as several
the importance of possible deformations of nuclei. The mostelated quantities, over the full range of nuclear structure. To
important deformation of nuclei at low energies is the quad-do so we will use the algebraic interacting boson model
rupole deformation to which we restrict our discussion.(IBM)[9,10] to study the behavior of shape invariants in and
These quadrupole deformations are of special interest as th&gtween the dynamical symmetry limits of the IBM. Formu-
enable us to make predictions of nuclear properties, such d8s will be given to transform the shape invariants into effec-
energies orE2 transition strengths of the lowest excited tive deformation parameterg and y. The values derived

states. from the algebraic model will be compared to values in the
Conversely one can deduce information about nuclear deappropriate limiting cases of the geometrical model. _
formations by observing2 transition matrix elements. In-  Shape invariants are formed by the isoscalar electric

deed from a complete set &2 matrix elements one can quadrupole operator, which is also B2 transition operator

calculate model independent moments and higher order mdn the consisten@ formalism (CQF) [11],

ments of the quadrupole operator, tensorially coupled to a BM

scalar—the shape invariants. Shape invariants were first in- T(E2)=Q=eg Q™Y, (1

troduced by Kumafl] and Cline[2] in the discussion of a

large set ofE2 matrix elements obtained in Coulomb exci-

tation experiments. Calculating shape invariants in the geo- BM i~ @)

metrical model shows their connection to the deformation QT =Q¥=s"d+d s+ x[d"d]'", (2)

parametery3 and y used by Bohr and Mottelson or, to be

more precise, to effective valugh; and v, and the fluc-

tuations of those. Recently Joles al.[3,4] have introduced

approximation formulas to the lowest shape invariants in th

framework of the newly develope@-phonon schemgs—8|.

These approximations now make it possible to determine

approximate values of the shape invariants from data by us-

ing only a few absolut&(E2) values. _ \/§5| o/ ©[07)| (4)
This is a substantial result since the advent of radioactive 9= V73 (0:][QQQY s

beams opens up entirely new nuclear regions for study but, at

the same ti_me, the very low intensities of such bgams mean CI4:<01+|(Q' Q)(Q.Q)|ol+>, (5)

that data will be sparse and that nuclear structure information

must be obtained from fewer and simpler-to-obtain data. 35

Therefore, the approximations to tiinvariants are impor- gs= \/;|<01+|(Q‘Q)[QQQ](O)|0D|a (6)

tant. They allow estimates not only of basic deformation pa-

rameters such ag and vy, but also of higher moments, re- 35

lated to the stiffness of the potential prand y and to the _ 99, 4 0 0)|n~+

amount of zero point motion. Such information has seldom if 96= 2 (01 [QRAIIQQQI/07), 0

ever been available from any nuclear data. With these ap-

proximation formulas, they are now accessible from simplewhere a dot denotes a scalar product R Q]®) abbre-

data. viates the tensor couplinfQxX[QxQ]®@]1® . we should
It is therefore important to develop a global view of how note thatq, is equal to the total absolutE2 excitation

these shape invariants behave as a function of structure strength from the ground state

whereQ"®M is the quadrupole operator in the IBM,

and eg is the effective boson charge which is fixed for a
given nucleus. We define moments up to sixth order of the
@uadrupole operator in the ground state as

g2=(071(Q-Q)|07), 3
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TABLE I. Shape invariants and fluctuations, calculated Xor
4= 2 B(EZ:OI—>2,-+). (8) = inthesd-IBM-1 for the dynamical symmetry limits using ana-
) lytical expressions. For comparison, corresponding values of an ef-

g, will be the only quantity in our discussion where an ab-feCtIVe y deformation are given.

solute value, namely the effective boson chagge appears. —
With the momentg3)—(7) we define the relative dimen- N v SU®) o)

sionless shape invariants by normalizing to an appropriate v 30° 0° 30°
power ofqs,, K 0 1 0
Ky z 1 1

an K 0 1 0

Kn:q2”/2 for ne{3,4,5,8. 9 KZ 2 1 L

op ¢ 0 0

The quantitiesK,, do not depend on the effective boson o, 2 0 1

chargeeg. The shape invariants,, differ from earlier defi-
nitions of Joloset al. [3] by normalization constants or ten-
sor coupling. In the present definitions no value may becoments are functions of the fixed deformation paramegeasnd
infinite and all shape invariants are exactly equal to unity iny, |f we assume a nonrigid deformation, we can give expres-
the limit of the rigid symmetric rotor or, in terms of the IBM, sjons for the shape invariants as
the SU(3) limit for any boson numbek.

For the calculation of the shape invariants it is convenient 3ZeRR\?
to write the expressions for the quadrupole moméays(7) Q2=( pp. ) (B)=
as sums ovelE2 matrix elements. Therefore, the tensor
properties of the quadrupole operator are taken into account

3zeR\*
471_ ) Bef’f’ (15)

3
and the unity operatot==;; y|JiM){(J;M| is inserted be- K3=<'3 cos 3y) =C0S 3y, (16)
tween every pair of quadrupole operators. Using the Wigner- (B?)32 e
Eckert theorem and the unitarity relation of Clebsch Gordan
coefficients it is possible to write the momenjs as (BY
K4:<B2>2a (17)
az= 2 (07]Ql2" K2 Qllor), (10
_(Bcos ) .
7 1aloFy o+ Talo o Hlalat gy 9
6= Vg & (OilQI2")¢2 Q12 ]2 IQlor),
(12) « _ (B°cos 3y) 19
CEPIC (19

ds= 2, (07 [1QI12" (2" [Qlloj" (05" Qll2¢ (2, IQll07),
bk 12 explicitly using expectation values @ and cos 3. We can
12 define effective values of the deformation paramei@gs
7 anld vett Dy Egs. (15 and (16). The parameteryes
ds= \/;)2 (0711Ql2" (27 I1Ql12;" (2, (IQllog ) = Yarcco; is given in Table | for the appropriate dynami-
ik cal symmetry limits of the IBM, wher&U(3) corresponds
to a symmetric rigid rotorO(6) to a y-soft nucleus with
x(0¢[IQl127 X2 IRlloy)|, (13  maximal triaxiality andU(5) to a vibrator.
The shape invariants are measures of effective deforma-
. tion parameters and their fluctuations. This is made more
%=15, 3 , (011012 2 Q12 )27 Ilog) T ctmtiont o and coa . duaniies s measures of
X0 IQl127 )2 [Ql12m){ 2, IR0 ), (14) (BY—(p?)?
, . , opg=— 5 —=K;—1, (20
involving reduced matrix elements betweeh &nd 2" states (B%)?
only. In general only the lowest states contribute to the sums

because convergence of tephonon expansion of nuclear 6 03 P
states is fadi8]. Matrix elements between nuclear states that Uy:<'8 cos’ 3y) —(B%c0s 3y) =Kg—K3. (22)
differ by severalQ phonons are usually smd)]. (B%?

In the model of a quadrupole deformed rotor analytical
expressions foE2 matrix elements and thus for shape in-  Using expression§l0)—(14), (20), (21) one can analyti-
variants can be obtained. In the rigid rotor the shape invarieally calculate the shape invariants in the dynamical symme-
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These results enlarge the well-known symmetry triangle for
wave functions of the IBM-1 to a structural ECQF square for
shape invariants and thus for the interpretation of nuclear
shapes. This fact is illustrated in Fig. 1. The use of a similar
rectangular representation of the parameter space has also
been suggested by Bucuresetual. [13]. Known typical ex-
amples for particular points of the ECQF square are, e.g.,
172yp for SU(3), %Pt forO(6), *8Cd forU(5) with =0,

FIG. 1. The ECQF square for transition matrix elements in thegnd 152Ssm for largey and moderate values ¢f(see[14—16

IBM-1. U(5) converges to one single point fir=o.

try limits of the IBM-1. In this paper we will employ the
extended consistei@ formalism(ECQB [12] of the IBM-1,
using the IBM-1 Hamiltonian

Hecorma (1_§)nd_% X-QYY, (22

with QX taken from Eq.(2). This simple Hamiltonian con-
tains three parametera,(,x). While one parametdn) sets

and the discussion belgw

From Eqs.(23), (25), (26), and(28) we note that the nec-
essary extension of the IBM-1 symmetry triangle to the
ECQF square is a finitht effect, because the shape invari-
ants ofU(5) wave functions converge in the linbit— for
any value ofy. Table | shows the values of the shape invari-
ants and their fluctuations in the dynamical symmetry limits
of the IBM-1 for an infinite boson numbéf=c. Only the
guantities given in Eq$23)—(29) depend on the boson num-
ber N.

As we would expect the values of in the symmetry

the absolute energy scale, the wave functions depend only Qfits are 0° and 30°, while the effective triaxiality fluctuates
two structural constants{(y). For a given nucleus the bo- i, the 0(6) and theU(5) limits. In the SU(3) rigid rotor

son numbem is fixed. The ECQF Hamiltonian covers the 545 (6) 4-soft limits the 8 deformation is rigid, while it
three dynamical symmetry limits as indicated in Fig. 1. Weqctuates in theJ (5) vibrator limit.

note that the structural parametgrappearing in the shape
invariants through th&?2 transition operator is fixed in the

SU(3) limit (y=—7/2) and in theO(6) limit (y=0),
while it is unspecified by the Hamiltonian in th&(5) limit.
Therefore, shape invariants in th€5) limit are functions of

the structural parametgr The analytical expressions for the

shape invariants and the fluctuations in tHé5) limit as

functions of the boson numbarand the structural parameter

x are
K3 )= \E)%ﬁlxl, (23

Kt{‘f’):;(l— %) (24)

K= \@%le. (25
Kg(5>:§—;(NN_21) (3X2+N—2+ (S(SI\IN—f;) (26)
0;3(5):; (1— %) (27)

a;’“’):z—; (N,\;l) (3x2+N—2). (28)

For completeness we also gilg as a function of the boson

numberN in the O(6) limit,

1 (N=2)(N=1)(N+5)(N+6)

0(6)_
“ 3 [N(N+4)]?

(29

We have discussed the shape invariants and fluctuations
in the dynamical symmetry limits of the IBM using analyti-
cal expressions. These values provide useful benchmarks for
the geometrical interpretation of IBM ground state wave
functions. However, the dynamical symmetry limits of the
IBM and the corresponding geometrical models are ideal-
ized, analytically solvable limits. More accurate descriptions
of the low energy structure of collective nuclei can usually
be obtained by IBM Hamiltonians outside the dynamical
symmetry limits. To gain insight into the structure of actual
nuclei the quantities of interest have been calculated between
the symmetry limits, using the ECQF HamiltoniézR). The
shape invariants and their fluctuations have been calculated
gridwise over the whole IBM parameter space for=10
bosons as functions of the structural paramefeaad y. All
calculations have been performed by diagonalizing the
Hamiltonian numerically using the computer codeiNnT
[17]. Calculations of the shape invariants have been done by
a FORTRAN code(QINVAR), which evaluates theHINT out-
put.

All quantities behave smoothly and one obtains an im-
pression of how the quantities vary outside of the dynamical
symmetry limits. Figure 2 represents the numerical results of
this work presenting the variation of the most important
quadrupole invariants over all ranges of structure. The be-
havior of the invariantsg,, K5-Kg, between the symmetries
is interesting. Strong variations towards and for deformed
nuclei are typical. The invariai€,, which is related to fluc-
tuations ing via Eq.(20), is one of the few observables that
can distinguishU(5) from O(6). This can be useful in
newly accessible exotic nuclei sind€, can be approxi-

mately obtained from the simple express|&}
At +
~ ! w =KapPr,
10B(E2;2; —07)

Ky (30
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FIG. 2. (a)—(e) Shape invari-
ants g, and K3-Kg. (c) The in-
variant K, also determines the
fluctuation oz=K,—1. (f) The
fluctuation o,. All quantities
shown in (a)—(f) are calculated
gridwise over the ECQF param-
eter space of the IBM foN=10
bosons.
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which involves two observables, easily measured, e.g., by Above, we discussed the numerical calculation of the ex-
Coulomb excitation experiments. The approximatiB) is  act shape invariants within th&d-IBM-1 parameter space,
valid within about 10% for the ECQF square and bosonusing the ECQF Hamiltonia(22). One aspect of this work is
numbersN=5. This was numerically checked for the whole to establish the shape invariants as a convenient link between
ECQF square and for boson numbéts-5,7,10,16. For a the geometrical model and any other nuclear structure model
detailed analysis an experimental valuekgf*" can serve as  which is able to calculatd€2 transition matrix elements.
a benchmark for starting points of numerical IBM calcula- Here we have chosen the algebraical IBM. Our ansatz is
tions, which can be optimized to reproduce the measuregternative to the intrinsic state formalism by Ginocchio and
transition strengths. The actual valuekof can then be de- Kirson [18] which was used much earlier to link the IBM
termined from the complete set of calculateé@ transition  Hamiltonian to the geometrical Bohr Hamiltonian.
matrix elements. We note that the effective values of the shape parameters
For largeN, K¢ and o, are quite different inJ(5) and g . and y.¢, in general, do not exactly coincide with the
O(6) which is evident from Table I. The bottom right panel minima of a corresponding energy surface for the ground
of Fig. 2 showso,, which gives the fluctuations i, grid-  state in the deformation parameter plane. However, the shape
wise over the full structural range. Note, however, that Fig. Znyariants can easily be used to compare the predictions from
is calculated for a finite boson number which lowers thegitferent nuclear models in a geometrically transparent way.
value of K¢ and o, in the U(5) andO(6) limits as seen In principle, the shape invariants can also be measured
from Egs.(25), (28), and(29). In the SU(3) limit o, van-  directly from extensive nuclear structure data, providing a
ishes, which characterizes t&dJ(3) limit as a model for a  direct test of nuclear structure models. Much more intriguing
rigid rotor, also in they degree of freedom. In contrast, non- is the common case when only a few key observables, such
vanishing triaxiality fluctuations occur in thé(5) andO(6)  as E2 branching ratios from low-lying 0 states and 2
limits, indicating that these limits and the whole transitionalstates, are known experimentally and when a phenomeno-
region between them modetsoft nuclei. logical nuclear structure model, such as the IBM, can be used
Finally, we note that all shape invariants, especially,  to extrapolate the data to a complete setE® transition
change strongly betweedU(3)- andU(5)-like values in an  matrix elements.
unusual region of the IBM-1 parameter space, namely for To summarize, we have presented analytic expressions for
moderate values of and y=—\/7/2. Interestingly, this is moments up to sixth order of the quadrupole operator in the
just the region appropriate to the nucleds’Sm (,  ground state and we have given definitions for the lowest
=0.57,x=—7/2) [14,15. The case of**’Sm is currently ~ shape invariants up t§s. The shape invariants were calcu-
under active discussion and it seems that it shows a certailated analytically in the dynamical symmetry limits of the
degree of shape coexistence between spherical and deformEM-1. Formulas were given to derive effective deformation
shapes with large effective triaxialifyL6]. parameters and their fluctuations from shape invariants, and
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thus from IBM-1 calculations. A study, using the ECQF  The invariant,, as well as the fluctuatioor,= K6—K§,
Hamiltonian (22), of the behavior of the shape invariants are of special interest as they are observables that allow to
over a full range of structures, has been performed for thelistinguish betweerD(6) and U(5) symmetries which is
first time. It shows the smooth but yet widely varying behav-rather difficult otherwise[19]. Finally, the values ofo,

ior of the invariants. Thus they can be used to determine thehange most rapidly for IBM-1 Hamiltonians that show
properties of nuclei by comparing the calculated invariants tahape coexistence.

experimentally obtained values or to results of fits. More-  For fruitful discussions the authors thank A. Gelberg, T.
over, approximate values of these invariants can be obtainedtsuka, and N. V. Zamfir. This work has been partially sup-
experimentally simply fronB(E2) values involving just the ported by the Deutsche Forschungsgemeinschaft under Con-
2/, 2;, and 4 states, and, foKs and Kg, a B(E2)  tract Nos. Br 799/9-1 and Pi 393/1-1, and by the U.S. DOE

branching ratio from the appropriate excited 6tates. under Grant No. DE-FG02-91ER40609.
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