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Fixed-t subtracted dispersion relations for Compton scattering off the nucleon

D. Drechsel, M. Gorchtein, B. Pasquini, and M. Vanderhaeghen
Institut für Kernphysik, Johannes Gutenberg Universita¨t, D-55099 Mainz, Germany

~Received 9 April 1999; published 20 December 1999!

Fixed-t subtracted dispersion relations are presented for Compton scattering off the nucleon at energies
Eg<500 MeV, as a formalism to extract the nucleon polarizabilities with a minimum of model dependence.
The subtracted dispersion integrals are mainly saturated bypN intermediate states in thes channel,gN

→pN→gN, andpp intermediate states in thet channel,gg→pp→NN̄. For the subprocessgg→pp, we
construct a unitarized amplitude and find a good description of the available data. We show results for
Compton scattering using the subtracted dispersion relations and display the sensitivity on the scalar polariz-
ability differencea2b and the backward spin polarizabilitygp , which enter directly as fit parameters in the
present formalism. Double polarization observables are shown to have a unique potential for measuring the
spin polarizabilities of the nucleon.

PACS number~s!: 13.60.Fz, 11.55.Fv, 14.20.Dh, 13.40.2f
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I. INTRODUCTION

Compton scattering off the nucleon is determined by
independent helicity amplitudesAi ( i 51, . . . ,6),which are
functions of two variables, e.g., the Lorentz invariant va
ablesn ~related to the lab energy of the incident photon! and
t ~related to the momentum transfer to the target!. In the limit
n→0, the general structure of these amplitudes is gover
by low-energy theorems~LET’s! based on Lorentz invari
ance, gauge invariance, and crossing symmetry. These t
rems require that~I! the leading term in the expansion inn is
determined by the global properties of the nucleon, i.e.,
charge, mass, and anomalous magnetic moment, and~II ! the
internal structure shows up only at relative ordern2 and can
be parametrized in terms of polarizabilities. In this way the
appear six polarizabilities for the nucleon, the familiar ele
tric and magnetic~scalar! polarizabilitiesa and b, respec-
tively, and four spin~vector! polarizabilitiesg1–g4. These
polarizabilities describe the response of the system to an
ternal quasistatic electromagnetic field, and as such they
fundamental structure constants of the composite system

As a consequence of LET’s, the differential cross sect
for n→0 is given by the~model-independent! Thomson
term. In a low-energy expansion, the electric and magn
polarizabilities then appear as interference between
Thomson term and the subleading terms, i.e., as a contr
tion of O(n2) in the differential cross section, anda andb
can, in principle, be separated by studying the angular di
butions. However, it has never been possible to isolate
term and thus to determine the polarizabilities in a mod
independent way. The obvious reason is that, for sufficie
small energies, sayn<40 MeV, the structure effects are ex
tremely small and hence the statistical errors for the pola
abilities large. At larger energies, however, the higher ter
of the expansion,O(n4), become increasingly importan
Therefore, a reliable theoretical estimate of these hig
terms is of the utmost importance. Moreover, at that or
also the spin-dependent polarizabilities come into the ga
which has the further consequence that a full determina
of the six polarizabilities will require an experimental pr
0556-2813/99/61~1!/015204~17!/$15.00 61 0152
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gram with polarized photons and polarized nucleons.
With the advent of high duty-factor electron accelerato

and laser backscattering techniques, new precision data
been obtained in the 1990s@1–4# and more experiments ar
expected in the near future. The presently most accurate
ues for the proton polarizabilities were derived from t
work of MacGibbonet al. @4# whose experiments were pe
formed with tagged photons at 70 MeV<n<100 MeV and
untagged ones at the higher energies, and analyzed in
laboration with L’vov @5# by means of dispersion relation
~in the following denoted by DR’s! at constantt. The ob-
tained results were

a5~12.160.860.5!31024 fm3,

b5~2.170.870.5!31024 fm3. ~1!

The physics of theD(1232) and higher resonances h
been the objective of further recent investigations w
tagged photons at Mainz@6,7# and with laser-backscattere
photons at Brookhaven@8#. Such data were used to give
first prediction for the so-called backward spin polarizabil
of the proton, i.e., the particular combinationgp5g11g2
12g4 entering the Compton spin-flip amplitude atu
5180° @8#,

gp52F27.162.2 ~stat1 syst!
12.8
22.4~model!G

31024 fm4. ~2!

In 1991 Bernardet al. @9# evaluated the one-loop contr
butions to the polarizabilities in the framework of relativist
chiral perturbation theory~ChPT!, with the resulta510•b
512.1,~here and in the following, the scalar polarizabilitie
are given in units of 1024 fm3 and the spin polarizabilities
in units of 1024 fm4). In order to have a systematic chira
power counting, the calculation was then repeated in he
baryon ChPT, the expansion parameter being an exte
momentum or the quark mass. ToO(p4) the result isa
510.562.0 andb53.563.6, the errors being due to fou
counter terms entering to that order, which were estima
©1999 The American Physical Society04-1
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by resonance saturation@10#. One of these counter term
describes the paramagnetic contribution of theD(1232),
which is partly canceled by large diamagnetic contributio
of pion-nucleon loops. In view of the importance of theD
resonance, Hemmert, Holstein, and Kambor@11# proposed to
include theD as a dynamical degree of freedom. This add
a further expansion parameter, the difference of theD and
nucleon masses~‘‘ e expansion’’!. A calculation toO(e3)
yieldeda512.21014.2516.4 andb51.217.210.759.1,
the three separate terms referring to contributions of pi
nucleon loops@identical to the predictions of theO(p3) cal-
culation#, D-pole terms, and pion-D loops @12,13#. These
O(e3) predictions are clearly at variance with the data,
particular a1b525.5 is nearly twice the rather precis
value determined from DR’s~see below!.

The spin polarizabilities have been calculated in both re
tivistic one-loop ChPT@14# and heavy baryon ChPT@13#. In
the latter approach the predictions areg054.622.420.2
10512.0, ~forward spin polarizability! and gp54.612.4
20.2243.55236.7 ~backward spin polarizability!, the four
separate contributions referring toNp loops, D poles,Dp
loops, and the triangle anomaly, in that order. It is obvio
that the anomaly orp0-pole contribution is by far the mos
important one togp , and that it would require surprisingl
large higher order contributions to increasegp to the value
of Ref. @8#. Similar conclusions were reached in the fram
work of DR’s. Using the framework of DR’s att5const of
Ref. @5#, Ref. @15# obtained a value ofgp5234.3, while
L’vov and Nathan@16# worked in the framework of back
ward DR’s and predictedgp5239.562.4.

As we have stated before, the most quantitative anal
of the experimental data has been provided by DR’s. In
way it has been possible to reconstruct the forward non-s
flip amplitude directly from the total photoabsorption cro
section by Baldin’s sum rule@17#, which yields a rather pre
cise value for the sum of the scalar polarizabilities

a1b514.260.5 ~Ref. @18# !

513.6960.14 ~Ref. @19# !. ~3!

Similarly, the forward spin polarizability can be evaluated
an integral over the difference of the absorption cross s
tions in states with helicity 3/2 and 1/2,

g05g12g222g4521.34 ~Ref. @20# !

520.6 ~Ref. @15# !. ~4!

While these predictions rely on pion photoproduction mu
poles, the helicity cross sections have now been directly
termined by scattering photons with circular polarizations
polarized protons@21#.

The analysis of Compton scattering at a finite angle
quires DR’s att5const<0, in a range of values between
~forward scattering! and the largest negative value oft
5tmax, determined by the largest scattering angle at
highest photon energy. As mentioned above, the most q
titative and detailed such analysis has been performed
L’vov and collaborators@5,22# in the framework of unsub-
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tracted DR’s att5const. Unfortunately, not all of the dispe
sion integrals converge, as can be inferred from Re
theory. The reason for the divergence of the integrals is
sentially given by fixed poles in thet channel, notably the
exchange of the neutral pion and of a somewhat fictitio
‘‘ s ’ ’ meson with a mass of about 600 MeV and a lar
width, which models the two-pion continuum with the qua
tum numbersI 5J50. In a more formal view, the dispersio
integral is performed along the real axis in the rang
2nmax<n<1nmax, with nmax'1.5 GeV, and closed by a
semicircle with radiusnmax in the upper half of the complex
n plane. The contribution of the semicircle is then identifi
with the asymptotic contribution described byt-channel
poles. This introduces unknown vertex functions and
mass of thes meson, which have to be fitted from the e
periment. Moreover, the analysis depends appreciably on
choice of nmax, and there are substantial contributions
intermediate states beyond the relatively well-known pio
nucleon continuum. These higher states include multipi
h- and r-meson production,Dp loops, and nonresonan
s-wave background. The physics behind these effects is
tainly worthwhile studying, and there can be no doubt th
within the next years we shall learn more about them
detailed coincidence studies of multipion and heavier me
production, but also directly from a careful analysis
Compton scattering at the higher energies@5#. However, the
quest for the polarizabilities as fundamental structure c
stants should not be burdened by too many open quest
and phenomenological models.

In view of the problems of unsubtracted DR’s, we pr
pose to analyze Compton scattering in the framework ofsub-
tracted DR’s at constantt, with the eventual goal to deter
mine the six polarizabilities with the least possible mod
dependence. A variant of this method was introduced
Akhmedov and Fil’kov @23#, who subtracted at the fixed
value u5M2 of the Mandelstam variableu. We choose to
subtract the six Compton amplitudesAi(n,t) at the valuen
50, i.e., write subtracted DR’s forAi(n,t)2Ai(0,t) at con-
stantt. As we show in the following, these subtracted DR
converge nicely and are quite well saturated essentially
one-pion production. Clearly the price to pay are six n
functionsAi(0,t), which have to be determined by anoth
set of DR’s, atn5const50 and by use of information ob
tained from thet-channel reactiongg→ anything. In order
to reduce the dependence on the higher intermediate stat
the t channel, we subtract again, i.e., write DR’s f
Ai(0,t)2Ai(0,0), the subtraction constantsAi(0,0) being
linear combinations of the six polarizabilities. Since four
these subtraction constants can be calculated from un
tracted DR’s att5const, only two parameters have to b
fixed by a fit to low-energy Compton scattering, the com
nationsa2b andgp describing the backward non-spin-fli
and spin-flip amplitudes, respectively.

In a somewhat similar approach, Holstein and Nath
@24# combineds- and t-channel information to predict the
backward scalar polarizabilitya2b. Using unsubtracted
backward DR’s they obtained, from the integration along
lower boundary of thes-channel region, the result (a2b)s
4-2
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FIXED-t SUBTRACTED DISPERSION RELATIONS FOR . . . PHYSICAL REVIEW C 61 015204
52663, and from thet-channel region a contribution o
(a2b) t'9. The sum of these two contributions,a2b'3
63, is at variance with the presently accepted experime
~global average! value,a2b510.061.560.9 @4#. The dif-
ficulty to predict this observable is again due to the b
convergence of the integrals in both thes- and thet-channel
regions.

In Sec. II we shall give a general introduction to su
tracted DR’s. This technique is then applied to the case
DR’s at t5const (s-channel dispersion integral! and DR’s at
n50 (t-channel dispersion integral! in Secs. III and IV, re-
spectively. Our results are compared to the existing lo
energy Compton data in Sec. V, and our conclusions
drawn in Sec. VI.

II. FIXED- t SUBTRACTED DISPERSION RELATIONS

Assuming invariance under parity, charge conjugati
and time-reversal symmetry, the general amplitude
Compton scattering can be expressed by six indepen
structure functionsAi(n,t), i 51, . . . ,6 @5#. These structure
functions depend on two Lorentz invariant variables, e.gn
and t as defined in the following. Denoting the momenta
the initial state photon and proton byq andp, respectively,
and with corresponding final-state momentaq8 and p8, the
familiar Mandelstam variables are

s5~q1p!2, t5~q2q8!2, u5~q2p8!2, ~5!

with the constraints1t1u52M2. The variablen is defined
by

n5
s2u

4M
5Eg1

t

4M
, ~6!

whereEg is the photon energy in thelab frame andM the
nucleon mass. The Mandelstam plane is shown in Fig. 1,
the boundaries of the physical and spectral regions are
cussed in Appendix A.

The invariant amplitudesAi are free of kinematical singu
larities and constraints, and because of the crossing sym
try they satisfy the relationAi(n,t)5Ai(2n,t). Assuming
further analyticity and an appropriate high-energy behav
the amplitudesAi fulfill unsubtracted DR’s at fixedt,

ReAi~n,t !5Ai
B~n,t !1

2

p
PE

n thr

1`

dn8
n8 Ims Ai~n8,t !

n822n2 , ~7!

where Ai
B are the Born~nucleon pole! contributions as in

Appendix A of Ref.@5#, ImsAi the discontinuities across th
s-channel cuts of the Compton process andn thr5mp1(mp

2

1t/2)/(2M ). However, such unsubtracted DR’s require th
at high energies (n→`) the amplitudes ImsAi(n,t) drop fast
enough so that the integral of Eq.~7! is convergent and the
contribution from the semicircle at infinity can be neglecte
For real Compton scattering, Regge theory predicts the
lowing high-energy behavior forn→` and fixedt @5#:

A1,2;na(t),
01520
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A3,5,6;na(t)22, A4;na(t)23, ~8!

wherea(t)&1 is the Regge trajectory. In particular, we no
that the Regge trajectory with the highest intercept, i
a(0)'1.08, corresponds to soft pomeron exchange. Due
the high-energy behavior of Eq.~8!, the unsubtracted disper
sion integral of Eq.~7! diverges for the amplitudesA1 and
A2. In order to obtain useful results for these two amplitud
L’vov et al. @5# proposed to close the contour of the integ
in Eq. ~7! by a semicircle of finite radiusnmax ~instead of the
usually assumed infinite radius! in the complex plane, i.e.
the real parts ofA1 and A2 are calculated from the decom
position

ReAi~n,t !5Ai
B~n,t !1Ai

int~n,t !1Ai
as~n,t !, ~9!

with Ai
int the s-channel integral from pion thresholdn thr to a

finite upper limit nmax, and an ‘‘asymptotic contribution’’
Ai

as representing the contribution along the finite semicir
of radiusnmax in the complex plane. In the actual calcul
tions, thes-channel integral is typically evaluated up to
maximum photon energyEg5nmax(t)2t/(4M )'1.5 GeV,
for which the imaginary part of the amplitudes can be e
pressed through unitarity by the meson photoproduction
plitudes ~mainly 1p and 2p photoproduction! taken from
experiment. All contributions from higher energies are th
absorbed in the asymptotic term, which is replaced by a fin
number of energy-independent poles in thet channel. In par-

FIG. 1. The Mandelstam plane for Compton scattering. T
physical regions are horizontally hatched, whereas the spectra
gions are vertically hatched.
4-3
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ticular the asymptotic part ofA1 is parametrized by the ex
change of a scalar particle in thet channel, i.e., an effective
‘‘ s meson’’ @5#,

A1
as~n,t !'A1

s~ t !5
FsgggsNN

t2ms
2 , ~10!

wherems is the s mass, andgsNN and Fsgg are the cou-
plings of thes to nucleons and photons, respectively. In
similar way the asymptotic part ofA2 is described by thep0

t-channel pole.
This procedure is relatively safe forA2 because of the

dominance of thep0 pole or triangle anomaly, which is we
established both experimentally and on general ground
the Wess-Zumino-Witten term. However, it introduces
considerable model dependence in the case ofA1. Thoughs
mesons have been repeatedly reported in the past, their p
erties were never clearly established. Therefore, this par
should be interpreted as a parametrization of theI 5J50
part of the two-pion spectrum, which shows up differently
different experiments and hence has been reported with v
ing masses and widths.

It is, therefore, the aim of our present contribution
avoid the convergence problem of unsubtracted DR’s and
phenomenology necessary to determine the asymptotic
tribution. The alternative we shall pursue in the following
to consider DR’s at fixedt that are once subtracted atn50,

ReAi~n,t !5Ai
B~n,t !1@Ai~0,t !2Ai

B~0,t !#

1
2

p
n2PE

n thr

1`

dn8
Ims Ai~n8,t !

n8~n822n2!
. ~11!

These subtracted DR’s should converge for all six invari
amplitudes due to the two additional powers ofn8 in the
denominator, and they are essentially saturated by thepN
intermediate states as will be shown in Sec. III. In oth
words, the lesser known contributions of two and more pio
as well as higher continua are small and may be treated
liably by simple models.

The price to pay for this alternative is the appearance
the subtraction functionsAi(n50,t), which have to be deter
mined at some small~negative! value of t. We do this by
setting up the once-subtracted DR, this time in the variabt,

Ai~0,t !2Ai
B~0,t !5@Ai~0,0!2Ai

B~0,0!#

1@Ai
t pole~0,t !2Ai

t pole~0,0!#

1
t

pE(2mp)2

1`

dt8
Imt Ai~0,t8!

t8~ t82t !

2
t

pE2`

22mp
2

24Mmpdt8
Imt Ai~0,t8!

t8~ t82t !
,

~12!

whereAi
t pole(0,t) represents the contribution of poles in th

t channel, in particular of thep0 pole in the case ofA2,
which is given by
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p0

~0,t !5
Fp0gggpNN

t2mp
2 . ~13!

The couplingFp0gg is determined through thep0→gg de-
cay as

G~p0→gg!5
1

64p
mp0

3 Fp0gg
2 . ~14!

Using G(p0→gg)57.74 eV @25#, one obtains Fp0gg
520.0252 GeV21, the sign being in accordance with th
p0gg coupling in the chiral limit, given by the Wess
Zumino-Witten effective chiral Lagrangian. ThepNN cou-
pling is taken from Ref.@26#: gpNN

2 /4p513.72. This yields
then for the product of the couplings in Eq.~13!:
Fp0gggpNN'20.331 GeV21.

The imaginary part in the integral from 4mp
2 →1` in Eq.

~12! is saturated by the possible intermediate states for
t-channel process~see Fig. 2!, which lead to cuts along the
positive t axis. For values oft below theKK̄ threshold, the
t-channel discontinuity is dominated bypp intermediate
states. The second integral in Eq.~12! extends from2` to
22(mp

2 12Mmp)'20.56 GeV2. The boundary of thesu
spectral region forn50 is given by 24(mp

2 12Mmp)
'21.1 GeV2 ~see Appendix A for a detailed discussion!.
As we are interested in evaluating Eq.~12! for small ~nega-
tive! values oft (utu!uau), the integral from2` to a will be
highly suppressed by the denominator of the subtrac
DR’s, and will be neglected in this work. Consequently, w
shall saturate the subtracted dispersion integrals of Eq.~12!
by the contribution ofpp intermediate states, which turn
out to be a good approximation for smallt. We will show the
convergence of thet-channel dispersion integral in Sec. I
and thus verify the quality of the approximation.

The t dependence of the subtraction functionsAi(0,t) is
now determined, and only the subtraction constantsAi(0,0)
remain to be fixed. We note that the quantities

ai5Ai~0,0!2Ai
B~0,0! ~15!

FIG. 2. t-channel unitarity diagrams for Compton scattering.
4-4
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are directly related to the polarizabilities. For the sp
independent~scalar! polarizabilitiesa and b, one finds the
two combinations

a1b52
1

2p
~a31a6!, ~16!

a2b52
1

2p
a1 , ~17!

related to forward and backward Compton scattering, resp
tively. Furthermore, the forward combinationa1b is related
to the total absorption spectrum through Baldin’s sum r
@17#,

~a1b!N5
1

2p2E
n thr

`

dn8
s~gN→X!

n82 . ~18!

The four spin-dependent~vector! polarizabilitiesg1 to g4 of
Ragusa@27# are defined by

g0[g12g222g45
1

2pM
a4 , ~19!

g13[g112g352
1

4pM
~a51a6!, ~20!

g14[g122g45
1

4pM
~2a41a52a6!, ~21!

gp[g11g212g452
1

2pM
~a21a5!, ~22!

whereg0 andgp are the spin polarizabilities in the forwar
and backward directions, respectively. Since thep0 pole
contributes toA2 only, the combinationsg0 , g13, andg14 of
Eqs. ~19!–~21! are independent of this pole term@15#, and
only the backward spin polarizabilitygp is affected by the
anomaly.

Although all six subtraction constantsa1 to a6 of Eq. ~15!
could be used as fit parameters, we shall restrict the fit to
parametersa1 anda2, or equivalently toa2b andgp . The
subtraction constantsa4 ,a5, and a6 will be calculated
through an unsubtracted sum rule, as derived from Eq.~7!,

a4,5,65
2

pEn thr

1`

dn8
Ims A4,5,6~n8,t50!

n8
. ~23!

The remaining subtraction constanta3, which is related to
a1b through Eq.~16!, will be fixed through Baldin’s sum
rule, Eq. ~18!, using the value obtained in Ref.@19#: a1b
513.69.

III. s-CHANNEL DISPERSION INTEGRAL

In this section we describe the calculation of thes-channel
contributions, which enter the once-subtracted dispersion
tegral of Eq.~11! and in the calculation of subtraction con
stantsa4 ,a5, anda6 through Eq.~23!. The imaginary part of
01520
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e

e
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the Compton amplitude due to thes-channel cuts is deter
mined from the scattering amplitudes of photoproduction
the nucleon by the unitarity relation

2 Ims Tf i5(
X

~2p!4d4~PX2Pi !TX f
† TXi , ~24!

where the sum runs over all possible states that can
formed in the photon-nucleon reaction. Due to the ene
denominator 1/n8(n822n2) in the subtracted dispersion in
tegrals, the most important contribution is from thepN in-
termediate states, while mechanisms involving more pion
heavier mesons in the intermediate states are largely
pressed. In our calculation, we evaluate thepN contribution
using the multipole amplitudes from the analysis of Ha
stein, Drechsel, and Tiator~HDT! @28# at energiesEg
<500 MeV and at the higher energies we take as input
SAID multipoles ~SP98K solution! @29#. The expansion of
ImsAi into this set of multipoles is truncated at a maximu
angular momentumj max5 l 61/257/2, with the exception of
the lower energy range (Eg<400 MeV) where we use
j max53/2. The higher partial waves withj > j max11 are
evaluated analytically in the one-pion exchange~OPE! ap-
proximation. The relevant formulas to implement the calc
lation are reported in Appendix B and C of Ref.@5#.

We note that the pion photoproduction multipoles belo
two-pion threshold were derived in Ref.@28# by use of Wat-
son’s theorem, assuming that the pion photoproduction m
tipoles carry the phases of pion-nucleon scattering.
pointed out by Ref.@30#, unitarity also requires to accoun
for the phases of photon-nucleon scatteringd i

C, which is
O(e2) relative to the strong phase. Moreover, consisten
requires that isospin-breaking effects be included at the le
of the strong scattering amplitudes@30#. Such considerations
are of big potential interest, particularly in the threshold
gion where the pion mass difference becomes important o
studies of the small electric quadrupole strength in theD
region. However, such effects are beyond the scope of
present work, in particular because only the imaginary p
of the amplitudes is needed as input for DR’s. As may
seen from Eq.~11! of Ref. @30#, this imaginary part is a
function of cosdi

C, i.e., corrections are expected to be
orderO(e4).

The multipion intermediate states are approximated by
inelastic decay channels of thepN resonances. In the spiri
of Ref. @5# and the more recent work of Ref.@31#, we assume
that this inelastic contribution follows the helicity structu
of the one-pion photoproduction amplitudes. In this appro
mation, we first calculate the resonant part of the pion p
toproduction multipoles using the Breit-Wigner parametriz
tion of Ref. @32#, which is then scaled by a suitable factor
include the inelastic decays of the resonances. The resu
contribution to ImsAi is

@ Ims Ai #
(N* →ppN,hN, . . . )5R@ Ims Ai #

(N* →pN) ~25!

with the ratioR given by
4-5
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R5
12Bp

Bp

Ḡ inel~W!

Ḡp~W!
. ~26!

In Eq. ~26!, Bp is the single-pion branching ratio of the res
nanceN* and Ḡp(W) is the energy-dependent pionic wid
@32#, while the inelastic widthsḠ inel(W) of the decaysN*
→(ppN,hN,pppN, . . . ) areparametrized as in Ref.@5#
in order to provide the correct threshold behavior for t
resonant two-pion contribution.

The pN channel consistently reproduces the measu
photoabsorption cross section in the energy rangeEg
<500 MeV, while at the higher energies nonreson
mechanisms should be included to fully describe the m
tipion channels. In Ref.@5#, the nonresonant contribution t
the two-pion photoproduction channel was approximat
taken into account by calculating the OPE diagram of
gN→pD reaction. The difference between the data and
model for two-pion photoproduction consisting of resona
mechanisms plus the OPE diagram for the nonreson
mechanism, was then fitted in Ref.@5# and attributed to a
phenomenological, nonresonantgN→pD s-wave correction
term.

A more detailed description of theppN channel is
clearly worthwhile to be undertaken, especially in view
the new two-pion photoproduction data~both unpolarized
and polarized! that will be available from MAMI and JLab
~CLAS! in the near future. However, for the extraction of t
polarizabilities, the strategy followed in this paper is to min
mize sensitivity and hence model uncertainty to these hig
channels.

We show in Fig. 3 that in subtracted DR’s, the sensitiv
to the multipion channels is indeed very small and that s
tracted DR’s are essentially saturated atn '0.4 GeV. The
importance of the multipion channels is even weaker in
case of the amplitudesA3–A6. For unsubtracted DR’s, on th
other hand, the influence of the multipion channels amou
to about 30% of the amplitudeA2.

TABLE I. The contribution of the dispersion integrals to th
spin polarizabilities of the proton. The set HDT(1p) is calculated
from the one-pion photoproduction multipoles of the HDT analy
@28#, while the column HDT gives the total results with the add
tional contribution of inelastic resonance channels. The entrie
the last column are the predictions of the dispersion calculatio
Ref. @22#.

g i2excit. HDT(1p) HDT Ref. @22#

g1
(p) 14.83 14.33 13.1

g2
(p) -0.81 -0.74 -0.8

g3
(p) -0.30 -0.02 10.3

g4
(p) 13.19 12.93 12.7

go
(p) -0.75 -0.80 -1.5

g13
(p) 14.23 14.29 13.7

g14
(p) -1.56 -1.53 -2.3

gp
(p) 110.41 19.46 17.8
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In Tables I and II, we show our predictions for the di
persion integral of the spin polarizabilities of proton and ne
tron, respectively. We list the separate contributions of
pN channel, HDT(1p), and the total result, HDT, which
includes the inelastic resonance channels. The last col
shows the values of the dispersion calculation of Ref.@22#,

FIG. 3. Convergence of thes-channel integral for the amplitude
A1 and A2. Results for the unsubtracted dispersion integral of E
~7! for the one-pion channel~dotted lines! and including the two-
pion channel~dashed-dotted lines! in comparison with the sub-
tracted dispersion integral of Eq.~11! for the one-pion channe
~dashed line! and including the two-pion channel~full lines!, as a
function of the upper integration limitnupper.

s

in
of

TABLE II. The same as in Table I in the case of the neutron

g i2excit. HDT(1p) HDT Ref. @22#

g1
(n) 17.10 17.00 16.3

g2
(n) -0.68 -0.68 -0.9

g3
(n) -1.04 -0.99 -0.7

g4
(n) 13.92 13.88 13.8

go
(n) -0.06 -0.09 -0.4

g13
(n) 15.02 15.02 14.9

g14
(n) -0.74 -0.77 -1.3

gp
(n) 114.27 114.09 113.0
4-6
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which is based on the one-pion multipoles ofSAID-SP97Kand
the model for double-pion production mentioned above. T
small differences between the one-pion multipoles ofSAID-
SP97K and SAID-SP98K at the higher energies are practica
negligible for the spin polarizabilities, while the results a
very sensitive to the differences between the HDT andSAID

analyses. As discussed in Ref.@33#, this fact is mainly due to
a different behavior of theE01 partial wave near threshold
giving rise to substantial effects in the case of the forw
spin polarizability. While the one-pion contributions fro
SAID-SP98K are g0

p521.26 andg0
n520.03, we obtaing0

p

520.75 andg0
n520.06 with the HDT multipoles forEg

<500 MeV.

IV. t-CHANNEL DISPERSION INTEGRAL

We next evaluate thet-channel dispersion integral in Eq
~12! from 4mp

2 to `. The kinematics of thet-channel reac-
tion gg→NN̄ is shown in Fig. 4. The subtracted dispersi
integral is essentially saturated by the imaginary part of
t-channel amplitudegg→NN̄ due topp intermediate states
To calculate this contribution, we have to construct the a
plitudesgg→pp andpp→NN̄.

We start with the isospin and helicity structure of t
gg→pp amplitude, denoted byF. Because of the Bose
symmetry of thegg state, only the even isospin valuesI
50 and 2 are possible. We can express the chargedgg
→p1p2) and neutral (gg→p0p0) amplitudes in terms of
those with good isospin by

F (p1p2)5A2

3
FI 501A1

3
FI 52 ~charged pions!,

F (p0p0)52A1

3
FI 501A2

3
FI 52 ~neutral pions!.

~27!

The reactiongg→pp has two independent helicity ampl
tudesFLg

(t,upp), whereLg[lg82lg , the difference of the

final (lg8) and initial (lg) photon helicities, takes on th
values 0 or 2, depending upon whether the photons have
same (Lg50) or opposite (Lg52) helicities. The gg
→pp helicity amplitudes depend ont, the c.m. energy

FIG. 4. Kinematics in the c.m. system of thet-channel process

gg→NN̄.
01520
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he

squared, and the pion c.m. scattering angleupp . In terms of
the helicity amplitudesFLg

, the gg→pp differential c.m.
cross section is given by

S ds

d cosupp
D

c.m.

5
b

64pt
$uFLg50~ t,upp!u2

1uFLg52~ t,upp!u2% ~28!

with b5A124mp
2 /t being the pion velocity. In Appendix B

we give the partial wave expansion of thegg→pp helicity
amplitudesFLg

I (t,upp) for a state of isospinI, and thus de-

fine the partial wave amplitudesFJLg

I (t) @see Eqs.~B6! and

~B10!#, whereJ can only take on even values.
To construct the helicity amplitudesFLg

for the process
gg→pp, we first evaluate the Born graphs as shown in F
5. These graphs only contribute to the charged channelgg
→p1p2. The Born contributions to the helicity amplitude

FLg

(p1p2) are denoted asBLg
and given by

BLg50~ t,upp!52e2
12b2

12b2 cos2upp

,

FIG. 5. Born diagrams for thegg→p1p2 process.
4-7
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BLg52~ t,upp!52e2
b2 sin2upp

12b2 cos2upp

. ~29!

The partial wave expansion of the Born terms,BJLg
(t), is

discussed in Appendix B@Eq. ~B11!#. As the Born ampli-
tudes are only nonzero for the charged pion channel, the
isospin amplitudes of Eq.~27! are related by

BJLg

I 505A2

3
BJLg

, BJLg

I 525A1

3
BJLg

. ~30!

We now construct the unitarized amplitudesFJLg

I (t),

starting from the Born amplitudesBJLg

I (t) and following the

method outlined in Refs.@34,35#. We first note that the low-
energy theorem requires for each partial wave that

FJLg

I

BJLg

I
→1, as t→0. ~31!

Next, the invariant amplitude for the processgg→pp is
assumed to have Mandelstam analyticity. Each partial w
then has a right-hand cut fromt54mp

2 to 1` and a left-
hand cut fromt52` to 0. Though the Born amplitude i
real for all values oft, its partial waves are complex belo
t50. The partial waves of the full amplitude have no oth
sources of complexity in this region, and so we can wr
DR’s for the difference of the full and the Born amplitude

FJLg

I ~ t !2BJLg

I ~ t !

t~ t24mp
2 !J/2

5
1

pE4mp
2

`

dt8
Im FJLg

I ~ t8!

t8~ t824mp
2 !J/2~ t82t !

~32!

with an additional factor of@ t(t24mp
2 )J/2#21 providing the

right asymptotics for the convergence of the integral. T
next step is to evaluate the imaginary part of the amplitud
Eq. ~32!. To do this, we exploit the unitarity condition

Im FJLg

I ~gg→pp!5(
n

rnFJLg

I* ~gg→n!I J
I ~n→pp!,

~33!
01520
o
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e
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wherern are the appropriate kinematical and isospin fact
for the intermediate channelsn, andI(n→pp) is a hadronic
amplitude. Below the next inelastic threshold, it follow
from unitarity that the phasefJ

I (gg→pp) of each partial wave
FJLg

I is equal to the phasedpp
IJ of the correspondingpp

→pp partial wave,

Im FJLg

I ~gg→pp!5rppFJLg

I* ~gg→pp!I J
I ~pp→pp!

⇓

fJ
I (gg→pp)~ t !5dpp

IJ ~ t !. ~34!

This fact can be incorporated into the Omne`s function, which
is constructed to have the phase of thepp scattering ampli-
tude abovepp threshold, and to be real otherwise,

VJ
I ~ t !5expF t

pE4mp
2

`

dt8
dpp

IJ ~ t8!

t8~ t82t2 i«!
G . ~35!

The functionFJLg

I (VJ
I )21(t) is by construction real above

the pp threshold, but complex below the threshold due
the complexity of the Born partial wavesBJLg

I . Hence, we

can write a dispersion relation for@FJLg

I 2BJLg

I #

3(VJ
I )21(t)/t(t24mp

2 )J/2,

FJLg

I ~ t !5VJ
I ~ t !H BJLg

I ~ t !Re@~VJ
I !21~ t !#

2
t~ t24mp

2 !J/2

p E
4mp

2

`

dt8
BJLg

I ~ t8!Im@~VJ
I !21~ t8!#

t8~ t824mp
2 !J/2~ t82t !

J .

~36!

For t.4mp
2 , this integral is understood to be a princip

value integral, which we implement by subtracting the in
grand at t85t. In this way we obtain a regular integra
which can be performed without numerical problems,
s
ot
FJLg

I ~ t !5VJ
I ~ t !H BJLg

I ~ t !FRe@~VJ
I !21~ t !#1Im@~VJ

I !21~ t !#
1

p
lnS t

4mp
2

21D G
2

t~ t24mp
2 !J/2

p E
4mp

2

` dt8

t8~ t82t !
S BJLg

I ~ t8!Im@~VJ
I !21~ t8!#

~ t824mp
2 !J/2

2
BJLg

I ~ t !Im@~VJ
I !21~ t !#

~ t24mp
2 !J/2 D J . ~37!

In our formalism, thes(J50) andd(J52) waves are unitarized. For thes- andd-wavepp phaseshifts, we use the solution
that were determined in Ref.@36#. For the higher partial waves, the correspondingpp phaseshifts are rather small and n
known with good precision. Therefore, we will approximate all higher partial waves (J>4) by their Born contribution. The
full amplitudes for the charged and neutral channels can then be cast into the forms
4-8
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FLg

(p1p2)~ t,upp!5BLg
~ t,upp!1 (

J50,2
A2J11A~J2Lg!!

~J1Lg!!

3FA2

3
FJLg

I 50~ t !1A1

3
FJLg

I 52~ t !

2BJLg
~ t !GPJ

Lg~cosupp!, ~38!

FLg

(p0p0)~ t,upp!5 (
J50,2

A2J11A~J2Lg!!

~J1Lg!! F2A1

3
FJLg

I 50~ t !

1A2

3
FJLg

I 52~ t !GPJ
Lg~cosupp!. ~39!

These expressions hold to good precision up to theKK̄
threshold ('1 GeV2), because the four-pion intermedia
states couple only weakly and give only small inelasticit
in the pp phaseshifts.

In Figs. 6 and 7, we show our results for the total a
differential gg→p1p2 cross sections and a comparison
the existing data. In the threshold region, the charged p
cross sections are clearly dominated by the Born graph
Fig. 5 because of the vicinity of the pion pole in thet channel
of thegg→p1p2 process. However, the results for the un
tarized calculation show that s-wave rescattering is not n
ligible but leads to a considerable enhancement at ener
just above threshold. Besides the low-energy struct
which is driven by the Born terms, thegg→pp process has
a prominent resonance structure at energies correspondi

FIG. 6. Total cross section for thegg→p1p2 process as func-
tion of the c.m. energy: Born terms~dotted line!, Born amplitude
with unitarized s-wave ~dashed-dotted line!, f 2(1270) resonance
contribution~dashed line!, and total amplitude~full line!.
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excitation of the isoscalarf 2(1270) resonance, with mas
mf 2

5 1275 MeV and widthG f 2
5185.5 MeV@25#. The f 2

resonance shows up in the partial waveFJ52Lg52 as out-
lined in Appendix C. Therefore, the most efficient way
unitarize this particular partial wave is to make a Bre
Wigner ansatz for thef 2 excitation, which is described in
Appendix C. The Breit-Wigner ansatz for thef 2 contribution
to the partial waveFJ52Lg52 depends upon the coupling
f 2pp and f 2gg. The coupling f 2pp is known from the
decay f 2→pp and is taken from Ref.@25#. The coupling
f 2gg is then fitted to thegg→pp cross section at thef 2
resonance position, and is consistent with the value quote
Ref. @25#. The resulting amplitude, consisting of unitarize
s-wave, f 2 excitation and Born terms for all other partia
waves~with J>4) is seen from Figs. 6 and 7 to give a rath
good description of thegg→p1p2 data up to Wpp

.1.8 GeV. Only in the regionWpp'0.7–0.8 GeV, does
our description slightly overestimate the data.

Having constructed thegg→pp amplitudes, we next
need thepp→NN̄ amplitudes in order to estimate the co
tribution of thepp states to thet-channel dispersion integra
for Compton scattering. As we only kepts andd waves for
gg→pp, we will only need thes andd waves (J50,2) for
pp→NN̄. For each partial waveJ, there are two indepen
dent pp→NN̄ helicity amplitudes f 6

J (t), depending on
whether the nucleon and antinucleon have the same@ f 1

J (t)#
or opposite@ f 2

J (t)# helicities. We refer the reader to Appen
dix B @Eqs.~B7! and~B9!# for details. In this work, we take
thes andd waves from the work of Ho¨hler and collaborators
@37#, in which the lowestpp→NN̄ partial wave amplitudes
were constructed from a partial wave solution of pio

FIG. 7. Differential cross section at various c.m. energies for
gg→p1p2 process: Born terms~dotted line!, Born amplitude with
unitarizeds-wave~dashed-dotted line, only shown at the four low
energies!, and total amplitude including thef 2(1270) resonance
contribution~full line!.
4-9
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nucleon scattering, by use of thepp phaseshifts of Ref.@36#,
which we also used to construct thegg→pp amplitudes. In
Ref. @37#, thepp→NN̄ amplitudes are given fort values up
to t'40•mp

2 '0.78 GeV2, which will serve well for our
purpose since the subtractedt-channel dispersion integral
have converged much below this value as shown in the
lowing.

Finally, we can now combine thegg→pp and pp

→NN̄ amplitudes to construct the discontinuities of t
Compton amplitudes across thet-channel cut. In Appendix
B, we show in detail how the Compton invariant amplitud
A1 , . . . ,A6 are expressed by thet-channel (gg→NN̄) helic-
ity amplitudes. Through unitarity we then express the ima
nary parts of theset-channel (gg→NN̄) helicity amplitudes
in terms of thegg→pp andpp→NN̄ amplitudes. We fi-
nally express the discontinuities ImtAi of the invariant am-
plitudesAi ( i 51, . . . ,6) in terms of the correspondinggg

→pp and pp→NN̄ partial wave amplitudes@see Eq.
~B12!#. As we restrict ourselves tos- andd-wave intermedi-
ate states in the actual calculations, we give the express
at n50, includings and d waves only, that are needed fo
the subtractedt-channel dispersion integral of Eq.~12!:

Imt A1~n50,t !2p

52At/42mp
2

t

1

t~M22t/4!
F0Lg50~ t ! f 1

0* ~ t !

2S t/42mp
2

t D 3/2A5

2
F2Lg50~ t ! f 1

2* ~ t !,

ImtA2~n50,t !2p50,

Imt A3~n50,t !2p

52S t/42mp
2

t D 3/2 M2

~M22t/4!

A5

2
F2Lg52~ t !

3HA3

2
f 1

2* ~ t !2M f 2
2* ~ t !J ,

ImtA4~n50,t !2p50,

Imt A5~n50,t !2p

52S t/42mp
2

t D 3/2

MA15

2
F2Lg50~ t ! f 2

2* ~ t !,

Imt A6~n50,t !2p52S t/42mp
2

t D 3/2

M
A5

2
F2Lg52~ t ! f 2

2* ~ t !.

~40!

The reader should note that thes-wavepp intermediate state
only contributes to the amplitudeA1. It is the t dependence
of this I 5J50 pp state in thet channel that is approxi
mated in Ref.@5# and parametrized by as pole. Thed-wave
pp intermediate state gives rise to imaginary parts for
amplitudesA1 ,A3 ,A5, andA6. The amplitudeA2 ~at n50)
01520
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e

corresponds to thet-channel exchange of an object with th
quantum numbers of one pion@e.g., p0 pole in Eq. ~13!#,
therefore two-pion intermediate states do not contribute
A2. The imaginary part ofA4 receives only contributions
from pp intermediate states withJ>4 @see Eq.~B12!# and,
therefore, is zero in our description, as we keep onlys andd
waves.

In Fig. 8 we show the convergence of thet-channel inte-
gral from 4mp

2 to ` in the subtracted DR’s of Eq.~12!. We
do so by calculating the dispersion integral as function of
upper integration limitt upperand by showing the ratio to the
integral for tupper50.78 GeV2. The latter value correspond
to the highestt value for which thepp→NN̄ amplitudes are
given in Ref. @37#. One clearly sees from Fig. 8 that th
unsubtractedt-channel DR shows only a slow convergenc
whereas the subtractedt-channel DR has already reached
final value, within the percent level, at at value as low as 0.4
GeV2. Although the cross sectiongg→pp shows appre-
ciable strength abovet.0.78 GeV2 ~see Fig. 6!, its contri-
bution to the Compton amplitudes is negligibly small due
the subtraction in thet-channel integral. By estimating th
pp→NN̄ d-wave amplitudes in Born approximation, w
checked that the influence of thef 2(1270) resonance on th
Compton observables shown in the following section do
not exceed 1% and usually is even smaller.

V. RESULTS AND DISCUSSION

In this section we shall present our results for Comp
scattering off the nucleon in the dispersion formalism p

FIG. 8. Convergence of thet-channel integral for the amplitude
A1. The results for the unsubtracted~dashed curve! and the sub-
tracted~full curve! t-channel dispersion integrals are shown as fu
tion of the upper integration limittupper. Both results are normalized
to their respective values attupper50.78 GeV2.
4-10
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sented above. The real and imaginary parts of the six Co
ton amplitudes are displayed in Fig. 9. Note that for the r
part, we only show the subtracteds-channel integral of Eq.
~11!. As can be seen from Fig. 9, these amplitudes sh
strong oscillations due to interference effects between dif
ent pion photoproduction multipoles, in particular betwe
threshold pion production (E01) andD excitation (M11).

In Figs. 10 and 11 we show our predictions in the su
tracted dispersion relation formalism and compare them w
the available Compton data on the proton below pion thre
old. These data were used in Ref.@4# to determine the scala
polarizabilitiesa andb through a global fit, with the result
given in Eq.~1!. In the analysis of Ref.@4#, the unsubtracted
dispersion relation formalism was used and the asympt
contributions@Eq. ~9!# to the invariant Compton amplitude
A1 and A2 were parametrized. In particular,A2

as was de-
scribed by thep0 pole, which yields the valuegp.245.
The free parameter entering inA1

as was related toa2b, for
which the fit obtained the valuea2b.10. Keepinga2b
fixed at that value, we demonstrate in Fig. 10 that the se
tivity to gp is not at all negligible, especially at the backwa
angles and the higher energies. We investigate this furthe
Fig. 11, where we show our results for differenta2b and
for a fixed value ofgp5237, which is consistent with the
heavy baryon ChPT prediction@13# and close to the value
obtained in Ref.@16# in a backward dispersion relation fo
malism. For that value ofgp , a better description of the dat
~in particular at the backward angles! seems to be possible b
using a smaller value fora2b than determined in Ref.@4#.

As one moves to energies above the pion threshold,

FIG. 9. Real part~full lines! of the subtracteds-channel integral
@see Eq.~11!# and imaginary part@see Eq.~24!# of the invariant
Compton amplitudesA1 , . . . ,A6 as function of n at fixed t
520.163 GeV2.
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Compton cross section rises rapidly because of the unita
coupling to the much stronger pion photoproduction chann
Therefore this higher energy region is usually conside
less ‘‘pure’’ to extract polarizabilities because the proced
would require a rather precise knowledge of pion photop
duction. With the new pion photoproduction data on the p
ton that have become available in recent years, the en
region above pion threshold could, however, serve as a v
able complement to determine the polarizabilities, provid
one can minimize the model uncertainties in the dispers
formalism. In this work, we use the most recent informati
on the pion photoproduction channel by taking the HDT@28#
multipoles at energiesEg<500 MeV and theSAID-SP98Kso-
lution @29# at higher energies. As previously shown in Fig.
the subtracted DR’s are practically saturated by the one-p
channel for photon energies through theD region, which
minimizes the uncertainty due to the modeling of the tw
pion photoproduction channels. In Fig. 12 we display t
high sensitivity of the Compton cross sections togp in the
lower part of theD region. This sensitivity was exploited in
Ref. @8# within the context of an unsubtracted dispersion
lation formalism, and the valuegp.227 was extracted
from the LEGS 97 data, which are shown at the higher
ergies in Fig. 12. Our results for the subtracted DR are
tained in Fig. 12 at fixeda2b510 and forgp varying be-
tween227 and237. We found that the lower energy da
(Eg5149 and 182 MeV! can be easily described by th
larger values ofgp if a2b decreases to some value belo

FIG. 10. Differential cross section for Compton scattering
the proton as function of the lab photon energyEg and at four
scattering anglesQg

lab. The Born result is given by the dotted line
The total results of the subtracted dispersion formalism are sh
for fixed a2b510 and different values ofgp : gp5237 ~dashed-
dotted lines!, gp5232 ~full lines!, and gp5227 ~dashed lines!.
The data are from Ref.@1# ~circles!, Ref.@2# ~triangles!, and Ref.@4#
~squares!.
4-11
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10. On the other hand, the higher energy data (Eg5230 and
287 MeV! seem to favor a smaller value ofgp , and so far
we confirm the conclusion reached in Ref.@8#. However, as
will be discussed next, our calculation underpredicts the d
around 90o in the lower part of theD region.

In the same energy region, there also exist both differ
tial cross section and photon asymmetry data obtaine
LEGS @38# by use of the laser backscattering technique.
Fig. 13 we compare our predictions with these data. O
finds that at both energies (Eg5265 MeV and 323 MeV!
our subtracted dispersion relation formalism provides a g
description of the asymmetries, which however show lit
sensitivity ongp , but underestimates the absolute values
the cross sections. In particular close to the resonance p
tion at Eg5323 MeV, our formalism does not allow us t
find any reasonable combination ofgp anda2b to describe
these data. Therefore, within the present formalism, the
tual data situation at these higher energies does not see
be very conclusive with regard to a value ofgp . Since the
uncertainties due to two-pion and heavier meson photo
duction in thes channel as well ast-channel contributions
above thef 2(1270) resonance are expected to be less t
1%, the only possibility to describe theEg5323 MeV
LEGS data would be an increase of the HDTM11 multipole
by about 2.5%~see the dotted lines in Fig. 13!. Indeed such
a fit was obtained by Tonnisonet al. @8# by use of the LEGS
pion photoproduction multipole set of Ref.@38# for photon
energies between 200 and 350 MeV and theSAID-SM95 mul-
tipole solution@29# outside this interval. However, the mor

FIG. 11. Differential cross section for Compton scattering
the proton as a function of the lab photon energyEg and at four
scattering anglesQg

lab as in Fig. 10. The Born result is given by th
dotted lines. The total results of the subtracted dispersion forma
are presented for fixedgp5237 and different values ofa2b: a
2b510 ~dashed-dotted lines!, a2b58 ~full lines!, and a2b
56 ~dashed lines!. Data as described in Fig. 10.
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recentSAID-SP98K solution is in very close agreement wit
the HDT multipoles in theD region and hence the predictio
with the newSAID solution also falls below the data at 32
MeV in Fig. 13.

In view of the somewhat inconclusive situation, we a
waiting for the new MAMI data for Compton scattering o
the proton in and above theD-resonance region and over
wide angular range that have been reported prelimina
@39#. These new data will be most valuable to check t
consistency of pion photoproduction and Compton scatte
results obtained at LEGS, MAMI, and other facilities.

Finally, in Fig. 14 we show that double polarization o
servables will be ultimately necessary to extract the spin
larizabilities. In particular, an experiment with a circular
polarized photon and a polarized proton target displays q
some sensitivity on the backward spin polarizabilitygp , es-
pecially at energies between threshold and theD resonance.
Such a measurement would be more selective togp due to a
much lesser sensitivity toa2b ~see Fig. 14!.

VI. CONCLUSIONS

We have presented a formalism of fixed-t subtracted dis-
persion relations for Compton scattering off the nucleon
energies Eg<500 MeV. Due to the subtraction, th
s-channel dispersion integrals converge very fast and
practically saturated by thepN intermediate states, which
are described by the recent pion photoproduction multipo
of HDT. In this way we minimize the uncertainties from

f

m

FIG. 12. Differential cross section for Compton scattering
the proton as function of the c.m. photon angle for different
energies. The total results of the subtracted DR formalism are
sented for fixeda2b510 and different values ofgp : gp5237
~dashed-dotted lines!, gp5232 ~full lines!, andgp5227 ~dashed
lines!. The data are from Ref.@3# ~solid circles!, Refs.@6,7# ~open
circles!, and Ref.@8# ~squares!.
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multipion and heavier meson intermediate states.
To calculate the dependence of the subtraction functi

on momentum transfert, we include the experimental infor
mation on thet-channel process throughpp intermediate
states asgg→pp→NN̄. We construct a unitarized ampl
tude for thegg→pp subprocess and find a good descripti
of the available data. This information is then combined w
thepp→NN̄ amplitudes determined from dispersion theo
by analytical continuation ofpN scattering. In this way, we
also avoid the uncertainties in Compton scattering associ
with the two-pion continuum in thet channel, which is usu-
ally modeled through the exchange of a somewhat fictiti
s meson. Altogether we estimate that the uncertainties in
s- and t-channel integrals, due to unknown high-energy co
tributions, should be less than 1%. As a consequence
formalism provides a direct cross check between Comp
scattering and one-pion photoproduction. In particular, it w
become possible to study the consistency between the Co
ton scattering and pion photoproduction data sets at LE
and MAMI. At present, the existing pion photoproductio
data unfortunately differ by about 10% in theD region. We
repeat that in Compton scattering near theD resonance, the
leadingM11 multipole of pion photoproduction will enter to
the fourth power, and thus has to be known very precisel
order to describe the cross section over the full angu
range.

Since the polarizabilities enter as subtraction consta
the subtracted dispersion relation formalism can be use
extract the nucleon polarizabilities from the data with a mi

FIG. 13. Photon asymmetries~upper panels! and differential
cross sections~lower panels! for Compton scattering off the proto
in the D resonance region. The total results of the subtracted
formalism are shown for fixeda2b510 and different values o
gp : gp5237 ~dashed-dotted lines!, gp5232 ~full lines!, and
gp5227 ~dashed lines!. We also show the result fora2b510
and gp5232 when increasing the HDTM11 multipole by 2.5%
~dotted lines!. The data are from LEGS@38#.
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mum of model dependence. However, the existing data
not sufficient to determinea2b andgp independently, es-
pecially because of the mentioned normalization problem
garding theM11 multipole. This situation could improve
with the analysis of new Compton data, both below pi
threshold and in theD region, in particular if the normaliza
tion problem can be resolved.

A full study of the spin~or vector! polarizabilities will,
however, require double polarization experiments. As
have shown, the scattering of polarized photons on polari
protons is very sensitive togp , in particular in the backward
hemisphere and at energies between threshold and
D-resonance region. In addition, possible normalizat
problems can be avoided by measuring appropriate asym
tries. Therefore, such polarization experiments hold
promise of disentangling scalar and vector polarizabilities
the nucleon and to quantify the nucleon-spin response in
external electromagnetic field.
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APPENDIX A: THE MANDELSTAM PLANE—PHYSICAL
AND SPECTRAL REGIONS FOR

COMPTON SCATTERING

The kinematics of Compton scattering,g(q)N(p)
→g(q8)N(p8), can be described in terms of the famili
Mandelstam variables,

s5~q1p!2, t5~q2q8!2, u5~q2p8!2 ~A1!

with the constraint

s1t1u52M2. ~A2!

Furthermore, we introduce the coordinaten perpendicular to
t,

n5
s2u

4M
5Eg1

t

4M
. ~A3!

In these equations,Eg is the photon energy in the lab fram
andM is the nucleon mass.

The boundaries of the physical regions in thes, u, and t
channels are determined by the zeros of the Kibble func
F,

F~s,t,u!5t~us2M4!50. ~A4!

The three physical regions are shown by the horizont
hatched areas in Fig. 1. The vertically hatched areas are
regions of nonvanishing double spectral functions. Th
spectral regions are those regions in the Mandelstam p
where two of the three variabless,t, and u take on values
that correspond with a physical~i.e., on-shell! intermediate
state. The boundaries of these regions follow from unitar
As discussed in Ref.@37#, it is sufficient to consider two-
particle intermediate states in all channels. Since th
boundaries depend only on the masses, they are the sam
all six amplitudesAi . In the Mandelstam diagram of Fig.
they are symmetric to the linen50 due to crossing symme
try. For the spectral functionrsu we obtain the boundary

bI~u,s!5bI~s,u!

5@s2~M1mp!2#@u2~M1mp!2#

2~mp
2 12Mmp!2

50, ~A5!

and for the spectral functionrst we find

bII ~s,t !5~ t24mp
2 !@s2~M1mp!2#@s2~M2mp!2#

28mp
4 ~s1M22mp

2 /2!50. ~A6!

The boundary of the spectral functionrut follows from
crossing symmetry. We also note that these boundaries
obtained for the isovector photon, which couples to ap1p2
01520
n
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he
e
ne

.
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pair. The corresponding boundaries for the isoscalar pho
are inside the boundaries of Eqs.~A5! and ~A6!, because it
couples to three pions.

APPENDIX B: t-CHANNEL HELICITY AMPLITUDES FOR
COMPTON SCATTERING

The t-channel helicity amplitudes for Compton scatteri
can be expressed in the orthogonal basis of Prange@40# in
terms of the invariantsT1 , . . . ,T6. In the c.m. system of the
t-channel processgg→NN̄ ~see Fig. 4 for the kinematics!,
we choose the photon momentumqW t ~helicity lg8) to point in

the z direction and the nucleon momentumpW 85pW t in the xz
plane at an angleu t with respect to thez axis ~the anti-
nucleon momentum is then given by2pW 52pW t). In this
frame, thet-channel helicity amplitudes can be cast into t
form

T
lNlN̄ ,l

g8lg

t
~n,t !5~21!1/22lN̄ū~pW t ,lN!

3H 2
1

2
lg8lg~T11uqW tug3T2!

2
1

2
~T31uqW tug3T4!2

1

2
~lg81lg!g5T5

2
1

2
~lg82lg!g5uqW tug3T6J

3v~2pW t ,l N̄!, ~B1!

which behave under parity transformation as

T
lNlN̄ ,l

g8lg

t
~n,t !5~21!LN2LgT

2lN2lN̄ ,2l
g82lg

t
~n,t !,

~B2!

with the helicity differencesLg and LN given by Lg5lg8
2lg ~with Lg50 or 2! and LN5lN2l N̄ ~with LN50 or
1!, respectively.

However, the invariant amplitudesTi( i 51, . . . ,6) of
Prange have kinematical constraints and behave differe
under s↔u crossing. WhileT1 , T3 , T5, and T6 are even
functions of n, T2 and T4 are odd functions~note thatn
→2n is equivalent tos↔u). Therefore, L’vov@5# used a
new set of invariant amplitudesAi( i 51, . . . ,6),which are
all even functions ofn and are at the same time free
kinematical singularities. The relation between the amp
tudesTi and Ai can be found in Appendix A of Ref.@5#,
together with the definition of a similar set of amplitudes d
to Bardeen and Tung@41#. We express the invariant ampl
tudesAi(n,t) ( i 51, . . . ,6) interms of thet-channel helicity
amplitudesT

lNlN̄ ,l
g8lg

t
(n,t) of Eq. ~B1!, for which we have

found the expressions
4-14
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A15
1

tAt24M2H @T1/2 1/2,11
t 1T1/2 1/2,2121

t #

22n
At

Asu2M4
T1/221/2,11

t J ,

A25
1

tAt
H 2@T1/2 1/2,11

t 2T1/2 1/2,2121
t #

2
2nAt24M2

Asu2M4
T1/221/2,11

t J ,

A35
M2

su2M4

1

At24M2H 2T1/2 1/2,121
t

1
Asu2M4

nAt
@T1/221/2,121

t 1T1/221/2,211
t #J ,

A45
M2

su2M4

1

Asu2M4
H M @2T1/221/2,121

t 1T1/221/2,211
t #

1
AtAt24M2

4n
@T1/221/2,121

t 1T1/221/2,211
t #J ,

A55
At24M2

4nAtAsu2M4
$22T1/221/2,11

t %,

A65
At24M2

4nAtAsu2M4
$@T1/221/2,121

t 1T1/221/2,211
t #%.

~B3!

In the subtracted DR’s of Eq.~12!, the t-channel integral
runs along the linen50. Therefore, we have to determin
the imaginary parts ImtAi(n50,t) of the invariant ampli-
tudes of Eq.~B3!. We start by decomposing of thet-channel
helicity amplitudes forgg→NN̄ into a partial wave series,

T
lNlN̄ ,l

g8lg

t
~n,t !5(

J

2J11

2
T

lNlN̄ ,l
g8lg

J
~ t !dLNLg

J ~u t!,

~B4!

wheredLNLg

J are Wignerd functions andu t is the scattering

angle in thet channel, which is related to the invariantsn and
t by cosut54Mn/AtAt24M2. It is obvious from this equa-
tion thatn50 corresponds to 90o scattering for thet-channel
process. As explained in Sec. IV, we calculate the imagin
parts of thet-channel helicity amplitudesT

lNlN̄ ,l
g8lg

t
(n,t)

through the unitarity equation by insertingpp intermediate
states, which should give the dominant contribution bel
KK̄ threshold,
01520
ry

2 ImTgg→NN̄5
1

~4p!2

upW pu
At

E dVp@Tgg→pp#@Tpp→NN̄#* .

~B5!

Combining the partial wave expansion forgg→pp ,

TLg

gg→pp~ t,upp!5 (
J even

2J11

2
TLg

J(gg→pp)~ t !

3A~J2Lg!!

~J1Lg!!
PJ

Lg~cosupp!, ~B6!

and the partial wave expansion forpp→NN̄,

TLN

pp→NN̄~ t,Q!5(
J

2J11

2
TLN

J(pp→NN̄)~ t !

3A~J2LN!!

~J1LN!!
PJ

LN~cosQ!. ~B7!

We can now construct the imaginary parts of the Comp
t-channel partial waves,

2 ImT
lNlN̄ ,l

g8lg

J(gg→NN̄)
~ t !5

1

~8p!

pp

At
@TLg

J(gg→pp)~ t !#

3@TLN

J(pp→NN̄)~ t !#* . ~B8!

The partial wave amplitudesTLN

J(pp→NN̄) of Eq. ~B7! are re-

lated to the amplitudesf 6
J (t) of Frazer and Fulco@42# by the

relations

TLN50
J(pp→NN̄)~ t !5

16p

pN
~pNpp!J

• f 1
J ~ t !,

TLN51
J(pp→NN̄)~ t !58p

At

pN
~pNpp!J

• f 2
J ~ t !, ~B9!

with pN and pp the c.m. momenta of nucleon and pion, r
spectively, (pN5At/42M2 andpp5At/42mp

2 ). For the re-
action gg→pp, we will use the partial wave amplitude
FJLg

(t), which are related to those of Eq.~B6! by

TLg

J(gg→pp)~ t !5
2

A2J11
FJLg

~ t !. ~B10!

Denoting the Born partial wave amplitudes forgg
→p1p2 by BJLg

(t), the lowest Born partial waves (s andd

waves! are

B00~ t !52e2
12b2

2b
lnS 11b

12b D ,

B20~ t !52e2
A5

4

12b2

b2 H 32b2

b
lnS 11b

12b D26J ,
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B22~ t !52e2
A15

4A2
H ~12b2!2

b3 lnS 11b

12b
D 1

10

3
2

2

b2J
~B11!

with b5pp /(At/2) the pion velocity.
Inserting the partial-wave expansion of Eq.~B4! into Eq.

~B3!, we can finally express the 2p t-channel contributions
ImtAi(n50,t)2p by the partial wave amplitudes for the rea
tions gg→pp andpp→NN̄,

Imt A1~n50,t !2p

5
pp

At

1

tpN
2 (

J50,2,4, . . .
~pppN!JA2J11FJLg50~ t ! f 1

J* ~ t !

3F ~21!J/2
~J21!!!

J!! G ,
ImtA2~n50,t !2p50,

Imt A3~n50,t !2p

5
pp

At

M2

tpN
4 (

J52,4, . . .
~pppN!JA2J11FJLg52~ t !

3F ~21!(J22)/2A ~J11!J

~J21!~J12!

~J21!!!

J!!
G

3H f 1
J* ~ t !2 f 2

J* ~ t !MF ~J12!~J21!22

AJ~J11!
G J ,

Imt A4~n50,t !2p

52
pp

At

M3

tpN
4 (

J54, . . .
~pppN!JA2J11FJLg52~ t ! f 2

J* ~ t !

3
~21!(J22)/22~J22!~J13!

A~J12!~J21!

~J21!!!

J!!
,

Imt A5~n50,t !2p

52
pp

At

M

tpN
2 (

J52,4, . . .
~pppN!JA2J11FJLg50~ t ! f 2

J* ~ t !

3F ~21!(J22)/2

AJ~J11!

~J11!!!

~J22!!! G ,

Imt A6~n50,t !2p

52
pp

At

M

tpN
2 (

J52,4, . . .
~pppN!JA2J11FJLg52~ t ! f 2

J* ~ t !

3F ~21!(J22)/2@~J12!~J21!22#

A~J12!~J21!

~J21!!!

J!! G .

~B12!
01520
We note that thes-wave (J50) component of the 2p inter-
mediate states contributes only toA1. The amplitudeA2,
corresponding to the exchange of pseudoscalar me
~dominantlyp0) in the t channel, gets no contribution from
2p states, because the 2p system cannot couple to th
nucleon through a pseudoscalar operator. Furthermore,
found that only waves withJ>4 contribute to the amplitude
A4. In our calculations we saturate thet-channel dispersion
integral withs(J50) andd(J52) waves, for which the ex-
pressions of Eq.~B12! reduce to those given in Eq.~40!.

APPENDIX C: f 2-MESON CONTRIBUTION TO THE
gg˜pp PROCESS

A spin-2 particle is described in terms of a symmetric a
traceless field tensor, with five independent components,
isfying the Klein-Gordon equation. Therefore, a state
spin-2 is characterized by a symmetric and traceless po
ization tensor«mn(p,L) (L522,21,0,1,2). For details, we
refer to Ref.@43#. We will apply here this spin-2 formalism
to describe thes-channel exchange of thef 2 meson in the
processgg→pp.

The coupling of the~isoscalar! f 2(1270) meson~with mo-
mentump and massmf 2

) to a pion pair~with momentapp
m ,

pp8
m and Cartesian isospin indicesa,b) is described by the

amplitude

M~ f 2→pp!5
gf 2pp

mf 2

dabpp8
mpp

n «mn~p,L!, ~C1!

where the coupling constantgf 2pp is determined from the

f 2→pp decay width

G~ f 2→pp!5
1

40p
gf 2pp

2 ~pp!5

mf 2

4
, ~C2!

wherepp5Amf 2

2 /42mp
2 is the pion three momentum in th

f 2 rest frame. Using the partial widthG( f 2→pp)
50.846G0 and the totalf 2 width G05185 MeV @25#, Eq.
~C2! yields for the coupling:gf 2pp. 23.64.

The Lorentz structure of the vertexf 2→gg is given by

M~ f 2→gg!

52 i2e2
gf 2gg

mf 2

F md~q,lg!F d
n~q8,lg8 !«mn~p,L!,

~C3!

where F ab is the electromagnetic field tensor. Using th
vertex of Eq.~C3!, the f 2→gg decay width is calculated a

G~ f 2→gg!5
e4

80p
gf 2gg

2 mf 2
. ~C4!

Using the partial widthG( f 2→gg)51.3231025G0 @25#,
Eq. ~C4! determines the value of the coupling consta
gf 2gg. 0.239.

Using these couplings and vertices, we can now calcu
the invariant amplitude for the processgg→ f 2→pp:
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M~gg→ f 2→pp!52 i2e2
gf 2gg

mf 2

F md~q,lg!

3F d
n~q8,lg8 !Dmnab~p,L!

gf 2pp

mf 2

pp
app8

b,

~C5!

where Dmnab(p,L) represents the spin-2 propagator~see
Ref. @43#!. To determine thegg→pp helicity amplitudes
FLg

defined in Eq.~28!, we shall evaluate Eq.~C5! in the

c.m. system. For the case of equal photon helicities (Lg

50) the f 2 does not contribute, i.e.,FLg50
( f 2)

50. For the case
ib
.

C

.

C

n,

ett

ys

. B

. D

cl

ev

uc
y

01520
of opposite photon helicities (Lg52) we find after some
algebra

FLg52
( f 2)

52
e2

8

gf 2gggf 2pp

mf 2

2

t2b2

t2mf 2

2 1 imf 2
G0

sin2upp ,

~C6!

whereupp is the pion c.m. angle andb the pion velocity as
in Eq. ~28!. It is immediately seen from Eq.~C6! that thef 2
meson contribution to thed wave is given by

FJ52Lg52
( f 2)

~ t !52A 2

15

e2

4

gf 2gggf 2pp

mf 2

2

t2b2

t2mf 2

2 1 imf 2
G0

.

~C7!
.
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