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Fixed-t subtracted dispersion relations for Compton scattering off the nucleon
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Fixedt subtracted dispersion relations are presented for Compton scattering off the nucleon at energies
E,=<500 MeV, as a formalism to extract the nucleon polarizabilities with a minimum of model dependence.
The subtracted dispersion integrals are mainly saturatedridyintermediate states in the channel,yN
—mN—yN, and 77 intermediate states in thtechannel,yy— 77— NN. For the subprocesgy— mm, we
construct a unitarized amplitude and find a good description of the available data. We show results for
Compton scattering using the subtracted dispersion relations and display the sensitivity on the scalar polariz-
ability differencea— B and the backward spin polarizability,., which enter directly as fit parameters in the
present formalism. Double polarization observables are shown to have a unique potential for measuring the
spin polarizabilities of the nucleon.

PACS numbgs): 13.60.Fz, 11.55.Fv, 14.20.Dh, 13.40.

I. INTRODUCTION gram with polarized photons and polarized nucleons.
With the advent of high duty-factor electron accelerators
Compton scattering off the nucleon is determined by sixand laser backscattering techniques, new precision data have
independent helicity amplitudes; (i=1, ... ,6),which are  been obtained in the 1990%-4] and more experiments are
functions of two variables, e.g., the Lorentz invariant vari-e€xpected in the near future. The presently most accurate val-
ablesy (related to the lab energy of the incident photand ~ U€S for the p_roton polarizabilities were _derived from the
t (related to the momentum transfer to the targetthe limit ~ Work of MacGibbonet al. [4] whose experiments were per-

»—0, the general structure of these amplitudes is governefP'med with tagged photons at 70 Me\w<100 MeV and

by low-energy theoreméLET’s) based on Lorentz invari- UNt@gged ones at the higher energies, and analyzed in col-
ance, gauge invariance, and crossing symmetry. These theI{Ji_boratlon with L'vov[5] by means of dispersion relations
I

rems require thafl) the leading term in the expansionitis n the following denoted by DR)sat constant. The ob-
; . . .. tained results were
determined by the global properties of the nucleon, i.e., its

charge, mass, and anomalous magnetic moment(lBnithe @=(12.1+0.8+0.5x 10" * fm?,

internal structure shows up only at relative oraérand can

be parametrized in terms of polarizabilities. In this way there B=(2.1¥0.8%0.5 X 10 % fm?3, 1)
appear six polarizabilities for the nucleon, the familiar elec-

tric and magnetidscalay polarizabilitiesa and 8, respec- The physics of thed(1232) and higher resonances has

been the objective of further recent investigations with
polarizabilities describe the response of the system to an eXx299ed photons at Mairi®,7] and with laser-backscattered

ternal quasistatic electromagnetic field, and as such they a@otons at BrookhavefB]. Such data were used to give a

fundamental structure constants of the composite system. g;s,th%redrgttéonn fiog thtehgo'::tlilgj;raglgvr;%riﬁasﬂpm EolarJlrzabmty
As a consequence of LET's, the differential cross section p , L.e., p on.=vy1+7v

for v—0 is given by the(model-independenptThomson +2y, entering the Compton spin-flip amplitude &t

term. In a low-energy expansion, the electric and magnetic: 180° [8],

tively, and four spin(vecton polarizabilities y;—7y,. These

polarizabilities then appear as interference between the +28

Thomson term and the subleading terms, i.e., as a contribu- Va=—|27.1=2.2 (stat+ sys) 5 4(modeb

tion of O(»?) in the differential cross section, ardand 3 '

can, in principle, be separated by studying the angular distri- X104 fm?. 2

butions. However, it has never been possible to isolate this

term and thus to determine the polarizabilities in a model- In 1991 Bernarcet al. [9] evaluated the one-loop contri-
independent way. The obvious reason is that, for sufficientljoutions to the polarizabilities in the framework of relativistic
small energies, say<40 MeV, the structure effects are ex- chiral perturbation theoryChPT), with the resulta=10- 8
tremely small and hence the statistical errors for the polariz=12.1, (here and in the following, the scalar polarizabilities
abilities large. At larger energies, however, the higher termsre given in units of 10* fm® and the spin polarizabilities

of the expansionO(»*), become increasingly important. in units of 104 fm?). In order to have a systematic chiral
Therefore, a reliable theoretical estimate of these highepower counting, the calculation was then repeated in heavy
terms is of the utmost importance. Moreover, at that ordebaryon ChPT, the expansion parameter being an external
also the spin-dependent polarizabilities come into the gamenomentum or the quark mass. T@(p?) the result isa
which has the further consequence that a full determinatior 10.5+2.0 and8=3.5x3.6, the errors being due to four
of the six polarizabilities will require an experimental pro- counter terms entering to that order, which were estimated
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by resonance saturatigii0]. One of these counter terms tracted DR'’s at=const. Unfortunately, not all of the disper-
describes the paramagnetic contribution of thé1232), sjon integrals converge, as can be inferred from Regge
which is partly canceled by large diamagnetic contributionsheory. The reason for the divergence of the integrals is es-
of pion-nucleon loops. In view of the importance of the  gentially given by fixed poles in thechannel, notably the

resonance, Hemmert, Holstein, and Kamkidi] proposed to  gyxchange of the neutral pion and of a somewhat fictitious
include theA as a dynamical degree of freedom. This added: . meson with a mass of about 600 MeV and a large

2&122? nﬁ;gzgzion epx?or :;2?;?]{)' tgec(jiir(f:irlgggﬁ ?;gh(ar;)d width, which models the two-pion continuum with the quan-
€ . € . . .
. a a - - tum numberd =J=0. In a more formal view, the dispersion
yieldeda=12.2+0+4.2=16.4 andﬂ_1'2+7:2+ .0'7_9'1’ .__integral is performed along the real axis in the range
the three separate terms referring to contributions of pion- <p<ip with v,.~1.5 GeV, and closed by a
= max:» max - )

nucleon loopgidentical to the predictions of th®(p®) cal- Ymax= . . !
culatior], A-pole terms, and piod- loops [12,13. These semicircle with radiug,, in the upper half of the complex

O(€%) predictions are clearly at variance with the data, in” plane. The contribution of the semicircle is then identified

particular a+ 8=25.5 is nearly twice the rather precise with the asymptotic contribution described kychannel
value determined from DR'&see below: poles. This introduces unknown vertex functions and the

The spin polarizabilities have been calculated in both relamass of thes meson, which have to be fitted from the ex-
tivistic one-loop ChPT14] and heavy baryon ChPL3]. In periment. Moreover, the analysis depends appreciably on the
the latter approach the predictions ayg=4.6—2.4—0.2 choice of v, and there are substantial contributions of
+0=+2.0, (forward spin polarizability and y,=4.6+2.4  intermediate states beyond the relatively well-known pion-
—0.2—43.5= —36.7 (backward spin polarizabilily the four ~ nucleon continuum. These higher states include multipion,
separate contributions referring M loops, A poles,A7w  7- and p-meson productionA 7 loops, and nonresonant
loops, and the triangle anomaly, in that order. It is obviouss-wave background. The physics behind these effects is cer-
that the anomaly otr°-pole contribution is by far the most tainly worthwhile studying, and there can be no doubt that
important one toy.., and that it would require surprisingly within the next years we shall learn more about them by
large higher order contributions to increage to the value detailed coincidence studies of multipion and heavier meson
of Ref.[8]. Similar conclusions were reached in the frame-production, but also directly from a careful analysis of
work of DR’s. Using the framework of DR’s dt=const of Compton scattering at the higher enerdigs However, the
Ref. [5], Ref.[15] obtained a value ofy,=—34.3, while quest for the polarizabilities as fundamental structure con-
L'vov and Nathan[16] worked in the framework of back- stants should not be burdened by too many open questions
ward DR’s and predicteq = —39.5+2.4. and phenomenological models.

As we have stated before, the most quantitative analysis In view of the problems of unsubtracted DR’s, we pro-
of the experimental data has been provided by DR'’s. In thiose to analyze Compton scattering in the frameworkubf
way it has been possible to reconstruct the forward non-spirfracted DR’s at constant, with the eventual goal to deter-
flip amplitude directly from the total photoabsorption crossmine the six polarizabilities with the least possible model
section by Baldin’s sum rulgl7], which yields a rather pre- dependence. A variant of this method was introduced by

cise value for the sum of the scalar polarizabilities Akhmedov and Fil'kov[23], who subtracted at the fixed
value u=M? of the Mandelstam variabla. We choose to
a+B=14.2+0.5 (Ref. [18]) subtract the six Compton amplitudés(»,t) at the valuer

=0, i.e., write subtracted DR’s fok;(v,t) —A;(0;t) at con-
stantt. As we show in the following, these subtracted DR’s
converge nicely and are quite well saturated essentially by
one-pion production. Clearly the price to pay are six new
C’f—unctionsAi(O,t), which have to be determined by another
set of DR’s, atv=const=0 and by use of information ob-

—13.69-0.14 (Ref. [19]). (3)

Similarly, the forward spin polarizability can be evaluated by
an integral over the difference of the absorption cross se
tions in states with helicity 3/2 and 1/2,

e __ tained from thet-channel reactionyy— anything. In order
= 2y,=-1.34 (Ref. [2

YomYimYameva 34 (Ref. [20]) to reduce the dependence on the higher intermediate states in
=—0.6 (Ref. [15]). (4)  the t channel, we subtract again, i.e., write DR’s for

A;(0t)—A;(0,0), the subtraction constant(0,0) being

While these predictions rely on pion photoproduction multi-linear combinations of the six polarizabilities. Since four of
poles, the helicity cross sections have now been directly dethese subtraction constants can be calculated from unsub-
termined by scattering photons with circular polarizations ortracted DR’s att=const, only two parameters have to be
polarized proton$21]. fixed by a fit to low-energy Compton scattering, the combi-

The analysis of Compton scattering at a finite angle renationsa— 8 and vy, describing the backward non-spin-flip
quires DR’s att=const<0, in a range of values between 0 and spin-flip amplitudes, respectively.
(forward scattering and the largest negative value of In a somewhat similar approach, Holstein and Nathan
=tma determined by the largest scattering angle at th¢24] combineds- and t-channel information to predict the
highest photon energy. As mentioned above, the most quamackward scalar polarizabilityx— 8. Using unsubtracted
titative and detailed such analysis has been performed blgackward DR'’s they obtained, from the integration along the
L'vov and collaboratorg5,22] in the framework of unsub- lower boundary of thes-channel region, the resulta(- 8)°
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=—6=3, and from thet-channel region a contribution of & 20
(a—B)'=9. The sum of these two contributions;~ 8~ 3 E/
+3, is at variance with the presently accepted experimente
(global averagevalue, «— 3=10.0+1.5+0.9[4]. The dif- u=(M+m,’
ficulty to predict this observable is again due to the bac 150\
convergence of the integrals in both tieand thet-channel
regions.

In Sec. Il we shall give a general introduction to sub-
tracted DR’s. This technique is then applied to the cases ¢ 100
DR’s att=const g-channel dispersion integyadnd DR’s at
v=0 (t-channel dispersion integjah Secs. Il and IV, re-
spectively. Our results are compared to the existing low:
energy Compton data in Sec. V, and our conclusions ar 30t
drawn in Sec. VI.

t chapnel

‘
‘
= ’
t=4m 2','

Il. FIXED- t SUBTRACTED DISPERSION RELATIONS

Assuming invariance under parity, charge conjugation
and time-reversal symmetry, the general amplitude fol
Compton scattering can be expressed by six independe
structure functiong\;(v,t), i=1,...,6[5]. These structure 50
functions depend on two Lorentz invariant variables, e:g.,
andt as defined in the following. Denoting the momenta of
the initial state photon and proton lyand p, respectively,
and with corresponding final-state momentaandp’, the . ‘
familiar Mandelstam variables are -6 “

u channel hY 3 s channel
\
/

6
v (m,)
— 2 —(—n')2 —(—n')2

s=(q+p)% t=(a=a")% u=(g=p")% ) FIG. 1. The Mandelstam plane for Compton scattering. The
physical regions are horizontally hatched, whereas the spectral re-

with the constrains+t+u=2M?2. The variablev is defined : .
gions are vertically hatched.

by

s—u t Agse~v* W72 Ay~ o3, (8)
v=—=E + —, (6) _ _ _
4M 4M wherea(t)<1 is the Regge trajectory. In particular, we note
) _ that the Regge trajectory with the highest intercept, i.e.,
whereE, is the photon energy in thiab frame andM the ,9)~1 08, corresponds to soft pomeron exchange. Due to

nucleon mass. The Mandelgtam plane is shown i.n Fig. 1, ang]e high-energy behavior of E8), the unsubtracted disper-
the boundaries of the physical and spectral regions are dig;q, integral of Eq(7) diverges for the amplitude&; and

cussed in Appendix A. _ o A,. In order to obtain useful results for these two amplitudes,

_The Invariant am_plltudeAi are free of klnematlce_ll SINGU- | »yoy et al.[5] proposed to close the contour of the integral
larities and ponstralnts, a}nd because of the crossing symme; Eq. (7) by a semicircle of finite radius,,, (instead of the
try they satisfy the relatios;(v,t) =A(—»,t). Assuming ,qaily assumed infinite radiun the complex plane, i.e.,
further analyticity and an appropriate high-energy behaviory, o (ag parts of\; andA, are calculated from the decom-
the amplitudeg\; fulfill unsubtracted DR’s at fixed, position

ReAi(V,t):AiB(V,t)"r‘EP +ocd1/,%i(vz,t), (7) REAi(V,t):AiB(V,t)+A=nt( V,t)"‘AiaS( V,t), (9)
" with A}”‘ the s-channel integral from pion thresholg,, to a
where A? are the Born(nucleon polg contributions as in finite upper limit vy, and an “asymptotic contribution”
Appendix A of Ref.[5], ImsA; the discontinuities across the A representing the contribution along the finite semicircle
s-channel cuts of the Compton process apg=m,+(m>  of radius v, in the complex plane. In the actual calcula-
+1/2)/(2M). However, such unsubtracted DR’s require thattions, thes-channel integral is typically evaluated up to a
at high energiesy— o) the amplitudes IgA;(v,t) drop fast ~maximum photon energi = vma(t) —t/(4M)~1.5 GeV,
enough so that the integral of E€}) is convergent and the for which the imaginary part of the amplitudes can be ex-
contribution from the semicircle at infinity can be neglected.pressed through unitarity by the meson photoproduction am-

For real Compton scattering, Regge theory predicts the folplitudes (mainly 17 and 27 photoproduction taken from

lowing high-energy behavior for— o and fixedt [5]: experiment. All contributions from higher energies are then
absorbed in the asymptotic term, which is replaced by a finite
Ay~ o0, number of energy-independent poles in tlehannel. In par-
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ticular the asymptotic part of\; is parametrized by the ex- R
change of a scalar patrticle in thehannel, i.e., an effective 5 Im _ . /
“ o meson”[5],

o g n
AT~ A (=20 (10 Q<
o + o A
wherem, is the ¢ mass, andy,yy andF,,, are the cou- i
plings of theo to nucleons and photons, respectively. In a K

similar way the asymptotic part @, is described by ther® TN
t-channel pole. +

This procedure is relatively safe f@, because of the e .
dominance of ther® pole or triangle anomaly, which is well
established both experimentally and on general grounds a
the Wess-Zumino-Witten term. However, it introduces a
considerable model dependence in the cask,ofThougho FIG. 2. t-channel unitarity diagrams for Compton scattering.

mesons have been repeatedly reported in the past, their prop-
erties were never clearly established. Therefore, this particle

+

should be interpreted as a parametrization of lthel=0 (Ot)— % (13
part of the two-pion spectrum, which shows up differently in ™

different experiments and hence has been reported with vary-

ing masses and widths. The couplingF o, is determined through the®— yy de-

It is, therefore, the aim of our present contribution tocay as
avoid the convergence problem of unsubtracted DR’s and the
phenomenology necessary to determine the asymptotic con- 1
tribution. The alternative we shall pursue in the following is NG —>7y)——m OF 20 (14
to consider DR’s at fixed that are once subtracted a0,

ReA(v,t)=A2(v,t)+[A;(0t) —AP(01)] Using I'(7°—yy)=7.74 eV [25], one obtainsF o,
) e IMA ) =—0 0252 GeV!, the sign being in accordance W|th the
+_V2Pf dy'— I2V (1) 0 Yy cou_pllng in the chlral limit, glv_en by the Wess-
vy V' (V) Zumino-Witten effective chiral Lagrangian. TheNN cou-
pling is taken from Ref[26]: g2, /47 =13.72. This yields
These subtracted DR’s should converge for all six invarianthen for the product of the couplings in Eq13):
amplitudes due to the two additional powers 8f in the F 70579 mNN~ —0.331 GeVvl.
denominator, and they are essentially saturated byntNe The imaginary part in the integral fronnz@-_[_>+oo in Eq.
intermediate states as will be shown in Sec. lll. In other(12) is saturated by the possible intermediate states for the
words, the lesser known contributions of two and more piong-channel procesésee Fig. 2, which lead to cuts along the

as well as higher continua are small and may be treated rFﬁ)'ositivet axis. For values of below theKK threshold, the

liably by simple models. o -channel discontinuity is dominated by intermediate
The price to pay for this alternative is the appearance o tates. The second integral in E42) extends from—s to

the subtraction functiong;(»=0,t), which have to be deter- —2(m2+2Mm._)~—0.56 Ge\. The boundary of theu

mined at some smallnegative value oft. We do this by spectral region forv=0 is given by —4(m127+2me)

tti th -subtracted DR, this ti in th igbl . . . :
Seting Up the once-sublracte Is ime in the varigble ~—1.1 GeV (see Appendix A for a detailed discussjon

A/(01)—AB(0)=[A;(0,0)— AB(0,0)] As we are interested in evaluating Ed2) for small (nega-
tive) values oft (|t|<|al), the integral from— to a will be
+[ Al PO 1) — Al P0,0)] highly suppressed by the denominator of the subtracted
, DR’s, and will be neglected in this work. Consequently, we
" l A ,Im¢Ai(Ot") shall saturate the subtracted dispersion integrals of( E).
) (2m )2 t'(t'—1) by the contribution ofr intermediate states, which turns
out to be a good approximation for smalWe will show the
ot —2m§7—4|v|mﬁd M Ai(Ot) convergence of thé-channel dispersion integral in Sec. IV
T)—w t'(t'—t) ’ and thus verify the quality of the approximation.

The t dependence of the subtraction functiohg0,t) is
now determined, and only the subtraction const#@n{®,0)
remain to be fixed. We note that the quantities

(12)
whereA! P%0t) represents the contribution of poles in the
t channel, in particular of ther® pole in the case of\,, 5
which is given by a;=A;(0,00-A7(0,0) (15
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are directly related to the polarizabilities. For the spin-the Compton amplitude due to tleechannel cuts is deter-
independentscalaj polarizabilitiesa and 8, one finds the mined from the scattering amplitudes of photoproduction on

two combinations the nucleon by the unitarity relation
+B=——(az+
ath=5p (8t a0, (19 2mTy=3 2 s (PP ThTx, (29
B 1
“_B__Zal’ (17 \where the sum runs over all possible states that can be

formed in the photon-nucleon reaction. Due to the energy
related to forward and backward Compton scattering, respeaenominator ¥’ (v'?— »?) in the subtracted dispersion in-
tively. Furthermore, the forward combinationt 8 is related  tegrals, the most important contribution is from th&\ in-
to the total absorption spectrum through Baldin’s sum ruletermediate states, while mechanisms involving more pions or

[17], heavier mesons in the intermediate states are largely sup-
pressed. In our calculation, we evaluate & contribution
(CH‘B)N:iz ” dv,‘T(VN_)X)_ (18) using the multipole amplitudes from the analysis of Han-
27 ) vy, v'2 stein, Drechsel, and Tiato(HDT) [28] at energiesE,

<500 MeV and at the higher energies we take as input the
The four spin-dependeitvecton polarizabilitiesy; to y4 of  saip multipoles (sposk solution [29]. The expansion of
Ragusd 27] are defined by ImgA; into this set of multipoles is truncated at a maximum
angular momentun,,,,= | = 1/2=7/2, with the exception of

1
Vo= V1— Yo—2Va==——ay, (190  the lower energy rangeE(,<400 MeV) where we use
ot TR S 2 am e imax=23/2. The higher partial waves with=].,+1 are
1 evalgateq analytically in the one-pion.exchar(gPE) ap-
— _ n proximation. The re_levant formulas to implement the calcu-
Y15= Y1+ 275= ~ gy (85 F @), @0 Jation are reported in Appendix B and C of RES].

We note that the pion photoproduction multipoles below
two-pion threshold were derived in R¢28] by use of Wat-
Y14= Y17 274~ gy (28t a5~ ag), (2 son's theorem, assuming that the pion photoproduction mul-
tipoles carry the phases of pion-nucleon scattering. As
1 pointed out by Ref[30], unitarity also requires to account
Ya=71t Y2+ 274= — 5 (8pt @), (220 for the phases of photon-nucleon scatteriéfy, which is
O(e?) relative to the strong phase. Moreover, consistency
wherey, andy,, are the spin polarizabilities in the forward requires that isospin-breaking effects be included at the level
and backward directions, respectively. Since th& pole  of the strong scattering amplitudg30]. Such considerations
contributes toA, only, the combinations,, y;3, andy;,of  are of big potential interest, particularly in the threshold re-
Egs. (19—(21) are independent of this pole terfi5], and  gion where the pion mass difference becomes important or in
only the backward spin polarizability,, is affected by the ~studies of the small electric quadrupole strength in she
anomaly. region. However, such effects are beyond the scope of our
Although all six subtraction constaras to ag of Eq. (15  present work, in particular because only the imaginary part
could be used as fit parameters, we shall restrict the fit to thef the amplitudes is needed as input for DR’s. As may be
parameters, anda,, or equivalently toa— 8 andy,.. The  seen from Eq.(11) of Ref. [30], this imaginary part is a
subtraction constantsy,,as, and ag will be calculated function of Coséf:, i.e., corrections are expected to be of
through an unsubtracted sum rule, as derived from(Bg. ~ orderO(e*).
The multipion intermediate states are approximated by the
2 (= ImgAys (v, 1=0) inelastic decay channels of theN resonances. In the spirit
456~ - dv v ' 23 of Ref.[5] and the more recent work of R¢B1], we assume
that this inelastic contribution follows the helicity structure
The remaining subtraction constaay, which is related to of the one-pion photoproduction amplitudes. In this approxi-
a+ B through Eq.(16), will be fixed through Baldin’s sum mation, we first calculate the resonant part of the pion pho-

rule, Eq.(18), using the value obtained in Rdfl9]: «+B  toproduction multipoles using the Breit-Wigner parametriza-
=13.69. tion of Ref.[32], which is then scaled by a suitable factor to
include the inelastic decays of the resonances. The resulting

IIl. s-CHANNEL DISPERSION INTEGRAL contribution to ImA; is

In this section we describe the calculation of ghehannel
contributions, which enter the once-subtracted dispersion in-
tegral of Eq.(11) and in the calculation of subtraction con-
stantsa,,as, andag through Eq.(23). The imaginary part of with the ratioR given by

[lmsAi](N*ﬂﬂ'wN,nN,...)z R[ImsAi](N*ﬁfrrN) (25)
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_ 1B, Tina(W) - Y+p = ¥+P (O = 180°, E, = 250 MeV)
Br oW

nanceN* andFW(W) is the energy-dependent pionic width

[32], while the inelastic widthd™ ;,o(W) of the decaydN*
— (7N, yN, 777N, ...) areparametrized as in Ref5] i
in order to provide the correct threshold behavior for the L75 -
resonant two-pion contribution.

The 7N channel consistently reproduces the measurec
photoabsorption cross section in the energy rargg
<500 MeV, while at t_he higher energies nonresonant 04 06 o081 12 14
mechanisms should be included to fully describe the mul-
tipion channels. In Refl5], the nonresonant contribution to upper
the two-pion photoproduction channel was approximately -
taken into account by calculating the OPE diagram of the®
yN— A reaction. The difference between the data and the
model for two-pion photoproduction consisting of resonant
mechanisms plus the OPE diagram for the nonresonan
mechanism, was then fitted in R¢6] and attributed to a
phenomenological, nonresonayltl— A s-wave correction I
term. qb

A more detailed description of thermN channel is o 2T
clearly worthwhile to be undertaken, especially in view of - _.:‘.;_:_1‘. ..................
the new two-pion photoproduction dataoth unpolarized .
and polarizeg that will be available from MAMI and JLab ol
(CLAS) in the near future. However, for the extraction of the 04 0.6 0.8 1 12 14
polarizabilities, the strategy followed in this paper is to mini- v (GeV)
mize sensitivity and hence model uncertainty to these higher e
channels. FIG. 3. Convergence of trechannel integral for the amplitudes

We show in Fig. 3 that in subtracted DR's, the sensitivity A; and A,. Results for the unsubtracted dispersion integral of Eq.
to the multipion channels is indeed very small and that sub¢7) for the one-pion channdHotted line$ and including the two-
tracted DR’s are essentially saturatedvat=0.4 GeV. The pion channel(dashed-dotted lingsin comparison with the sub-
importance of the multipion channels is even weaker in tharacted dispersion integral of Eqll) for the one-pion channel
case of the amplitudes;—Ag. For unsubtracted DR’s, on the (dashed lingand including the two-pion channéull lines), as a
other hand, the influence of the multipion channels amounténction of the upper integration limitpe-
to about 30% of the amplituda,.

>
[
In Eq. (26), B is the single-pion branching ratio of the reso- 8
<
&

v =0.207 GeV
t= -0.163 GeV?’

15 b

v = 0207 GeV
t= -0.163 GeV?

Re(A,) ( GeV

.....

In Tables | and II, we show our predictions for the dis-
TABLE 1. The contribution of the dispersion integrals to the P€rsion integral of the spin polarizabilities of proton and neu-
spin polarizabilities of the proton. The set HDTF¢) is calculated ~ tron, respectively. We list the separate contributions of the
from the one-pion photoproduction multipoles of the HDT analysis7N channel, HDT(%r), and the total result, HDT, which
[28], while the column HDT gives the total results with the addi- includes the inelastic resonance channels. The last column
tional contribution of inelastic resonance channels. The entries ishows the values of the dispersion calculation of R22|,
the last column are the predictions of the dispersion calculation of

Ref.[22]. TABLE Il. The same as in Table I in the case of the neutron.
vi— excit. HDT(1w) HDT Ref.[22] v;— excit. HDT(1m) HDT Ref. [22]
P +4.83 +4.33 +3.1 W +7.10 +7.00 +6.3
‘)’(2p) -0.81 -0.74 -0.8 —y(zn) -0.68 -0.68 -0.9
¥P) -0.30 -0.02 +0.3 Y -1.04 -0.99 -0.7
¥{P +3.19 +2.93 +2.7 ¥ +3.92 +3.88 +3.8
5P -0.75 -0.80 -15 »{ -0.06 -0.09 -0.4
ey +4.23 +4.29 +37 Y +5.02 +5.02 +4.9
) -1.56 -1.53 2.3 D -0.74 -0.77 -1.3
) +10.41 +9.46 +7.8 W +14.27 +14.09 +13.0
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FIG. 4. Kinematics in the c.m. system of thehannel process /\/\E/\/\ B
vy—NN. v i n

the model for double-pion production mentioned above. The
small differences between the one-pion multipolessb-
SP97K and SAID-SP9sK at the higher energies are practically
negligible for the spin polarizabilities, while the results are
very sensitive to the differences between the HDT an
analyses. As discussed in RE83], this fact is mainly due to

a different behavior of th&,, partial wave near threshold,
giving rise to substantial effects in the case of the forward
spin polarizability. While the one-pion contributions from
SAID-SP98K are yf=—1.26 andyg= —0.03, we obtainy}
=—0.75 andyy=—0.06 with the HDT multipoles foiE,
<500 MeV.

which is based on the one-pion multipolessaip-sp97kand V7

IV. t-CHANNEL DISPERSION INTEGRAL

We next evaluate thechannel dispersion integral in Eq.
(12) from 4n_1§, to . The kinematics of thé-channel reac-
tion yy— NN is shown in Fig. 4. The subtracted dispersion . .
integral is essentially saturated by the imaginary part of théduared, and the pion c.m. scattering angje . In terms of
t-channel amplitude/y— NN due tom intermediate states. e helicity amplitudes=, , the yy— mm differential c.m.
To calculate this contribution, we have to construct the amcross section is given by
plitudesyy— 7 and mm— NN.

We start with the isospin and helicity structure of the do B
yy— o amplitude, denoted by. Because of the Bose ( ) =64 {IFA —o(t,0,,)|

. . art Y
symmetry of theyy state, only the even isospin values cm.
=0 fnq 2 are possible. Weoca(l)n express the_ charged ( +Fy _o(t,6..)[2 (28)
—ar ) and neutral §y— 7 7°) amplitudes in terms of Y
those with good isospin by

FIG. 5. Born diagrams for thgy— 7" 7~ process.

dcosé,.,

with 8= \/1—4m277/t being the pion velocity. In Appendix B,

. 2 1 we give the partial wave expansion of the— 77 helicity
Fmm)= \[§FI=O+ \@Fl:z (charged piong amplitudesF!, (t,6,.,) for a state of isospim, and thus de-
fine the partiayl wave amplitude's'JAy(t) [see Eqs(B6) and
00 1 2 (B10)], whereJ can only take on even values.
Fmm)=— \[§F'_0+ \/;F'_2 (neutral pions. To construct the helicity amplitudes, for the process

(27) vy— i, we first evaluate the Born grapyhs as shown in Fig.
5. These graphs only contribute to the charged chapnel

The reactionyy— m has two independent helicity ampli- —a" 7. The Born contributions to the helicity amplitudes
(m

tudesF, (t,6,,), whereA ,=\)—\,, the difference of the  F\) ") are denoted aB,  and given by
final ()\’y) and initial (\,) photon helicities, takes on the

values 0 or 2, depending upon whether the photons have the 1- 2
same (A,=0) or opposite {,=2) helicities. The yy By —o(t,0,,)=2€ 5 ,
— a7 helicity amplitudes depend on the c.m. energy 7 1-B%cos0,,
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B2 sir6 wherep, are the appropriate kinematical and isospin factors
B,y —»(t,0,,)=2€° NNt (29  for the intermediate channets andZ(n— =) is a hadronic
7 1-B%c0S0,, amplitude. Below the next inelastic threshold, it follows

from unitarity that the phase'””~ ™™ of each partial wave
F'JAY is equal to the phasé'’_ of the correspondingr

ar partial wave,

The partial wave expansion of the Born terrﬁﬁy\y(t), is

discussed in Appendix BEq. (B11)]. As the Born ampli-
tudes are only nonzero for the charged pion channel, the two~

isospin amplitudes of E|27) are related by | | |
IMF;, (yy—7m)=pFi\ (yy—7m)Iy(mwm—mm)
Y Y

1—o_ /2 1—2_ [1
BJA,/: §BJA7a BJAy: §BJA,/- (30) U

We now construct the unitarized amplitudd,%Ay(t), ST (1) =8 (1), (34)
starting from the Born amplitud@'JA (t) and following the

method outlined in Ref§34,35. We first note that the low- This fact can be incorporated into the Orarfenction, which
energy theorem requires for each partial wave that is constructed to have the phase of the scattering ampli-
tude aboverw threshold, and to be real otherwise,

o 5IJ t’
QIJ(t)IeX;{if dt'L)

mJam2  t'(t'—t—ig)

Fia
— —1, ast—0. (31)
BJAV

. (35

Next, the invariant amplitude for the procesy— wm is
assumed to have Mandelstam analyticity. Each partial wavgpe functionF!, (Q})~(t) is by construction real above

: 2
then has a right-hand cut from=4m;, to += and a left- . threshold, but complex below the threshold due to

hand cut fromt=—c to 0. Though the Born amplitude is . .
) . the complexity of the Born patrtial Wavﬁ'JA . Hence, we
real for all values ot, its partial waves are complex below y

t=0. The partial waves of the full amplitude have no othercan write a dispersion relation for[F!]Ay_ BSAy]
sources of complexity in this region, and so we can writex (Q}) ~1(t)/t(t—4m?2)%2,
DR’s for the difference of the full and the Born amplitudes,

| | | ’
Far, (0780 1 [ ar mFaa, () Fhy (D=0} By, (DRE(QY) (V)]
t(t—4m2)’2  mlamZ ot (t —4m2) V3t —t)

32 t(t—am2)?2 = Bhy (1)Im{(Q})7X(t)]
with an additional factor oft(t—4m?2)¥?]~* providing the - = Lmzdt 't —am2) 2t —t) |
right asymptotics for the convergence of the integral. The i i
next step is to evaluate the imaginary part of the amplitude in (36)

Eg. (32). To do this, we exploit the unitarity condition
For t>4mfr, this integral is understood to be a principal
ImE! _ El* mZ'(n value integral, WhiCh- we implement l?y subtracting. the inte-
m yy—am) ; pF o (yy—=mIyn— ), grand att’=t. In this way we obtain a regular integral,
(33)  which can be performed without numerical problems,

Iy—1 Iy—1 1 t
RL(Q) HOT+Im{(Qy) " O] In| -5 -1

ko

F'JAy<t>=95<t>{ By (D)

t(t—4mi)3’zf°° dt’ (B'JM(t')lm[(Qs)-l(t')] B'JAya)Im[(ﬂ'J)-l(t)])] .

w am? t/(t' 1) (' —4m?2)”? (t—4m2)>2

In our formalism, thes(J=0) andd(J=2) waves are unitarized. For tlseandd-wave == phaseshifts, we use the solutions
that were determined in Ref36]. For the higher partial waves, the corresponding phaseshifts are rather small and not
known with good precision. Therefore, we will approximate all higher partial wayesA{ by their Born contribution. The
full amplitudes for the charged and neutral channels can then be cast into the forms
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FIG. 6. Total cross section for they— 7+ 7~ process as func-
tion of the c.m. energy: Born termslotted ling, Born amplitude

with unitarized sswave (dashed-dotted line f,(1270) resonance
contribution(dashed ling and total amplitudéfull line).

. [(3—A)!
(m" ) — (—7
F 7 (6000 BAy(t,HW)—i-J;O’Z V23+1 SEEW]

2 1
\@th‘j(m \@thjm

X
=B, (1) [P} 7(c0S0,.,), (39)
(770710) — (J_A7)| -_ \ﬁ 1=0
Fi7(t,0,,) J;O,Z V23+1 Aol Vi
+ \EF'_Z(t) P*¥(cosd,..) (39
3 JAy J Tl

These expressions hold to good precision up toKihe
threshold &1 Ge\?), because the four-pion intermediate

states couple only weakly and give only small inelasticitiesne

in the w7 phaseshifts.

In Figs. 6 and 7, we show our results for the total and
differential yy— 7~ cross sections and a comparison to
the existing data. In the threshold region, the charged pior?
cross sections are clearly dominated by the Born graphs o

Fig. 5 because of the vicinity of the pion pole in thehannel

of the yy— " 7w~ process. However, the results for the uni-

PHYSICAL REVIEW C61 015204
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FIG. 7. Differential cross section at various c.m. energies for the
yy— "~ process: Born term@lotted ling, Born amplitude with
unitarizeds-wave (dashed-dotted line, only shown at the four lower
energieg and total amplitude including th&,(1270) resonance
contribution(full line).

excitation of the isoscalaf,(1270) resonance, with mass
m¢, = 1275 MeV and widthl'; =185.5 MeV[25]. Thef,
resonance shows up in the partial Wal\7§==2Ay=2 as out-

lined in Appendix C. Therefore, the most efficient way to
unitarize this particular partial wave is to make a Breit-
Wigner ansatz for thd, excitation, which is described in
Appendix C. The Breit-Wigner ansatz for tifig contribution

to the partial waveF;_,, —, depends upon the couplings
fora and f,yy. The coﬁplingfzqm- is known from the
decayf,— a7 and is taken from Ref{25]. The coupling
foyy is then fitted to theyy— 7 cross section at thé,
resonance position, and is consistent with the value quoted in
Ref. [25]. The resulting amplitude, consisting of unitarized
swave, f, excitation and Born terms for all other partial
waves(with J=4) is seen from Figs. 6 and 7 to give a rather
good description of theyy—a*#~ data up toW, .
=1.8 GeV. Only in the regiolW,_,,.~0.7-0.8 GeV, does
our description slightly overestimate the data.

Having constructed theyy— v amplitudes, we next
ed thewr7m— NN amplitudes in order to estimate the con-
tribution of thew 7 states to thé-channel dispersion integral
for Compton scattering. As we only keptandd waves for
y— aar, we will only need thes andd waves §=0,2) for
7—NN. For each partial wavd, there are two indepen-

ent mr—NN helicity amplitudesf? (t), depending on
whether the nucleon and antinucleon have the seihét)]

tarized calculation show that s-wave rescattering is not neg?" 0Pposite[ - (t)] helicities. We refer the reader to Appen-

ligible but leads to a considerable enhancement at energiéhx B [Egs.(B7) and(B9)] for details. In this work, we take
just above threshold. Besides the low-energy structurethesandd waves from the work of Holer and collaborators

which is driven by the Born terms, they— =& process has [37], in which the lowestr7r— NN partial wave amplitudes
a prominent resonance structure at energies correspondingwere constructed from a partial wave solution of pion-
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nucleon scattering, by use of ther phaseshifts of Ref36],
which we also used to construct the— 7 amplitudes. In
Ref.[37], the wm— NN amplitudes are given fdrvalues up
to t=~40. mi~0.78 GeV#, which will serve well for our
purpose since the subtractéadhannel dispersion integrals

have converged much below this value as shown in the fol-

lowing.
Finally, we can now combine they— w7 and 7

—NN amplitudes to construct the discontinuities of the
Compton amplitudes across tliehannel cut. In Appendix

B, we show in detail how the Compton invariant amplitudes

A, ..., Ag are expressed by thechannel (yy—>Nﬁ) helic-

ity amplitudes. Through unitarity we then express the imagi-

nary parts of thesechannel yy— Nﬁ) helicity amplitudes
in terms of theyy— w7 and ww— NN amplitudes. We fi-
nally express the discontinuities & of the invariant am-
plitudesA; (i=1,...,6) interms of the correspondingy

— a7 and m7—NN partial wave amplitudedsee Eq.
(B12)]. As we restrict ourselves ® andd-wave intermedi-

ate states in the actual calculations, we give the expression

at v=0, includings andd waves only, that are needed for
the subtracted-channel dispersion integral of EQL2):

Im; A (»=0,)"
1

[t/4—m?
T t  t(MZ—t/4)

e

7F2Ay:0(t)f§-* (1),
ImA,(v=01)2"=0,

F0A7:o(t)f9r*(t)

t/4—m?2
t

Im; As(v=0,)?"
t4-m2\ %% M2 5
T g 2

x[ \/gfi*(t)—Mfz*(t)},

ImA,(v=01)2"=0,

Im, Ag(v=0,)2"

Im; Ag(»=0,t)?"= —(

t/4—m2
t

32 15
) M \/;Fszo(t)fz_* (v),

C

2
The reader should note that te@vave 7 intermediate state
only contributes to the amplitud®;. It is thet dependence
of this 1=J=0 =7 state in thet channel that is approxi-
mated in Ref[5] and parametrized by @ pole. Thed-wave

t/4—m?
t

Fan -2(DF2*(1).
(40

7 intermediate state gives rise to imaginary parts for the

amplitudesA;,A3,As, andAg. The amplitudeA, (at v=0)
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FIG. 8. Convergence of thechannel integral for the amplitude
A;. The results for the unsubtractédashed curveand the sub-
tracted(full curve) t-channel dispersion integrals are shown as func-
tion of the upper integration limit,,.,. Both results are normalized
to their respective values 8f;,.~0.78 Ge\t.

corresponds to thechannel exchange of an object with the
quantum numbers of one pide.g., 7° pole in Eq.(13)],
therefore two-pion intermediate states do not contribute to
A,. The imaginary part ofA, receives only contributions
from 7 intermediate states with=4 [see Eq(B12)] and,
therefore, is zero in our description, as we keep aeéyndd
waves.

In Fig. 8 we show the convergence of thehannel inte-
gral from 4m2 to = in the subtracted DR’s of Eq12). We
do so by calculating the dispersion integral as function of the
upper integration limit ,,,.,and by showing the ratio to the
integral fort,pye~=0.78 GeV. The latter value corresponds

to the highest value for which ther7m— NN amplitudes are
given in Ref.[37]. One clearly sees from Fig. 8 that the
unsubtracted-channel DR shows only a slow convergence,
whereas the subtractéechannel DR has already reached its
final value, within the percent level, at &alue as low as 0.4
Ge\2. Although the cross sectioyy— 77 shows appre-
ciable strength above>0.78 GeVf (see Fig. 6, its contri-
bution to the Compton amplitudes is negligibly small due to
the subtraction in thé-channel integral. By estimating the
77— NN d-wave amplitudes in Born approximation, we
checked that the influence of tlig(1270) resonance on the
Compton observables shown in the following section does
not exceed 1% and usually is even smaller.

V. RESULTS AND DISCUSSION

In this section we shall present our results for Compton
scattering off the nucleon in the dispersion formalism pre-
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FIG. 10. Differential cross section for Compton scattering off

FIG. 9. Real partfull lines) of the subtracteg-channel integral  the proton as function of the lab photon ener§y and at four

[see Eq.(11)] and imaginary parfsee Eq.(24)] of the invariant ~ Scattering angleé)'j‘b. The Born result is given by the dotted lines.
Compton amplitudesA,, ... Ag as function of v at fixed t The total results of the subtracted dispersion formalism are shown

=_-0.163 Ge\. for fixed «— 8= 10 and different values of, : y,= —37 (dashed-
dotted line$, y,.=—32 (full lines), and y,=—27 (dashed lines

sented above. The real and imaginary parts of the six Comp"€ data are from Refl] (circles, Ref.[2] (triangles, and Ref[4]
ton amplitudes are displayed in Fig. 9. Note that for the realSA4ares
part, we only show the subtracteethannel integral of EQ.  Compton cross section rises rapidly because of the unitarity
(11). As can be seen from Fig. 9, these amplitudes showoupling to the much stronger pion photoproduction channel.
Strong oscillations due to interference effects between differTherefore this h|gher energy region is usua”y considered
ent pion photoproduction multipoles, in particular betweenjess “pure” to extract polarizabilities because the procedure
threshold pion productionHy ) andA excitation (M). would require a rather precise knowledge of pion photopro-
In Figs. 10 and 11 we show our predictions in the sub-dyction. With the new pion photoproduction data on the pro-
tracted dispersion relation formalism and compare them withgn that have become available in recent years, the energy
the available Compton data on the proton below pion threshregion above pion threshold could, however, serve as a valu-
old. These data were used in Ref] to determine the scalar aple complement to determine the polarizabilities, provided
polarizabilitiesa and 8 through a global fit, with the results one can minimize the model uncertainties in the dispersion
given in Eq.(1). In the analysis of Re{4], the unsubtracted formalism. In this work, we use the most recent information
dispersion relation formalism was used and the asymptotign the pion photoproduction channel by taking the HR®E]
contributions[Eq. (9)] to the invariant Compton amplitudes muyitipoles at energiel, <500 MeV and thesAID-SP98KSO-
A, and A, were parametrized. In particulaA3® was de-  |ution [29] at higher energies. As previously shown in Fig. 3,
scribed by then® pole, which yields the value,,=—45.  the subtracted DR’s are practically saturated by the one-pion
The free parameter entering Af° was related tax— 3, for ~ channel for photon energies through theregion, which
which the fit obtained the value— 8=10. Keepinga— minimizes the uncertainty due to the modeling of the two-
fixed at that value, we demonstrate in Fig. 10 that the senspion photoproduction channels. In Fig. 12 we display the
tivity to vy, is not at all negligible, especially at the backward high sensitivity of the Compton cross sectionsjtp in the
angles and the higher energies. We investigate this further ilower part of theA region. This sensitivity was exploited in
Fig. 11, where we show our results for differemt- 8 and  Ref. [8] within the context of an unsubtracted dispersion re-
for a fixed value ofy,= —37, which is consistent with the lation formalism, and the value/,=—27 was extracted
heavy baryon ChPT predictiofi3] and close to the value from the LEGS 97 data, which are shown at the higher en-
obtained in Ref[16] in a backward dispersion relation for- ergies in Fig. 12. Our results for the subtracted DR are ob-
malism. For that value of ., a better description of the data tained in Fig. 12 at fixedv— 8=10 and fory,. varying be-
(in particular at the backward angjeseems to be possible by tween—27 and—37. We found that the lower energy data
using a smaller value for— 3 than determined in Ref4]. (E,=149 and 182 MeV can be easily described by the
As one moves to energies above the pion threshold, thiarger values ofy,. if a— 8 decreases to some value below
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FIG. 11. Differential cross section for Compton scattering off ~ FIG. 12. Differential cross section for Compton scattering off
the proton as a function of the lab photon eneEjyand at four the proton as function of the c.m. photon angle for different lab
scattering angle@)'yab as in Fig. 10. The Born result is given by the energies. The total results of the subtracted DR formalism are pre-
dotted lines. The total results of the subtracted dispersion formalisrgented for fixedx— =10 and different values of,: y,=—37
are presented for fixegh,= —37 and different values ci—8: «  (dashed-dotted lingsy,= —32 (full lines), andy,= —27 (dashed
— B=10 (dashed-dotted lings a—B=8 (full lines), and a— B lines). The data are from Ref3] (solid circles, Refs.[6,7] (open
=6 (dashed lines Data as described in Fig. 10. circles, and Ref[8] (squares

10. On the other hand, the higher energy d&g=230 and  recentsaip-spask solution is in very close agreement with

287 MeV) seem to favor a smaller value of, and so far  the HDT multipoles in the\ region and hence the prediction
we confirm the conclusion reached in RE8]. However, as  ijth the newsAID solution also falls below the data at 323
will be discussed next, our calculation underpredicts the datgev in Fig. 13.
around 90 in the lower part of thed region. In view of the somewhat inconclusive situation, we are
In the same energy region, there also exist both differengyajting for the new MAMI data for Compton scattering on
tial cross section and photon asymmetry data obtained ghe proton in and above th&-resonance region and over a
LEGS [38] by use of the laser backscattering technique. Inyide angular range that have been reported preliminarly
Fig. 13 we compare our predictions with these data. One3g]. These new data will be most valuable to check the
finds that at both energies(=265 MeV and 323 MeY  consistency of pion photoproduction and Compton scattering
our subtracted dispersion relation formalism provides a googesyits obtained at LEGS, MAMI, and other facilities.
description of the asymmetries, which however show little  Finally, in Fig. 14 we show that double polarization ob-
sensitivity ony,, but underestimates the absolute values ofservables will be ultimately necessary to extract the spin po-
the cross sections. In particular close to the resonance posgrizabilities. In particular, an experiment with a circularly
tion atE, =323 MeV, our formalism does not allow us to polarized photon and a polarized proton target displays quite
find any reasonable combination pf anda— g to describe  some sensitivity on the backward spin polarizability, es-
these data. Therefore, within the present formalism, the agyecially at energies between threshold and Aheesonance.
tual data situation at these higher energies does not seem &Q,ch a measurement would be more selective taue to a

be very conclusive with regard to a value 9f. Since the  mych lesser sensitivity ta— 8 (see Fig. 14
uncertainties due to two-pion and heavier meson photopro-

duction in thes channel as well as-channel contributions
above thef,(1270) resonance are expected to be less than
1%, the only possibility to describe thE,=323 MeV
LEGS data would be an increase of the HDI, . multipole
by about 2.5%see the dotted lines in Fig. L3ndeed such
a fit was obtained by Tonnisaet al.[8] by use of the LEGS

VI. CONCLUSIONS

We have presented a formalism of fixedubtracted dis-
persion relations for Compton scattering off the nucleon at
energies E,<500 MeV. Due to the subtraction, the
s-channel dispersion integrals converge very fast and are
pion photoproduction multipole set of R¢B8] for photon  practically saturated by therN intermediate states, which
energies between 200 and 350 MeV andghe-smos mul-  are described by the recent pion photoproduction multipoles
tipole solution[29] outside this interval. However, the more of HDT. In this way we minimize the uncertainties from
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cross sectionflower panelsfor Compton scattering off the proton

in the A resonance region. The total results of the subtracted DR F|G. 14. Double polarization differential cross sections for
formalism are shown for fixed— =10 and different values of Compton scattering off the proton, with circularly polarized photon
Y=' Y»=—37 (dashed-dotted lings y,=—32 (full lines), and  and target proton polarized along the photon directiguper pan-
¥»=—27 (dashed lings We also show the result fat—B8=10  glg) or perpendicular to the photon direction and in the pldower
and y,= —32 when increasing the HDM, . multipole by 2.5%  panels. The thick (thin) lines correspond to a proton polarization

(dotted lineg. The data are from LEGE3S]. along the positivénegativé direction, respectively. The results of
the dispersion calculation are far— 8= 10 and different values for
multipion and heavier meson intermediate states. Yr' Ya=—32 (full lines), y,=—27 (dashed lines and y,=

To calculate the dependence of the subtraction functions 37 (dashed-dotted lingsWe also show the result fox— =8
on momentum transfer we include the experimental infor- andy,=—37 (dotted lines.
mation on thet-channel process throughm intermediate
states asyy— wm— NN. We construct a unitarized ampli- mum of model dependence. However, the existing data are
tude for theyy— m subprocess and find a good descriptionnot sufficient to determine.— 8 and y,, independently, es-
of the available data. This information is then combined withpecially because of the mentioned normalization problem re-
the 77— NN amplitudes determined from dispersion theory92rding theM,, multipole. This situation could improve
by analytical continuation ofrN scattering. In this way, we with the analy_3|s of new Cqmpton_ data,_ both below pion
also avoid the uncertainties in Compton scattering associatdgeShold and in tha region, in particular if the normaliza-
with the two-pion continuum in thechannel, which is usu- 10N Problem can be resolved. o
ally modeled through the exchange of a somewhat fictitious A full study of the spin(or vectoy polarizabilities will,
o meson. Altogether we estimate that the uncertainties in thEowever, require double polarization experiments. As we
s andt-channel integrals, due to unknown high-energy con.1@ve shown, the scattering of polarized photons on polarized
tributions, should be less than 1%. As a consequence Oﬁrotqns is very sensitive tg., in particular in the backward
formalism provides a direct cross check between Comptoff€Misphere and at energies between threshold and the
scattering and one-pion photoproduction. In particular, it will2-Tésonance region. In- addition, possible normalization
become possible to study the consistency between the ComproPlems can be avoided by measuring appropriate asymme-

ton scattering and pion photoproduction data sets at LEG ies. Therefore, such polarization experiments hold the

and MAMI. At present, the existing pion photoproduction promise of disentangling scalar and vector polarizabilities of
data unfortunately differ by about 10% in theregion. We the nucleon and to quantify the nucleon-spin response in an

repeat that in Compton scattering near theesonance, the €Xternal electromagnetic field.
leadingM ; , multipole of pion photoproduction will enter to
the fourth power, and thus has to be known very precisely in
order to describe the cross section over the full angular
range. The authors are grateful to G. Krein, A. L'vov, and mem-
Since the polarizabilities enter as subtraction constantdyers of the A2 Collaboration, in particular J. Ahrens, V. OI-
the subtracted dispersion relation formalism can be used tmos de Len, and F. Wissmann, for useful discussions. This
extract the nucleon polarizabilities from the data with a mini-work was supported by the Deutsche Forschungsgemein-
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APPENDIX A: THE MANDELSTAM PLANE—PHYSICAL

AND SPECTRAL REGIONS FOR
COMPTON SCATTERING APPENDIX B: t-CHANNEL HELICITY AMPLITUDES FOR

COMPTON SCATTERING
The kinematics of Compton scatteringy(q)N(p) . ) .
—(q")N(p"), can be described in terms of the familiar Thet-channel he.I|C|ty amplitudes for C_ompton scat;erlng
Mandelstam variables, can be expressed in the orthogonal basis of PraAgkin

terms of the invariant3,, ... ,Tg. In the c.m. system of the
s=(q+p)% t=(q—-q)% u=(q—p)? (A1) t-channel procesyy—NN (see Fig. 4 for the kinematigs
we choose the photon momentum(helicity \}) to pointin
the z direction and the nucleon momentym= p; in the xz
s+t+u=2M?2. (A2) plane at an angl®, with respect to thez axis (the anti-

) ) ) nucleon momentum is then given byf):—f)t). In this
Furthermore, we introduce the coordinatperpendicular to  frame, thet-channel helicity amplitudes can be cast into the

with the constraint

t, form
L. (A3)
v=——r= IvE NU(D
4M 77 4M ;Nm,x'xy(v,t)#—1)1/2_ANU(pt-)\N)
Y

In these equations, is the photon energy in the lab frame 1 )
andM is the nucleon mass. X1 = EA;)\V(T1+|qt|y3T2)
The boundaries of the physical regions in e, andt
channels are determined by the zeros of the Kibble function 1 R 1
D, _E(T3+|qt|’y3T4)_§()\;+)\y)75T5

d(s,t,u)=t(us—M*=0. (A4) 1
’ q | A3

The three physical regions are shown by the horizontally 2()\7 M) el 7' Te

hatched areas in Fig. 1. The vertically hatched areas are the >

regions of nonvanishing double spectral functions. These XV(= PR, (B1)
spectral regions are those regions in the Mandelstam plane
where two of the three variablest, and u take on values
that correspond with a physicéle., on-shell intermediate
state. The boundaries of these regions follow from unitarity.

which behave under parity transformation as

As discussed in Refl37], it is sufficient to consider two- t (v t):(_l)AN_AyTt (.1)
particle intermediate states in all channels. Since these MANAA TANTAN AL A T
boundaries depend only on the masses, they are the same for (B2

all six amplitudesA; . In the Mandelstam diagram of Fig. 1
they are symmetric to the line=0 due to crossing symme-

try. For the spectral functiop,, we obtain the boundary ~ With the helicity differences\, and Ay given by A, =\,

—\, (with A,=0 or 2 and Ay=Ay—\y (with Ay=0 or

b,(u,s)=b,(s,u) 1), respectively.
However, the invariant amplitude3;(i=1,...,6) of
=[s—(M+m,)?[u—(M+m,)?] Prange have kinematical constraints and behave differently
—(m2+2Mm. )2 unders<—u crossing. WhileT,, T3, Ts, and T4 are even
g g functions of v, T, and T, are odd functiongnote thatv
=0, (A5)  — —v is equivalent tos—u). Therefore, L'vov[5] used a
new set of invariant amplitude&;(i=1, ... ,6),which are
and for the spectral functiopg; we find all even functions ofv and are at the same time free of
kinematical singularities. The relation between the ampli-
by (s,t)=(t—4m%)[s—(M+m_)?][s—(M—m,)?] tudesT; and A; can be found in Appendix A of Ref5],
together with the definition of a similar set of amplitudes due
—8m(s+M?-m7/2)=0. (AB) togBardeen and Tunf#1]. We express the invarigmt ampli-

tudesA(v,t) (i=1,...,6) interms of thet-channel helicity

The boundary of the spectral functiom, follows from PénplitudeST;N)\N’)\;}\y(v,t) of Eq. (B1), for which we have

crossing symmetry. We also note that these boundaries a
obtained for the isovector photon, which couples to'ar ™~ found the expressions

015204-14
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1
t\t—4M?2
e
\/:MA‘Tllzfl/Z,ll ;

Su—

t t
[ [Ti2 vzt Ti2 172-1-1]

—2v

A== ~ [Ty o Tiovo-1-1]
tyt

2v\t—4M?2 .
T1/2—1/2,11 ’
M?2 1

Vsu—M*
As= 4 I 2Ttl/z 12,1
su—M \/t—4M2l ’
Jsu—M*
nt
M? 1 t .
= ML=Tio-121-1F T1/2-1/2-11]
su-M* {su—m* ' '

Vivt—am?

4y

t t
+ [T1/2—1/2,1—1+T1/2—1/2,—11]]’

t t
+ [Ti2-120-17 T1/2- 1/2,11]],

Vt—4M?2 (ot ;
Ag=——————{—2T7,5_ ,
5 41}\/{\/@ 1/2—-1/2,1

Vt—4m? ([T . \
Ae=——F——=1[T12-121-1F T12-1/2-11l}
Avtsu—Mm*4

(B3)

In the subtracted DR’s of Eq12), thet-channel integral
runs along the linee=0. Therefore, we have to determine
the imaginary parts IgA;(v=0;) of the invariant ampli-
tudes of Eq(B3). We start by decomposing of thiechannel
helicity amplitudes foryy— NN into a partial wave series,

2J+1
t _ J J
}\N)\ﬁ')\;)\y(v,t)_g 2 T)\N}\ﬁr}\;)\y(t)dANA‘y( 0t)l

(B4)

T

wheredf\NA are Wignerd functions andg, is the scattering
Y

angle in the channel, which is related to the invariamtand
t by cosé=4M v/\/_\/t—4M2 It is obvious from this equa-
tion thaty= 0 corresponds to 9Gcattering for the-channel

process. As explained in Sec. IV, we calculate the imaginary

parts of thet-channel helicity amplitudeﬁ';Nm,AW(v,t)

through the unitarity equation by insertingm intermediate

states, which should give the dominant contribution below

KK threshold,

PHYSICAL REVIEW C61 015204

__ 1 lpd -
2 |mT7VﬂNN=W TJ dQ‘IT[T‘y‘y*?‘IT']T][T‘ITW*)NN]*'
(B5)

Combining the partial wave expansion fey— mm ,

1
T (460, = 2 —— T ()

J even 2

[(J—A)!
X ﬁPfY(coseww), (B6)
.

and the partial wave expansion fetmr— NN,

2J+1 =
7TﬂT~>NN(t @) 2 5 T\/]\(,:‘T‘lr*»NN)(t)

(J_ N) AN
XV(J+A X (cos®). (B7)

We can now construct the imaginary parts of the Compton
t-channel partial waves,

J( 'yy~>NN)

2 ImT?\NWA;x [TJ(W’HWTF)(t)]

J(7T7T—>NN) *
X[Ty, (1. (B8)
The partial wave amplitude‘ﬁ%ﬁ”HNﬁ) of Eq. (B7) are re-

lated to the amplitude®’ (t) of Frazer and Fulcp42] by the
relations

= 167
T M0 == (pupo) " FL(0),

TJ(7r7T—>NN)(t) 87T£(pr )J fJ (t) (Bg)

with py andp,, the c.m. momenta of nucleon and pion, re-

spectively, py= Vt/4—M? andp, = \t/4— mzw). For the re-

action yy—arr, we will use the partial wave amplitudes
F JAy(t), which are related to those of E(6) by

T = (B10)

2
\/2‘.]—+1FJA7(t)-

Denoting the Born partial wave amplitudes foyy
—at7 byBj, (t) the lowest Born partial waves @ndd

waves are

1-8% [1+
Boo(t) =2¢€? 2['3,8 In % :
V51-p2(3-4% [1+P
Boo(t) = 224 22 [ 3 In 1-5 —6],
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B (t)—2e2\/1—5J(l_'82)2In il +£)_i
TRl o2 sl 3 g
(B11)

with B=p,./(\t/2) the pion velocity.

Inserting the partial-wave expansion of Eg4) into Eq.
(B3), we can finally express them2t-channel contributions
Im,A;(»=0,)2" by the partial wave amplitudes for the reac-

tions yy— mm and mm— NN,
Im, A;(»=0;t)"

p, 1
(J—l)!!}

(P2PN)'V2J+1Fyy —o(D)F* (1)

__1)\J/2
x[( b Ji
ImA,(v=0)2"=0,

Im; A3(v=0;)?"

> (PPN V2I+1F), o)

ttpﬁ,J=2,4, o

—1(J2)/2\/(J+71)3(J—1)!!]
o J-1)3+2) I

prM?
= s (PPN N2+ 1F gy —o(DF (1)
N =4, ...
(—1)07222(3-2)(3+3) (I-1)!!
X

(J+2)3-1) AT

Im, Ag(»=0,t)°"

p,M?

X

J+2)J-1)-2

VI(I+1)

X [ 2% (1) — % (HM

Im, Ay,(v=0;)2"

Pr M
=== 2 (PP N2+ 1Fy (D ()

ttpﬁ, J=2,4,...

{(—1)(32>’2(J+1)!!
VI(3+1) (3=2)U

Im, Ag(v=0,t)2"

pr M
=== 2 (PP V2I+1F, (D) (1)

ttpﬁ, J=24,...
[(— 127 (3+2)(I-1)—-2] (I—-1)!! 1
X .
VI+2)(3-1) g

(B12)
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We note that thes-wave (J=0) component of the 2 inter-
mediate states contributes only £,. The amplitudeA,,
corresponding to the exchange of pseudoscalar mesons
(dominantly 7°) in thet channel, gets no contribution from
2 states, because them2system cannot couple to the
nucleon through a pseudoscalar operator. Furthermore, it is
found that only waves witli=4 contribute to the amplitude

A,. In our calculations we saturate thehannel dispersion
integral withs(J=0) andd(J=2) waves, for which the ex-
pressions of Eq(B12) reduce to those given in E¢40).

APPENDIX C: f,-MESON CONTRIBUTION TO THE
yy— m@ PROCESS

A spin-2 particle is described in terms of a symmetric and
traceless field tensor, with five independent components, sat-
isfying the Klein-Gordon equation. Therefore, a state of
spin-2 is characterized by a symmetric and traceless polar-
ization tensoe*"(p,A) (A=-2,—1,0,1,2). For details, we
refer to Ref.[43]. We will apply here this spin-2 formalism
to describe thes-channel exchange of thie meson in the
processyy—mw.

The coupling of theisoscalay f,(1270) mesoriwith mo-
mentump and massnfz) to a pion pair(with momentap,

p.* and Cartesian isospin indicesb) is described by the
amplitude

M(f ) gf27r71'
N =
2 aar mf

5abp‘:TMp;'8,uV(p1A)v (Cl)
2

where the coupling constaf;,, . is determined from the
f,— 77 decay width

1, (P
4oﬂ_gf21ﬂ1' m? '

2

I'(fo—mm)= (C2
wherep .= \/m2f2/4—m27r is the pion three momentum in the

f, rest frame. Using the partial widthl’(f,— )
=0.846I" and the totalf, width I'y=185 MeV [25], Eq.
(C2) yields for the couplinggy,,,~ 23.64.

The Lorentz structure of the vertdx— vy is given by
M(fa—yy)

gfz'yy

=—i2€? f FHEAAN)FHQ N e (P, A),
2

(C3)

where F¢# is the electromagnetic field tensor. Using the
vertex of Eq.(C3), the f,— yy decay width is calculated as
4
€ 2
[ (fo=yY) =g 0%, Mty (c4)

Using the partial widthI'(f,— yy)=1.32x10"°T', [25],
Eq. (C4) determines the value of the coupling constant:
Or,y,~ 0.239.

Using these couplings and vertices, we can now calculate
the invariant amplitude for the procesgy— f,—
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Of
M(yy—Tp—mm)=—i2e>—Z=Fri(g,,)
f2

xfg(q,’)\;/)A,uva,B(p!A) m aMa

gf271'ﬂ' pa ' B
f2

(CH)

where A ,,,5(p,A) represents the spin-2 propagatsee
Ref. [43]). To determine theyy— w helicity amplitudes
FAy defined in Eq.(28), we shall evaluate EqC5) in the
c.m. system. For the case of equal photon helicitigs, (
=0) thef, does not contribute, i.eE(Afi)=0=0. For the case

PHYSICAL REVIEW C 61 015204

of opposite photon helicitiesA(,=2) we find after some
algebra

F(f2) __ e_2 gfzyygfzﬂ'ﬂ'
A=2 8 mf22

(Co)
whered .. is the pion c.m. angle and the pion velocity as
in Eq. (28). It is immediately seen from E@C6) that thef,
meson contribution to thd wave is given by

F(fZ) (t): —_ \/ze_2 gfzyygfzﬂ"rr tsz
J=2A =2 154 m2 t—m2 +im. T
fy fy f,l 0

(C7)
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