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Perturbative calculation of the scaled factorial moments in the second-order quark-hadron phase
transition within the Ginzburg-Landau description
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The scaled factorial moments; are studied for a second-order quark-hadron phase transition within the
Ginzburg-Landau description. The role played by the ground state of the system under low temperature is
emphasized. After a local shift of the order parameter the fluctuations are around the ground state, and a
perturbative calculation foF, can be carried out. Power scaling betwdgyis is shown, and a universal
scaling exponent=1.75 is given for the case with weak correlations and weak self-interactions.

PACS numbsefs): 12.38.Mh, 05.70.Fh, 13.85.Hd, 11.30.Qc

[. INTRODUCTION density of the system, anflsdz means integration over a
small bin with width 6 in the phase space. Similar expres-
It is well known that the ultrarelativistic heavy-ion colli- sions can be derived for other quantities mentioned above. In
sion is a unique way to study the vacuum properties of quanall former studies of second-order phase transition the gradi-
tum chromodynamic$QCD) in the laboratory. In the colli-  ent term in the functionalF[ ¢] is simply taken to be zero,
sions the kinetic energies of the colliding particles arej e the fields is regarded as spatially uniform. The spatial
converted into thermal ones, and a hot new matter stat§ytegral of the functional over a two-dimensional bin with
quark-gluon plasmaQGP), might be formed. The system i o 52is thenF[ ¢]= 62(a| $2|+ b| ¢|*). This is of course a
will cool with its subsequent expanding and will undergo avery crude approximation. The advantage of such an ap-

phase transition from the deconfined QGP to confined h""Eroximation is that it turns the functional integration into a

rons. Since _only the.flnal state particles in the collisions ar ormal one. Thus, the calculation becomes quite easy under
observable in experiments, one may be asked to search fgr Co : . L
e approximation. Foa>0 the functional takes its mini-

the signals about the phase transition from only those par-

2_ .
ticles. Since the existence of the phase transition is assoditum at|¢|°=0 corresponding to the quark phase, and for

ated with properties of the nontrivial chromodynamical@<0 the minimum is al¢|*>0 corresponding to the hadron
vacuum, the study of quark-hadron phase transition has bed1ase. In all the studies the interested region isger0.

a hot point in both particle physics and nuclear physics foNumerical results do not show the so-called intermittency
more than a decade. Besides the unique features of QCD ttehavior, but theF—scaIing,quchq with universal scaling
lack of control of the temperature in the phase transitionaw Bq=(a—1)", is shown to be valid. The exponentis
distinguishes the problem from the standard critical phenomealled a universal one in the sense that it is insensitive to the
ena such as ferromagnetism. The nonperturbative nature Qhlues of the parameters in the model and that it is com-
the hadronization process in the phase transition precludes gfetely determined by the structure of the functional con-
this stage any observable hadronic predictions from firstarned.

principles, and some approximate models are used. One of The contributions from the gradient term to the moments

the models is the Ginzburg-Landau model which can be useg,4 i the exponent should be evaluated in some way
as a framework to calculate various moments of the mult|—Once the gradient term is taken into the functional, one is

plicity distribution and has been used in the studies of thefaced with serious difficulty in the calculations, considering

scaled factorial moments in both firgtt] and second-order the fact that the value of parametefor the ¢* term can be

2] phase transitions, the multiplicity difference correlators ) . : N .
2] p picity determined in no way from first principles or from experi-

3], and th Itiplicity distributi in the ph t iti .
%4% anc the multipliety hsiributions fn the phase transi Ionsmental output and may be very large. Even if the parameter

In the Ginzburg-Landau description of a second-ordef IS indeed very small, negative value @in our interested
phase transition, the scaled factorial moments can be exX€dion also excludes the possibility of performing the usual
pressed af2] perturbative calculations. The role played by the gradient

term is investigated if5] and[6]. In [5] ¢ in each bin is still
5\ uniform, but the values o in all neighboring bins are taken
exp—FLg]), to be ¢, field configuration corresponding to the minimum
(1)  of “potential” V(¢)=alp|?>+b|o|*. So the square of the
gradient of ¢ is 6 ?(¢— ¢o)2. This approximation also
with Z= [Dpexp(—F[¢]), the free energy functiondi| ¢] transforms the functional integration into a normal one. Nu-
=[dZal¢|?+b|o|*+c|Vp|?], ax(T—Tc) representing merical results show that the universal scaling leéy=(q
the distance from the critical point, afdandc larger than  —1)" is still valid and that the exponemtis almost the same
zero. Here| ¢|? is associated with the hadronic multiplicity as without the gradient term. If6] the details of spatial

¢

1
Fq=1fq/fd, fqzzf D¢( Ldz
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FIG. 1. Dependences of Fy, on the bin width—In x after the Generally, the phase angtg can be in any form, and the
contribution from spatial fluctuations of the phase angle of the field || contribution from its fluctuations must be evaluated. For-
fully taken into accountmode 2. Curves from lower to upper are y,ha4aly the integral oves, can be carried out easily since
for q from 2 to 8, respectively. it is of Gaussian form. Then one transforms the twofold

functional integral into a onefold one and gets
fluctuations of¢ in a bin is simulated by the Ising model for

one-component spirs Each bin is assumed large enough to 2\ f _

contain several spin sites. This time, the exponedepends Dér ﬁd 2dr| exp(—Fl4r])

on the unknown temperature, and, after averaging over the fq= , 3
temperaturey is still in the range given ifl] and[2]. f Dorexp —F[ ¢Rr])

Though the simulation if6] is convincing, it is for lattice

with one-component spins. In the Ginzburg-Landau mOde\'/vith functional F[ ¢g] exactly the same form as the original
for a second-order phase transition, the figlds a complex R y 9

number, or in other wordsp has two components. At first F[¢]. The important difference between this expression

. . S from Eq. (1) is that the functional integral variable in this
glimpse, the simulation if6] does not correspond to the real S -
. ) : new expression is a real function instead of a complex func-
problem discussed in the Ginzburg-Landau model, but a . .
lon as in Eq.(1). Thenfy andF can be simulated by a

yv|II be_ e>_<p|a|ned soon in this paper, it relates to the phySICSone-component field as in RE].
in an indirect way. Now we take the fieldbg (magnitude ofp) uniform, or in
In [7], we attempted to investigate the universality of the R 9 ’

exponenty, with the spatial fluctuations of the phase angle ofgg;]esr bvr\;lxg(ra?jsé);htiiggdlfgii;?;?or?i\;{vi;Isbgn:g:gr?é(ggc:slar;qo de
the complex fieldg fully taken into account. As will be bp

shown below, the contribution from spatial fluctuations of2 in this pape). Based on the work Ref6] one can drop off

the phase angle of the fieldl can be evaluated in a complete theV ¢ term, because the problem now is exactly within the

and rigorous way, and the integration over the spatial flucSOPe of Ref[6], and the conclusions in Ref] encourage

tuations of the phase angle of the fiedd will reduce the us_to neglect_the spatial f!uctuations ¢k as long as the

problem to one with a one-component field. unlversal scaling exponenmtis concerngd. Then one gets the
The first observation is that all terms except the gradien{aCtorIaI moments as functions of variable

one in the functional integral of Eq1) depend only on¢|2. "

Then it is convenient to write the two-component figldas f dyy?expxy?—y*)

a complex number in the forrp= ¢prexpl¢). The spatial 0

. 4

fluctuations of the field can be those of the magnitufje a (= 5 4
and/or of the phase angl, (or orientation in an abstract jo dy exp(xy“—y")
spacg. The gradient term turns out to be
with x=as%%b'*. From this expression the scaled factorial
) _— 5 moments Ik, can be calculated, and the results are shown
[V p|*=(V pr)?+ Pr(V )2 (2)  as functions of-Inx in Fig. 1 for g from 2 to 8 within the
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the two modes.

L4 [
- Y different from that for Fig. 1. The values of Fy, in the two
- st cases are also different. For same valuexpfinF, in the
- former case have larger values. This difference is reasonable
if one notices the difference in the definition of variakle
°r What interests us is the scaling law betwégpandF,. The

power law scaling betweeR, andF, can be seen obviously
1E 0‘4 0.'41 0‘42 0.'43 o.'44 o.'45 in the lower part of Fig. 3, the same as shown in other studies
In F cited in the references.
2 From Fig. 2 and the lower part of Fig. 3, one can get the

FIG. 3. Upper part: I, as functions of—In x without spatial ~ Scaling exponentg,, for the two different modes by fitting
fluctuations(mode 3; lower part: scaling behaviors betweenFp the curves g, can also be given analytically. One can ex-
and InF,, with the same data as in the upper part. pand the expressions for fy in the two modes as power

series ofx in smallx limit, and then one gets the slopksg
rangex e (0.5,4.0). One can see clearly that no strict inter-for In F, and 8,=K/K,. The expressions fd{, for the two
mittency can be claimed since &, approach finite values modes in this paper are
in the smallx limit. So, no intermittency is shown in the
phase transition, as shown in former studies. More impor- ~ I'(g/2+1) I'(3/2) I'(1)
tantly, the power law can be found betweEp andF,, as Kq:r(q/2+ 1/2) —a r'1) +(q-1) r'(1/2) for mode 1,
shown in Fig. 2 with the same data as in Fig. 1.
we wits cown the expresson of the scaled factoral mok,—(02F 39 LM | T o2

= - —1)=—=- for mode 2.

ments without spatial fluctuationgnode 1 in this papeér * T(a2+1/4) qr(3/4) | I'(1/4)
which can be read

One can find only a small difference between the exponents

% ) v from these two expressions. The results are shown in Fig.
fo dyytexp(xy—y) 4. In mode 1(without spatial fluctuationsy=1.3335, and in
- , (5) mode 2(with spatial fluctuations of the phase angle of the
f dyexp(xy—y?) field ¢) v=1.2772. The exponents obtained from these ana-
0 lytical expressions are very close to the ones from the fitting.

The universal exponentsare also very close to one another
with x=aé/\/b. Numerical results for I in this mode are  and can be regarded as the same within accuracy 4%. Physi-
shown in Fig. 3. In the upper part of the figureHpare cally, these two modes correspond to different situations. In
shown as functions of-Inx for g from 2 to 8 withx in the  mode 1 no spatial fluctuation @f is in the problem, but in
same intervak e (0.5,4.0), and in the lower part Fy, are  mode 2 the spatial fluctuations of the phase angle of the
shown as functions of IR, with the same data as in upper complex field¢ are fully evaluated. Since these two differ-
part. One can see from the upper part of the figure that thent considerations give very close exponent®ne can say
general behaviors of IR, as functions of-Inx are similar to  that the exponent is indeed insensitive to the spatial fluc-
those in Fig. 1, though the definition of in this case is tuations of the phase angle.
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It is, of course, very interesting to investigate directly thescaling functions within thes* model which corresponds to
effect of the term ¥ ¢g)? on the moments, which is the main the Ising model. Most applications of these theories to three-
topic in this paper. dimensional systems have been restricted tbigher than

Our second observation is that the final state particles arghe bulk critical temperatur@ [13] with a few calculations
in a finite phase space at any high but finite colliding energyin the region belowl  [14]. However, some limitations exist
This means that the fluctuations of the fiebdshould not be i the theories of11] and[12]. As pointed out in the first
uniform since the field must be zero in the region excludecbaper m[ls], the theory of BZ is not applicable fdf<Tc
by the conservation laws. Thus there exists a boundary comgnd the results from RGJ theory are not quantitatively reli-
dition for ¢g. For convenience, we usg instead of¢r in aple in the same temperature region since the coefficients of
the following if no confusion will arise. The boundary con- the Gaussian terms in the integrals are negative for those
dition of ¢ is of Dirichlet type in our problem because of the temperatures. I1fi16] the order parameter is expanded into a
fact that the particle density out of a finite region should besum of eigenfunctions oW? for various boundary condi-
zero. In the following, we only discuss a one-dimensionalijons. Again, the functional integral is turned out into a prod-
phase space such as the rapidity, and the boundary conditigjet of normal integrals. But the fluctuations can be evaluated
can, not losing any generality, be written g¢0)=#(L)  only for temperature not too far below the critical point. The
=0, with L the length of the finite phase space interval. Withauthors of[15] tried to avoid the difficulty mathematically,
the gradient term in the functional, the functional integralput they failed to account for the origin of the difficulty
can only be calculated perturbatively. But there are two imphysically. Although the modified perturbation method in
portant differences from the usual perturbations. The firsf15] can be used for botli>T. andT<T., the calculation
difference is the finite size of the phase space. The second i§ lengthy and can be done only to first order in practice.
the nonpositivity of the coefficient of the Gaussian term inSince one does not know the exact order of values of higher
the functionalF[¢]. So, some new techniques are neededbrder terms, theoretical results may have a large uncertainty.
which will be discussed in this paper. It has not been determined which physical effect causes

The organization of the paper is as follows. In Sec. Il wethe failure of direct perturbative calculations of fluctuations
discuss the ground state of a finite-size system under varioysr finite-size systems with temperature beld@w. In our
boundary conditions. In Sec. Il a new perturbative calcula-opinion, the real origin of the difficulty lies in the lack of
tion scheme is proposed with the effect of local spontaneougnowledge about the spontaneously symmetry breaking for
symmetry breaking taken into account. In Sec. IV we calcuinite-size systems. It is well known that an infinite system
late the scaled factorial moments perturbatively. Section V I%\II” have nonzero mean order paramew which is called
for our main results and conclusions. ground state of the system in this paper since it corresponds
to minimum of the Hamiltonia, if the temperature is be-
low the critical one, and everyone knows that the difficulty
of negative coefficient of the Gaussian term can be overcome
by shifting the order paramete$y— ¢+ ¢,. This phenom-

Finite-size effects near critical points have been remaine@&non is known as spontaneous symmetry breaking because
over the past two decades to be an important topic of thef the fact that¢, does not have the same symmetryHas
active research both theoretically and experimentd@lyin ~ does. This kind of spontaneous symmetry breaking for an
condensed matter physics. Nowadays, the experiment@finite system can be called global since the shiftis the
sample is usually so pure and so well shielded from perturbsame constant for every point in the space. For a finite-size
ing fields that the correlation length can grow up to severakystem, such a simple shift of the order parameter does not
thousand angstroms as the critical point is approached. Whemork because of the existence of specific boundary condi-
one or more dimensions of a bulk system are reduced to neéions for the system. Anyway, fluctuations of the system, in
or below a certain characteristic length scale, the associatatieir own sense, should be around a certain ground state
properties are modified reflecting the lower dimensionality.which corresponds to the minimum of the Hamiltoniln
It is believed that finite-size effects are precursors of theand they can be approximated by Gaussian terms in most
critical behavior of the infinite system and can be exploitedcases if they are not very large. Thus one sees that the
to extract the limiting behavior. The finite-size scaling be-ground state plays a determinative role in the study of fluc-
havior plays a central role, as predicted by both the phenonmtuations in the phase transitions at low temperature. For an
enological [9] and renormalization groug10] theories. infinite system, the ground sta#f is constant and can easily
Those theories allowed a systematic discussion of the finitebe calculated. But for a finite-size system, the ground state is
size effects and, consequently, form the cornerstone of owrsually not a constant but depends on the boundary condi-
current understanding of the way in which the singularitiestions imposed on it; this is understandable. For an infinite
of an infinite system are modified by the finiteness of thesystem the ground state is determined completely by the self-
system in some or all of the dimensions. Of course, the exadhteractions of the field. In other words, the ground state is
form of scaling functions cannot be given in those scalingdictated only by the “potential,” and there is no boundary
theories. effect. For a finite-size system, however, the effect of the

In 1985, Brein and Zinn-JustinBZ) [11] and Rudnick, boundary must be taken into account. For the case with local
Guo and JasnowRGJ [12] developed two field-theoretical interactions, the effect is realized through the gradient term.
perturbation theories for the calculation of the finite-sizeThus the ground state for a system with finite size is deter-

II. LOCAL SPONTANEOUS SYMMETRY BREAKING
FOR FINITE-SIZE SYSTEM
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mined by the gradient term and the “potential.” Then the vacuum expectation of the order parameter for bulk system,

shift of the field at a point depends on the position in thescaled coordinates’ =r/L, and reduced thickneds=L/¢,

space. So, the spontaneous symmetry breaking for a finitéato

size system can be called a local one. Therefore, the solution 3.2

for the ground state is nontrivial but necessary, and one has | :J dgr,ﬂ

reason to hope that the difficulty mentioned above for finite- &

size systems can be overcome once the ground state is

known. From this expression one can get the equation for the ground
It should be pointed out that all perturbation theories menstate bysH/5¥ =0. The ground stat? ((z) satisfies

tioned above are based on Fourier decomposition of the or- 5

der parameter. This method is natural because the decompo- 1d%, — 3 ®)

sition enables one to transform the functional integral into an 12 dZ 0 o

infinite product of tractable normal integrals. Although such ) .

a decomposition has a simple physical explanation which & the equation we have usednstead ofz’ in the range(0,

very fruitful for the understanding of properties of infinite 1) t0 denote the coordinate along the thickness direction.

systems and can deduce reliable physical results, as in tferivatives in other directions do not appear in the equation

case of usual field theories in particle physics, it brings abou#Nce any state with nonzero_d_erlvatlves m_other directions

a great deal of calculations for finite-size systems:; this is nofl0€S not correspond to the minimumtéf But if the system

surprising. As is well known, quantities complicated in co- |szfqlly limited in :Zill directions, the last equanqn should have

ordinate space may have simple momentum spectra and th¥s in place ofd®/dz. In [17] the last equation is solved

look simple in momentum space, but those obviously non&nalytically for Dirichlet boundary condition¥ (0)="¥ (1)

zero only in a finite range must have puzzling momentum= 0. The exact solution is

spectra. Therefore, for the study of properties of finite-size

systems, calculations in coordinate space might be simpler 2k

and more effective. The point here is that one must calculate W

the complicated functional integral which is very difficult to

be evaluated directly. in which k is determined byl through | =21+ k2F (k).

4In this section, we first calculate the ground states for §4ere F(k) is the first kind of complete elliptic integral;
¢" model of a second-order phase transition with one;jn; ) is an elliptic sine function. Unfortunately, no simple
component order parameter under various boundary condiompact solution is found yet for other boundary conditions.
tions. All the boundary conditions are useful in the study of5ne can easily see that the main obstacle comes from the

condensed matter physics. Then, with the ground states, the, inear term¥2 in the second-order differential equation
Hamiltonian of the system is reexpressed as Gaussian terms W, in Eq. (8). To find approximate solutions oF , for

and hlgher_order perturbations of a qually shlfted. order Pa%iher boundary conditions, the following method can be
rameter. It is shown that the perturbative calculation can b

done with the new Hamiltonian for temperatures far belowﬁsed' F.'rSt of gll, we replacé in Eq. (8) by )\\If_o.and get .
o . a solution satisfying the same boundary condition. For Di-

the bulk critical point. richlet boundary conditions, the solution is

In the ¢* model for a second-order phase transition in y '

condensed matter physms_Wlth a one-component order pa- Wo=Asinmz, with A\=1.0-7%I2. (10)

rameter, the partition function can be expressed as a func-

tional integral of an exponential of the Hamiltonithof the ~ The constantA can be determined by requiring the mean

system square of the deviation caused by the replacement, i.e., the

integral [ 3dz(W3—\ ()2, to be minimum. Thus one gets

2
ZZID¢9XD(—H) \Ifo(z)=\/‘3—1(1—7|T—2)sin7rz. (11)

:j D¢ exp{ _f d3 r[Z H2+ E(V )2+ i|¢4”, Now one can see that the requirement of a minimum devia-
2 2 4! tion caused by the replacement is equivalent to retaining
(6) sinmz term but neglecting terms with higher frequency in
W3, Thus, this approximation is equivalent to the standard
functional variation method. The virtue of this method is that
in which y=a'(T—T¢), a’ andu are temperature depen- it is simpler and can be used in a step-by-step way. As dis-
dent positive constantg) is the order-parameter of the sys- cussed if17] the ground state i¥,=0 if the reduced thick-
tem. In the following, we are limited only to a film system ness| of the film is less thanr. The existence of minimum
with thicknessL. Since we are interested only in the tem- reduced thickness of the film implies a shift of the critical
perature region <T¢ or y<0, the HamiltonianH can be  temperature for the finite system from the bulk one. The
standardized by introducing correlation lengfks V—1/y,  exact solutions and the approximate ones are compared in
new order-parametell = ¢/ pq, with ¢o=+—6v/u the Fig. 5 for I/7=1.05, 1.10, 1.15, and 1.20. A very good

1 ’ 2 1 2 1 4
2 (VW)= W24 2w (7)

Vo(2)= sin(2zF(k), k), (9)
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1 3¢
osb (@1/n=105 | (b)1/m=1.10 H= H[‘I’o]+—§z—o [—;(V‘I’ )2—W'24+3Wiw 2
oo d 3, Lya
04l [ +2W W'+ E\If . (15
02t F In this expressiorki[ V] has the same form &$[ ¥ ] in Eq.
\J/O 0 bt bt (7) with ¥ in place of . Now the quadratic part of fluc-
os b (©)I/n=115 | (d)1/n=120 tuationV’ is positive definite fott larger than a characteris-
tic length, or for temperature enough below the critical point.
0.6 F r Then one sees that the new Hamiltonian can be safely used
0.4 | E \ to calculate perturbatively fluctuations at low temperature
region for finite-size systems. Then the difficulty of the nega-
0.2t r tive coefficients of the Gaussian terms is avoided after the
0 L L effects of local spontaneous symmetry breaking are taken
0 02040608 0 02040608 1 into consideration.

Z
Ill. PERTURBATIVE THEORY FOR A FINITE-SIZE

FIG. 5. Comparison between exact solutions and approximate SYSTEM UNDER T<T,

ones for Eqg.(8) under Dirichlet boundary conditions far/ =

=1.05, 1.10, 1.15, and 1.20. The solid curves correspond to exact From Eq.(15), a new perturbative theory can be devel-

solutions; the dotted curves are drawn according to(Eg). oped for a finite-size system with local spontaneous symme-
try breaking. First of all, one can introduce for a one-

approximation can be seen. For lardethe same approxi- dimensional system a generating functiodfJ |

mative method can be used further after shify=""

+V4(1—74/19)/3 sinmwz in Eq. (8). For Neumann boundary Z[J]:J D exp( _H+J derp). (16)

conditions, ¥ {(0)="¥(1)=0, the ground state can also be

obtained in a similar way. The result is o : .
The generalization to more general cases is obvious. Up to

an unimportant constant factor, the generating functional for
Vo(2)=1.0 for T<T. (120 a one-dimensional system can, in a standard way, be written

as
exp[ fdz Yo X 5J)

Then one can consider mixed boundary conditions
W(0)=0,¥4(1)=0. The first order approximation of the z[j]= ex;{ deJ‘I’o
]exp[ fdzdylz)@(zym(y)}
17

solution for the ground state is
N vl
4 a2 7z 1
Vo(2)= ( 4|2>sm— for I=m/2. (13 41110
As a final example, we give the ground state for periodicwith N1 =L\6[y[/u=L¢o, A=6Ly*/u. In the last equa-
boundary condition¥ o(z)=W¥,(1+z). The ground state is tion, the Green’s functio(z,y) satisfies

d2

1
Vo(z)=1.0 for T<T,. (14 —I—ZE—1+3\I’§(Z) G(z,y)=68(z—Yy). (18

Though the ground state for periodic and NeumannThe first factor in the generating functional shows a great
boundary conditions are the same the fluctuations of thelifference between present theory and the usual ones in that
fields in the two cases are different. It should be pointed outhere exists a nontrivial solution for the classical equation
that — WV, is also a ground state of the system. Then theSH/8¢=J for J=0. For systems with higher dimensiah
fluctuations of the system can be around eitfiigror — W, >1 the only changes are witt in place ofL in the expres-
This is the copy for finite-size systems of spontaneous symsions for parameters and \; and with V2 in place of
metry breaking ing* model. The significant difference from d?/dZ? in last equation. The Green’s functicB(z,y) de-
the usual spontaneous symmetry breaking is that the grourgtribes fluctuations in the full space and determines how the
state is usually not a constant and depends on the boundafityctuations at different points are correlated. If one can get
conditions, so that we have a local spontaneous symmetihe solution forG(z,y) for a higher dimensional system, the
breaking in this paper. With the ground stabg, one can fluctuations can be evaluated in the same way as for a one-
locally shift the order parameteW =V¥'+W,; then the dimensional system. Thus in the following we do not distin-
HamiltonianH turns out to be guish one- and higher-dimensional systems, @ni used to
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(@) (b) (@) (b)

—— Q
(© (d)
| | () (d)
N-o—a- - —a—o-ft O
FIG. 6. Feynman diagram representations far the ground FIG. 7. Connected zero-order diagrams for the contributions to
state, (b) the propagator(c) three-line vertex, andd) four-line fq. In the diagrams the number of dots is equadjtand an integral
vertex. over the coordinate in a range with lengttis implied. So(a) and

(b) are forf,, and(c) and(d) are forf, with g dots in the diagrams.

represent the integral element over a volume in certain space
From Eq.(17), it can be seen that each Green’s funcii®is
associated with a factor X/ A, can be regarded as a factor
associated with the external source fidldSince the deriva- Now we turn to the calculation of the scaled factorial
tive terms in the second factor in E.7) with respect to the  momentsF,, in Eq. (1) in a second-order quark-hadron phase
external source field will generate terms with more factors transition within the Ginzburg-Landau description. In this
of G in the generating functional, the contribution of them is description, the free energy function&| ¢] is in place of
small if the parametex is big enough. Then those terms in the HamiltoniarH in last two sections. After integrating over
the generating functional can be regarded as perturbationthe phase angle of the field the functional remains in the
From the expression of it is clear that a larga. is equiva- same form with a realpg in place of the complexp as
lent to a smallu for fixed L andy. Thus the condition of a discussed before. Although there are very important differ-
large \ is consistent with that in usual perturbation theory.ences between normal phase transitions in condensed matter
Then one has all four ingredients diagrammatically reprephysics and a quark-hadron one, the mathematical form in
sented in Fig. 6 for the perturbative calculations with thethe Ginzburg-Landau description for them is the same. In the
Feynman rules:(a) the ground statex;V(z), (b) the  Ginzburg-Landau description for a quark-hadron phase tran-
Green’s function(propagator (\2/\)G(z,y), (c) three-line  sition, the integral variable is not in coordinate space but
vertex —)\/)\ifdz\[ro(z), and (d) four-line vertex represents a collection of measurable quantities such as ra-
—N4NGfdz. pidity, azimuthal angle, etc. In the following,is identified
Using these ingredients all physical quantities can be calto the rapidity. For such a one-dimensional system, the local

culated. For example, to the first order of the perturbationsSPontaneous symmetry breaking is also given as in Sec. II. A
one has generating functional can also be introduced in the same way

as in the last section. The only changes are the expressions
for the parametei, N4, andl. Here we only mention the
3 expression fot. In the present case, the correlation length is
<‘I’(Z)>:‘I’o(2)—xj du¥o(u)G(u,u)G(u,2), é=\/c/[a], sol=L\Jal/c. The parametec has a simple
physical meaning. From the free energy functional one sees
that the correlation between fields at different points is real-
ized by means of the gradient termclis small there is weak

V. THE SCALED FACTORIAL MOMENTS IN THE
GINZBURG-LANDAU MODEL

(P ()= V(2T ()~ Foly)) correlation between the fields at different points. Thus the
1 3 effective lengthl can be used to measure the strength of the
= XG(Z,y)— FJ duG(z,u)G(u,u)G(u,y). correlations for fixed. and|a|. For a system at fixed tem-

peraturec is small if there is weak correlation, and vice
versa. Whenl—«, one may expect that the influence of
correlation can be neglected and that the effect of boundary
Here, the symbo{- - -} represents the average over the fluc- diti b I d h lculati f1h led
tuations; the range of the integral oveis (0, 1 condition can be neglected. In the calculation of the scale

' L factorial moments, the factar; will be cancelled. Sa.; can

A most important feature of the perturbation theory is thatbe taken to be 1.0 in present calculations. For any parameter

all the calculations can be done in coordinate space. Once tl?e[he scaled factorial moments can be rewritten from (&
nontrivial ground stat&, is known, one can get the Green’s as '

function (propagator G(x,y) from Eq.(18), and other quan-

tities can be obtained from E@l7) by directly taking de- q 2 703

rivatives with respect to the external source fidldThis E =f /f9 :H dz——>— ﬂ (19)

scheme can be used in calculating properties of finite-size 41 Js eIz Z[0]

systems in condensed matter physics for temperatlires

<T.. In this expressionf ;dz represents an integral over a range
In the next section we will calculate the scaled factorialof length é. In our calculation, the integral range is chosen

moments in a second-order quark-hadron phase transition asound the center of the intervé, 1), or in other words, in

an example of the applications of the perturbation theory. the range (1/25/2,1/2+ 6/2). As discussed in the second to
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last paragraph in Sec. |, the boundary condition for our casthis level the second factor in E¢L7) gives a factor 1.0. In
is of Dirichlet type. So the ground stat, is given by Eq. the expressions df, there are contributions from-particle
(9) andG(z,y) is calculated from Eq(18). correlations represented diagrammatically by connected dia-
grams in Fig. 7 and the contributions from fewer particle
correlations which can be represented by products of discon-
nected diagrams. We denadttg the contributions td ; from

We first calculate the scaled factorial momeRtgin a  connected diagrams which give the contribution from the
second-order quark-hadron phase transition at the zero ordpure g-particle correlations td,. Then the factorial mo-
(or tree-level approximation to the functiona(l7). At mentsf, at tree level can be written as

A. Zero order approximation for f,

ftlree: fC,

f5oe=(f)?+ 13,
f55°=(f9)3+3f§5+ 15,
f4oo=(f9)1+6(f5)*F5+4fF5+3(f5)2+ 1], (20)
foee=(£5)5+10(f$)3f S+ 10(f5)2F 5+ 555+ 10f 55+ fg,
f5o°=(f5)°+15(f5)*5+20(f5)3F 5+ 15(f5)*f 5+ 6fSFE+10(f5) 2+ 15(f5)3+ 1555+ 60f S FSF 5+ 15,

For the connected contributions t§°®, there are only two topologically different diagrams, as shown in Fig. 7. For the first
type of diagram with two crosses representing the ground state, the number of identical tekﬂms‘zﬁ‘lq!. The factorq!
comes from the exchange symmetry of thearticles, 2 from the two lines from each point representing a particle, and a

factor 1/2 from the identities of terms with reversal order of ghagoints. For the second type of diagrams with no cross, the
number isN=Ng/q=2("(q—1)!. To calculate the diagrams, it would be useful to define

gi(z,y)= deldXz' - dx%G(Z,X1)G(Xq1,X2) - - - G(X;,Y), (21
which satisfies a recursive relation
gi(z,y)=Jédugifl(z,U)G(u,yFLdz(B(LU)gH(u,y)- (22)

Then the contribution from each connected diagramffocan be written as

197t
X fﬁdz d)ﬂPO(Z)gq_z(Z,Y)WO(Y):

first diagram:

second diagram:

1\d
X) Ldzgq_l(z,z).

So that

. 29!

A 1
fq=v{§ jﬁdZdWO(Z)gq—z(Z,Y)‘Po(Y)+E Ldzgq—l(zz) : 23

B. First order approximation for f

Now we discusd , at the first ordefone-loop level approximation of the second factor in the functional of Ey). At
this approximation, the factor from the second term of the equation is
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3G GJ ! GJ)3 ! 3G?2 6G GJ)? (GJ)i}
(Z!Z)( )Z+X( )z +Z (Z!Z)+X (Z’Z)( )Z+ N ,

1
Z4Jd]=1- Xf dz[ ¥y(2)

in which (GJ),=[duG(z,u)J(u). From the functional at this approximation

1
Z[J]=Zl[J]ex;< f dzJv, ex;{ﬁj dzdyJz)G(z,y)Jd(y)

the factorial moment§, can be directly calculated by using E49). There are many terms contributingftg, among which
the most interesting terms are those represented by connected diagrams in Fig. 8 with one bulb which is the vertex for the

perturbative interactions. The sum of the contributions from the diagramswil be denoted byfg’Op in this paper. Then up
to the first order approximation of the generating functional, the factorial monfigratse

fy= 1%+ £POP,

fo= 5o 2 {oF PP+ F0°P,

fa= 550+ 315 PP+ BFF L+ F0P,

fa= 1455 AT PP+ 6155 PP+ £ 0OP+- £0°P, (24
f5= Lo+ 5T PP+ 10F 4o 5P+ 10f 5o 0P+ 5] 0o+ F0°P,

o= f1°%4+ B 1o |2OP+ 15 eEF00P1- DOF o5 I90P - 1 5F0CF 0P+ G fo0f 0P+ £0°P,

For the perturbative calculation to have high accuracy, wérackets of Eq(23) plays an important role if the ground
choose the parameter large enough to guarantee the fol- stateW is obviously nonzero for larger parameteiSince
lowing two conditions:(1) fdZz{W¥(z))—W¥(2)|, the inte- the powers before the brackets of EB3) will be cancelled,
gral of absolute deviation of the mean value of the ordetthe order of the ratiosﬁg/(f‘j)q is A~ (@1 thus very small.
parameter¥ from W, is not larger than 0.05(2) [Z[0]  f°P/(f$)? have the ordek ~¢, even smaller. Then the scaled
—1] is no more than 0.05. These two conditions ensure theactorial moments,, are very close to 1.0. This expectation
contributions from higher order terms from the second-factois confirmed in numerical calculations. Numerical results
in Eq. (17) can be safely neglected. So our calculations arghow that IrF,, though very small, have quite complicated
limited to only the first order approximation. Of course, hehaviors. They increase ferln S within (1.5, 2.5 and then
higher order approximation can be made without difficulty indecrease with the increase efin 8, as shown in Fig. 9 for
principle, only with more diagrams drawn and evaluated. INparameterd =2.637. Thus there is no intermittency in the
numerical calculationg is chosen for—Ind in the range  phase transition. For other choiceslof=1 similar results
(1,9. can be obtained. A more important and more interesting phe-

nomenon is the power scaling betweé&y and F,, Fq
V. MAIN RESULTS AND DISCUSSIONS «FPa, which can be expected from the similar behaviors of

As discussed in the last section, we choose the paramet_k!’r Fq in Fig. 9 and are shqvvn in Fig_. 10 with th_e same plata as
\ to be a large number to ensure the small influence of thé Fig. 9. B4 can be obtained easily from a linear fitting to
perturbations. A large. corresponds to a small correlation the curves in Fig. 10. As in former studies Bf, in Refs.
function G(x,y)/\. So in the Ginzburg-Landau model for a [1,2] in the phase transitiong, satisfies a universal scaling
second-order phase transition under some choice of the pElW
rameters, there is weak correlation between the fields at dif-
ferent points together with weak self-interactions. Due to the B,=(q—1)", with »=1.7539 for |/7=2.63,
choice of a largen (A;=1.0) the ground stat&, (whose (25)
square is the hadronic density at the statél play a domi-
nant role in Eq(17) for large enough, and the Gaussian and as shown in Fig. 11. In this case the universal exponent
higher order fluctuations can only bring about some smaltlepends only on the value of paramdtarhich is a function
corrections to the generating functional. Then with theof parametersa| for the temperature and for the correla-
choice of A we are dealing with a case with small fluctua- tion strength. The dependence of the exponeah tempera-
tions. Because of the large value »fthe first term in the ture is consistent with Ref6]. But the exponenv is very
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FIG. 8. Connected first-order diagrams for the contributions toFig' 5

fqforgq=1, 2, 3, 4, 5, 6, respectively.

different from those exponents given in former studies. The o= fo dyy! exp(xy—yz)/ fo dy exp(xy—y?),
discrepancy is caused from the different assumptions made (26)

in former studies and in the present one. In former studies,

the effect of the gradient term is neglected, but #feterm  in which x is a parameter representing the bin width. From
(which describes the self-interactiois emphasized. In those this expression one can discover that #& term, corre-
studies, the factorial momentg can be written as sponding to the-y? term in the exponentials, is very impor-

0.001 0.002
q=2 q=3
a
B.=(q—1)" v=1.7539
ol OR 25}
0.005 ' - 0.007 ' :
L 27
- 0.0015 }
<.l .
Q.
C
' d  —0.004 2 ‘-L -
0.01 f 9=6 = [
—Ind
O L
'] =
2 4 . 1 . 1
—1ns 0.75 1 1.25 1.5

In (g—1)

FIG. 9. Dependences of the scaled factorial momentg, lon

the bin width—1In 6 from 1.0 to 4.0 for parametdr=2.63w for q
=2,3,4,5,and 6.

FIG. 11. Universcal scaling betwegh, and (q—1) for param-
eter| =2.63m.
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1.95 constant, about 1.75. The constant can be anticipated by con-
sidering a case with the very weak correlations among par-
. ticles more than 2considering the factor 4/accompanied
19T with the Green’s functiorG(x,y)]. Then if only the effects
of a weak two-particle correlation are considered, one has
1851 fq=(FD 9+ CRFD %5,
I/ L]
and then
1 . L L]
8 . Fq=1.0+ C2f5/(15)2.
. . . Here C}, are the binomial coefficients. Since the ratio
1751 fS/(f9)? is assumed to be very small one getsFjn
~C3fS/(f9)?% so the linear relation between Fig's can be
17 , verified, and one can get
' 1 1.2 1.4 1.6 1.8
Bq=Ci=q(q—1)/2.
| /70

From this expression, one gets the exponentl.7550, very
FIG. 12. Dependence of the universal exponemin parameter close to the one obtained in this paper.
I/, As a summary, the spatial correlation of the fluctuations
in a second-order quark-hadron phase transition is consid-

tant and cannot be treated as perturbation for any parametgf€d in this paper within the Ginzburg-Landau description.
x. It is the term that makes the integrals finite. In present/VVe deal with a case with finite phase space and with nega-
calculations, the role played by thg* term is much less tive coefficient of the Gaussian term in the functional. Be-
important. Its function is to provide a nontrivial ground statec@use of the finite size of the space, calculations in usual
¥, around which are the fluctuations. Then that term isSPace are simpler and more effective. Due to the negative
treated as a small perturbation and is very weak indeed witRoefficient of the Gaussian term in the functional a local
our choice of parametex. In former studies the fluctuations Sppntaneoug symmetry breakitay nontnwa! grounq stade
are aroundp,=0. Then the discrepancy between the presen?X'StS for a finite size system. We emphqsnzg the |mp<_)rtance
study and former ones can be understood because they - the ground state of the system, which is a version of
long to different physical regimes. Former studies are in théPontaneous symmetry breaking for finite-size systems. Then
nonperturbative regime with trivial ground state, but the& N€W perturbation scheme is developed which is expected to
present study is in the perturbative one with a nontrivialP® @pplicable in the low temperature region in temodel
ground state. for second-order phase transitions in condensed matter phys-
The dependence of the universal exponerin the pa- ics. Then as an example of the applications, the scaled fac-
rameterl is also studied fot/7>1 in which there exists a (orial momentsF, in a second-order quark-hadron phase
nontrivial ground state. The result is shown in Fig. 12. Fortransition are calculated perturbatively. Power scaling laws
long correlation lengthl( a little larger than 1.0the fluc-  PetweerFy's are shown and a universal exponeris given.
tuations in neighboring bins are correlated. For thietlee
values of¥, are also small, so the two terms in the bracket
in Eg. (19) may have comparable contributionsftp. In this This work was supported in part by the NSFC, the MSE,
region v is quite large(about 2. With the increase of the  and the Hubei-NSF in China and the DFG in Germany. The
correlation between the fluctuations in neighboring bins beauthors thank Professor T. Meng for his kind hospitality dur-
comes weaker and weaker, and the expomaigcreases first ing their visits in FU Berlin, and one of thetC.B.Y.) is
rapidly and then slowly. Whet/7>2.5 v approaches a grateful for fruitful discussions with Professor R. C. Hwa.
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