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Perturbative calculation of the scaled factorial moments in the second-order quark-hadron phase
transition within the Ginzburg-Landau description

C. B. Yang and X. Cai
Institute of Particle Physics, Hua-Zhong Normal University, Wuhan 430079, People’s Republic of China

and Institut für Theoretische Physik, Freie Universita¨t Berlin, D-14195 Berlin, Germany
~Received 24 May 1999; published 16 December 1999!

The scaled factorial momentsFq are studied for a second-order quark-hadron phase transition within the
Ginzburg-Landau description. The role played by the ground state of the system under low temperature is
emphasized. After a local shift of the order parameter the fluctuations are around the ground state, and a
perturbative calculation forFq can be carried out. Power scaling betweenFq’s is shown, and a universal
scaling exponentn.1.75 is given for the case with weak correlations and weak self-interactions.

PACS number~s!: 12.38.Mh, 05.70.Fh, 13.85.Hd, 11.30.Qc
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I. INTRODUCTION

It is well known that the ultrarelativistic heavy-ion coll
sion is a unique way to study the vacuum properties of qu
tum chromodynamics~QCD! in the laboratory. In the colli-
sions the kinetic energies of the colliding particles a
converted into thermal ones, and a hot new matter st
quark-gluon plasma~QGP!, might be formed. The system
will cool with its subsequent expanding and will undergo
phase transition from the deconfined QGP to confined h
rons. Since only the final state particles in the collisions
observable in experiments, one may be asked to search
the signals about the phase transition from only those
ticles. Since the existence of the phase transition is ass
ated with properties of the nontrivial chromodynamic
vacuum, the study of quark-hadron phase transition has b
a hot point in both particle physics and nuclear physics
more than a decade. Besides the unique features of QCD
lack of control of the temperature in the phase transit
distinguishes the problem from the standard critical pheno
ena such as ferromagnetism. The nonperturbative natur
the hadronization process in the phase transition preclud
this stage any observable hadronic predictions from fi
principles, and some approximate models are used. On
the models is the Ginzburg-Landau model which can be u
as a framework to calculate various moments of the mu
plicity distribution and has been used in the studies of
scaled factorial moments in both first-@1# and second-orde
@2# phase transitions, the multiplicity difference correlato
@3#, and the multiplicity distributions in the phase transitio
@4#.

In the Ginzburg-Landau description of a second-or
phase transition, the scaled factorial moments can be
pressed as@2#

Fq5 f q / f 1
q , f q5

1

ZE DfS E
d
dzUfU2D q

exp~2F@f#!,

~1!

with Z5*Dfexp(2F@f#), the free energy functionalF@f#
5*dz@aufu21bufu41cu¹fu2#, a}(T2TC) representing
the distance from the critical point, andb andc larger than
zero. Hereufu2 is associated with the hadronic multiplicit
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density of the system, and*ddz means integration over a
small bin with widthd in the phase space. Similar expre
sions can be derived for other quantities mentioned above
all former studies of second-order phase transition the gr
ent term in the functionalF@f# is simply taken to be zero
i.e., the fieldf is regarded as spatially uniform. The spat
integral of the functional over a two-dimensional bin wi
sized2 is thenF@f#5d2(auf2u1bufu4). This is of course a
very crude approximation. The advantage of such an
proximation is that it turns the functional integration into
normal one. Thus, the calculation becomes quite easy u
the approximation. Fora.0 the functional takes its mini-
mum at ufu250 corresponding to the quark phase, and
a,0 the minimum is atufu2.0 corresponding to the hadro
phase. In all the studies the interested region is fora,0.
Numerical results do not show the so-called intermitten
behavior, but theF-scaling,Fq}F2

bq with universal scaling
law bq5(q21)n, is shown to be valid. The exponentn is
called a universal one in the sense that it is insensitive to
values of the parameters in the model and that it is co
pletely determined by the structure of the functional co
cerned.

The contributions from the gradient term to the mome
and to the exponentn should be evaluated in some wa
Once the gradient term is taken into the functional, one
faced with serious difficulty in the calculations, consideri
the fact that the value of parameterb for thef4 term can be
determined in no way from first principles or from expe
mental output and may be very large. Even if the parame
b is indeed very small, negative value ofa in our interested
region also excludes the possibility of performing the us
perturbative calculations. The role played by the gradi
term is investigated in@5# and@6#. In @5# f in each bin is still
uniform, but the values off in all neighboring bins are taken
to bef0, field configuration corresponding to the minimu
of ‘‘potential’’ V(f)[aufu21bufu4. So the square of the
gradient of f is d22(f2f0)2. This approximation also
transforms the functional integration into a normal one. N
merical results show that the universal scaling lawbq5(q
21)n is still valid and that the exponentn is almost the same
as without the gradient term. In@6# the details of spatial
©1999 The American Physical Society02-1
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fluctuations off in a bin is simulated by the Ising model fo
one-component spinss. Each bin is assumed large enough
contain several spin sites. This time, the exponentn depends
on the unknown temperature, and, after averaging over
temperature,n is still in the range given in@1# and @2#.

Though the simulation in@6# is convincing, it is for lattice
with one-component spins. In the Ginzburg-Landau mo
for a second-order phase transition, the fieldf is a complex
number, or in other words,f has two components. At firs
glimpse, the simulation in@6# does not correspond to the re
problem discussed in the Ginzburg-Landau model, but
will be explained soon in this paper, it relates to the phys
in an indirect way.

In @7#, we attempted to investigate the universality of t
exponentn, with the spatial fluctuations of the phase angle
the complex fieldf fully taken into account. As will be
shown below, the contribution from spatial fluctuations
the phase angle of the fieldf can be evaluated in a comple
and rigorous way, and the integration over the spatial fl
tuations of the phase angle of the fieldf will reduce the
problem to one with a one-component field.

The first observation is that all terms except the gradi
one in the functional integral of Eq.~1! depend only onufu2.
Then it is convenient to write the two-component fieldf as
a complex number in the formf5fRexp(ifI). The spatial
fluctuations of the field can be those of the magnitudefR
and/or of the phase anglef I ~or orientation in an abstrac
space!. The gradient term turns out to be

u¹fu25~¹fR!21fR
2~¹f I!

2. ~2!

FIG. 1. Dependences of lnFq on the bin width2 ln x after the
contribution from spatial fluctuations of the phase angle of the fi
fully taken into account~mode 2!. Curves from lower to upper are
for q from 2 to 8, respectively.
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Generally, the phase anglef I can be in any form, and the
full contribution from its fluctuations must be evaluated. Fo
tunately, the integral overf I can be carried out easily sinc
it is of Gaussian form. Then one transforms the twofo
functional integral into a onefold one and gets

f q5

E DfRS E
d
dzfR

2 D q

exp~2F@fR# !

E DfR exp~2F@fR# !

, ~3!

with functionalF@fR# exactly the same form as the origin
F@f#. The important difference between this express
from Eq. ~1! is that the functional integral variable in thi
new expression is a real function instead of a complex fu
tion as in Eq.~1!. Then f q and Fq can be simulated by a
one-component field as in Ref.@6#.

Now we take the fieldfR ~magnitude off) uniform, or in
other words, the gradient term offR is omitted. ~Calcula-
tions based on this approximation will be referred to as mo
2 in this paper.! Based on the work Ref.@6# one can drop off
the¹fR term, because the problem now is exactly within t
scope of Ref.@6#, and the conclusions in Ref.@6# encourage
us to neglect the spatial fluctuations offR as long as the
universal scaling exponentn is concerned. Then one gets th
factorial moments as functions of variablex

f q5

E
0

`

dyy2q exp~xy22y4!

E
0

`

dy exp~xy22y4!

, ~4!

with x5ad3/2/b1/4. From this expression the scaled factor
moments lnFq can be calculated, and the results are sho
as functions of2 ln x in Fig. 1 for q from 2 to 8 within the

d

FIG. 2. Scaling behaviors of lnFq vs lnF2 for the same data as
in Fig. 1.
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PERTURBATIVE CALCULATION OF THE SCALED . . . PHYSICAL REVIEW C61 014902
rangexP(0.5,4.0). One can see clearly that no strict int
mittency can be claimed since allFq approach finite values
in the smallx limit. So, no intermittency is shown in th
phase transition, as shown in former studies. More imp
tantly, the power law can be found betweenFq and F2, as
shown in Fig. 2 with the same data as in Fig. 1.

For the convenience of comparison with the former ca
we write down the expressions of the scaled factorial m
ments without spatial fluctuations~mode 1 in this paper!,
which can be read

f q5

E
0

`

dyyq exp~xy2y2!

E
0

`

dyexp~xy2y2!

, ~5!

with x5ad/Ab. Numerical results for lnFq in this mode are
shown in Fig. 3. In the upper part of the figure lnFq are
shown as functions of2 ln x for q from 2 to 8 withx in the
same intervalxP(0.5,4.0), and in the lower part lnFq are
shown as functions of lnF2 with the same data as in uppe
part. One can see from the upper part of the figure that
general behaviors of lnFq as functions of2 ln x are similar to
those in Fig. 1, though the definition ofx in this case is

FIG. 3. Upper part: lnFq as functions of2 ln x without spatial
fluctuations~mode 1!; lower part: scaling behaviors between lnFq

and lnF2, with the same data as in the upper part.
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different from that for Fig. 1. The values of lnFq in the two
cases are also different. For same value ofx, ln Fq in the
former case have larger values. This difference is reason
if one notices the difference in the definition of variablex.
What interests us is the scaling law betweenFq andF2. The
power law scaling betweenFq andF2 can be seen obviously
in the lower part of Fig. 3, the same as shown in other stud
cited in the references.

From Fig. 2 and the lower part of Fig. 3, one can get t
scaling exponentsbq for the two different modes by fitting
the curves.bq can also be given analytically. One can e
pand the expressions for lnFq in the two modes as powe
series ofx in small x limit, and then one gets the slopesKq
for ln Fq andbq5Kq /K2. The expressions forKq for the two
modes in this paper are

Kq5
G~q/211!

G~q/211/2!
2q

G~3/2!

G~1!
1~q21!

G~1!

G~1/2!
for mode 1,

Kq5
G~q/213/4!

G~q/211/4!
2q

G~5/4!

G~3/4!
1~q21!

G~3/4!

G~1/4!
for mode 2.

One can find only a small difference between the expone
n from these two expressions. The results are shown in
4. In mode 1~without spatial fluctuations! n51.3335, and in
mode 2~with spatial fluctuations of the phase angle of t
field f) n51.2772. The exponents obtained from these a
lytical expressions are very close to the ones from the fitti
The universal exponentsn are also very close to one anoth
and can be regarded as the same within accuracy 4%. P
cally, these two modes correspond to different situations
mode 1 no spatial fluctuation off is in the problem, but in
mode 2 the spatial fluctuations of the phase angle of
complex fieldf are fully evaluated. Since these two diffe
ent considerations give very close exponentsn, one can say
that the exponentn is indeed insensitive to the spatial fluc
tuations of the phase angle.

FIG. 4. Scaling behaviors of lnbq as a function of ln(q21) for
the two modes.
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C. B. YANG AND X. CAI PHYSICAL REVIEW C 61 014902
It is, of course, very interesting to investigate directly t
effect of the term (¹fR)2 on the moments, which is the mai
topic in this paper.

Our second observation is that the final state particles
in a finite phase space at any high but finite colliding ener
This means that the fluctuations of the fieldf should not be
uniform since the field must be zero in the region exclud
by the conservation laws. Thus there exists a boundary c
dition for fR. For convenience, we usef instead offR in
the following if no confusion will arise. The boundary con
dition of f is of Dirichlet type in our problem because of th
fact that the particle density out of a finite region should
zero. In the following, we only discuss a one-dimensio
phase space such as the rapidity, and the boundary cond
can, not losing any generality, be written asf(0)5f(L)
50, with L the length of the finite phase space interval. W
the gradient term in the functional, the functional integ
can only be calculated perturbatively. But there are two
portant differences from the usual perturbations. The fi
difference is the finite size of the phase space. The secon
the nonpositivity of the coefficient of the Gaussian term
the functionalF@f#. So, some new techniques are need
which will be discussed in this paper.

The organization of the paper is as follows. In Sec. II
discuss the ground state of a finite-size system under var
boundary conditions. In Sec. III a new perturbative calcu
tion scheme is proposed with the effect of local spontane
symmetry breaking taken into account. In Sec. IV we cal
late the scaled factorial moments perturbatively. Section V
for our main results and conclusions.

II. LOCAL SPONTANEOUS SYMMETRY BREAKING
FOR FINITE-SIZE SYSTEM

Finite-size effects near critical points have been remai
over the past two decades to be an important topic of
active research both theoretically and experimentally@8# in
condensed matter physics. Nowadays, the experime
sample is usually so pure and so well shielded from pertu
ing fields that the correlation length can grow up to seve
thousand angstroms as the critical point is approached. W
one or more dimensions of a bulk system are reduced to
or below a certain characteristic length scale, the associ
properties are modified reflecting the lower dimensional
It is believed that finite-size effects are precursors of
critical behavior of the infinite system and can be exploi
to extract the limiting behavior. The finite-size scaling b
havior plays a central role, as predicted by both the phen
enological @9# and renormalization group@10# theories.
Those theories allowed a systematic discussion of the fin
size effects and, consequently, form the cornerstone of
current understanding of the way in which the singularit
of an infinite system are modified by the finiteness of
system in some or all of the dimensions. Of course, the e
form of scaling functions cannot be given in those scal
theories.

In 1985, Brézin and Zinn-Justin~BZ! @11# and Rudnick,
Guo and Jasnow~RGJ! @12# developed two field-theoretica
perturbation theories for the calculation of the finite-s
01490
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scaling functions within thef4 model which corresponds to
the Ising model. Most applications of these theories to thr
dimensional systems have been restricted toT higher than
the bulk critical temperatureTC @13# with a few calculations
in the region belowTC @14#. However, some limitations exis
in the theories of@11# and @12#. As pointed out in the first
paper in@15#, the theory of BZ is not applicable forT,TC
and the results from RGJ theory are not quantitatively r
able in the same temperature region since the coefficient
the Gaussian terms in the integrals are negative for th
temperatures. In@16# the order parameter is expanded into
sum of eigenfunctions of¹2 for various boundary condi-
tions. Again, the functional integral is turned out into a pro
uct of normal integrals. But the fluctuations can be evalua
only for temperature not too far below the critical point. Th
authors of@15# tried to avoid the difficulty mathematically
but they failed to account for the origin of the difficult
physically. Although the modified perturbation method
@15# can be used for bothT.TC andT,TC , the calculation
is lengthy and can be done only to first order in practi
Since one does not know the exact order of values of hig
order terms, theoretical results may have a large uncerta

It has not been determined which physical effect cau
the failure of direct perturbative calculations of fluctuatio
for finite-size systems with temperature belowTC . In our
opinion, the real origin of the difficulty lies in the lack o
knowledge about the spontaneously symmetry breaking
finite-size systems. It is well known that an infinite syste
will have nonzero mean order parameterf0, which is called
ground state of the system in this paper since it correspo
to minimum of the HamiltonianH, if the temperature is be
low the critical one, and everyone knows that the difficu
of negative coefficient of the Gaussian term can be overco
by shifting the order parameter,f→f1f0. This phenom-
enon is known as spontaneous symmetry breaking bec
of the fact thatf0 does not have the same symmetry asH
does. This kind of spontaneous symmetry breaking for
infinite system can be called global since the shiftf0 is the
same constant for every point in the space. For a finite-s
system, such a simple shift of the order parameter does
work because of the existence of specific boundary con
tions for the system. Anyway, fluctuations of the system,
their own sense, should be around a certain ground s
which corresponds to the minimum of the HamiltonianH,
and they can be approximated by Gaussian terms in m
cases if they are not very large. Thus one sees that
ground state plays a determinative role in the study of fl
tuations in the phase transitions at low temperature. For
infinite system, the ground statef0 is constant and can easil
be calculated. But for a finite-size system, the ground stat
usually not a constant but depends on the boundary co
tions imposed on it; this is understandable. For an infin
system the ground state is determined completely by the s
interactions of the field. In other words, the ground state
dictated only by the ‘‘potential,’’ and there is no bounda
effect. For a finite-size system, however, the effect of
boundary must be taken into account. For the case with lo
interactions, the effect is realized through the gradient te
Thus the ground state for a system with finite size is de
2-4
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PERTURBATIVE CALCULATION OF THE SCALED . . . PHYSICAL REVIEW C61 014902
mined by the gradient term and the ‘‘potential.’’ Then th
shift of the field at a point depends on the position in t
space. So, the spontaneous symmetry breaking for a fi
size system can be called a local one. Therefore, the solu
for the ground state is nontrivial but necessary, and one
reason to hope that the difficulty mentioned above for fin
size systems can be overcome once the ground sta
known.

It should be pointed out that all perturbation theories m
tioned above are based on Fourier decomposition of the
der parameter. This method is natural because the decom
sition enables one to transform the functional integral into
infinite product of tractable normal integrals. Although su
a decomposition has a simple physical explanation whic
very fruitful for the understanding of properties of infini
systems and can deduce reliable physical results, as in
case of usual field theories in particle physics, it brings ab
a great deal of calculations for finite-size systems; this is
surprising. As is well known, quantities complicated in c
ordinate space may have simple momentum spectra and
look simple in momentum space, but those obviously n
zero only in a finite range must have puzzling moment
spectra. Therefore, for the study of properties of finite-s
systems, calculations in coordinate space might be sim
and more effective. The point here is that one must calcu
the complicated functional integral which is very difficult
be evaluated directly.

In this section, we first calculate the ground states fo
f4 model of a second-order phase transition with o
component order parameter under various boundary co
tions. All the boundary conditions are useful in the study
condensed matter physics. Then, with the ground states
Hamiltonian of the system is reexpressed as Gaussian t
and higher order perturbations of a locally shifted order
rameter. It is shown that the perturbative calculation can
done with the new Hamiltonian for temperatures far bel
the bulk critical point.

In the f4 model for a second-order phase transition
condensed matter physics with a one-component order
rameter, the partition function can be expressed as a fu
tional integral of an exponential of the HamiltonianH of the
system

Z5E Df exp~2H !

5E Df expH 2E d3 r Fg2 f21
1

2
~¹f!21

u

4!
f4G J ,

~6!

in which g5a8(T2TC), a8 and u are temperature depen
dent positive constants,f is the order-parameter of the sy
tem. In the following, we are limited only to a film syste
with thicknessL. Since we are interested only in the tem
perature regionT,TC or g,0, the HamiltonianH can be
standardized by introducing correlation lengthj5A21/g,
new order-parameterC5f/f0, with f05A26g/u the
01490
e-
on
as
-
is

-
r-

po-
n

is

he
ut
t

us
-

e
er
te

a
-
i-

f
he
ms
-
e

a-
c-

vacuum expectation of the order parameter for bulk syst
scaled coordinatesr 85r /L, and reduced thicknessl 5L/j,
into

H5E d3r 8
L3f0

2

j2 F 1

2l 2 ~¹8C!22
1

2
C21

1

4
C4G . ~7!

From this expression one can get the equation for the gro
state bydH/dC50. The ground stateC0(z) satisfies

1

l 2

d2C0

dz2 52C01C0
3 . ~8!

In the equation we have usedz instead ofz8 in the range~0,
1! to denote the coordinate along the thickness directi
Derivatives in other directions do not appear in the equat
since any state with nonzero derivatives in other directio
does not correspond to the minimum ofH. But if the system
is fully limited in all directions, the last equation should ha
¹2 in place of d2/dz2. In @17# the last equation is solved
analytically for Dirichlet boundary conditionsC(0)5C(1)
50. The exact solution is

C0~z!5A 2k

A11k2
sin„2zF~k!,k…, ~9!

in which k is determined byl through l 52A11k2F(k).
Here, F(k) is the first kind of complete elliptic integral
sin(z,k) is an elliptic sine function. Unfortunately, no simp
compact solution is found yet for other boundary conditio
One can easily see that the main obstacle comes from
nonlinear termC0

3 in the second-order differential equatio
of C0 in Eq. ~8!. To find approximate solutions ofC0 for
other boundary conditions, the following method can
used. First of all, we replaceC0

3 in Eq. ~8! by lC0 and get
a solution satisfying the same boundary condition. For
richlet boundary conditions, the solution is

C05A sinpz, with l51.02p2/ l 2. ~10!

The constantA can be determined by requiring the me
square of the deviation caused by the replacement, i.e.,
integral*0

1dz(C0
32lC0)2, to be minimum. Thus one gets

C0~z!5A4

3 S 12
p2

l 2 D sinpz. ~11!

Now one can see that the requirement of a minimum de
tion caused by the replacement is equivalent to retain
sinpz term but neglecting terms with higher frequency
C0

3. Thus, this approximation is equivalent to the stand
functional variation method. The virtue of this method is th
it is simpler and can be used in a step-by-step way. As
cussed in@17# the ground state isC050 if the reduced thick-
nessl of the film is less thanp. The existence of minimum
reduced thickness of the film implies a shift of the critic
temperature for the finite system from the bulk one. T
exact solutions and the approximate ones are compare
Fig. 5 for l /p51.05, 1.10, 1.15, and 1.20. A very goo
2-5
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C. B. YANG AND X. CAI PHYSICAL REVIEW C 61 014902
approximation can be seen. For largerl, the same approxi-
mative method can be used further after shiftC05C08
1A4(12p2/ l 2)/3 sinpz in Eq. ~8!. For Neumann boundary
conditions,C08(0)5C08(1)50, the ground state can also b
obtained in a similar way. The result is

C0~z!51.0 for T,Tc . ~12!

Then one can consider mixed boundary conditio
C0(0)50,C08(1)50. The first order approximation of th
solution for the ground state is

C0~z!5A4

3 S 12
p2

4l 2D sin
pz

2
for l>p/2. ~13!

As a final example, we give the ground state for perio
boundary conditionC0(z)5C0(11z). The ground state is

C0~z!51.0 for T,Tc . ~14!

Though the ground state for periodic and Neuma
boundary conditions are the same the fluctuations of
fields in the two cases are different. It should be pointed
that 2C0 is also a ground state of the system. Then
fluctuations of the system can be around eitherC0 or 2C0.
This is the copy for finite-size systems of spontaneous s
metry breaking inf4 model. The significant difference from
the usual spontaneous symmetry breaking is that the gro
state is usually not a constant and depends on the boun
conditions, so that we have a local spontaneous symm
breaking in this paper. With the ground stateC0, one can
locally shift the order parameterC5C81C0; then the
HamiltonianH turns out to be

FIG. 5. Comparison between exact solutions and approxim
ones for Eq. ~8! under Dirichlet boundary conditions forl /p
51.05, 1.10, 1.15, and 1.20. The solid curves correspond to e
solutions; the dotted curves are drawn according to Eq.~11!.
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H5H@C0#1
L3f0

2

j2 E d3r
1

2 F 1

l 2 ~¹C8!22C8213C0
2C82

12C0C831
1

2
C84G . ~15!

In this expression,H@C0# has the same form asH@C# in Eq.
~7! with C0 in place ofC. Now the quadratic part of fluc-
tuationC8 is positive definite forl larger than a characteris
tic length, or for temperature enough below the critical poi
Then one sees that the new Hamiltonian can be safely u
to calculate perturbatively fluctuations at low temperatu
region for finite-size systems. Then the difficulty of the neg
tive coefficients of the Gaussian terms is avoided after
effects of local spontaneous symmetry breaking are ta
into consideration.

III. PERTURBATIVE THEORY FOR A FINITE-SIZE
SYSTEM UNDER T!TC

From Eq.~15!, a new perturbative theory can be deve
oped for a finite-size system with local spontaneous sym
try breaking. First of all, one can introduce for a on
dimensional system a generating functionalZ@J#

Z@J#5E Df expS 2H1E dzJf D . ~16!

The generalization to more general cases is obvious. U
an unimportant constant factor, the generating functional
a one-dimensional system can, in a standard way, be wr
as

Z@J#5expS l1E dzJC0DexpH 2lE dzFC0S d

l1dJD 3

1
1

4 S d

l1dJD 4G J expF1

2

l1
2

l E dzdyJ~z!G~z,y!J~y!G ,
~17!

with l15LA6ugu/u5Lf0 , l56Lg2/u. In the last equa-
tion, the Green’s functionG(z,y) satisfies

F2
1

l 2

d2

dz2 2113C0
2~z!GG~z,y!5d~z2y!. ~18!

The first factor in the generating functional shows a gr
difference between present theory and the usual ones in
there exists a nontrivial solution for the classical equat
dH/df5J for J50. For systems with higher dimensiond
.1 the only changes are withLd in place ofL in the expres-
sions for parametersl and l1 and with ¹2 in place of
d2/dz2 in last equation. The Green’s functionG(z,y) de-
scribes fluctuations in the full space and determines how
fluctuations at different points are correlated. If one can
the solution forG(z,y) for a higher dimensional system, th
fluctuations can be evaluated in the same way as for a o
dimensional system. Thus in the following we do not dist
guish one- and higher-dimensional systems, anddz is used to

te

ct
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represent the integral element over a volume in certain sp
From Eq.~17!, it can be seen that each Green’s functionG is
associated with a factor 1/l. l1 can be regarded as a fact
associated with the external source fieldJ. Since the deriva-
tive terms in the second factor in Eq.~17! with respect to the
external source fieldJ will generate terms with more factor
of G in the generating functional, the contribution of them
small if the parameterl is big enough. Then those terms
the generating functional can be regarded as perturbati
From the expression ofl it is clear that a largel is equiva-
lent to a smallu for fixed L andg. Thus the condition of a
large l is consistent with that in usual perturbation theo
Then one has all four ingredients diagrammatically rep
sented in Fig. 6 for the perturbative calculations with t
Feynman rules:~a! the ground statel1C0(z), ~b! the
Green’s function~propagator! (l1

2/l)G(z,y), ~c! three-line
vertex 2l/l1

3*dzC0(z), and ~d! four-line vertex
2l/4l1

4*dz.
Using these ingredients all physical quantities can be

culated. For example, to the first order of the perturbatio
one has

^C~z!&5C0~z!2
3

lE duC0~u!G~u,u!G~u,z!,

^„C~z!2C0~z!…„C~y!2C0~y!…&

5
1

l
G~z,y!2

3

l2E duG~z,u!G~u,u!G~u,y!.

Here, the symbol̂•••& represents the average over the flu
tuations; the range of the integral overu is ~0, 1!.

A most important feature of the perturbation theory is th
all the calculations can be done in coordinate space. Once
nontrivial ground stateC0 is known, one can get the Green
function ~propagator! G(x,y) from Eq.~18!, and other quan-
tities can be obtained from Eq.~17! by directly taking de-
rivatives with respect to the external source fieldJ. This
scheme can be used in calculating properties of finite-
systems in condensed matter physics for temperatureT
!Tc .

In the next section we will calculate the scaled factor
moments in a second-order quark-hadron phase transitio
an example of the applications of the perturbation theory

FIG. 6. Feynman diagram representations for~a! the ground
state, ~b! the propagator,~c! three-line vertex, and~d! four-line
vertex.
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IV. THE SCALED FACTORIAL MOMENTS IN THE
GINZBURG-LANDAU MODEL

Now we turn to the calculation of the scaled factor
momentsFq in Eq. ~1! in a second-order quark-hadron pha
transition within the Ginzburg-Landau description. In th
description, the free energy functionalF@f# is in place of
the HamiltonianH in last two sections. After integrating ove
the phase angle of the field the functional remains in
same form with a realfR in place of the complexf as
discussed before. Although there are very important diff
ences between normal phase transitions in condensed m
physics and a quark-hadron one, the mathematical form
the Ginzburg-Landau description for them is the same. In
Ginzburg-Landau description for a quark-hadron phase tr
sition, the integral variablez is not in coordinate space bu
represents a collection of measurable quantities such a
pidity, azimuthal angle, etc. In the following,z is identified
to the rapidity. For such a one-dimensional system, the lo
spontaneous symmetry breaking is also given as in Sec. I
generating functional can also be introduced in the same
as in the last section. The only changes are the express
for the parameterl, l1, and l. Here we only mention the
expression forl. In the present case, the correlation length
j5Ac/uau, so l 5LAuau/c. The parameterc has a simple
physical meaning. From the free energy functional one s
that the correlation between fields at different points is re
ized by means of the gradient term. Ifc is small there is weak
correlation between the fields at different points. Thus
effective lengthl can be used to measure the strength of
correlations for fixedL and uau. For a system at fixed tem
peraturec is small if there is weak correlation, and vic
versa. Whenl→`, one may expect that the influence
correlation can be neglected and that the effect of bound
condition can be neglected. In the calculation of the sca
factorial moments, the factorl1 will be cancelled. Sol1 can
be taken to be 1.0 in present calculations. For any param
l the scaled factorial moments can be rewritten from Eq.~1!
as

Fq5 f q / f 1
q , f q5)

i 51

q E
d
dzi

d2

dJ2~zi !

Z@J#

Z@0#
. ~19!

In this expression,*ddz represents an integral over a ran
of length d. In our calculation, the integral range is chos
around the center of the interval~0, 1!, or in other words, in
the range (1/2-d/2,1/21d/2). As discussed in the second

FIG. 7. Connected zero-order diagrams for the contributions
f q . In the diagrams the number of dots is equal toq and an integral
over the coordinate in a range with lengthd is implied. So~a! and
~b! are for f 1, and~c! and~d! are for f q with q dots in the diagrams.
2-7



as

rd

dia-
le
on-

he

C. B. YANG AND X. CAI PHYSICAL REVIEW C 61 014902
last paragraph in Sec. I, the boundary condition for our c
is of Dirichlet type. So the ground stateC0 is given by Eq.
~9! andG(z,y) is calculated from Eq.~18!.

A. Zero order approximation for f q

We first calculate the scaled factorial momentsFq in a
second-order quark-hadron phase transition at the zero o
~or tree-level! approximation to the functional~17!. At
01490
e

er

this level the second factor in Eq.~17! gives a factor 1.0. In
the expressions off q there are contributions fromq-particle
correlations represented diagrammatically by connected
grams in Fig. 7 and the contributions from fewer partic
correlations which can be represented by products of disc
nected diagrams. We denotef q

c the contributions tof q from
connected diagrams which give the contribution from t
pure q-particle correlations tof q . Then the factorial mo-
mentsf q at tree level can be written as
first

d a
the
f 1
tree5 f 1

c ,

f 2
tree5~ f 1

c!21 f 2
c ,

f 3
tree5~ f 1

c!313 f 1
c f 2

c1 f 3
c ,

f 4
tree5~ f 1

c!416~ f 1
c!2f 2

c14 f 1
c f 3

c13~ f 2
c!21 f 4

c , ~20!

f 5
tree5~ f 1

c!5110~ f 1
c!3f 2

c110~ f 1
c!2f 3

c15 f 1
c f 4

c110f 2
c f 3

c1 f 5
c ,

f 6
tree5~ f 1

c!6115~ f 1
c!4f 2

c120~ f 1
c!3f 3

c115~ f 1
c!2f 4

c16 f 1
c f 5

c110~ f 3
c!2115~ f 2

c!3115f 2
c f 4

c160f 1
c f 2

c f 3
c1 f 6

c ,

••• .

For the connected contributions tof q
tree, there are only two topologically different diagrams, as shown in Fig. 7. For the

type of diagram with two crosses representing the ground state, the number of identical terms isNq
152q21q!. The factorq!

comes from the exchange symmetry of theq particles, 2q from the two lines from each point representing a particle, an
factor 1/2 from the identities of terms with reversal order of theq points. For the second type of diagrams with no cross,
number isNq

25Nq
1/q52(q21)(q21)!. To calculate the diagrams, it would be useful to define

gi~z,y!5E
d
dx1dx2•••dxiG~z,x1!G~x1 ,x2!•••G~xi ,y!, ~21!

which satisfies a recursive relation

gi~z,y!5E
d
dugi 21~z,u!G~u,y!5E

d
dzG~z,u!gi 21~u,y!. ~22!

Then the contribution from each connected diagram forf q can be written as

first diagram: S 1

l D q21E
d
dz dyC0~z!gq22~z,y!C0~y!,

second diagram: S 1

l D qE
d
dzgq21~z,z!.

So that

f q
c5

2qq!

lq Fl

2Ed
dzdyC0~z!gq22~z,y!C0~y!1

1

2Ed
dzgq21~z,z!G . ~23!

B. First order approximation for f q

Now we discussf q at the first order~one-loop level! approximation of the second factor in the functional of Eq.~17!. At
this approximation, the factor from the second term of the equation is
2-8



x for the

PERTURBATIVE CALCULATION OF THE SCALED . . . PHYSICAL REVIEW C61 014902
Z1@J#512
1

lE dzH C0~z!F3G~z,z!~GJ!z1
1

l
~GJ!z

3G1
1

4 F3G2~z,z!1
6

l
G~z,z!~GJ!z

21
~GJ!z

4

l2 G J ,

in which (GJ)z[*duG(z,u)J(u). From the functional at this approximation

Z@J#5Z1@J#expS E dzJC0DexpF 1

2lE dzdyJ~z!G~z,y!J~y!G
the factorial momentsf q can be directly calculated by using Eq.~19!. There are many terms contributing tof q , among which
the most interesting terms are those represented by connected diagrams in Fig. 8 with one bulb which is the verte
perturbative interactions. The sum of the contributions from the diagrams tof q will be denoted byf q

loop in this paper. Then up
to the first order approximation of the generating functional, the factorial momentsf q are

f 15 f 1
tree1 f 1

loop,

f 25 f 2
tree12 f 1

treef 1
loop1 f 2

loop,

f 35 f 3
tree13 f 2

treef 1
loop13 f 1

treef 2
loop1 f 3

loop,

f 45 f 4
tree14 f 3

treef 1
loop16 f 2

treef 2
loop1 f 1

treef 3
loop1 f 4

loop, ~24!

f 55 f 5
tree15 f 4

treef 1
loop110f 3

treef 2
loop110f 2

treef 3
loop15 f 1

treef 4
loop1 f 5

loop,

f 65 f 6
tree16 f 5

treef 1
loop115f 4

treef 2
loop120f 3

treef 3
loop115f 2

treef 4
loop16 f 1

treef 5
loop1 f 6

loop,

••• .
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For the perturbative calculation to have high accuracy,
choose the parameterl large enough to guarantee the fo
lowing two conditions:~1! *dzu^C(z)&2C0(z)u, the inte-
gral of absolute deviation of the mean value of the or
parameterC from C0 is not larger than 0.05;~2! uZ@0#
21u is no more than 0.05. These two conditions ensure
contributions from higher order terms from the second-fac
in Eq. ~17! can be safely neglected. So our calculations
limited to only the first order approximation. Of cours
higher order approximation can be made without difficulty
principle, only with more diagrams drawn and evaluated.
numerical calculation,d is chosen for2 ln d in the range
~1,4!.

V. MAIN RESULTS AND DISCUSSIONS

As discussed in the last section, we choose the param
l to be a large number to ensure the small influence of
perturbations. A largel corresponds to a small correlatio
function G(x,y)/l. So in the Ginzburg-Landau model for
second-order phase transition under some choice of the
rameters, there is weak correlation between the fields at
ferent points together with weak self-interactions. Due to
choice of a largel (l151.0) the ground stateC0 ~whose
square is the hadronic density at the state! will play a domi-
nant role in Eq.~17! for large enoughl, and the Gaussian an
higher order fluctuations can only bring about some sm
corrections to the generating functional. Then with t
choice ofl we are dealing with a case with small fluctu
tions. Because of the large value ofl the first term in the
01490
e

r

e
r
e

n

ter
e

a-
if-
e

ll

brackets of Eq.~23! plays an important role if the groun
stateC0 is obviously nonzero for larger parameterl. Since
the powers before the brackets of Eq.~23! will be cancelled,
the order of the ratiosf q

c/( f 1
c)q is l2(q21), thus very small.

f q
loop/( f 1

c)q have the orderl2q, even smaller. Then the scale
factorial momentsFq are very close to 1.0. This expectatio
is confirmed in numerical calculations. Numerical resu
show that lnFq , though very small, have quite complicate
behaviors. They increase for2 ln d within ~1.5, 2.5! and then
decrease with the increase of2 ln d, as shown in Fig. 9 for
parameterl 52.63p. Thus there is no intermittency in th
phase transition. For other choices ofl /p@1 similar results
can be obtained. A more important and more interesting p
nomenon is the power scaling betweenFq and F2 , Fq

}F2
bq, which can be expected from the similar behaviors

ln Fq in Fig. 9 and are shown in Fig. 10 with the same data
in Fig. 9. bq can be obtained easily from a linear fitting
the curves in Fig. 10. As in former studies ofFq in Refs.
@1,2# in the phase transitions,bq satisfies a universal scalin
law

bq5~q21!n, with n51.7539 for l /p52.63,

~25!

as shown in Fig. 11. In this case the universal exponenn
depends only on the value of parameterl which is a function
of parametersuau for the temperature andc for the correla-
tion strength. The dependence of the exponentn on tempera-
ture is consistent with Ref.@6#. But the exponentn is very
2-9
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different from those exponents given in former studies. T
discrepancy is caused from the different assumptions m
in former studies and in the present one. In former stud
the effect of the gradient term is neglected, but thef4 term
~which describes the self-interaction! is emphasized. In thos
studies, the factorial momentsf q can be written as

FIG. 8. Connected first-order diagrams for the contributions
f q for q51, 2, 3, 4, 5, 6, respectively.

FIG. 9. Dependences of the scaled factorial moments lnFq on
the bin width2 ln d from 1.0 to 4.0 for parameterl 52.63p for q
52, 3, 4, 5, and 6.
01490
e
de
s,

f q5E
0

`

dyyq exp~xy2y2!Y E
0

`

dy exp~xy2y2!,

~26!

in which x is a parameter representing the bin width. Fro
this expression one can discover that thef4 term, corre-
sponding to the2y2 term in the exponentials, is very impor

o

FIG. 10. Power scaling betweenFq’s with the same data as in
Fig. 5.

FIG. 11. Universcal scaling betweenbq and (q21) for param-
eter l 52.63p.
2-10
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tant and cannot be treated as perturbation for any param
x. It is the term that makes the integrals finite. In pres
calculations, the role played by thef4 term is much less
important. Its function is to provide a nontrivial ground sta
C0 around which are the fluctuations. Then that term
treated as a small perturbation and is very weak indeed
our choice of parameterl. In former studies the fluctuation
are aroundf050. Then the discrepancy between the pres
study and former ones can be understood because the
long to different physical regimes. Former studies are in
nonperturbative regime with trivial ground state, but t
present study is in the perturbative one with a nontriv
ground state.

The dependence of the universal exponentn on the pa-
rameterl is also studied forl /p.1 in which there exists a
nontrivial ground state. The result is shown in Fig. 12. F
long correlation length (l /p a little larger than 1.0! the fluc-
tuations in neighboring bins are correlated. For thesel the
values ofC0 are also small, so the two terms in the brack
in Eq. ~19! may have comparable contributions tof q . In this
regionn is quite large~about 2!. With the increase ofl the
correlation between the fluctuations in neighboring bins
comes weaker and weaker, and the exponentn decreases firs
rapidly and then slowly. Whenl /p.2.5 n approaches a

FIG. 12. Dependence of the universal exponentn on parameter
l /p.
r.
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constant, about 1.75. The constant can be anticipated by
sidering a case with the very weak correlations among p
ticles more than 2@considering the factor 1/l accompanied
with the Green’s functionG(x,y)#. Then if only the effects
of a weak two-particle correlation are considered, one ha

f q5~ f 1
c!q1Cq

2~ f 1
c!q22f 2

c ,

and then

Fq51.01Cq
2f 2

c/~ f 1
c!2.

Here Cm
n are the binomial coefficients. Since the rat

f 2
c/( f 1

c)2 is assumed to be very small one gets lnFq

.Cq
2f2

c/(f1
c)2, so the linear relation between lnFq’s can be

verified, and one can get

bq5Cq
25q~q21!/2.

From this expression, one gets the exponentn51.7550, very
close to the one obtained in this paper.

As a summary, the spatial correlation of the fluctuatio
in a second-order quark-hadron phase transition is con
ered in this paper within the Ginzburg-Landau descriptio
We deal with a case with finite phase space and with ne
tive coefficient of the Gaussian term in the functional. B
cause of the finite size of the space, calculations in us
space are simpler and more effective. Due to the nega
coefficient of the Gaussian term in the functional a loc
spontaneous symmetry breaking~or nontrivial ground state!
exists for a finite size system. We emphasize the importa
of the ground state of the system, which is a version
spontaneous symmetry breaking for finite-size systems. T
a new perturbation scheme is developed which is expecte
be applicable in the low temperature region in thef4 model
for second-order phase transitions in condensed matter p
ics. Then as an example of the applications, the scaled
torial momentsFq in a second-order quark-hadron pha
transition are calculated perturbatively. Power scaling la
betweenFq’s are shown and a universal exponentn is given.
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