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Model-independent determination of the °C(p,p’)?C* (15.11 MeV, 1+, T=1) transition
amplitude at 200 MeV
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Using data obtained through simultaneous measurements, ﬁf)(spin-transfer observables anﬂ,p’y)
coincident spin observables, we have made a model-independent determination of the complete scattering
amplitude for the 15.11 MeV, 1, T=1 state in'?C at an incident proton energy of 200 MeV, for four proton
scattering angles ranging frof, ,,=5.5°-16.5°. At each angle, 16 different observables were determined,
whereas only 11 independent quantities are required to specify the transition amplitude for this state. It had
been shown previously that the set of observables measured span the allowed space; hence the system is
overdetermined, which allowed us to extract, in a model-independent fashion, each of the individual spin-
operator amplitudes that characterize the reaction. Additional insight into the physical mechanisms that drive
this transition is obtained by mapping out the momentum-transfer dependence of these amplitudes. We also
compare the magnitudes and phases determined for each of the spin-operator amplitudes to the predictions of
calculations performed in both relativistic and nonrelativistic frameworks, and discuss the physics content of
these comparisons.

PACS numbeps): 25.40.Ep, 24.70:s, 25.90+k, 27.20:+n

[. INTRODUCTION between the polarization induced in the outgoing proton and
the scattering yield asymmetry that results from use of a
At intermediate energies of-150-500 MeV, hadron- polarized incident beam, has been investigated both experi-
induced nuclear reactions have served as a rich source aientally[3,4] and theoretically5]. This quantity, which in a
information, both to further our understanding of nuclearnonrelativistic framework contains only interference terms
structure, and to illustrate how the elementary nucleonbetween competing pieces of the transition amplitude, has
nucleon (NN) interaction may be modified in the nuclear been shown to be sensitive to the coupling of the nucleon
medium [1]. This is particularly true of spin observables, Spin to the bound nucleon curreff]. In later relativistic
which often contain contributions from interferences be-treatments of proton-nucleus scatterjgr], it became clear
tween different pieces of the full scattering amplitude. Thesdhat these same nuclear current terms appear more naturally
interferences, inaccessible through measurements of diffel? & relativistic formalism, and are produced through the lin-
ential cross sections alone, can thus provide informatiof" couplings between the upper and lower components of

about not only the magnitudes, but also the relative phases Pe Xogn(; nuclc(ajon wavehfunctlcﬁ,7]. In efnf;]er desicrlpthn, ”
individual terms in the transition amplitude. Ideally, one | y IS dependent on the momentum of the nucleons inside

would like to extract precise values for each of thésem- the nucleus, and is therefore sensitive to the off-shell behav-
plex) terms in a manner which does not rely on specificior of these nucleons, and the nonlocal or exchange nature of

. S SOl the interaction.
model assumptions. This information, in turn, can then pro- . . .

) . ) . L Thus, detailed comparisons of measured spin observable
vide the most stringent tests of a given theoretical IOredICtlor%iata to various predictions for specific nuclear transitions has
for the hadronic process of interest. . P P - .

To obtain deeper insight into the nucleon-nucledsAf traditionally been our best means of constraining _theoretlcal
Enodels. In recent years, though, such comparisons have

Interaction, s_everal inelastic tran5|t|ons_have b_een |d_e nt|_f Iefaised a number of concerns, at both the experimental and
as being particularly amenable to experimental investigation

The strong, isovector "1 state in*°C at an excitation energy theoretical ends. For example, it has been shi@/ that in
of 15.11 MeV has been extensively studied, using a varietf/’1 d|r.ect-only. plgne-wa\iejmpu.lse approximatioRwWIA),
tain combinations off(,p’) spin-transfer observables are

of probes operating under a broad range of kinematic condic€r s U : A "
tions. Due to its T nature, hadronic excitation of this state directly related to individual terms in the effectideN inter-

represents an “unnatural parity” transition; consequently,ction, weighted by corresponding nuclear response func-
this process should be particularly sensitive to the spin{ions- When physical processes such as distortion of the pro-
dependent parts of theA interaction, and in fact has long jectile waves and knock-on exchange are |ncluge£j, however,
served as a critical test for our understanding of @ it becomes less clear what these combinationspef() ob-
=AT=1 component of thé&N effective interactiorf2]. As ~ servables represent physically, thereby blurring any simple
an example, the spin observalite- A, i.e., the difference interpretation of these quantities. On the experimental side,
counting arguments show that even “complete” sets of
(5,5’) spin-transfer measurements provi@g mosj eight
*Present address: Center for Applied Physics Studies, Louisian#dependent pieces of information, while a transition of the
Tech University, Ruston, LA 71272. general form 0 —J7 requires knowledge of (B+3) inde-
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pendent quantities in order to fully specify the scattering Il. FORMALISM

amplitude. . . .
To reduce this ambiguity, it is clearly desirable to estab- The formalism adopted here follows that of Piekarewicz

lish a more direct connection between theory and experiSat al.[10], and has been presented in detail in ReE]; only

ment, such as would be obtained from a model-independer% Z (/nvgrsli ;Irqn?r?erti?tthgesourll;sl 2(r)eor%li\r/12\r:ehser§t;?rz gz?npelztiness.
extraction of individual elements of the scattering amplitude. 9 Y y

In so doing, one bypasses the “intermediate” role played by
spin observables, which represent nontrivial combinations of
many of the;e elements. 'Carryln_g out such a PrograMyherep (p’) is the incident(outgoing proton momentum,
thoughl requires access to information beyond that provide is directed normal to the scattering plame,is along the

by (p,p’) spin-transfer measurements alone. In particulargirection of the average proton momentum, @neglecting
one must probe the polarization state of the “other particle”the reactiorQ value q points in the direction of momentum
involved in the reaction: the recoil nucleus. This can betransferp’_p_ In this frame, the most genera| form of the
achieved through study of the angular correlation in the finakcattering amplitude allowed by angular momentum and par-
state between the scatteréalit-going proton and the par- jty conservation for a 0—1* transition can be written in
ticle(s) emitted in the decay of the excited nucleus, as inthe form[10]

reactions of the typeﬁ,p’y). More specifically, for proton

excitation of a 0 —1" transition, followed by electromag- TP(p,p’)=A,o(2-N)+As(2-N) (o N)+Ag(2-K)

netic decay back to the ground state, it has recently been ) L R L )
proven formally[10,11] that certain p,p’y) measurements, X(o-K)+Akg(2-K)(o-q)+Agk(2-q)(0-K)
when combined with complete sets b, p’) observables, CA (SN0 a 2
allow for a complete description of the transition amplitude. aal >+ @) (- 9), &)
Note that in this case a total 0fJ8&3=11 independent
guantities must be determined.

In this paper, we report the first model-independent deter- $ =[1*M)(0*| 3)
mination of the complete transition amplitude for any M
nuclear final state withl#0. This analysis is based on a
detailed set of measuremeni?] carried out at the Indiana . . -

. . . 2] . . > =, state withJ™=1" and magnetic substaté, while o are the
University Cyclotron Facility(IUCF), in which both @,p’) Pauli spin operators for the projectile. In E@), the A;,’s

spin-transfer andg{,p’ y) coincident observables were deter- are scalar functions of energy and momentum transfer, where
mined simultaneously for excitation of the isovectdr dtate  the subscripts (=n,K,q) and #(=0,,K,q) indicate the

at 15.11 l\fevein '2C. Data were taken atdfour pr)oton scat- polarization components of the recoil” Inucleus §) and
tering angles ¢, ,=5.5°, 8.8°, 12.1°, and 16.5°) at an in- the scattered > _ :

i m. . protoro(, with op=1), respectively. Because
Cident proton beam energy of 200 M?V' As wil b.e ?h.OW” there are six allowed complex amplitudes, 11 pieces of in-
below, this data set allows for extraction of each 'nd'v'dualformation (after eliminating one overall phasare required
(comple>§. spin-dependent term in the transition ampllt.ude Nto specify the scattering amplitude for this transition.

a model-lndepender)t manner. Moreover, beca_use this proce- If the final polarization of the nuclear state is undetected,
dure has been applied at a number of scattering angles, ﬂb?le can sum incoherently over tBeindex. In this case, the

momgntum-transfel(q) dependence Of. each SPIN-Operator oo\ an spin observables can be expressed as
amplitude has been mapped out, allowing for a clearer inter-

pretation of the physical mechanisms that drive this transi-
tion.

This paper will be organized in the following way. In Sec.
Il we present the formalism adoptetrom Ref. [10]) for g
analysis of the data. In Sec. lll, we present the observables o _ * E
measured in the IUCF experimélit2], and express each of dQ, Daﬂ_%}y AiuA},0ij 2Tr{0a%ffﬂ%}, (4)
these in terms of real and imaginary parts of the individual
spin-operator amplitudes. We Qescribe in detail the procewherea, 3=0,,K,q. Using the scattering amplitude of Eq.
dure used to extract these amplitudes from the observables {R) and carrying through the Pauli algebra, it is easily shown

Sec. IV, and pr%sent tge rﬁsgltj of this pro]?er(]:iure in Sec. Vipat only eight of the 16 possible singlgs,f’) spin observ-
Section VI provides a detailed discussion of the momentumz o ihe D.p) are nonzero. Because 11 independent quan-

transfer dependence determined for each amplit{mteh N A .
b plittirte tities appear infP(p,p’), one sees that singles measurements

magnitude and phageand compares our results to predic- | t uniauelv define thi litude. t h
tions of calculations performed in both relativistic and non-&0N€ cannot uniquely detine this amplitude, or, put another

relativistic formalisms. Where possible, we discuss the speway, there is information contained P(p,p’) which is not
cific physics issues to which each amplitude is sensitive. Ouaccessible viaf,p’) observables. In particular, the presence
most significant results and conclusions are summarized im Eq. (4) of the Kroneckers;; makes it impossible to deter-
Sec. VII. mine the relative phase between any two spin operator am-

n=pXxp’, K=p+p’, g=nxK, (N]

where

is the polarization operator for promoting & Gstate to a

do .
d_()p:% AiuAL b
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plitudes (@;,,'s) that correspond to orthogonal orientations of three normal-component spin-transfer coefficieAts, P,

the recoil nuclear polarization. ~ andDyy, and two linear combinations of the in-plane spin
If one makes the assumption that the g’ y) reaction is  iransfer coefficients

strictly a two-step process, then the total transition amplitude

(excitation plus decaycan be written as the product of the D,=D_, sina+Dg  cosa,
strong and electromagnetic amplitudes. In this case, all of the
coincident @,p’y) observables may be written in terms of D,=D, ssina+ Dg sCOSa, (7)

just the singles §,p") spin operator amplitudes;,, and

the y-ray branching ratio to the ground stad 10]. In com-  \yhere herew is the spin precession angle abauexperi-
plete analogy with the singles observallgs. (4)], the spin-  enced by the scattered protons in passing through the mag-
dependent coincident observables for this transition can bgetic spectrometer used in the experiment. Through use of

written in the form|10] Eq. (4), all of these measuredp(p’) observables can be

d2o 3R expressed in terms of th&, amplitudes as follows:
—| % = — . * I %
dede(k) 877 % Al,LLA]'u,tlj(k)l do-
X d_Qp:|An0|2+|Ann|2+|AKK|2+|AKq|2+|AqK|2+|Aqq|21
doc . « 1
- = ARt (K=
dede(k)DalB(k) i%v AI,U.A] thj(k)zTr{o-ao-p.a-Bo-V}l do
(5) d—QpAy= 2[Re(AnoAny) + IM(AAR g+ AgAgy) 1,
wherek is the momentum direction of the emitted photon, do
and the photon polarization tensgy is given by d_Qppzz[Re(AnoA:n)_ |m(AKKA§q+AqKA§q)],
ti(k)=8;—(k-e)(k-g), (6)
: o D=2+ A2~ (A [y
with & a unit vector lying along one of then(K,q) coordi- dQ, NN nn KK Ka
nates defined in Ed1). It is important to emphasize that the AL A2 8
coincident observables defined in Ef) are written in terms |Aqk]* [ Agql* ®
of thesame A,’s that appear in the definitions of the singles d
observables, Eq. 4. The crucial difference between these two
sets of equations is the presencetiqlﬁ) in the definition of do _ do
the coincident observables, replacing g for the singles d_QpD)‘:COSHPK Sin(@— 0. m+ GpK)d—QpDKK

observables. Thus, certaip,p’y) spin observablewill be

sensitive to the relative phases between amplitudes for dif- o

ferent recoil nuclear polarizations, provided that the emitted +cosa—bem+ Op) g~ Dak
p

y ray has momentum components alobgth e and éj.
Thus, the specific information about the transition amplitude
which is lost for the singles observables can be accessed

through coincident;ﬁ,p’ v) measurements.

—sin Ok

) do
Sin(a— Ot apK)m DKq
p

do
+cofa— O, mt 9pK)dT qu},
1. SUMMARY OF OBSERVABLES P
In this paper, we present detailed analysis of the data from o ]
a previous experimeiffl2]. In that work, some spin observ- mDozsmapK
ables were measured using an incident proton beam whose P
polarization vector was normal to tlkorizonta) scattering o
plane, while others required use of a beam in which the +eoga—bem+t 9pK)meK}
polarization vector had been precessed to lie in the scattering P
plane. Due to technical problems encountered during data
acquisition[12], reliable values of the differential cross sec-
tion do/d(),, could not be extracted from the experimental
yields. While this problem had no effect on the determina-
tion of spin-dependent observables, it was necessary to use
previously measured values dio/d(), for this transition
[13] to set the scale for the overall magnitudes of &g  whered, ., is the proton center-of-mass scattering anglg,
amplitudes. In this paper, these amplitudes will be presenteid the angle between the incident beam momenpuand the
in units of \ub/sr. average momentur [see Eq.1)], and « is the spin pre-
The singles observables obtained in R&2] include the  cession angle defined above. The,; spin transfer coeffi-

) do
sin(a— O m+ 0pK)mDKK
P

+C0SsHpk

] do
Sin(a— ¢ m+ apK)W Dkq
p

do
+cofa— O, mt 6pK)dT qu}, (9)
p
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cients that appear in the previous equation can also be ex- We now turn to the spin-dependent coincident observ-

pressed in terms of the spin operator amplitudes as ables which, at a given proton scattering angle will be
functions of the angle,, at which the photon is emitted. If
do D= Anol?= | Anrl 2+ | Akk] 2 [ Ak 2 the photon is emitted in the scattering plane, then the normal-
dQ,, KK 0 nn KK Kq component coincident analyzing power, scaled by the coin-
5 2 cident cross section, can be cast in a form similar to that of
Jr|AqK| _|Aqq| ' Eqg. (1D, i.e.,
dQ —2[Im(A0AR,) — Re(AkAk gt AqkAgy) 1 S—Wdz—a(e )AJ(0,)= €a( 8,) + €(8,)cOS 20
3R dQ,dQ, 7 Y 4
o +ec(6,)sin 20, (13
G0 Dax=2[Im(AnAT,) + Re(AxiA g+ AqrAgy) ], S
P where
g
30 Daa=Anol = [Andl = [Axk|*+| Akl €a=2 Re(AnoARy) +IM(AAL g+ AqrAgg)
P
— | Aqkl2+ ] Agql? (10 €5=IM(AkkAkq~AqrAqq)
For the coincident [§,p’ y) measurements, the incident ec=—IM(AckAGq— AkgAgk) (14)

s o o orenmg  aNddo/d1, 40, s given by Eqs(11) and(12. Nole tha
Ing p W ! NG " with three values measured for the normal-component spin

plane. During verical plaizaton 1nning, e pOON deeymmetycrresponding o the e angles of the phcon
P gp 9 etectory, we have three expressions from which the coeffi-

23;%?@ Vtvv?/lz g:;;d Sd'irﬁcgé,; ZOLZ;he;r?g%%étllfe?ti\S/ZIm cientse,, eg, andec can be determined. Although this in-
roducing the results Ichat would be ogtamed with an ti/n 0verS|on is possible in principle, it is more efficient to use the
P 9 POrheasured asymmetries directly in our fitting procedure to

larized beany the coincident yields from the three in-plane
detectors could be used to extract the in-plane doubledetermme the independent,’s, which we describe in the

next section.
differential cross section, which takes the fof0] With a normally polarized beam, the photon detector di-

87 d2o rectly above the target could measure another piece of the
3R M( 0,)=A(0,)+B(6y)cos20,+C(6p)sin20,, normal-component coincident analyzing power, given by
Y p
(11) d20'

- N * *
whereR is again they-ray branching ratio to the ground dede(n)Ay(n) 2 IM(AckAkat Aarhge) (19
state,d,, is the photon angle in the scattering plane, measured
with respect to thaq direction, andA, B, andC are unknown where
functions of the proton scattering angle. These can be written 2

in terms of amplitudes as n)=|Axk|3+ | Akql?+ | Agkl?+ [Agg®. (16)

dnda,"
1
=|Ano|2+|Annl?+ > [ Akl ?+ [ Aggl?+ [Agel?+Aqgl*, It can be shown algebraically that the ratio of E¢(ES)
and(16) can be expressed in terms of the normal-component
singlesobservables in the form

1
— 2 2 2 2
B_§[|AKK| +|AKq| _lAqK| _|Aqq| ], (P—Ay)

(1-Dnn)

In Ref.[12] this equation was used to demonstrate that the

Ay(n)=— (17

We point out that in this work our definitions & B, andC | S o .
do not include the branching ratio normalization factorindependently measuredp,p’y) coincident and g,p’)
87/(3R), and are therefore different from the definitions SiNgIes observables were internally consistent.

given in Ref.[10]. A more important comment is that, in  Finally, the four remainingi,p’ y) observables were ex-
order to eliminate any sensitivity to detection efficiency intracted from the spin asymmetries measured when the inci-
the photon detectors, only thatios of the symmetric and dent beam polarization had been oriented to lie in the scat-
antisymmetric pieces of the in-plane coincident cross sectiofering plane. These are components of the longitudinal and
B/A andC/A, were used in our determination of the transi- sideways analyzing power®,, (k) and Dyg(k), respec-

tion amplitude. These quantities have the obvious advantagésely. These quantities, which vanish identically for singles
of being independent of any overall normalization error.  measurements, are related to the corresponding center-of-

014601-4



MODEL-INDEPENDENT DETERMINATION OF THE . .. PHYSICAL REVIEW C 61 014601

mass asymmetrieBOK(R) and D, (I2) via a rotation in the mizes any bias that_could _be infcroduced th.rough data ma-
reaction plane through the ang9‘§|<: nipulation (e.g., forming various linear combinations of the

datag prior to the actual fitting. Thus, our approach can be
Do (K) [ cosBp  —sinbpg Dok(K) viewed conceptually as the following: we seek values for the
Dok "\ sing cosd L (18 six complex amplitudeg\;,, contained in Eq(2) that, when
0s(k) PK pk/\ Dog(k) used to form the 16 combinations provided in Sec. Il, mini-
. - - , mize the differences between these combinations and the
with Dok (k) andDog(k) defined by measured values of the corresponding observables. Details of
2 the minimization procedure we followed will be provided in
87 d°o . N . .
— ———(K)D ok (k) the next few paragraphs, but we first point out a few subtle
3R dQ,d(, features unique to this problem. Because the amplitudes are
complex, one can seek values for either their magnitudes and
phases, or for their real and imaginary components. In this

=2[Re(AnoAk) — IM(Aq AR ) Ttai(K)

+2[REAA* ) — Im(A- A* V]t (K), work, we_carried out independent fits_ to both parameter sets,
[RE8An0AqK) (AnnAAgq) Itnq(K) and obtainedas one would hopeequivalent results. How-
87  d2o ever, it became clear that when attempting to resolve various

discrete ambiguities in the fitting results, or invoking argu-
ments of “smoothness”(in momentum transfey use of
_ % % r magnitudes and phases as the fitting parameters was favored.
=2[Re(AnoAkq) T IM(AnnARK) Jthk(K) It v\?as also necepssary to hold oneg ghase fixed during the
* * » fitting, as the observables are insensitive to any uniform shift
2[R Anogg) T IM(AnrAqe) Itng(k)- in all the phases. Becau$&,,| was consistently one of the
(190 largest magnitudes over the entire angular range studied, we
. R chose to defind\,,,, to be real and positive, and thus deter-

The four coefficients of,«(k) andt,q(k) that appear in  mined(in effect the phase of every othé, , relative to that
the above expressiorise., these four combinations of the of A
Ai,'s) can be viewed as independent observables, and were A final choice which required careful thought was the
determined in Refl12] by a fit to the dual sinusoidal depen- selection of appropriate starting values for the parameters to
dence of the measured asymmetries on both the outgoinge fit. To avoid any bias, we noted that the form of the
photon directiork and the orientation of the incident proton singles cross sectiordo/d{), [Eq. (8)], reveals that the
polarization in the scattering plane. Contained in these foumaximum allowed value for the magnitude of any of the
observables are clear sensitivities to the relative phases b#éy;,’s is constrained by
tween terms in the transition amplitude corresponding to pro-
ton and recoil nuclear polarization projections that are nor- [do
mal to, and oriented in, the reaction plane; relative phases Al < a0
which, by virtue of Eq.(4), are inaccessible via singles
(5,5') measurements. Thus, the allowed parameter space for the magnitudes must

be restricted to this range. In our fitting, we therefore as-
IV. MINIMIZATION PROCEDURES signed starting values for ea¢AiM| by using a linear ran-
dom number generator to select a number between zero and

In the set of combinedﬁyﬁ’) and (ﬁp’y) observables this maximum. Similarly, starting values for each phase were
discussed above, we have a total of 16 measured quantitieseitosen at random over the allowed range
each proton scattering angle, which can be used to determine
the 11 independent quantities required to specify the com- O0<di,<2m. (21
plete scattering amplitude. Although it has been shown for- _ i ) )
mally [11] that certain combinations of these observables cafty 10lding ¢n, at zero, then searching the 11-dimensional
provide an analytic solution of this problefsia matrix in-  Parameter space for minima e, we were able to deter-
version, this method of analysis has several disadvantages iflin€ the values for thé;, that were most consistent with
practice. Because only particular linear combinations of th@Ur entire 16-observable data set. _
measured quantities are used, some statistical information is W& now describe the actual fitting procedure in greater
invariably lost in this method. Of more concern is the loss ofd€tail. We begin by defining
any statistical gauge of the quality or internal consistency of
the amplitude extraction procedure; because one will always
obtain an “answer,” the assignment of errors to thg,
amplitudes becomes somewhat ambiguous.

In this work,all of the observables measured at each scatwhereF; are the measured values for the 16 observables, and
tering angle are used as input to a singfe minimization f; are the expressions given in the previous section for these
procedure. This method not only makes use of the full stasame observables in terms of tAg,’s. In this equationW;y
tistical information contained in the data set, but also mini-is the weight matrix, given by

ﬁ dede(k)DOq(k)

(20)
p

16
XZEjél [FJ_fj(AiM)]ij[Fk_fk(Ai”‘)]’ (22
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ij:[é_l]jk. (23) _ 1 192)(2
a=75 |A (30)
, . . . KY2 9,0, o
Here € is the full error matrix associated with the set of
observables. In the absence of any correlations among thgnd
observables, i.e., if each of the observables had been deter-
mined independentlyV;, would be diagonal, with each el- 1 ax?
ement equal to the inverse of the square of the error assigned Bu=~ 2 WM W (32)
0

to each observable

1 The algorithm[14] used to find they? minimum utilizes a
Wi =—;. (24) gradient search in the early stages of the fitting process,
OF] which transforms smoothly into a linearization of the fitting
function as the fit converges. This is achieved by introducing
In this work, howeverWj, has been generalized to include 3 parametex which sets the scale for the size of steps taken
known correlationgoff-diagonal elemenisbetween specific  along the gradient. To do so, the diagonal elements of the

observables, given their method of determinatja@]. For  cyrvature matrixe defined above are modified according to
example, the values obtained for the in-plane coincident

cross-section coefficien®/A and C/A were deduced from ay—a,,=(1+Na,,. (32
the same data set by fitting sinusoidal functions to the mea-
sured photon yields. Thus, the resulting coefficients of the fitJpon inspection of this equation, we note thak i1, then
are highly correlated.
The minimization procedure we employed uses a combi- SA ~ 1 B 33
nation of algorithmg14] to locate the minima of an arbi- BNy, ™"
trary, nonlinear function in an arbitrarily large parameter ) . )
space. The/? function[Eqg. (22)] can be linearized around a and the search is approximately a gradient search. If, on the
minimum valueyj via other handj <1, then

11 5 a ~a (34)

2_ .2 X pooo
X2=x3+ 2, SA . (25)

=1 0A, A K and so the functiony? is (approximately linearized, as de-
scribed in Egs(25) and(26). The algorithm is designed such
In this and following equations, we have simplified our no-that the closex? gets to a minimunidetermined by the size
tation by denoting alf;,, with a single indexa,, represent-  Of the changes in the fitting parameters required to “step
ing either a magnitude or phase. In the above equatigiis ~ across” the minimum the smaller the value aof chosen,

the setof A, values which minimizey?, i.e., their values at and thus a transition from a gradient search to a linearization

x%= x2. Thus, our minimization condition can be defined by °f x* is effected. _
At each scattering angle, a total of 10 000 randomly cho-

2 2 11 2.2 sen sets of thé\ ,'s were used as starting points to this al-
ax°  dx J . # . .

= + E oA ,=0. (26) gorithm. Approximately 95% of the time, the algorithm was

dA, IA =1 A, 0A # P ; .

v viag # vOBulp, successful and converged on a minimum in the multi

dimensionaly? surface. It quickly became clear, however,
Once initial values for theA,’'s are chosen, the parameter that thex? function describing these observables contained
search begins by solving for optimal changes in the parammany local minima, and the fit would often become
eters,5A,,, then generating new values for these parameterstrapped” in these shallower regions, rather than converging
via on the “true” minimum value yZ... (This latter quantity
. was defined as simply the lowest valueydf,, determined in
A=A+ A, (27)  any of the 10000 fit3.As a result, the algorithm was able to
_ _ _ _ locate minima withy2,,,<2x2..only about 10% of the time,
from which point the parameter search can begin again. Thigy, jngication of the complexity of the space being probed.
procedure is repeated until a m|n|mumxﬁ.|s found. _ Nevertheless, this yielded a sample of roughly 1000 sets of
Th_e minimization condition can be written as a matrix amplitudes at each angle which gave reasonably good de-
equation scriptions of all 16 measured observables.
. R The procedures used to extract final values for each spin-
adA=p (28)  operator amplitude will be presented in the next section. For
now, we note that within these 1000 or so acceptable solu-
or tions, themagnitudef the amplitudesA,; ,| were generally
R R found to be very stable, and largely independent of the
SA=a 1B, (29 choice of starting parameters. The values found for the cor-
respondingohasesg; ,, on the other hand, were highly de-
where pendent on the starting parameters, and thus exhibited much
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larger fit-to-fit variations. Based on this, a second round of & 40 T
fitting was undertaken, in which the starting parameters were 7, o ! ! ! =
not chosen at random: in this analysis, the magnitudes were & B e Ann i
. . . . ~ E J
initially set to their best-fit values, as determined from the . 20 — ﬂ -
first round of fitting, while the phases were each stepped § o X - =
through all allowed values in a multidimensional grid search. B 10 = =
Specifically, each phase was assigned a starting value be- N PP PP I P
tween 0 and &/3 in steps ofw/3, with all possible combi- —_
nations used as starting sets. g S L IR IURULE IR IS

As a final check on the robustngss of thg entire fitting ’% 30— A -
procedure, we used a set of theoretical amplitudes Sec. ~ E o KK 3
VI) to generate values for each of the observables that had % 20— —
been measured in Rdfl2], thereby producing a “data set” :E 10 - ﬁ —
comparable to that obtained in the actual measurement. Us- 4 = | | | | 3
ing this “data” as input to our fitting code, we were indeed e
able to reproduce the input amplitudes, i.e., the algorithm EENN—————
could always find the correct solution. Once this had been 3 200 ! | | | —
established, we performed a more realistic test in which the = 100 B— —3
calculated value of ea.ch. observable was randomi;ed with a é 0 §_ — ﬁ = _§
root-mean-square deviatienequal to a typical experimental [ £ E
error bar for that observable. Using this data set, whose sta- é 100 £ 3
tistical precision matched that of the actual measurements, ~ 2007, |, |, & [ o0l 0 73
we were again able to reproduce our input amplitudes, within 25 5.0 7.5 100 125 15.0
acceptable errors. ec.m. (deg)

V. RESULTS OF THE FITTING FIG. 1. Sets of fitted values for the magnitudesAqf, (top) and

) ) Ak (middle), and their relative phase differenébotton), each
After performing 10 000 fits to the data at each scatteringotted vs 6, In each case, different plotting symbols at each
angle, our next step was to try to converge on a unique set Gingle represent the results of different solutions. The symbols have
solutions for theA; ,’'s. At each angle, we first discarded all been displaced slightly in angle fésome clarity.

fits in which the resulting¢® minimum y2,, was more than
twice the lowest value foungZ... For the number of de-
grees of freedom in our fitting function, this provided a con-
fidence level of 85% that the true solution was included
among the 1000 or so fits kept at each ar{dlg]. Among

Akk - Shown in Fig. 1 are the fitted magnitudes and the
relative phase of these two amplitudes, each plotted versus
the center-of-mass scattering anglEor plotting purposes,

these 1000 fits, though, the solutions tended to cluster tightlaII p.hases lie in the range 180°< ¢;, <180 '). Different
around a very small number of regions in parameter spac ,Iottlng symbols at each angle correspond to different sets of

yielding a set of roughly 5-10 distinct solutions for eachSelutions, and have been displaced slightly in angle. The
angle. As mentioned previously, the amplitudes extractedn@gnitudes of bottA,, and Ack are large over the range
from these different solutions were often quite similar in5°<fcm=13° for all valid solutions, and decrease smoothly
magnitude, but showed discretend correlatedvariations in ~ With angle. The phase differencep(,— ¢xx) is close to
phase. zero everywherexceptfor a single solution ap. ,,=8.8°,

To proceed further, i.e., to select from among these fewndicated by a daggered, which is near—180°. If one
distinct sets of solutions, it was necessary to introduce add@ssumes that neithex,, nor Aci passes near zero in this
tional assumptions concerning the angle dependence of tHggion, then this phase, and all other fitted values associated
amplitudes. By imposing the constraint that the amplitudedVith this solution, are almost certainly unphysical. While one
vary slowly and smoothly as a function of momentum trans-could attempt to make this argument more quantitative, e.g.,
fer (as do all the observables described by these amplituded?V fitting the magnitudes of\,, and Ak with simple func-
we were able to eliminate most of the remaining ambiguitiegions that did or did not pass near zero somewhere in this
in the values determined for thg,,’s. We will illustrate this ~ angle range, we feel that even a cursory examination of Fig.
procedure with examples below. Before invoking such argul tends to rule out the possibility of a zero crossing. These
ments, it is important to note that as the magnitude of @rguments will become even strongéhough obviously
complex quantity goes through a minimum, both the ezal ~ SOmewhat more model-dependewtien we compare our re-
the imaginary components must pass close to zero; hence tgglts to a wide range of realistic theoretical predictions for
phase will typically change by roughly 180° as one passeghese quantities, all of which display very smooth variations
through this minimum. Conversely, it is difficult to produce OVer this range of momentum transfer. N
such a large phase shifinlessa magnitude becomes very  Itis interesting to note that the three quantities presented
small. in Fig. 1 largely determine the observalidg,, which in the

We now examine in detail the two amplitudés,, and  directionk-n=k-K=1/2, k-q=0 has the value
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Dog=~Im(An, ¥ ) =|Annl | Akk|SIN drn— drk). (35 In this work, we will consider five different sets of pre-
dictions for the scattering amplitude. To carry out these cal-

Our measured value for this observable, being close to zer§Uations, many details must be specified, such as the method

drives the phase difference to either zero or 180°, but Supl_Jsed to generate the distorting potential, and how well this

plies little additional information to the fit. Constraints on the describes the elastic scattering data, assumptions made re-
magnitudes o\, andAyy , and the resolution of this 180° garding the structure of the excited state, the extent to which

phase ambiguity, must therefore be supplied by other obsepyedium corrections are incorporated into the effective inter-

ables, demonstrating again the advantages of a large, diver%@tion’ the handling of. exchange contri_bultions to the interac-
data set. tion, etc. Here, we will examine predictions for tide,’s

By applying similar arguments to othéx s, we were derived from thesamefive models as those to which the
able to eliminate most of the remaining solution sets, an@Pservablesvere compared in Ref12]. Extensive discus-
sion on the content of each calculation is presented in that

arrive at a nearly ambiguity-free determination of the mag- . X
nitude and phase of each amplitude at all angles. For mo&aPer; and the interested reader is encouraged to refer to Ref.
12] for more detail; only fairly brief descriptions will be

guantities, the few distinct solutions left were sufficiently .
close in value that a simple average could be taken, witrovided here. _
Of the five calculations to be shown, all use free

errors enlarged slightly to reflect the range of solutions in- _ A .
cluded. Exceptions to this behavior occurred onlyéat, t-matrices for the effective interaction, and Cohen-Kurath

—16.5°, where two of the phase differences exhibited two natrix elementg16] to specify the transition to the excited

fold discrete ambiguities that could not be resolved: an interState. Two are relativistic calculations in which both direct

pretation for this will be given in the following section. In all &nd exchange contributions are included expliciilREX)
cases, the final values determined for ¢ magnitudes and [17]. The distorting potential for the incident and outgoing

phases were consistent with those found in the fits whicl'OJ€ctile waves, however, is generated either “self-
yielded the lowest minimum fog?, denoted here bY% t consistently” (the same interaction that induces thé 0
L eS.

+ it i i -

As the final step in our analysis, the values obtained for 21" transition is also folded W.'th th.ézc ground state tran

2 . - sition density to produce the distortionsr from an optical
XbestWere normalized to the number of degrees of freedom in

. ) 2 . . S . potential, with parameters fit tp+1°C elastic scattering
the fit, to yieldx;,, a quantity which statistically should lie cross section and analyzing power data. In all of the figures,

close to unity. In this work, the values for; at fcm.  the predictions of these two calculations will be shown as a
=5.5%, 8.8°, 12.1%, and 16.5° were 0.75, 2.14, 2.17, andgjiqd line (self-consistentand a long-dashed linéoptical
6.47, respectively. Because the fitting function should proypgtentiaj. Two nonrelativistic calculations also include both
vide an accurate description of the dathat is, one isnot  gjrect and exchange contributions explicilpws1) [18],
gauging thze_approprlatfaness of the model in this Xa@e anq also incorporate the effects of distortion using the same
minimum x;, in substantial excess of 1 suggests an underesyo methods, i.e., either self-consistentigotted ling or
timate of the input error for at least part of the fitted data setfrom the same optical potential as was used in the relativistic
To compensate for this, the error determined in the ﬁttingcalculation(dot-dashed line Finally, we will compare our
process for the magnitudes and phases of each oAgfis  values of the scattering amplitudes to those predicted using a
was artificially increased by a factor qf;f This ensures relativistic calculation in which the full interaction has been
that when the extracted amplitudes are used to determinearametrized in terms of direct scattering processely,
best-fit valuegwith errorg for the observables, one will re- with distorted waves generated self-consistentBhort-
produce the measured input data within one standard devialashed ling Although exchange processes are expected to
tion, on average. Thus, we believe that the errors quoted hewntribute significantly to this reaction, this last calculation
for the magnitudes and phases of theg's provide a realistic  appeared to describe tlobservablesneasured for this reac-
estimate of the true uncertainties inherent in the fits to thesgon better than any model in which exchange contributions
data. had been explicitly includedl12]. This would suggest that
most current methods of accounting for exchange processes
are inadequate to describe proton-nucleus scattering at inter-
mediate energies, at least for unnatural parity transitions.
Before making detailed comparisons between data and
It has been shown previousfit2] that the large number theory, there is one ambiguity which must be pointed out.
of spin observables measured for this transition provides &ecause the individual spin-operator amplitudes have dimen-
severe test for any theoretical model. None of the calculasions of \/ub/sP, cross section datil3] were used to pro-
tions presented in Refl12] could describe the momentum vide an overall normalization factor for all spin observables
transfer dependence of all the observables over the entieonsidered in the fitting procedure. This ensures, for ex-
range covered by the data. To determine more preciselgmple, that Eq(8) is obeyed, and the sum of the squared
where weaknesses lie in these models, it is useful to bringmplitudes equals the measured cross section. However, as
experiment “closer” to theory by comparing not the mea- can be seen in Fig. 2, the five calculations considered here do
sured observables, as was done in RE&2] but by compar- not reproduce this cross section. In particular, all of the cal-
ing theoretical predictions for th& , amplitudes with values culations underprediadio/d{(), at small angles, except for
extracted directly from the data, as described here. the DW81 calculation using distortions generated in an opti-

VI. COMPARISON OF AMPLITUDES WITH
CALCULATIONS
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FIG. 2. Differential cross section for th&C(p,p’)*°C* (15.11
MeV) reaction at 200 MeV. The data are from REf3]. The five QC m (deg)
curves shown are described in the text. o
FIG. 3. Magnitude(uppe) and relative phasélower) of the
cal model, which overpredicts the data at small angles, theamplitudeA,, plotted vs the center of mass scattering angle. The
decreases much more rapidly with angle than the data. Thehase difference is with respect to thg, amplitude. The error
DW81 calculation which uses self-consistent distortions, orPands represent best fit solutions to the data of R&fl. The five
the other hand, is a much more shallow function of ang|ecurves shown are theoretical predictions described in the text.
than the data suggest. ) ] ]
In light of these discrepancies, one could consider scalinfeature also seen in the data. The differences among the vari-
all of the calculated magnitud¢AiM| by a single multiplica-  OUS calculations are, in absc_)lute t.erms,. very small. Thus,
tive factor, in order to more closely reproduce the measurediven the level of precision with which this quantity can be
cross section. In this way, one is effectively comparing thedetermmed experimentally, not much use.ful.mformanon can
relative sizes of the spin-operator amplitudes for each modePe obtained from[A,q|, other than confirming the small
to the measured values. This also ensures that the dominapfobability for producing this particular spin configuration.
amplitudes will be well reproduced. On the other hand, thPue to the small size ofA|, the phase differenceyg
differences observed between the predicted and measured®nn. Shown in the lower half of Fig. 3, exhibits a twofold
cross sections might result from particular amplitudespe-  discrete ambiguity at the largest scattering angle. As dis-
cially the larger onesbeing grossly overpredicted or under- cussed earlier, if the magnitude of a complex amplitude
predicted, while the calculated values for others are actuallp@sses near zero, its phase can change by nearly 180°. Our
in close agreement with the experimentally determined valdata suggest tha#t,, passes near zetbas a local minimum
ues. In this case, one is best servednoyapplying an arti- Somewhere around. ,=16.5°, but our measurements can
ficial normalization, and directly comparing data and theorynot establish this unambiguously. We also note that at
for each amp"tude_ Because our primary goa| is to identifysma”er angles the phase difference is r6|atiVE|y ﬂat, in agree-
more narrowly the weaknesses in individual calculations, wénent with all of the calculations, although the values de-
have adopted the latter approach here. The potential dravfluced from the data are significantly more negatibg
back, of course, is that a calculation that is correct in all™~90°) than any of the calculations predict.
respects other than reproducing the measured cross section!n contrast to this weak amplitude, we next exaning,
will systematically misachof the extracted amplitudes by shown in Fig. 4, which is the amplitude for polarizing the
roughly the same factor. recoil nucleus along the direction when the incident proton
~ With the above caveat in mind, we now compare the prejs also polarized along. The data show thd@,,| is large
dictions of Fhese five models for the magnitude and phase Qﬁroughout the angular range studied, and decreases
each amplitude to the values deduced from our fits. Themoothly with increasing momentum transfer. All five calcu-
quantityAno, Shown in Fig. 3, is the amplitude for polarizing |ations predict this general behavior, but differ significantly
the recoil °C nucleus along tha direction(perpendicular to  in strength, relative to the precision with which this quantity
the scattering planewith an unpolarized incident proton. Its has been determined. It is useful to note the striking similari-
magnitude(upper ploj is predicted by each calculation to be ties between this figure and Fig. 2, the unpolarized cross
quite weak over the entire angle range studied in this work, gection. (For a more quantitative comparison, one would
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FIG. 4. Same as Fig. 3, but for the amplituélg, . In our fitting “up 100 — r ]
procedures, the phase of this amplitude was defined to be zero. % E 3
= oF =
need to square the results shown in Fig. dust as for < . ]
do/dQ,, the values ofA,,| at small momentum transfer -100 | — T
are underpredicted slightly by four of the calculations, and E S R
overpredicted by the DW81 calculation which uses optical —RO0E L AL
model distortions. The momentum transfer dependence of 0 5 10 15 20
the data is reasonably well described by the three relativistic
calculations, but is too stegghallow) for the DW81 calcu- ec,m_ (deg)

lations that use optical modédkelf-consistent distortions.

The inabilities of the models to reproduce this particular am-
plitude are thus directly reflected in the discrepancies found

FIG. 6. Same as Fig. 3, but for the amplitudlg, .

between the predictions and measured values for the scattéhe angular dependence of the differential cross section, and

ing cross section.

decreases monotonically with. ,, . In this case, the three

Similar behavior is seen in Fig. 5 for the other large am-relativistic calculationgjuantitativelydescribe this behavior,
plitude, Ak , the amplitude for polarizing the recoil nucleus and agree with the data at all values of momentum transfer.
along the average momentum direction using an incidenfhe two nonrelativistic calculations, on the other hand, do
proton polarized along the same direction. The measuredery poorly, either overpredicting or underpredicting the

magnitude|Axk| (upper plo}, just as|A,,|, closely follows

40 T T T T T T T T T T T T T T T T
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FIG. 5. Same as Fig. 3, but for the amplitudgy .

strength of this amplitude at small angles, and predicting
angle dependences which are either too steep or too shallow,
depending on the method used to generate distortions. Also
shown in Fig. 5 is the phase differengg,,— ¢xx , which is
predicted by all of the calculations to be very close to zero
over this entire angular range. The data support this idea,
albeit with a fairly large statistical uncertainty, suggesting
that the two largest amplitudes contributing to this reaction
are closely matched in phase.

The third “diagonal” amplitude A4, has some intrigu-
ing propertiesA, is the amplitude for polarizing the recoil
12C nucleus along thg (momentum transfédirection, with
the proton also polarized alorgy i.e., this amplitude is as-
sociated with the spin-operator combinatid ) (o -q). In
a meson-exchange formulation dfN scattering[19], the
one-pion exchange amplitude is associated with the spin-
operator ¢1-9)(o2-q), which is very similar. Perhaps of
more significance, in a relativistic PWIAY,, is the only
amplitude that contains contributions from the pseudovector
invariant NN amplitude, which carries the same quantum
numbers as the pion. Because the excitation of the 15.11
MeV state is aAT=1 transition, oner and onep exchange
should dominate the reaction process. The potentialsrfor
and p exchange interfere constructively at very small mo-
mentum transfer, but the one-exchange term changes sign
relative to onep exchange at relatively low momentum
transfer[20], which can lead to large cancellations. Thus, a
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zero crossing in thé,, amplitude may be a direct reflection BT [T
of 7-p interference in the reaction mechanism for this tran- Q'_' C N
sition. — 10 — AK -
Inspection of the extracted values for the magnitude and @ - 4 3
L L _
phase ofA,q, plotted in Fig. 6, clearly indicates that this —Qi 5 e i
amplitude does indeed cross zero somewhere betwggn = C rase N
=5.5° and 12.1°. The magnitudé,|, which exhibits a j' 0: T ==
very differentq dependence than eith@h,,| or |Axk|, is C ]
very well described by all of the relativistic calculations, N T T
which each predict a zero crossing somewhere riear —5
~9°. The data are not described quite as well by the non- — T T
relativistic calculation which uses self-consistently generated 200 — | | | —
distortions, and are in strong disagreement with the other —~ - 3
DW81 calculation. The large experimental uncertainty in the @ 100 - T I T =7
phase difference af.,,=8.8° supports the idea that a zero 2 — 3
crossing occurs near this point. The two relativistic calcula- 3‘ OE/ e
tions which have distortions generated self-consistently de- —100 —
scribe the momentum transfer dependence of both the mag- - .
nitude and phase &, quite well, and thus best describe the —200 — | | | —
physics contained in this amplitude. S —
The last two amplitudes, the off-diagonal terg, and 0 S 10 15 20
Aqk, are also intriguing. Physically, they represent the am- Qc_m_ (deg)

plitudes for polarizing the recot’C nucleus along either the
K or g direction when the proton probe is polarized along
either theq or K direction, respectively. In a nonrelativistic

FIG. 7. Same as Fig. 3, but for the amplitudlg, .

PWIA, these two amplitudes should be identically zero forthis angle range, while the experimentally determined values
this transition, and only become nonzero if nonlocal effectsare seen in Fig. 8 to be quite a bit larger. Only the DWIA
such as knock-on exchange, are explicitly incluf@d In a  calculation using optical model distortions is consistent with
relativistic formulation, on the other hanfyq andAyk in-  the typical strength suggested by the data. Figure 8 also
clude contributions due to linear couplings between the upshows, though, that the limited statistical precision with
per and lower components of the bound nucleon wave funcwhich this amplitude has been determined makes it difficult
tion, even in PWIA. Because the lower components argo draw any conclusions about the momentum transfer de-

momentum dependent, the nucleon is manifestly off-shell,

and non-local effects arise “naturally.” Formall@y, and 15 I R I
Aqk are proportional to the tensor and axial vector pieces of & N T 9
the invariantNN amplitude, respectively. By carrying out the - 10— ]
spin algebrd 6], these can be written in terms of the com- 5 C ]
posite spin-convection current amplitudgsrxJ) and } C I ]
(0-J), again respectively. Thus, these two amplitudes 3 S -z ]
should be sensitive to the off-shell behavior of the nucleons - —
inside the?C nucleus. < 00 [ L I
In Fig. 7, we see that the extracted magnitudeAgf, is C ]
significantly smaller than all of the predicted values, espe- st b b e
cially at small angles. This suggests a quenching of the ten-
sor component of theNN amplitude within the nucleus, Fr T ]
though one cannot tell if this is a nuclear structure or an R00 |— 3
interaction effect. It is very curious that the only relativistic ‘o 100 E_ ]
calculation that doesot include exchanggshort-dashed g r ]
line) also predicts the largest magnitude for an amplitude = 0 b 7
that, at least nonrelativistically, is driven largely by exchange 3‘ c 3
contributions. Unfortunately, little insight is provided by the —100 ]
phase differencegn,— ¢xq. Note, however, that if the F .
phase found at the largest angle is simply shifted by 360°, —200 — —
the general shape of the angular dependence of the phase STNEFI ISR B W
difference is followed reasonably well by three of the calcu- 0 5 10 15 =0
lations, albeit with a~90° offset. 00 m (deg)

In striking contrast, the other off-diagonal amplitudlgy
is predicted to be somewhat smaller thag, over most of
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pendence of this quantity. This limitation is also evident inthat of one-pion exchange, exhibited behavior characteristic
the phase difference, in which a tight clustering about zero i®f a “zero crossing.” The value of momentum transfer at
broken only at the largest angle, where a twofold discretavhich this occurred was again much better matched by the
ambiguity is observed at 16.5°. As was the caseXgy, our  relativistic calculations than the DWIA predictions. This
statistical accuracy is such that we cannot determine expercrossing has physical significance in that it may reflect inter-
mentally whether this amplitude is crossing zero in this anglderence betweem andp exchange, and hence may serve as
regime or not. Two calculations predict amplitudes that, ina gauge of the relative strengths of these two contributions
the complex plane, pass near zero on one side = within the nuclear medium.
+180°), two pass on the other side £80°), and one phase The three off-diagonal amplitudes are all much weaker
remains constant. All of these possibilities are consistenthan the three just discussed, and as such were determined
with one of the allowed solutions extracted from the data. with much larger experimental uncertainties. The magnitude
of the A, amplitude provided little insight, though the phase
VIl. SUMMARY AND CONCLUSIONS was consistentlyi.e., at all anglesoff by about 90° relative
. o to most of the predicted values. The amplitudeg andAqx

We have made a model-lndepend(?nltzdftermlnatlon of thgre expected to be sensitive to the off-shell behavior of the
f“l' transition amplitude for thé“C(p,p’)**C* (15.11 MeV,  pycleons inside thé’C nucleus, and should therefore probe
17, T=1) reaction at an incident beam energy of 200 MeVine non-local or exchange nature of the scattering process.
at four scattering angles. This represents the first such detefyespite the sizable errors on the experimentally determined
mination for any hadron-induced nuclear transition othergjyes for these two amplitudes, neither are described well
than those with J;=J;=0. By imposing only loose py any of the five calculations considered here, which may
“smoothness” constraints on the momentum transfer depenmndicate problems in our present treatment of nonlocal ef-

dence of the individual spin-operator amplitudes, we havgects in both relativistic and nonrelativistic frameworks.
performed a nearly ambiguity-free extraction of these quan-

tities, which has provided deeper insight into the physics
driving this transition. _ _ _ ACKNOWLEDGMENTS

As expected theoretically, the two diagonal spin-operator
amplitudesA,,, andAxx were found to be the dominant am-  We thank those who participated in the experiment from
plitudes over the entire momentum transfer range studiedvhich the observables discussed here were obtained. We also
Each of these was better described by the three calculatiorisank J. Piekarewicz and J. R. Shepard for providing us with
carried out in relativistic frameworks than by the two non-the calculations and for useful discussions. This work was
relativistic calculations we considered. The third diagonalsupported in part by the National Science Foundation under

amplitudeA,q, which has a spin-operator structure similar to Grant No. PHY-9602872.

[1] See, for example, H. Baghaei al, Phys. Rev. Lett69, 2054  [11] G. Ramachandran, A. R. Usha Devi, and A. Sudha Rao, Phys.
(1992, and references therein. Rev. C49, R623(1994.

[2] W. G. Love, A. Klein, and M. A. Franey, idntinucleon- and  [12] S. P. Wellset al, Phys. Rev. (52, 2559(1995.
Nucleon-Nucleus Interactiongdited by G. E. Walker, C. D. [13] J. R. Comfort, R. E. Segel, G. L. Moake, D. W. Miller, and
Goodman, and C. OlméPlenum, New York, 1985 p. 1. W. G. Love, Phys. Rev. @3, 1858(1981).

[3] T. A. Carey, J. M. Moss, S. J. Seestrom-Morris, A. D. Bacher,[14] philip R. Bevington,Data Reduction and Error Analysis for
D. W. Miller, H. Nann, C. Olmer, P. Schwandt, E. J. Stephen- the Physical SciencedcGraw-Hill, New York, 1969.
son, and W. G. Love, Phys. Rev. Let9, 266 (1982. [15] I. N. Bronshtein and K. S. Semendyayéiandbook of Math-

[4] K. H. Hicks et al, Phys. Lett. B201, 29 (1988. ematics(Van Nostrand Reinhold Company, New York, 1985

(5] \e/t\rlw.dGr;eor\(/ei::sdtﬂéiir?omfort’ Phys. Rev.26, 2135(1984), [16] S. Cohen and D. Kurath, Nucl. Phy&3, 1 (1965; T. H. S. Lee

[6] J. Piekarewicz, R. D. Amado, and D. A. Sparrow, Phys. Rev. and D. Kurath, Phys. Rev. 21, 293 (1980. .

C 32, 949(1985. [17] E. Rost and J. R. Shepard, computer codex (unpublisheg

[7] J. R. Shepard, E. Rost, and J. A. McNeil, Phys. Re@30534 E. Rost and J. R. Shepard, Phys. Rev3%681 (1987.

[18] R. Schaeffer and J. Raynal, Saclay Report No. CEA-R4000,

1986.
[8]3 MaMoss Phys. Rev. @6, 727 (1982 1970; modifications by J. R. Comfort.

[9] E. Bleszynski, M. Bleszynski, and C. A. Witten, Phys. Rev. ¢ [19] V. G. J. Stoks, R.A.M. Kompl, M. C. M. Rentmeester, and J. J.

26, 2063(1982. de Swart, Phys. Rev. @8, 792(1993.
[10] J. Piekarewicz, E. Rost, and J. R. Shepard, Phys. Retl,C [20] C. J. Horowitz and J. Piekarewicz, Phys. Rev.5qQ, 2540
2277(1990. (1994.

014601-12



