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We investigate the generic pairing properties of shell-model many-body Hamiltonians drawn from en-
sembles of random two-body matrix elements. Many features of pairing that are commonly attributed to the
interaction are in fact seen in a large part of the ensemble space. Not only do the spectra show evidence of
pairing with favoredJ=0 ground states and an energy gap, but the relationship between ground-state wave
functions of neighboring nuclei shows signatures of pairing as well. Matrix elements of pair creation-
annihilation operators between ground states tend to be strongly enhanced. Furthermore, the same or similar
pair operators connect several ground states along an isotopic chain. This algebraic structure is reminiscent of
the generalized seniority model. Thus pairing may be encoded to a certain extent in the Fock space connec-
tivity of the interacting shell model even without specific features of the interaction required.

PACS numbs(s): 21.60.Cs, 05.36-d, 24.60.Lz, 24.10.Cn

[. INTRODUCTION should be favored in a general ensemble is not clear. It has
been suggested that time-reversal invariance is responsible
Pairing in fermion systems is a ubiquitous phenomenon2], but that symmetry has been found to be unnecegSary
that appears among fermions as diverse as electrons, nucks- any case, energy spectra are only part of the properties
ons, and®*He atoms. In the nuclear shell model this is usuallyaffected by pairing. The term “pairing” implies that the
explained as being due to strong, attractive matrix elementground state can be approximated or modeled by a conden-
of the two-body effective interaction betweefi=0 pair  sate of pairs of fermions coupled, in the interacting shell
states. In the Fermi-liquid model it is explained as a consemodel, to zero angular momentum; that is, the ground state is
quence of the interaction being attractive at certain momenapproximately of the form% , .c,, al maa _)V0). Further-
tum and energy transfers. In this paper we wish to demonmore, under some conditions the matrix elements of pairing
strate that features of pairing arise from a very largeoperators have an algebraic structure, as described by the
ensemble of two-body interactions and, hence, are indepeseniority model and its generalizatiofsee[4]). Along these
dent, to a large extent, from the specific character of thdines, we consider here two signatures that explicitly probe
interaction. Pairing may be favored simply as a consequendde wave functions:
of the two-body nature of the interaction and the way it con- A strong pair-transfer amplitude; that is, there is a large
nects the Fock space wave functions of the noninteractingnatrix element of the pair annihilation operator between the
fermion system. We examine this possibility by numericalground states of the nuclei with—2 andA nucleons;
studies of the many-body system governed by a two-body Considering an isotopic chain of nuclides togetherA
Hamiltonian taken from a random ensemble. We consider-2, A—4, etc., the seniority model and its generalizations
nucleons in a spherical shell-model space for whi¢h0 predict that the same pair annihilation operator that takes one
states have a special significance. We thus take ensemblesfadm the A ground state to thé—2 ground state will also
two-body Hamiltonians that respect angular momentum, butake one from théd—2 to theA—4 ground state, etc.
otherwise are as general as possible. We also consider here an additional energy signature: in
In an earlier papefl], we examined spectral features of an isotopic chain containing both even and dfdhe even
pairing with one such ensemble and found that two signaisotopes have systematically greater binding energies.
tures were present in the preponderance of Hamiltonians: the Besides considering these three additional signatures of
ground state tends to have=0 angular momentum, and pairing, we will examine some other ensembles to see how
there tends to be a gap between that state and the highesbust our results are. The calculations are performed in two
states in the spectrum. We ugdo represent the total angu- shell-model spaces: thes'tI” space consisting of the orbitals
lar momentum of the two-body matrix-elements, ahdo  with angular momentum= 1/2,3/2,5/2 which can accommo-
represent the many-body ground states. Another importardate up to 12 identical particles, and thpf” space which
feature shown if1] was referred to as phonon collectivity. has in addition thg =7/2 shell and accommodates up to 20
Ground states witil=0 had, on the average, rather large identical particles. We use the Glasgow-Los Alarffglsand
matrix elements of a single-nucleon operator with the firstaNTOINE shell-model code$6] to calculate the many-body
excitedJ=2 states. This is a spectral characteristic of pair-wave functions and observables in these shell-model spaces.
ing, but it may occur in other situations as well. Why pairing The Hamiltonian is specified by the single-particle and two-
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particle matrix elements. Except for one ensemble discussddrge shell gaps. For calculations in theéshell we take here
below, we set the single-particle matrix elements to zero. single-particle energies from the Wildenthal interacfitf],

scalinsz 3.84 MeV so as to best match the widths of the
Il. TWO-BODY RANDOM INTERACTIONS two-particle matrix elements. For the shell we use single-
0[[)article energies from the modified KB3 interactidri] and

For the two-body matrix elements, we choose a basis
scaledv=4.43 MeV.

two-body states, labeled by, which has good angular mo-
mentum 7. There are 63 independent two-body matrix ele-
ments in thesd space and 195 in thpf space, including
both neutrons and protons. We define an ensemble of two- lll. RESULTS

particle Hamiltonians requiring that the ensemble be invari-  For the specific calculations, we considered four, six, and
ant under changes in the basis of two-particle states. This caflgnt neutrons in thed space; we label these as the corre-
be achieved by taking the matrix elements to be Gaussiagyonding shell-model system&0, 220, and 2O, respec-
distributed about zero with the widths possibly depending oRjyely; we caution the reader that this labeling can be mis-

J leading as we have deliberately put in as little physics of
5 — those systems as possible. We also considered four, six,
(Voa) =€, (14 84,01)V7, (1) eight, and ten neutrons in thef space:*Ca, °Ca, “éCa,
and ®°Ca. Finally, we included systems with nontrivial iso-
(Vaa'Vpp)=0, (a,a")#(B,B'). spin, considering in thed-shell four protons and four, six,

o and eight neutrons?*2%2§\lg, respectively. In these cases
Herev is an overall energy scale that we generally ignorec ,/—c ;. Thus for the RQEgC 1= (2J+ 1" Y2T+1) L
(except for scaling single-particle energies for the RQE-SPHEor each of these systems, and for each of the ensembles
defined below. The coefficientsc; then define the en- described above, we computed at least 1000 samples.
semble. We emphasize thatrefer to quantum numbers of Spectral signaturesTable | presents the fraction of each
two-bodystates, and not of the final many-body statgpi-  ensemble that yields &=0 ground state for the above sys-
cally 4-10 particles tems. For purposes of comparison, the fraction of the total

We now discuss the choices of ensembles, which may baany-body states that aje=0 andJ=2 states is also given.
specified by the ; coefficients and the single-particle Hamil- If the ground-state spins reflected only the size of ifseib-
tonian, if present. In our earlier work we employed the RQEspace, there would be mode=2 thanJ=0, contrary to our
ensemble defined below, but it is important to examine othefindings.
ensembles to see how robust the results are. The ensemblesThe angular momentum of the first excited state is also
are: interesting. In cases with &=0 ground state, the first ex-

(1) RQE (random quasiparticle interactipnHere c;;  cited state had=2 50-60% of the time; forJ>0, the
=(2J+1)" L. The relation between the, came from im- first excited state is generall=0 or J=2 with other lowJ
posing an additional invariance on the ensemble, that it bpossible as well.
the same for the particle-particle interaction as for the In addition to a predominance &0 ground states, such
particle-hole interactiofil]. The RQE gives a larger variance states are pushed down relative to the rest of the spectrum.
to J=0 matrix elements than to the others. Note that everAn example of two spectra from the RQE-NP ensemble is
though the variance is larger, the matrix elements are botehown in Fig. 1(Ref. [1] shows a similar figure for the
attractive and repulsive, so there is no bias toward pairing bRQE). Note that for spectrum(), theJ=0 ground state is
the traditional mechanism of an attractive two-particle inter-separated from the excited states by an amount large com-
action. pared to the average level spacing, while for the case of a

(2) TBRE (two-body random ensembleHerec ;= const. ~ J>0 ground state, (b), the separation of the ground state
Historically, this was the first two-particle random ensembleand the average level spacing is similar.
to be employed in studying statistical properties of many- This is shown in more detail in Fig. 2. Here we defst®
particle spectrg7-9]. be the spacing between the ground state and the first excited

(3) RQE-NP (random quasiparicle ensemble-no paijing state, scaled by the local level spacibg defined as the
This is the same as the RQE ensemble, excepfald two-  ensemble-averaged spacing between the first and second ex-
body matrix elements are set equal to zero. This ensemblgted states. Because these states in general do not have the
will show clearly whether theg/=0 channel matrix elements same quantum numbers such as tdfane would expect the
are needed at all to produce the signatures of paifiidgs level spacing to be described by a Poisson distribution,
known[4], albeit not widely appreciated, that it is possible to where the probability of finding a spacingis given by
have interactions that are diagonal in seniority without anyP(s)=exp(~</D) [12]. For cases where the ground stdte
explicit 7=0 pairing interactiorn). #0, the Poisson distribution describes the distributiors of

(4) RQE-SPE (random quasiparticle ensemble with extremely well, as one would predict. For those cases where
single-particle energiesAll the previous ensembles had the the ground state i§=0, however, the distribution is much
single-particle energies set to zero. Realistic interactions dbroader. It is somewhat approximated by a Poisson, but with
have nonzero single-particle energies, and these can, in pril> three times larger. We show two cases in Fig. 2. The other
ciple, affect pairing properties, at the very least by creatinghuclides and ensembles yield nearly identical figures. Table
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TABLE |. Percentage of ground states for selected random ensembles thaflh@véor our target
nuclides, as compared to the percentage of all states in the model spaces that have these quantum numbers.
(Statistical error is approximately-13%.) Entries with dashes were not computed.

Nucleus RQE RQE-NP TBRE RQE-SPE J=0 J=2
(total spacg (total spacg
200 68% 50% 50% 49% 11.1% 14.8%
220 72% 68% 71% 77% 9.8% 13.4%
20 66% 51% 55% 78% 11.1% 14.8%
4Ca 70% 46% 41% 70% 5.0% 9.6%
46Ca 76% 59% 56% 74% 3.5% 8.1%
“8Ca 72% 53% 58% 71% 2.9% 7.6%
50ca 65% 45% 51% 61% 2.7% 7.1%
2Mg 66% - 44% 54% 4% 16%
2°Mg 62% 52% 48% 56% 4% 15%
2Mg 59% 46% 44% 54% 4% 16%

Il tabulates the averags) for the various ensembles. For all ergies have a quadratic dependenceApf¥] Eq. (23.20:
cases, @=0 ground state is pushed down averagefactor

of 2.3-3.7 relative to the local level spacing, wherea$ a Egs(A)=a+bA+ CA?, (2
>0 ground state is, within statistics, not pushed down at all.
Similar results hold for the Mg ensembles. We next make a least-squares fit of the selected éven-

The third spectral feature is the well-known even-oddchains to this formula. This is, of course, a fit of three pa-
staggering of ground-state energies. Figures 3 illustrates th@meters to four data points and the description is good. Ex-
real world situation with the experimental neutron removalamples of the deviations about this fit are plotted in Fig. 4.
energiesS,(A)=—E(A)+E(A—1) of calcium isotopes in We then computed the binding energies et 5,7. The de-
the rangeA=45-50. The larger removal energy of the even viations from Eq.(2) for 4"%a are plotted in Fig. 4, scaled
isotopes is associated with their greater binding energy. Weo the local level spacing*Ca exemplifies all the even-
look for evidence of this in our ensemble spectra of pife  cases, which are all very similar, whil€Ca vyields a plot
isotope chain@A=4-10 as follows. We first examined the
even members of the chain, requiring that all ground states 1.0 ' '
haveJ=0. This is satisfied for-42% of the members of the T, (GBRCE e
RQE ensemble; this is a much larger than expected value 2222 Poisson D=
(0.70¥*=0.25 that one would obtain from Table | assuming 010 | — Poisson (D=
that theJ=0 occurrences are uncorrelated. In the general-
ized seniority mode[4], the even-member ground-state en-

1
3

0.01
100 ke : : : :
e, 022 RQE — J=0gs.
N ----J=2¢s.
---- Poisson (D=1)

= 0.10 Poisson (D=3)
o 4
J=0 J=0
J=2 J=3 0.01 | .
J=3 0.0 2.0 4.0 6.0 8.0 10.0
J=3 g.s.gaps
J=2 Jo2
Jed FIG. 2. Distribution of ground-state gaps=E;—E,, in the
J: . spectrum of*®Ca and??0. Energies are scaled to the average local
- level density defined as the inverse level spacing between the first
J=0 and second excited state®,=(E,—E;) (averaged over the en-
J=0 J=2 semblg. The dashed histogram is the distribution for the cases in

which the ground state has nonzero spin, and the dashed curve is
the expected Poisson distribution. B3O we give the distribution

for J=2 ground states; all othér>0 ground states have essentially
FIG. 1. Typical spectra fof?0 with an RQE Hamiltonian(a) identical distributions. The solid histogram shows the caseJfor

(a) (b)

an example with thd=0 ground state(b) an example with thd =0 in the ground state. This is also rather well fitted by a Poisson
#0 ground state. Note the absence of a ground-state gap ih thecurve (solid), but in this case with an average level spacing three
#0 case(Energy scale is arbitrary. times larger.
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TABLE Il. Average gap betweed=0 ground state and first 06 |
excited stategs) scaled by the local level spacirigomputed from ST RQE-NP
the first and second excited statekhe same quantity computed for g
J>0 ground states is between 0.9 and 1.2 for all cases considere(§ 04 -
o
Nucleus RQE RQE-NP TBRE RQE-SPE £ o
o2t
20 27 25 23 2.3 ’_'_,—[‘_‘—L
220 3.2 2.8 2.8 3.4 o R — , ;
0 2.9 25 2.3 37 06
— Ca47
4ca 3.1 2.6 2.4 3.1 - o
“Ca 3.8 3.2 3.0 3.6 § 04
*Ca 3.4 3.0 35 3.5 g
0ca 35 3.0 3.0 34 ]
02
nearly identical to that of‘Ca. Notice that not only are the o0

. . . . -4.0 -2.0 0.0 20 4.0 6.0
odd-particle systems consistently higher in energy, they are deviation of binding energy from quadratic fit

pushed up on average by three times the local level spacing ) )

— which is entirely consistent with the results shown in Fig. ~ FIG- 4. Even-odd staggering effect in the RQE and RQE-NP for

2 and Table Il. Figure 4 also contains results from the?—10 neutrons in thef shell.

RQE-NP ensembles in thef shell. Even with all7=0 ma- .

trix elements set to zero, we find qualitatively similar results. HOW does one determine the? Because the ensembles

The effects are not as dramatic in this case; from Table | on8"€ defined to be invariant on changes of basis, there cannot

would expect all four isotoped*#6485€a to havel=0 _be _a_globally preferred; . In principle, we could dt_ete_rr_nlne

ground states 6.5% of the time, but in fact this occurs 8.4ndividual a; for each ensemble member by maximizifig

+0.8% of the time. from I_Eq. (3). However, the var.|at|onal con_d|t|on is rathgr
Pair-transfer collectivity The spectral and energetic char- cOmPplicated, and we found satisfactory evidence of pairing

acteristics discussed above are not the only signatures GPlectivity with a much simpler ansatz. In analogy to the

pairing; matrix elements of pairing operators are also venPhonen fractional collectivity used ifl], we set

important. In order to test the hypothesis that the ground _

states of these random Hamiltonians can be approximated by @ =(A= 2|Si|A>' )

pair condensates, let us follow the example of generalized

seniority and consider the general pair-annihilation operator Figure 5 presents the distribution of tiig for various
y 9 m P . b nuclides and interaction ensembles. The ensemble denoted
S=2a;S;, where §=2-o(—)"ajnaj_-,m is the pair-

g Il i i . . GOE refers to using two different RQE interactions for fe
annihilation operator for theshell. GivenS the pair-transfer dA—2 ; Co I inimal
amplitude from the ground state with particles toA—2 an A_ wave functions; one would expect a minimaj cor-

articles is(A— 2| S|A). One way to probe the wave function relation between their wave functions and indeed the distri-
P g " yto pr ' . bution of f, is heavily weighted towards zero for all nu-
is thepair-transfer fractional collectivitydefined in analogy

with the phonon fractional collectivity of Ref1]): 60

_ (A-2| S|A>2 _ Ca50/48 —— GOE
PT(A]STSA) @) Zuof — RGE
If the states of the system are condensates ofSheairs, §20
then one expect§,=1. z 20

12 T T T T T T 0.0 —

11 E

10 | i 022/20 —— GOE

9 | i g 40 + —— RQE
v 8 8 %

Tt :

6 | 4 g 2.0

5t 4

4 1 1 1 1 1 1

A 4 46 41 48 49 50 51 0'oo.o 012 014 016 018 1.0
A fractional pairing collectivity

FIG. 3. Experimental neutron separation energies of Ca isotopes FIG. 5. Distribution of fractional pair-transfer collectivify, for
in the rangeA=45-50. selected isotopes and ensembles.
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TABLE lll. Average value of fractional pair-transfer collectivity ]
fpair between nuclides\ and A—2. Realistic denotes Wildenthal R I — ggg 465, T
interaction forsd shell nuclides and KB3 interaction fgrf shell
nuclides. GOE denotes pair-transfer amplitudes between random
wave functions; that isA andA—2 were computed using different 50T

members of the RQE ensemble. D D ﬂ
0.0 T T T T
0 r—

N (arbitrary units)

Nucleus Realistic GOE RQE RQE-NP TBRE RQE-SPE 100l

initial — final g e 2

20 —20 099 025 077 075 078  0.86 £ so |

20 200 0.86 022 065 059 0.62 0.77 5

%ca—%Ca  0.98 0032 057 042 047  0.58 =

“Ca—%Ca 086 0036 051 034 038 053 0.0, 0z 0z 06 oe 10

“Cca—*Ca 094 0.070 048 0.28 0.30 0.48 cose

zng _ing 0.57 026 0.15 0.27 FIG. 6. Distribution of the correlation angleee text for defini-
Mg —"Mg  0.72 039  0.27 0.47 tion) between neighboring pair-transfer amplitudes.

clides. For the cases using the same interaction foAtaed ~ the pf shell, where it is 0.4-0.5. For the Mg isotopes with
A—2 wave functions, however, we get distinctly different the Wildenthal interaction, this factor is 0.7, indicating that
results: a weighting towardé,=1, implying an enhanced the likelihood for the same correlated pair to be transferred
correlation indicative of a pairinglike condensate. All our @long the chain is somewnhat less than the all-neutron case. If
nuclides and ensembles vyield similar plots. The results ar@ll T=0 matrix elements are set to zero, then one recovers
summarized in Table Il in the form of the average fractiona|the factor 0.99 for the correlation. The results for the GOE
pairing. Keep in mind that the distributions for GOE have aand RQE ensembles for O and Ca are plotted in Fig. 6. For
negative slope, while for all other ensembles the slope of théhe GOE case we find a flat distribution — the pair-transfer
distribution is positive.(We also tabulate, for comparison, @mplitudes are uncorrelated, exactly as one would expect.
the exactf, for realistic interactions: the Wildenthal interac- However, for the ensembles of random two-body interac-
tion [10] in the sd shell and modified KBJ11] in the pf  tions, we find for the O and Ca chains a sharp peak at 1,
shell) Thus, in the cases of Ca and O, for all theseindicating a strong correlation. The chaiffMg—?Mg
ensembles—even those with thig=0 pairing matrix ele- — >‘Mg, plotted in Fig. Tb), also shows a peak at 1, which is
ments exp||c|t|y removed—we see an increased enhanced factor of 4 hlgher than the average bin helght In contrast,
number of states with a condensatelike ground state. The Mgie O and Ca peaks are at least a factor of 10 above the
nuclei lie in between the GOE and ensembles of identicafverage bin height. Thus, the pair transferred in the O and Ca
nucleons. This indicates that the proton-neutron interaction
dampens the pairing collectivity present in all-neutron sys- s
tems such as thé® 2“Ca and** %°Ca isotopes. The differ-
ence is likely due to th&=0 interaction.

For interactions that are truly diagonal in generalized se-
niority, one expects theamecondensate to prevail foA
=2,4,6,8... valence nucleonf4]. In the language devel-
oped above, letrj(A) be the coefficients computed frof
and A—2. The{a;(A)} can be thought of as vectors, and

from generalized seniority we expect the vectél(sA) and 0
o*z(AﬂL 2) to be aligned. To test this idea, define the scalar
product &(A)-&(A’)=2ja]-(A)al-(A’), where the states

(a)

'S
T

n
T

N (arbitrary units)

0.2 0.4 0.6 0.8 1
fractional pairing collectivity

and matrix elements are calculated with the same two-body;
Hamiltonian. (One could have different weightings or met- §
rics for this scalar product, such @8j +1 or 1N2j+1, but § | ®
such differences in definition do not change our results. & °
Then plot the distribution of =
|a(A)- a(A+2)] % 02 04 06 08 1
(5) cos @

FIG. 7. Results for Mg isotopesa) Same as Fig. 5, for RQE.
Calculations for the O and Ca isotopes using realistic interfractional pair-transfer collectivity fofMg—2*Mg. (b) Same as
actions[8,9] typically give 0.99 for this correlation factor, Fig. 6, for RQE. Distribution of correlation angle fof*Mg
except at shell closures of tlg, in the sd shell andf;,in —2%Mg and *Mg— *Mg.
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chains is much more likely to be of the same condensatean internal rigidity of the system, this shows that in some
than the pair transferred in the Mg case. The other ensemblegnse the random ensembles describe only Fermi-liquid be-
yield plots similar to that shown for the RQE. Curiously havior. In the spherical shell model, it has been shown that it
enough, for the RQE-NP ensemltfeot shown, we also find is the T=0 part of the nuclear effective interaction acting
a sharp peak at cas=0, as well as at cog=1. between neutrons and protons which gives rise to collective
The analysis described in the previous paragraph onlgpectra like the rotational ones. The effective 0 interac-
considered “nearest-neighbor” transitions. If, however, wetion has a rather strong quadrupole component which breaks
have an approximate generalized seniority, then we expethe seniority coupling scheme.
the pair-transfer amplitude vector to be similar for a whole It is interesting to speculate on the more complex alge-
chain of isotopes. We compare, for the RQE, the correlatiomoraic structures that have been found in nuclear spectros-
for the pair-transfer amplitudes starting froMCa—“Ca  copy. The phenomenologically successful interacting boson
and computing the correlation, not only witfCa—4%Ca,  model is based on collective pair transfer operators in both
but also with “6Ca—*‘Ca. This correlation shows an en- J=0 andJ=2 (quadrupolg¢ angular momenta. It might be
hancement at the value that is similar to the results shown ithat the important physical features could be described very
Fig. 6. Thus we have strong evidence that the pairing consimply, say, by an attractive surface delta interaction. One
densate is not an arbitrary and local feature, but persistwould then look for the rich variety of observed dynamical
along an isobaric chain. symmetries by adding to the physical component a compo-
nent from one of the random ensembles.

IV. CONCLUSIONS
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