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Generalized seniority from random Hamiltonians
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We investigate the generic pairing properties of shell-model many-body Hamiltonians drawn from en-
sembles of random two-body matrix elements. Many features of pairing that are commonly attributed to the
interaction are in fact seen in a large part of the ensemble space. Not only do the spectra show evidence of
pairing with favoredJ50 ground states and an energy gap, but the relationship between ground-state wave
functions of neighboring nuclei shows signatures of pairing as well. Matrix elements of pair creation-
annihilation operators between ground states tend to be strongly enhanced. Furthermore, the same or similar
pair operators connect several ground states along an isotopic chain. This algebraic structure is reminiscent of
the generalized seniority model. Thus pairing may be encoded to a certain extent in the Fock space connec-
tivity of the interacting shell model even without specific features of the interaction required.

PACS number~s!: 21.60.Cs, 05.30.2d, 24.60.Lz, 24.10.Cn
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I. INTRODUCTION

Pairing in fermion systems is a ubiquitous phenomen
that appears among fermions as diverse as electrons, n
ons, and3He atoms. In the nuclear shell model this is usua
explained as being due to strong, attractive matrix eleme
of the two-body effective interaction betweenJ50 pair
states. In the Fermi-liquid model it is explained as a con
quence of the interaction being attractive at certain mom
tum and energy transfers. In this paper we wish to dem
strate that features of pairing arise from a very lar
ensemble of two-body interactions and, hence, are inde
dent, to a large extent, from the specific character of
interaction. Pairing may be favored simply as a conseque
of the two-body nature of the interaction and the way it co
nects the Fock space wave functions of the noninterac
fermion system. We examine this possibility by numeric
studies of the many-body system governed by a two-b
Hamiltonian taken from a random ensemble. We consi
nucleons in a spherical shell-model space for whichJ50
states have a special significance. We thus take ensembl
two-body Hamiltonians that respect angular momentum,
otherwise are as general as possible.

In an earlier paper@1#, we examined spectral features
pairing with one such ensemble and found that two sig
tures were present in the preponderance of Hamiltonians
ground state tends to haveJ50 angular momentum, an
there tends to be a gap between that state and the h
states in the spectrum. We useJ to represent the total angu
lar momentum of the two-body matrix-elements, andJ to
represent the many-body ground states. Another impor
feature shown in@1# was referred to as phonon collectivity
Ground states withJ50 had, on the average, rather lar
matrix elements of a single-nucleon operator with the fi
excitedJ52 states. This is a spectral characteristic of pa
ing, but it may occur in other situations as well. Why pairi
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should be favored in a general ensemble is not clear. It
been suggested that time-reversal invariance is respon
@2#, but that symmetry has been found to be unnecessary@3#.
In any case, energy spectra are only part of the proper
affected by pairing. The term ‘‘pairing’’ implies that th
ground state can be approximated or modeled by a con
sate of pairs of fermions coupled, in the interacting sh
model, to zero angular momentum; that is, the ground sta
approximately of the form ((a,mcaaa,m

† aa,2m
† )Nu0&. Further-

more, under some conditions the matrix elements of pair
operators have an algebraic structure, as described by
seniority model and its generalizations~see@4#!. Along these
lines, we consider here two signatures that explicitly pro
the wave functions:

A strong pair-transfer amplitude; that is, there is a lar
matrix element of the pair annihilation operator between
ground states of the nuclei withA22 andA nucleons;

Considering an isotopic chain of nuclides together,A, A
22, A24, etc., the seniority model and its generalizatio
predict that the same pair annihilation operator that takes
from the A ground state to theA22 ground state will also
take one from theA22 to theA24 ground state, etc.

We also consider here an additional energy signature
an isotopic chain containing both even and oddA, the even
isotopes have systematically greater binding energies.

Besides considering these three additional signature
pairing, we will examine some other ensembles to see h
robust our results are. The calculations are performed in
shell-model spaces: the ‘‘sd’’ space consisting of the orbitals
with angular momentumj 51/2,3/2,5/2 which can accommo
date up to 12 identical particles, and the ‘‘p f ’’ space which
has in addition thej 57/2 shell and accommodates up to 2
identical particles. We use the Glasgow–Los Alamos@5# and
ANTOINE shell-model codes@6# to calculate the many-body
wave functions and observables in these shell-model spa
The Hamiltonian is specified by the single-particle and tw
©1999 The American Physical Society11-1
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particle matrix elements. Except for one ensemble discus
below, we set the single-particle matrix elements to zero

II. TWO-BODY RANDOM INTERACTIONS

For the two-body matrix elements, we choose a basis
two-body states, labeled bya, which has good angular mo
mentumJ. There are 63 independent two-body matrix e
ments in thesd space and 195 in thep f space, including
both neutrons and protons. We define an ensemble of t
particle Hamiltonians requiring that the ensemble be inv
ant under changes in the basis of two-particle states. This
be achieved by taking the matrix elements to be Gaus
distributed about zero with the widths possibly depending
J,

^Va,a8
2 &5cJa

~11da,a8!v̄
2, ~1!

^Va,a8Vb,b8&50, ~a,a8!Þ~b,b8!.

Here v̄ is an overall energy scale that we generally igno
~except for scaling single-particle energies for the RQE-S
defined below!. The coefficientscJ then define the en
semble. We emphasize thatJ refer to quantum numbers o
two-bodystates, and not of the final many-body states~typi-
cally 4–10 particles!.

We now discuss the choices of ensembles, which may
specified by thecJ coefficients and the single-particle Ham
tonian, if present. In our earlier work we employed the RQ
ensemble defined below, but it is important to examine ot
ensembles to see how robust the results are. The ensem
are:

~1! RQE ~random quasiparticle interaction!. Here cJ
5(2J11)21. The relation between thecJ came from im-
posing an additional invariance on the ensemble, that it
the same for the particle-particle interaction as for
particle-hole interaction@1#. The RQE gives a larger varianc
to J50 matrix elements than to the others. Note that ev
though the variance is larger, the matrix elements are b
attractive and repulsive, so there is no bias toward pairing
the traditional mechanism of an attractive two-particle int
action.

~2! TBRE ~two-body random ensemble!. HerecJ5 const.
Historically, this was the first two-particle random ensem
to be employed in studying statistical properties of ma
particle spectra@7–9#.

~3! RQE-NP~random quasiparicle ensemble-no pairin!.
This is the same as the RQE ensemble, except allJ50 two-
body matrix elements are set equal to zero. This ensem
will show clearly whether theJ50 channel matrix element
are needed at all to produce the signatures of pairing.~It is
known@4#, albeit not widely appreciated, that it is possible
have interactions that are diagonal in seniority without a
explicit J50 pairing interaction.!

~4! RQE-SPE ~random quasiparticle ensemble wi
single-particle energies!. All the previous ensembles had th
single-particle energies set to zero. Realistic interactions
have nonzero single-particle energies, and these can, in
ciple, affect pairing properties, at the very least by creat
01431
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large shell gaps. For calculations in thesdshell we take here
single-particle energies from the Wildenthal interaction@10#,
scaling v̄53.84 MeV so as to best match the widths of t
two-particle matrix elements. For thepf shell we use single-
particle energies from the modified KB3 interaction@11# and
scaledv̄54.43 MeV.

III. RESULTS

For the specific calculations, we considered four, six, a
eight neutrons in thesd space; we label these as the corr
sponding shell-model systems,20O, 22O, and 24O, respec-
tively; we caution the reader that this labeling can be m
leading as we have deliberately put in as little physics
those systems as possible. We also considered four,
eight, and ten neutrons in thep f space:44Ca, 46Ca, 48Ca,
and 50Ca. Finally, we included systems with nontrivial iso
spin, considering in thesd-shell four protons and four, six
and eight neutrons:24,26,28Mg, respectively. In these case
cJ→cJT . Thus for the RQE,cJT5(2J11)21(2T11)21.
For each of these systems, and for each of the ensem
described above, we computed at least 1000 samples.

Spectral signatures. Table I presents the fraction of eac
ensemble that yields aJ50 ground state for the above sy
tems. For purposes of comparison, the fraction of the to
many-body states that areJ50 andJ52 states is also given
If the ground-state spins reflected only the size of theJ sub-
space, there would be moreJ52 thanJ50, contrary to our
findings.

The angular momentum of the first excited state is a
interesting. In cases with aJ50 ground state, the first ex
cited state hasJ52 50260 % of the time; forJ.0, the
first excited state is generallyJ50 or J52 with other lowJ
possible as well.

In addition to a predominance ofJ50 ground states, such
states are pushed down relative to the rest of the spect
An example of two spectra from the RQE-NP ensemble
shown in Fig. 1~Ref. @1# shows a similar figure for the
RQE!. Note that for spectrum 1~a!, theJ50 ground state is
separated from the excited states by an amount large c
pared to the average level spacing, while for the case o
J.0 ground state, 1~b!, the separation of the ground sta
and the average level spacing is similar.

This is shown in more detail in Fig. 2. Here we defines to
be the spacing between the ground state and the first ex
state, scaled by the local level spacingD, defined as the
ensemble-averaged spacing between the first and secon
cited states. Because these states in general do not hav
same quantum numbers such as totalJ, one would expect the
level spacing to be described by a Poisson distributi
where the probability of finding a spacings is given by
P(s)5exp(2s/D) @12#. For cases where the ground stateJ
Þ0, the Poisson distribution describes the distribution os
extremely well, as one would predict. For those cases wh
the ground state isJ50, however, the distribution is muc
broader. It is somewhat approximated by a Poisson, but w
D three times larger. We show two cases in Fig. 2. The ot
nuclides and ensembles yield nearly identical figures. Ta
1-2
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TABLE I. Percentage of ground states for selected random ensembles that haveJ50 for our target
nuclides, as compared to the percentage of all states in the model spaces that have these quantum
~Statistical error is approximately 123%.! Entries with dashes were not computed.

Nucleus RQE RQE-NP TBRE RQE-SPE J50 J52
~total space! ~total space!

20O 68% 50% 50% 49% 11.1% 14.8%
22O 72% 68% 71% 77% 9.8% 13.4%
24O 66% 51% 55% 78% 11.1% 14.8%
44Ca 70% 46% 41% 70% 5.0% 9.6%
46Ca 76% 59% 56% 74% 3.5% 8.1%
48Ca 72% 53% 58% 71% 2.9% 7.6%
50Ca 65% 45% 51% 61% 2.7% 7.1%
24Mg 66% – 44% 54% 4% 16%
26Mg 62% 52% 48% 56% 4% 15%
28Mg 59% 46% 44% 54% 4% 16%
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II tabulates the averagês& for the various ensembles. For a
cases, aJ50 ground state is pushed down anaveragefactor
of 2.3–3.7 relative to the local level spacing, whereasJ
.0 ground state is, within statistics, not pushed down at
Similar results hold for the Mg ensembles.

The third spectral feature is the well-known even-o
staggering of ground-state energies. Figures 3 illustrates
real world situation with the experimental neutron remo
energiesSn(A)52E(A)1E(A21) of calcium isotopes in
the rangeA545250. The larger removal energy of the eve
isotopes is associated with their greater binding energy.
look for evidence of this in our ensemble spectra of thep f
isotope chainsA54210 as follows. We first examined th
even members of the chain, requiring that all ground sta
haveJ50. This is satisfied for;42% of the members of the
RQE ensemble; this is a much larger than expected v
(0.70)450.25 that one would obtain from Table I assumi
that theJ50 occurrences are uncorrelated. In the gene
ized seniority model@4#, the even-member ground-state e

FIG. 1. Typical spectra for22O with an RQE Hamiltonian:~a!
an example with theJ50 ground state;~b! an example with theJ
Þ0 ground state. Note the absence of a ground-state gap in tJ
Þ0 case.~Energy scale is arbitrary.!
01431
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ergies have a quadratic dependence onA, @4# Eq. ~23.20!:

Egs~A!5a1bA1cA2. ~2!

We next make a least-squares fit of the selected eveA
chains to this formula. This is, of course, a fit of three p
rameters to four data points and the description is good.
amples of the deviations about this fit are plotted in Fig.
We then computed the binding energies forn55,7. The de-
viations from Eq.~2! for 47,48Ca are plotted in Fig. 4, scale
to the local level spacing:48Ca exemplifies all the even-n
cases, which are all very similar, while45Ca yields a plot

FIG. 2. Distribution of ground-state gaps,s5E12E0, in the
spectrum of48Ca and22O. Energies are scaled to the average lo
level density defined as the inverse level spacing between the
and second excited states,D5^E22E1& ~averaged over the en
semble!. The dashed histogram is the distribution for the cases
which the ground state has nonzero spin, and the dashed cur
the expected Poisson distribution. For22O we give the distribution
for J52 ground states; all otherJ.0 ground states have essential
identical distributions. The solid histogram shows the case foJ
50 in the ground state. This is also rather well fitted by a Pois
curve ~solid!, but in this case with an average level spacing th
times larger.
1-3
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nearly identical to that of47Ca. Notice that not only are th
odd-particle systems consistently higher in energy, they
pushed up on average by three times the local level spa
— which is entirely consistent with the results shown in F
2 and Table II. Figure 4 also contains results from t
RQE-NP ensembles in thep f shell. Even with allJ50 ma-
trix elements set to zero, we find qualitatively similar resu
The effects are not as dramatic in this case; from Table I
would expect all four isotopes44,46,48,50Ca to haveJ50
ground states 6.5% of the time, but in fact this occurs
60.8% of the time.

Pair-transfer collectivity.The spectral and energetic cha
acteristics discussed above are not the only signature
pairing; matrix elements of pairing operators are also v
important. In order to test the hypothesis that the grou
states of these random Hamiltonians can be approximate
pair condensates, let us follow the example of generali
seniority and consider the general pair-annihilation opera
S5( ja jSj , where Sj5(m.0(2)majmaj 2m is the pair-
annihilation operator for thej shell. GivenS, the pair-transfer
amplitude from the ground state withA particles toA22
particles iŝ A22uSuA&. One way to probe the wave functio
is thepair-transfer fractional collectivity~defined in analogy
with the phonon fractional collectivity of Ref.@1#!:

f p5
^A22uSuA&2

^AuS†SuA&
. ~3!

If the states of the system are condensates of theS† pairs,
then one expectsf p51.

TABLE II. Average gap betweenJ50 ground state and firs
excited stateŝs& scaled by the local level spacing~computed from
the first and second excited states!. The same quantity computed fo
J.0 ground states is between 0.9 and 1.2 for all cases consid

Nucleus RQE RQE-NP TBRE RQE-SPE

20O 2.7 2.5 2.3 2.3
22O 3.2 2.8 2.8 3.4
24lO 2.9 2.5 2.3 3.7
44Ca 3.1 2.6 2.4 3.1
46Ca 3.8 3.2 3.0 3.6
48Ca 3.4 3.0 3.5 3.5
50Ca 3.5 3.0 3.0 3.4

FIG. 3. Experimental neutron separation energies of Ca isoto
in the rangeA545250.
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How does one determine thea j? Because the ensemble
are defined to be invariant on changes of basis, there ca
be a globally preferreda j . In principle, we could determine
individual a j for each ensemble member by maximizingf p
from Eq. ~3!. However, the variational condition is rathe
complicated, and we found satisfactory evidence of pair
collectivity with a much simpler ansatz. In analogy to th
phonon fractional collectivity used in@1#, we set

a j5^A22uSj uA&. ~4!

Figure 5 presents the distribution of thef p for various
nuclides and interaction ensembles. The ensemble den
GOE refers to using two different RQE interactions for theA
andA22 wave functions; one would expect a minimal co
relation between their wave functions and indeed the dis
bution of f p is heavily weighted towards zero for all nu

ed.

es

FIG. 4. Even-odd staggering effect in the RQE and RQE-NP
4–10 neutrons in thep f shell.

FIG. 5. Distribution of fractional pair-transfer collectivityf p for
selected isotopes and ensembles.
1-4
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GENERALIZED SENIORITY FROM RANDOM HAMILTONIANS PHYSICAL REVIEW C61 014311
clides. For the cases using the same interaction for theA and
A22 wave functions, however, we get distinctly differe
results: a weighting towardsf p51, implying an enhanced
correlation indicative of a pairinglike condensate. All o
nuclides and ensembles yield similar plots. The results
summarized in Table III in the form of the average fraction
pairing. Keep in mind that the distributions for GOE have
negative slope, while for all other ensembles the slope of
distribution is positive.~We also tabulate, for comparison
the exactf p for realistic interactions: the Wildenthal intera
tion @10# in the sd shell and modified KB3@11# in the p f
shell.! Thus, in the cases of Ca and O, for all the
ensembles—even those with theJ50 pairing matrix ele-
ments explicitly removed—we see an increased enhan
number of states with a condensatelike ground state. The
nuclei lie in between the GOE and ensembles of ident
nucleons. This indicates that the proton-neutron interac
dampens the pairing collectivity present in all-neutron s
tems such as the20224Ca and44250Ca isotopes. The differ-
ence is likely due to theT50 interaction.

For interactions that are truly diagonal in generalized
niority, one expects thesamecondensate to prevail forA
52,4,6,8, . . . valence nucleons@4#. In the language devel
oped above, leta j (A) be the coefficients computed fromA
and A22. The $a j (A)% can be thought of as vectors, an
from generalized seniority we expect the vectorsaW (A) and
aW (A12) to be aligned. To test this idea, define the sca
product aW (A)•aW (A8)5( ja j (A)a j (A8), where the states
and matrix elements are calculated with the same two-b
Hamiltonian.~One could have different weightings or me
rics for this scalar product, such asA2 j 11 or 1/A2 j 11, but
such differences in definition do not change our resul!
Then plot the distribution of

cosu5
uaW ~A!•aW ~A12!u
ua~A!uua~A12!u

. ~5!

Calculations for the O and Ca isotopes using realistic in
actions@8,9# typically give 0.99 for this correlation factor
except at shell closures of thed5/2 in the sd shell andf 7/2 in

TABLE III. Average value of fractional pair-transfer collectivit
f pair between nuclidesA and A22. Realistic denotes Wildentha
interaction forsd shell nuclides and KB3 interaction forp f shell
nuclides. GOE denotes pair-transfer amplitudes between ran
wave functions; that is,A andA22 were computed using differen
members of the RQE ensemble.

Nucleus Realistic GOE RQE RQE-NP TBRE RQE-S
initial→ final

24O →22O 0.99 0.25 0.77 0.75 0.78 0.86
22O →20O 0.86 0.22 0.65 0.59 0.62 0.77
50Ca→48Ca 0.98 0.032 0.57 0.42 0.47 0.58
48Ca→46Ca 0.86 0.036 0.51 0.34 0.38 0.53
46Ca→44Ca 0.94 0.070 0.48 0.28 0.30 0.48
28Mg →26Mg 0.57 0.26 0.15 0.27
26Mg →24Mg 0.72 0.39 0.27 0.47
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the p f shell, where it is 0.4–0.5. For the Mg isotopes wi
the Wildenthal interaction, this factor is 0.7, indicating th
the likelihood for the same correlated pair to be transfer
along the chain is somewhat less than the all-neutron cas
all T50 matrix elements are set to zero, then one recov
the factor 0.99 for the correlation. The results for the GO
and RQE ensembles for O and Ca are plotted in Fig. 6.
the GOE case we find a flat distribution — the pair-trans
amplitudes are uncorrelated, exactly as one would exp
However, for the ensembles of random two-body inter
tions, we find for the O and Ca chains a sharp peak a
indicating a strong correlation. The chain28Mg→26Mg
→24Mg, plotted in Fig. 7~b!, also shows a peak at 1, which
a factor of 4 higher than the average bin height. In contr
the O and Ca peaks are at least a factor of 10 above
average bin height. Thus, the pair transferred in the O and

m

FIG. 6. Distribution of the correlation angle~see text for defini-
tion! between neighboring pair-transfer amplitudes.

FIG. 7. Results for Mg isotopes.~a! Same as Fig. 5, for RQE
Fractional pair-transfer collectivity for26Mg→24Mg. ~b! Same as
Fig. 6, for RQE. Distribution of correlation angle for28Mg
→26Mg and 26Mg→24Mg.
1-5
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chains is much more likely to be of the same condens
than the pair transferred in the Mg case. The other ensem
yield plots similar to that shown for the RQE. Curious
enough, for the RQE-NP ensemble~not shown!, we also find
a sharp peak at cosu50, as well as at cosu51.

The analysis described in the previous paragraph o
considered ‘‘nearest-neighbor’’ transitions. If, however, w
have an approximate generalized seniority, then we ex
the pair-transfer amplitude vector to be similar for a who
chain of isotopes. We compare, for the RQE, the correla
for the pair-transfer amplitudes starting from50Ca→48Ca
and computing the correlation, not only with48Ca→46Ca,
but also with 46Ca→44Ca. This correlation shows an en
hancement at the value that is similar to the results show
Fig. 6. Thus we have strong evidence that the pairing c
densate is not an arbitrary and local feature, but pers
along an isobaric chain.

IV. CONCLUSIONS

We have considered several random ensembles of
body Hamiltonians in the framework of the shell model. B
examining the statistical properties of the low-lying spect
as well as pair-transfer amplitudes, we find pairing behav
occurs frequently in our ensembles of two-body interactio
Thus, pairing is a robust feature of two-body Hamiltonia
There seems to be a large class of two-body interact
leading to pairing which is much wider than the attracti
interactions usually considered.

Besides pairing, there are other features of nuclear spe
that often occur and can give rise to algebraic structures.
most prominent example, rotational bands, is not favore
all by random Hamiltonians. Since a rotational band impl
e

v.
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an internal rigidity of the system, this shows that in som
sense the random ensembles describe only Fermi-liquid
havior. In the spherical shell model, it has been shown tha
is the T50 part of the nuclear effective interaction actin
between neutrons and protons which gives rise to collec
spectra like the rotational ones. The effectiveT50 interac-
tion has a rather strong quadrupole component which bre
the seniority coupling scheme.

It is interesting to speculate on the more complex al
braic structures that have been found in nuclear spect
copy. The phenomenologically successful interacting bo
model is based on collective pair transfer operators in b
J50 andJ52 ~quadrupole! angular momenta. It might be
that the important physical features could be described v
simply, say, by an attractive surface delta interaction. O
would then look for the rich variety of observed dynamic
symmetries by adding to the physical component a com
nent from one of the random ensembles.
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