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Order parameter of a single event
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An order parameter of a single event is introduced. Its advantage in describing dynamic fluctuations of a
single event is demonstrated.@S0556-2813~99!01411-9#
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With the increase of incident energy and number of nuc
ons in relativistic heavy ion collisions, the number of fin
state particles in an event becomes very large. A recent re
from NA49 @1# shows about 1000 charged particles in
interval of c.m. rapidityuyu<1 at the Super Proton Synchro
tron ~SPS! Pb beam of 160 GeV per nucleon. This number
expected to be even larger, by factors of about 4 at the R
tivistic Heavy Ion Collider and of about 15 at the Larg
Hadron Collider. For such a high multiplicity event, the d
namic fluctuation analysis of the single event comes true

For a low multiplicity sample, there are large statistic
fluctuations in an event. The analysis can only be done un
the average of the whole event sample, where the dyna
fluctuation strength~intermittency indices@2# or multifractal
dimensions@3#! is the average strength of whole samp
Bialas and Ziaja were the first to study the intermitten
indices of individual events@4#. In addition to the statistica
noise due to insufficient number of particles in an event,
dynamic analysis of single events usually still fluctua
from event to event due to the finite resolution of experim
tal measurement. The width of this fluctuation depends
the quantity used in the analysis. In this paper, we introd
an order parameter of single event which has the most
row distribution width in all known indices commonly use
in characterization of the dynamic fluctuations.

It is well known that the order parameter in thermod
namics is thermal entropy. For multiparticle final state
perfectly ordered distribution means that all particles fall
the same position of phase space while a completely di
dered distribution is all particles falling in all possible pos
tions with equal possibilities. In the description of this sy
tem the thermal entropy has been generalized to informa
entropy@5#:

S52(
i 51

M

pi ln pi , ~1!

wherepi is the probability of particles appearing in thei th
cell. If the numberN of particles produced in a single eve
is large enough, the probability of particles falling in thei th
cell can be approximately written as
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whereni is the number of particles falling in thei th cell. @In
the following we will call the approximation using Eq.~2!
the particle-number-ratio~PNR! approximation. The lower
limit of N for the validity of this approximation will be dis-
cussed later.# If the probability in each cell is equal, th
information entropy reaches its maximum value:Smax

52(i51
M (1/M )ln(1/M )5 ln M, where M is the number of

subdivisions. If all the particles fall into a special cell and
the other cells are empty, the information entropy goes to
minimum value:Smin50. Generally, the value of information
entropy is lying in the region 0<S< ln M. If Sapproaches to
its maximum valueSmax, the corresponding distribution o
final state particles in phase space is more uniform,
smooth. In contrast, ifSapproaches its minimum valueSmin ,
the distribution is of more order, fluctuating strongly fro
cell to cell. So information entropy of final-state particl
distribution describes the order degree of this distribution

It is clear from the above discussion that the maximu
value of entropy is determined by the total number of
subdivisions. If we compare the entropy of particle distrib
tion in a different event, we have to fix to the same interv
with exactly the same division pattern. Otherwise, its value
incomparable. In fact, information dimension of entro
which is independent of special subdivision pattern@6# has
been introduced:

DI5 lim
M→`

S

ln M
. ~3!

This is the speed of the variation of information entropy w
the increasing of division number. It does not depend on
size of bin anymore. Its value is located in the region@0,1#.
DI50 means that the order degree of system does
change with scale. It can only happen when all particles
into the same place of phase space. On the other hand
larger the value ofDI is, the smoother of particle distributio
in phase space is.

To show the applicability of information dimensionDI in
dynamic analysis of a single event, we used the Monte C
simulation of a random cascadinga model as a demonstra
tion. In the model, theM division of rapidity intervalDY is
given out byn steps. At the first step, it is divided into tw
equal parts; at the second step, each part in the first ste
©1999 The American Physical Society03-1
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further divided into two equal parts, and so on. The steps
repeated untilM5(DY/dy)52n. How particles are distrib-
uted from step-to-step among the two parts of a given ra
ity interval is defined by independent random variablevn j n

,

where,j n is the position of window (1< j n<2n) andn is the
number of steps. It is given by

vn,2j 215
1

2
~11ar !, vn,2j5

1

2
~12ar !,

where r is a random number distributing uniformly i
@21,1#. a is a positive number less than unity, which dete
mines the region of random variablev and describes the
strength of dynamic fluctuations in the model. Aftern steps,
the probability in mth window is pm5v1 j 1

v2 j 2
,...,vn j n

.
Then according to Eq.~1!, the information entropy in each
division step is calculated. The slope of the lineS vs lnM is
the information dimension which is a single-valued functi
of fluctuation strengtha.

We simulated 1 000 000 events by using the above mo
The average information dimension^DI& of all events vs the
fluctuation parametera is given in Fig. 1. In each event, th
generation of cascading is up ton56 and the information
dimension is the results from fittingn51 to n56. It can be
seen from the figure that, whena goes from 0 to 1, the
corresponding average information dimension changes
from 1 to about 0.7. In particular, whena is small, or a
<0.5, the value of̂ DI& varies very slowly witha, i.e., ^DI&
is insensitive toa. So we try to find a single value functio
of DI which has a larger region corresponding to the cha
of a. The relation between̂DI& anda can be well fitted by
the function^DI&512a2/4. If we define the order param
eter as

DO52A12DI , ~4!

thenDO has almost the same region asa, cf. Fig. 2. More-
over, no matter what kind of model it is, in general,dDO

5(1/A12DI)dDI , where factor (1/A12DI).1. This
means that for a small variation ofa, DO always has greate
variation, or in other words,DO is more sensitive to the

FIG. 1. Relation between average information dimension anda.
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variation ofa thanDI . So in comparison withDI , DO is a
better quantity in describing the order degree of a sin
event.

In the ideal case, the generation of a random cascad
model should be high enough so that the division num
M→` or d→0. However, as we know, due to the finit
resolution of experimental measurement, a physical quan
cannot be measured in infinitely small cell, or exactlyd
→0. In present experiments, the available values ofM usu-
ally equal 40–60 corresponding ton55 – 6 in our model.
This makes the order parameter of single eventDO scatter
around its average value. In order to estimate the influenc
this factor inDO measurement, the relative standard dev
tion of DO , i.e.,s(DO)/^DO&, vsa is shown in Fig. 3. With
the increase ofa, s(DO)/^DO& has a small increase, but it
value is much smaller than unity. Especially, for smalla
~e.g.,a<0.6!, where most present high energy experime
reached, this value is less than 0.1. So for very high mu
plicity events, we need not average the order parameter
the whole sample.DO itself is a good quantity in describing
dynamic fluctuation of final state particles in its phase spa

To compare the influence of finite experimental resolut
in all known indices, we also calculate other dimensions
der thea model. In multifractal theory, information dimen

FIG. 2. Relation between average order parameter anda.

FIG. 3. Relation between relative standard deviation of or
parameter anda.
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BRIEF REPORTS PHYSICAL REVIEW C 60 067603
sionDI corresponds toD1 . In Table I, the average multifrac
tal dimensionsD1 , D2 , and D3, and their dispersions ar
given. They are undera50.1,0.3,0.7,0.9, and the generatio
of cascading goes up ton55,6,7,8,9,10, respectively. Th
results show that the lowest order dimension^D1& has the
smallest standard deviation in all cases. For large dyna
fluctuation or largea, this advantage ofD1 becomes more
obvious. The reason is because the moment of probab
deviates from its average value when the model is casca
to finite generation, and this deviation is enlarged by
higher order of moment. So the information dimension
superior to other dynamic indices in single event investi
tion.

All of the above calculations, of the information dime
sion as well as the other multifractal dimensions are ba
directly on the dynamical probabilitiespi obtained from the
model. In reality, what can be measured in the experimen
only the distribution of particles in the phase space. The
fore, the particle-number-ratio approximation of Eq.~2! has
to be used. Now, we turn to estimate the lower limit of m
tiplicity for the validity of this approximation.

For this purpose the statistical fluctuation of multiplici
is added to the above-mentioned random cascading mod
Bernoulli distribution. In Fig. 4, the average order parame

TABLE I. Average multifractal dimensions of order 1 to 3 an
their dispersions, fora50.1,0.3,0.7,0.9 andn55,...,10 cascade
steps respectively, multiplied by 10.

D1

a50.1 a50.3 a50.7 a50.9
Theory 9.976 9.782 8.754 7.835

n55 9.97660.005 9.78360.047 8.76260.323 7.82960.615
n56 9.97660.004 9.78360.038 8.75460.257 7.85360.509
n57 9.97660.003 9.78260.032 8.74960.213 7.82560.431
n58 9.97660.003 9.78160.025 8.74960.181 7.85660.357
n59 9.97660.002 9.78260.023 8.75560.156 7.83860.309
n510 9.97660.002 9.78160.018 8.75560.132 7.84560.270

D2

a50.1 a50.3 a50.7 a50.9
Theory 9.952 9.574 7.817 6.552

n55 9.95260.010 9.57960.097 7.88160.609 6.67760.982
n56 9.95260.008 9.57860.080 7.86260.506 6.70360.833
n57 9.95260.007 9.57560.066 7.83760.435 6.65360.737
n58 9.95260.006 9.57360.053 7.84260.377 6.68860.630
n59 9.95260.005 9.57460.049 7.84660.328 6.64660.564
n510 9.95260.004 9.57460.038 7.84660.291 7.84560.270

D3

a50.1 a50.3 a50.7 a50.9
Theory 9.928 9.378 7.123 5.720

n55 9.92860.015 9.39160.149 7.31160.782 6.08161.125
n56 9.92860.013 9.38860.124 7.28360.666 6.09660.967
n57 9.92960.010 9.38360.104 7.23760.585 6.03860.860
n58 9.92860.008 9.38160.085 7.24660.512 6.06160.752
n59 9.92860.007 9.38160.079 7.24160.451 6.00760.679
n510 9.92860.006 9.38260.062 7.24160.412 6.00960.615
06760
ic

ty
ed
e
s
-

d

is
-

by
r

^DO& in PNR approximation vs fluctuation parametera for
events with different total multiplicity,N5500, 1000, 3000,
respectively~open circles connected by dashed lines! are
compared to the correspondinĝDO& calculated directly
from dynamical probability without multiplicity fluctuation
~solid lines! as the cascading generation goes up ton
55,7,9, respectively. It can be concluded from the figure t
~i! when generation is up ton55, the statistical deviation
due to insufficient number of particles is negligible afterN
.1000.~ii ! With the increasing of cascading generation, t
deviation due to insufficient number of particles becom
larger.~iii ! At large dynamic fluctuation (a→1), the devia-
tion due to insufficient number of particles is much smal
than those at small dynamic fluctuation (a→0). This result
tells us that for the events with large dynamic fluctuation,
deviation due to insufficient number of particles is large
weakened andDO can present well the major dynamic fluc
tuation in such event.

Finally, we discuss the superiority of the information d
mension over the other multifractal dimensions from t
point of view of elimination of statistical fluctuations. It i
well known that the statistical fluctuation can be eliminat
by event average factorial moments for moment ordeq
>2. In single event investigation, event factorial mome
cannot fully eliminate statistical fluctuations due to the fin
number of bins and particles. However, is it still better th
PNR approximation in estimating single event multifrac
dimensions when multiplicity is pretty high, such asN
>1000? To answer this question, the average values ofD1
andD2 and their relative deviations at differenta values for
various of multiplicity numbers are given in Fig. 5.

While the information dimensionD1 can be given only by

FIG. 4. The average order parameter^DO& vs dynamical-
fluctuation parametera in PNR approximation at different tota
multiplicity of events,N5500, 1000, 3000~open points connected
by dashed lines! are compared to corresponding^DO& from dy-
namical probability without multiplicity fluctuation~full circles
connected by solid lines!. The cascading generation isn55,7,9,
respectively.
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BRIEF REPORTS PHYSICAL REVIEW C 60 067603
PNR approximation, the correlation dimensionD2 is given
by both PNR approximation and factorial moments~FM!
method. The relation between intermittency indicesfq and
multifractal dimensionsDq is given by@7#

Dq512
fq

q21
.

The particle numbers are 50, 100, 500, 1000, and 3000,
spectively.

From the results, we can see that, by FM method, aver
value of D2 is close to its theoretical value for all chose
numbers of particles; while by PNR approximation, avera
multidimensionsD1 andD2 only approach to their theoreti
cal values after multiplicity is higher than 1000. It shows th
FM method is still better than the PNR approximation
estimating averageD2 over whole event sample. Howeve
the important point for single event investigation is the b

FIG. 5. Average value ofD1 and D2 ~upper figures! and their
relative deviation~lower figures! vs dynamical-fluctuation param
eter a at different total multiplicity of events,N550, 100, 500,
1000, 3000, using the PNR approximation~dashed line, dotted line
dotted-dashed line, etc.!. The full lines are the theoretical results
The results ofD2 from FM method, being only slightly dependen
on multiplicity, are shown in the figure~full circles! only for N
5500.
0676
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havior of relative deviations of the variables, or the fluctu
tion of the variables around their average values. They
shown in two lower figures of Fig. 5:~i! WhenN<500, the
relative deviation ofD2 obtained by the FM method is bigge
than that obtained by the PNR approximation, afterN
.500, the difference of relative deviation ofD2 between the
FM method and PNR approximation is negligible.~ii ! No
matter whether the PNR approximation or FM method
used, the relative deviation ofD2 is always larger than tha
of D1 . Therefore, when the multiplicity is higher than 100
the FM method does not help in reducing statistical fluct
tions of event multifractal dimensions. The PNR approxim
tion does, as well as the FM method. Information dimens
D1 still contains the least statistical noise in comparison
higher order multifractal dimensions.

In this paper we suggest using the order parameterDO to
do the dynamic fluctuation analysis of single event. It
demonstrated that, when the number of particles in e
event is larger than 1000, under the influences of finite m
tiplicity and finite experimental resolution, order parame
has the best convergence behavior in comparison to hig
order multifractal dimensions, or intermittency indices of
single event. So this order parameter describes well the
namic fluctuation of particle distribution in the phase spa
If the particle distribution is completely disordered in th
phase space, i.e., if the probabilities of particles falling
each bin are equal, the information dimensionDI51 and
order parameter has its minimum valueDO50; on the con-
trary, if all the final state particles fall in the same point
phase space, or the probability in a certain bin is 1 and in
the others is 0, the information dimensionDI50 and order
parameter has its maximum valueDO52. Thus, the larger
the order parameter of single event is, the larger order is
particle distribution in its phase space. This order param
can be used to classify events with different dynamic flu
tuation quantitatively and choose those significant ones fr
the whole sample for further investigation.
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