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An order parameter of a single event is introduced. Its advantage in describing dynamic fluctuations of a
single event is demonstratd$0556-28139)01411-9

PACS numbd(s): 13.85.Hd, 13.90¢i

With the increase of incident energy and number of nucle- n;

ons in relativistic heavy ion collisions, the number of final Pi~ N 2
state particles in an event becomes very large. A recent result

from NA49 [1] shows about 1000 charged particles in an
interval of c.m. rapidityly|<1 at the Super Proton Synchro-
tron (SPS Pb beam of 160 GeV per nucleon. This number is
expected to be even larger, by factors of about 4 at the Rel
tivistic Heavy lon Collider and of about 15 at the Large
Hadron Collider. For such a high multiplicity event, the dy-
namic fluctuation analysis of the single event comes true. =—Ei“’='1(1/M)In(1/M)=In M. where M is the number of

For a low multiplicity sample, there are large statistical subdivisions. If all the particles fall into a special cell and all

fluctuations in an event. The analysis can only be done und%e other cells are empty, the information entropy goes to its
the average of the whole event sample, where the dynamic

fluctuation strengthintermittency indice$2] or multifractal gqr:?rlgquni]svlailge:isr\mit%:eoréei?)?]e@regzyl;hlsl Vl?lgeaOf Irgz)éhmeas:“?on
dimensions[3]) is the average strength of whole sample. Py 1S yIng 9 - ' PP

Bialas and Ziaja were the first to study the intermittency?f]a?n'z)t(;;uma\:?lctljs?“?ﬁ’ tT]ZSZOr;esa%‘;n(.jén%]g'rsgr'bgf{;gpmmor
indices of individual eventf4]. In addition to the statistical ' th 1 P tl A é P h p't IS ul ! '
noise due to insufficient number of particles in an event, th mooth. In contrast, Bapproaches its minimum vahy,,

dynamic analysis of single events usually still fluctuates he distribution is of more order, fluctuating strongly from

from event to event due to the finite resolution of experimen—ce" to cell. So information entropy of final-state particle-

tal measurement. The width of this fluctuation depends Orgistribution describes the order degree of this distribution.
the quantity used in the analysis. In this paper, we introduce It is clear from the above discussion that the maximum

an order parameter of single event which has the most nay_alue of entropy is determined by the total number of its

row distribution width in all known indices commonly used s_ubd_ivisions. If we compare the entropy of particle d_istribu-
in characterization of the dynamic fluctuations tion in a different event, we have to fix to the same interval

It is well known that the order parameter in thermody- with exactly the same division pattern. Otherwise, its value is
namics is thermal entropy. For multiparticle final state, alnﬁpr;\pargl()jle. Indfact;t, f'”fom?al“onbg.'m‘?”s'on t%ﬂ]e;tropy
perfectly ordered distribution means that all particles fall jnvhich 1S independent of special subdivision pa as

the same position of phase space while a completely disorl2€en introduced:
dered distribution is all particles falling in all possible posi-

wheren; is the number of particles falling in théh cell. [In
the following we will call the approximation using EQ)
the particle-number-ratigPNR) approximation. The lower
Fimit of N for the validity of this approximation will be dis-
cussed latet. If the probability in each cell is equal, the
information entropy reaches its maximum valug;,,,

tions with equal possibilities. In the description of this sys- D,= lim S 3
tem the thermal entropy has been generalized to information Mo INM
entropy[5]:

This is the speed of the variation of information entropy with
the increasing of division number. It does not depend on the
size of bin anymore. Its value is located in the rediori].
D,=0 means that the order degree of system does not
change with scale. It can only happen when all particles fall
into the same place of phase space. On the other hand, the
wherep; is the probability of particles appearing in thdn  larger the value oD, is, the smoother of particle distribution
cell. If the numbem of particles produced in a single event in phase space is.
is large enough, the probability of particles falling in thl To show the applicability of information dimensid@ in
cell can be approximately written as dynamic analysis of a single event, we used the Monte Carlo
simulation of a random cascadirgmodel as a demonstra-
tion. In the model, theV division of rapidity intervalAY is
*FAX: 027 87662646. Electronic address: given out byv steps. At the first step, it is divided into two
wuyf@iopp.ccnu.edu.cn equal parts; at the second step, each part in the first step is

M
S= _;1 pi Inp;, (1)
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FIG. 1. Relation between average information dimension and
FIG. 2. Relation between average order parametercand
further divided into two equal parts, and so on. The steps are . . , , , .
repeated untiM = (AY/8y)=2". How particles are distrib- variation ofa thanD, . So in comparison witld, , Do is a
uted from step-to-step among the two parts of a given rapidl_)etter quantity in describing the order degree of a single
e

. : ' - . vent.

"ty mterva'tl 'S defmgQ by |nd§pendent 'random vana@l,gy, In the ideal case, the generation of a random cascading
where,j, is the position of window (%],<2") andvisthe 46| should be high enough so that the division number
number of steps. It is given by

M—o or §—0. However, as we know, due to the finite
resolution of experimental measurement, a physical quantity
cannot be measured in infinitely small cell, or exac#ly
—0. In present experiments, the available valued/afisu-
ally equal 40—60 corresponding to=5—6 in our model.
where r is a random number distributing uniformly in This makes the order parameter of single evegt scatter
[—1,1]. ais a positive number less than unity, which deter-around its average value. In order to estimate the influence of
mines the region of random variabte and describes the this factor inD5 measurement, the relative standard devia-
strength of dynamic fluctuations in the model. Afiesteps, tion of Dg, i.e.,a(Dg)/{Dg), VS ais shown in Fig. 3. With
the probability inmth window is py=wij wzj,,....0,; . the increase of, o(Dg)/{Do) has a small increase, but its
Then according to Eq(1), the information entropy in each Value is much smaller than unity. Especially, for small
division step is calculated. The slope of the IBes InM is  (€.9.,<0.6), where most present high energy experiments
the information dimension which is a single-valued functione€ached, this value is less than 0.1. So for very high multi-
of fluctuation strength. plicity events, we need not average the order parameter for
We simulated 1 000 000 events by using the above modethe whole sampleD, itself is a good quantity in describing
The average information dimensi¢b,) of all events vs the ~dynamic quctuation' of final state particles i'n its phase space.
fluctuation parametes is given in Fig. 1. In each event, the ~ TO compare the influence of finite experimental resolution
generation of cascading is up to=6 and the information in all known indices, we also calculate other dimensions un-
dimension is the results from fitting=1 to v=6. It can be  der thea model. In multifractal theory, information dimen-

seen from the figure that, whes goes from 0 to 1, the

1 1
wy-1=5(1+ar),  w,5=5(1-ar),

corresponding average information dimension changes only N 0.14 ¢
from 1 to about 0.7. In particular, whes is small, or a O o3 B
<0.5, the value ofD,) varies very slowly withe, i.e.,(D,) ( -
is insensitive toa. So we try to find a single value function 5012 =
of D, which has a larger region corresponding to the change 2 -
of a. The relation betweefD,) and « can be well fitted by © 011 F
the function(D,)=1— &?/4. If we define the order param- 01 £
eter as -
0.09 E
DO=2\/1_D|, (4) 0.08 :_

thenDg has almost the same region ascf. Fig. 2. More- 007 Pl b Lo Lo

0 02 04 06 08 1

over, no matter what kind of model it is, in generdDg

=(1/y1-D,)dD,, where factor (IY1-D,)>1. This
means that for a small variation ef Dy always has greater FIG. 3. Relation between relative standard deviation of order
variation, or in other wordsPy is more sensitive to the parameter and.
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TABLE I. Average multifractal dimensions of order 1 to 3 and v=5 v=7 v=9
their dispersions, fore=0.1,0.3,0.7,0.9 and=5,..,10 cascade 5 ; E 3 FE 7 | nesoo
steps respectively, multiplied by 10. Vors b E SE e B
D 0.5 E— o :— o y %:,,o/’
1 F o/ Feo® C
a=0.1 a=0.3 a=0.7 a=0.9 025 oo 2 3
Theory — 9.976 9.782 8.754 7.835 A OB : S S
g e 3 3 # | N=1000
v=5 9.976-0.005 9.7830.047 8.7620.323 7.82%:0.615  “o7s - 3 r A
v=6 9.976:0.004 9.78%0.038 8.7540.257 7.8530.509 05;_ E /g" Ee
v=7 9.976:0.003 9.7820.032 8.74%0.213 7.8250.431 0.5 E w,gr" f’
v=8 9.976-0.003 9.781%0.025 8.7490.181 7.856-0.357 ’ "’" w . | ] | |
v=9 9.976-0.002 9.7820.023 8.7550.156 7.8380.309 /O}, ?f_ E E N=3000
v=10 9.976:0.002 9.78%*0.018 8.7550.132 7.8450.270 vo.755— E E B
D, : : P4
a=0.1 @=0.3 a=0.7 @=0.9 ° 3 s
Theory 9.952 9.574 7.817 6.552 025 | » a
0 f | | i .| | | |
y=5 9.952+0.010 9.579-0.097 7.881%0.609 6.6770.982 L A
v=6  9.952:0.008 9.578&0.080 7.86Z20.506 6.7030.833 )
y=7  9.952:0.007 9.5750.066 7.83%0.435 6.6530.737 FIG. 4. The average order parameo) vs dynamical-
=8  9952-0006 9.5730053 7.8420377 6.688 0.630 fluctuation parameterr in PNR approximation at different total
B ' ' ’ ’ ' ' ’ ' multiplicity of events,N=500, 1000, 300@open points connected
V:i 9.95250.005 9.574:0.049 7.846:0.328 6.646:0.564 by dashed lingsare compared to correspondif®o) from dy-
v=10 9.952-:0.004 9.5740.038 7.846:0.291 7.8450.270  \5mical probability without multiplicity fluctuatior(full circles
D3 connected by solid lings The cascading generation is=5,7,9,
a=0.1 a=0.3 a=0.7 a=0.9 respective|y_
Theory 9.928 9.378 7.123 5.720
y=5 9.928:0.015 9.39%+0.149 7.31#0.782 6.08%:1.125 (Do) in PNR approximation vs fluctuation parametefor
=6 0.928+0.013 9.3880.124 7.283 0.666 6.096-0.967 events Wlth d|fferent- total mUIt|p||C|tyN:500, 1000, 3000,
v=7 9.929-0.010 9.3830.104 7.2320585 6.03&0.860 'ESPEctively(open circles connected by dashed linese
y=8 9.928-0.008 9.38%0.085 7.246-0.512 6.06%0.752 compared to the correspondin@®o) calculated directly
=9  9.928-0007 938%0079 7.24%0451 6.00%0 679 from dynamical probability without multiplicity fluctuation
»=10 9.928-0.006 9.382-0.062 7.24%0412 6.00a-0615 (S0lid lineg as the cascading generation goes upto

=5,7,9, respectively. It can be concluded from the figure that
(i) when generation is up te=5, the statistical deviation
sionD, corresponds t®, . In Table I, the average multifrac- due to insufficient number of particles is negligible afiér
tal dimensionsD,, D,, andD3, and their dispersions are >1000.(ii) With the increasing of cascading generation, the
given. They are undexr=0.1,0.3,0.7,0.9, and the generation deviation due to insufficient number of particles becomes
of cascading goes up t0=5,6,7,8,9,10, respectively. The larger.(iii) At large dynamic fluctuation¢—1), the devia-
results show that the lowest order dimensi@y) has the tion due to insufficient number of particles is much smaller
smallest standard deviation in all cases. For large dynamithan those at small dynamic fluctuatioa{-0). This result
fluctuation or largew, this advantage oD, becomes more tells us that for the events with large dynamic fluctuation, the
obvious. The reason is because the moment of probabilitgleviation due to insufficient number of particles is largely
deviates from its average value when the model is cascadeteakened an® can present well the major dynamic fluc-
to finite generation, and this deviation is enlarged by theuation in such event.
higher order of moment. So the information dimension is Finally, we discuss the superiority of the information di-
superior to other dynamic indices in single event investigainension over the other multifractal dimensions from the
tion. point of view of elimination of statistical fluctuations. It is
All of the above calculations, of the information dimen- well known that the statistical fluctuation can be eliminated
sion as well as the other multifractal dimensions are baselly event average factorial moments for moment order
directly on the dynamical probabilitigs obtained from the =2. In single event investigation, event factorial moments
model. In reality, what can be measured in the experiments isannot fully eliminate statistical fluctuations due to the finite
only the distribution of particles in the phase space. Therenumber of bins and particles. However, is it still better than
fore, the particle-number-ratio approximation of E8) has PNR approximation in estimating single event multifractal
to be used. Now, we turn to estimate the lower limit of mul- dimensions when multiplicity is pretty high, such &b
tiplicity for the validity of this approximation. =1000? To answer this question, the average valud3,of
For this purpose the statistical fluctuation of multiplicity andD, and their relative deviations at differeatvalues for
is added to the above-mentioned random cascading model bwarious of multiplicity numbers are given in Fig. 5.
Bernoulli distribution. In Fig. 4, the average order parameter While the information dimensioB®, can be given only by
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havior of relative deviations of the variables, or the fluctua-
tion of the variables around their average values. They are
shown in two lower figures of Fig. 8i) WhenN=<500, the
relative deviation oD, obtained by the FM method is bigger
than that obtained by the PNR approximation, afbér
>500, the difference of relative deviation bf, between the
FM method and PNR approximation is negligibld@) No
matter whether the PNR approximation or FM method is
used, the relative deviation @, is always larger than that
of D;. Therefore, when the multiplicity is higher than 1000,
the FM method does not help in reducing statistical fluctua-
tions of event multifractal dimensions. The PNR approxima-

0.125 | £ A PNRN=500 tion does, as well as the FM method. Information dimension
o1 F ap A M N=500 D, still contains the least statistical noise in comparison to

0.075 £ P higher order multifractal dimensions.

0.05 - o _ In this paper we suggest using the order paramatgto

do the dynamic fluctuation analysis of single event. It is
demonstrated that, when the number of particles in each
event is larger than 1000, under the influences of finite mul-
tiplicity and finite experimental resolution, order parameter
FIG. 5. Average value oD, andD, (upper figuresand their ~ Nas the best convergence behavior in comparison to higher
relative deviation(lower figures vs dynamical-fluctuation param- order multifractal dimensions, or intermittency indices of a
eter « at different total multiplicity of eventsN=50, 100, 500, single event. So this order parameter describes well the dy'
1000, 3000, using the PNR approximati@ashed line, dotted line, namic fluctuation of particle distribution in the phase space.
dotted-dashed line, ejc.The full lines are the theoretical results. If the particle distribution is completely disordered in the
The results oD, from FM method, being only slightly dependent phase space, i.e., if the probabilities of particles falling in
on multiplicity, are shown in the figuré€full circles) only for N each bin are equal, the information dimensiop=1 and
=500. order parameter has its minimum valDg,=0; on the con-
trary, if all the final state particles fall in the same point of
phase space, or the probability in a certain bin is 1 and in all
the others is 0, the information dimensi@=0 and order
parameter has its maximum vallle,=2. Thus, the larger
the order parameter of single event is, the larger order is the
particle distribution in its phase space. This order parameter
D.=1— ﬂ can be used to classify events with different dynamic fluc-
a q-1 tuation quantitatively and choose those significant ones from

. the whole sample for further investigation.
The particle numbers are 50, 100, 500, 1000, and 3000, re-

spectively. We are grateful to Professor W. Kittel for his encourage-

From the results, we can see that, by FM method, averagaent and valuable comments which helped the work go for-
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numbers of particles; while by PNR approximation, averagdor their comments after reading the draft of the paper. This
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PNR approximation, the correlation dimensibg is given
by both PNR approximation and factorial momenEM)
method. The relation between intermittency indiegsand
multifractal dimension®,, is given by[7]
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