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Vanishing Gamow-Teller transition rate for A=14 and the nucleon-nucleon interaction
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The problem of the near vanishing of the Gamow-Teller transit®mn) in the A=14 system between the
lowestJ=0" T=1 andJ=1" T=0 states is revisited. The model space is extended from the valence space
(p~?) to the valence space plus all@ excitations. The question is addressed as to what features of the
effective nucleon-nucleon interaction in the medium are required to obtain the vanishing GT strength in this
extended space. It turns out that a combination of a realistic strength of the tensor force combined with a
spin-orbit interaction which is enhanced as compared to the free interaction yields a vanishing GT strength.
Such an interaction can be derived from a microscopic meson exchange potential if the enhancement of the
small component of the Dirac spinors for the nucleons is taken into acd@0856-28139)04112-9

PACS numbgs): 21.60.Cs, 21.10.Hw, 21.30x, 27.20:+n

In this work, we reconsider the old problem of the near-work will be to extend this study to the large space. The
vanishing of the Gamow-Teller transition matrix element inmotivation is the following: The interaction to be used in a
the A=14 system between the=0" T=1 ground state of rather small model space contains large correction terms to
10 or “C and theJ=1" T=0 ground state of*N. Thisis  account for the renormalization of tthN interaction to this
an allowed transition, but somehow the configurations of thesmall model space. On the other hand, i interaction in
initial and final states conspire to make this matrix elementarger model spaces requires renormalization only with re-
nearly vanish. Therefore, the calculation of this transitionspect to short-range correlations and, therefore @meatrix
strength can serve as a very sensitive test for the nucleomnight be an appropriate approximation.
nucleon (NN) interaction in the nuclear medium. In order to explore the sensitivity of the GT strength on

The simplest shell-model configuration consists of twothe spin-orbit and tensor interactions, we employ the two-
holes in thep shell for both the initial and final states. Using body interaction introduced if7]
an LS representation, the wave functions can be written as

V(r)=Ve(r)+x-Vsoty- Vi, 1)
—_nt T= _ 51 P|3
V(I=07.T=1)=Ci1"So) + Ci[*Po). where “so” stands for the two-body spin-orbit interactidn,
for the tensor interaction, and.(r) is a spin-dependent cen-
W(J=1",T=0)=C{3S;)+C{|*P1) +CP|*Dy). tral interaction. Note that this interaction is not only used for
the residual interaction of the nucleons in the model space

It was shown analytically by Ingli$1] that it was not but has also beeamployed to determine the single-particle
possible to geB(GT) to vanish if the two-body interaction part of the Hamiltonian which is due to the interaction with
consisted of only a central and a spin-orbit interaction. Af-the respective corelThe parameters andy were introduced
terwards Jancovici and Talnji2] demonstrated that one so one could easily vary the strengths of the spin-orbit and
could getB(GT) to vanish if one also included a two-body tensor interactions. Roughly speakings 1, y=1 gives the
tensor interaction. best fit to a realistidG matrix. However, for k=1, y=1)

What happens when we increase the model space by dhe value ofB(GT) was too largeB(GT)=2.980. This is
lowing 2% w configurations? Can we then g&GT) to van-  similar to what happened with the realistic Nijm Il interac-
ish without a tensor interaction? We have previously per-tion mentioned abovgs]. It was noticed by Zheng and Zam-
formed such larger-space calculatidBs4] but we have not ick [7] that one could geB(GT) to vanish in at least two
specifically addressed this problem. We usdé@-matrix de-  ways: one way is to keep the tensor strength fixeg-at
rived from the realistic interaction Nijm I[5,6] which, of  and increase the spin-orbit strength parameter freni to
course, contains a tensor interaction. The specific result iR=1.4. Another way was to keep=1 and decrease the
[3] was that in the small spacep(?) the value of tensor strength by a factor of €0.5). All this is in the
B[GT(0" 1—1" 0)] was 3.967, and that in the large small space.
space it was found to be 1.795. This is far from zero, butitis As a first step we use the interaction of Zheng and Zamick
encouraging that higher shell admixtures will redB¢&T). [7] given in Eq.(1) in a large spacef( ?+ 2fw). To see if
We will come back to this later. we can geB(GT) to vanish without any tensor force, we set

Zheng and Zamick7] studied the effects of varying the y=0 and varyx. The results are shown in Fig. 1 where
strengths of the spin-orbit and tensor interactionB¢GT) B(GT) is plotted vsx, the strength of the spin-orbit interac-
in the small space 2. Indeed, the main purpose of this tion. Starting fromx=0, we do indeed see a rapid drop in
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FIG. 1. The Gamow-Teller amplitud&(GT) calculated with
the (x,y) interaction of Eq(1) in large[i.e., (0+2) % w] space, as
a function ofx (the spin-orbit strengyhand withy=0 (no tensor
interaction).
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FIG. 2. A(GT) calculated with a spin-orbit strength &f=1
(free-space valye as a function of the tensor strengthn small
space(0 fiw).

sign, andB(GT) vanishes neay=0.75. With a larger spin-

B(GT) asx is increased. However, the curve flattens out atorbit interaction, we regain in a large space the results that

aroundx=1.5, and the value dB(GT) is close to unity up

were previously obtained in a small space with the “free”

to x=7.5. Hence it appears that, in our parametrization, ongpin-orbit interaction. The tensor interaction strength the

cannot getB(GT) to vanish in the large spaqe %+ 2% w
without a tensor interaction.

In Fig. 2, we show themplitude AGT) for x=1 as a
function of y in the small space ?). We note that the
amplitude[and henceB(GT)] does go to zero, however, it
does so not ag=1 but rather close tg=0.5, about half the
full tensor strength. Thus, this figure confirms the early work
of Jancovici and Talmj2] that with a tensor interaction we
can getB(GT) to vanish. There is concern, however, that the
strength of the tensor interaction needed in this small mode
space is quenched by a factor of 1.33 or so as compared t___
the realistic estimate. 5

In Fig. 3, we repeat the calculations in a large space’x
(p~?+2hw excitationy. We keep the spin-orbit strength
fixed atx=1, and we varyy, plotting the amplitudeA(GT)
as a function ofy. We see that Fig. 3 is completely different
from Fig. 2. The amplitude never changes sign, and hence
B(GT) never goes to zero. The curve is relatively flat from
y=0 toy=1.5. Does this mean that the old ideas are wrong
and that one cannot g&(GT) to go to zero even with a
tensor interaction?

Before we jump to such a conclusion, let us repeat the
calculation but with a stronger spin-orbit interaction. Now
we keepx fixed at 1.5 rather than 1, and we calculafgsT)
as a function ofy. The results of these large-space calcula-
tions, which are shown in Fig. 4, are qualitatively similar to

Le]
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FIG. 3. Same as Fig. 2 except here the calculation is done in

the small-space results far=1. The amplitude does change large spac¢(0+2) Aw].

067305-2



BRIEF REPORTS PHYSICAL REVIEW C 60 067305

@~ TABLE I. B(GT) for 1C (J=0" T=1) =N (J=1" T
r 1 =0) with the BonnA interaction.

x=1.5, large space

Space mp/m E(MeV) B(GT)

0 fw 1 1.701 5.294
0 fw 0.75 1.045 0.1530
0 fw 0.60 1.172 0.0978
(0+2) hw 1 1.825 2.335
(0+2) ho 0.75 1.426 0.1275
(0+2) how 0.60 1.316 0.0018

A(GT)

The shell-model calculations &(GT) with Nijm 1l [5,6]
did not include this relativistic feature. Therefore, in the con-
text of the &,y) interaction, increasing the spin-orbit term
by puttingx= 1.5 can be interpreted as a way to simulate the
relativistic enhancement of the spin-orbit effects. Since the
spin-orbit interaction is inversely proportional to/m a
choice ofmp /m=2/3, which is a rather realistic one, would
be sufficient to increase the spin-orbit interaction by 50%
(from x=1 tox=1.5).
Whether one should use a weaker tensor interaction inside
Y a nucleus is more controversial. Brown and Rh@] argue
FIG. 4. A(GT) calculated with an enhanced spin-orbit strengththat inside a nucleus the masses of all mesons except the
of x=1.5, as a function of the tensor strengthin large space Pion are less than in free space. Thus, the exchangepof a
[(0+2) fw]. meson between two nucleons would lead to a longer-range
repulsion, thus canceling more of the attractive contribution
large space calculation is closer to the free-space value. Aflue to one-pion exchange. This would yield a net weaker
of this may seem somehoad hog but as we shall see next, tensor interaction. However, some of the present authors
it fits in well with modern ideas about medium modifications [3,4] have proposed an alternate picture of why the tensor
of the NN interaction inside the nucleus. interaction appears to be weaker inside a nucleus relative to
Relativistic mean-field studies within the framework of free space. They call this the “self-weakening” mechanism.
the so-called quantum-hadro-dynamics or “Dirac phenom-BaSica"y, the idea is that if one introduces higher-shell ad-
enology” of Serot and Waleck$8] demonstrated that the Mmixtures perturbatively into valence-space calculations, this
structure of the nucleon self-energy leads to an enhancemewill make the tensor interaction appear to be weaker. In the
of the small component of the Dirac spinors for the nucleondatter picture, the tensor anomaly is explained by doing better
inside the nuclear medium as compared to the Dirac spinorduclear structure calculations.
for the free nucleon. This enhancement can be parametrized Of course, the two mechanisms are not mutually exclu-
in terms of an effective Dirac massp for the nucleon. The sive. In the present calculation, the self-weakening mecha-
enhancement of the small component corresponds to a redugism manifests itself in the fact that, in the=14 g decay,
tion of the Dirac massn, as compared to the free nucleon we needy=0.5 in the small space, but when higher-shell
massm. This reduced Dirac mass yields an enhancement okdmixtures are introduced we find that0.75.
the spin-orbit splitting in the single-particle spectrum. In Table I, we depart from our phenomenologicaly()
It was shown by Zhengt al. [9,10] that the Dirac phe- interaction and show results with the relativistic Bonn-
nomenology yields non-negligible effects in nuclear struc-A G-matrix elements. We consider the cases whagdm
ture calculations. They demonstrated in particular that thds equal to 1, 0.75, and 0.60, and we perform the calculations
enhancement of the spin-orbit splitting just discussed is rein the small and large spaces. In this table, B{&T)’s are
produced in nuclear structure calculations using relativistishown alongside with the energy of the lowest=0" T
NN interactions. The experimental data for the spin-orbit=1) state in *C relative to that of the ground state (
splitting of one-hole states are only reproduced if the reduc=1% T=0) of ¥N.
tion of Dirac massmp predicted in Dirac-Brueckner- With mp/m=1, we get very close to the nonrelativistic
Hartree-Fock calculationgl1] is taken into account in cal- matrix elements. The results f&(GT) are very far from
culating theG-matrix elements of the one-boson-exchangezero, consistent with what we obtained with they) inter-
interaction(OBE). If this relativistic feature is ignored, the action withx=1, y=1 as well as with the previously men-
spin-orbit splitting comes out too small. It should be notedtioned Nijm |l interaction. In the small space, we get
that whereas in the relativistic Hartree-Fock method of RefB(GT)=5.294, and in the large space 2.335, but at least we
[8] there are no pions in the theory, this is not the case in theget closer to zero in the large space.
OBE G-matrix calculations of Ref.11]. As we decrease the Dirac effective mass, we get results
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closer and closer to zero. Finally, fon, /m=0.6, we get that—as shown in Fig. 3—we cannot g&GT) to vanish no
B(GT)=0.098 in the small space and 0.0018 in the largematter what the strength of the tensor interaction is. How-
space. This is gratifying. The main reason for this success igver, if we increase the strength of the spin-orbit interaction,
of course that by decreasing, /m we increase the spin- the ideas of Ingli§1] and Jancovici and Talnfi2] are revali-
orbit splitting. Furthermore the BonA-potential seems to be dated. Furthermore, justification for this phenomenological
very appropriate since it contains a tensor force which isstep is afforded by the more fundamental Dirac phenomenol-
weaker than in other realistN interactiond13]. It should  ogy approach of Serot and Waleck®] and Mither,
be reemphasized that in this work, all the single-particle enMachleidt, and Brockmafl1].
ergies are calculated with treameinteraction that is used
between the valence particles or holes. We feel this is the Support from the U.S. Department of Energy, Contract
only way one can truly test the correctness of a given interNo. DE-FG 02-95ER-40940, is greatly appreciated. M.S.
action or theG matrix derived therefrom. Fayache gratefully acknowledges travel support from the
It is amusing to note that in order to g8{GT) to vanish  Universitede Tunis, and is thankful for the kind hospitality
for A=14 one has to bring out all the artillery. When we of Professor L. Zamick's Nuclear Theory Group at Rutgers
allow higher-shell admixtures, we are at first dismayedUniversity.
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