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Superscaling of inclusive electron scattering from nuclei
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We investigate the degree to which the concept of superscaling, initially developed within the framework of
the relativistic Fermi gas model, applies to inclusive electron scattering from nuclei. We find that data obtained
from the low-energy loss side of the quasielastic peak exhibit the superscaling property; i.e., the scaling
functionsf(y') are not only independent of momentum trangfee usual type of scaling: scaling of the first
kind), but coincide forA=4 when plotted versus a dimensionless scaling varighléscaling of the second
kind). We use this behavior to study the as yet poorly understood properties of the inclusive response at large
electron energy los$S0556-28189)01012-2

PACS numbd(s): 25.30.Fj

[. INTRODUCTION ferred from the electron to the nucleus via exchange of a

The applications of scaling and dimensional analysis haveirtual photon, a nucleon is ejected from the nucleus in a
been important tools for the development of new insights irreasonably “quasifree” manner. Namely, the nucleon leaves
physics. Scaling in scattering experiments is observed in prathe nucleus with a high enough energy that the process can
cesses where a weakly interacting probe scatters from colve treated approximately as having occurred without strong
stituents bound in a composite system and a constituent igffects from final-state interactiorfESI9. Under the appro-
ejected quasifreely from the system. Tlv@polarizedlinclu-  priate kinematical condition§o which we return beloywthe
sive response functions, determined by observing only theross section can be written as a product of the elementary
scattered probe, in addition to depending on the scatteringlectron-nucleon elastic cross section times a fundfolit
angle, in general depend explicitly on only two more inde-has been shown theoretically and verified experimentally that
pendent variables—the energy and momentunyg trans- at large momentum transfers the appropriately defined func-
ferred by the probe to the constituent. In the asymptotic retion F depends only on a single variable=y(q,®), itself a
gime of largeq=|q| and w, however, when appropriately function of q and w; herey is a particular choice for the
divided by the elementary probe-constituent cross sectiorgeneral functiorz referred to abovésee also the next sec-
the responses af@pproximately functions of only asingle tion). The scaling function so obtained asymptotically con-
variable z=z(q,w), with z in turn a function ofq and w. tains interesting information about the dynamical properties
This functional independence of the so-called scaling funcef the nuclear ground state, and the fact that scaling does
tion on the momentum transféwhich sets the scale in the occur provides very useful information about the reaction
scattering is known as scaling and is seen as a signature thahechanism itself.
the scattering occurred between the probe and the specific Indeed, scaling in electron-nucleus scattering is a special
elementary constituent of the target, rather than arising froncase of a more general phenomefi2hoccurring in various
some other process such as scattering from different constitareas of physics that deal with inelastic scattering of a
ents. To distinguish this behavior from the additional scalingweakly interacting probe from a many-body system in which
that forms the focus of the present work we call the usuat] and » are transferred to a single constituent in the target
independence of momentum transéealing of the first kind  system. Examples are found in the scattering of keV elec-
Various choices for the functior(q,w) can be motivated on trons from electrons bound in atorf®3], in the scattering of
the basis of the kinematics of the probe-constituent elastiev neutrons from atoms in solids or liquifié], and in the
scattering process—several such choices are discussed in tBisattering of GeV electrons from quarks in the nucl€sh
work. Expressed in terms of a scaling function, the inclusiveDespite the extraordinary range of energy and momentum
cross sections can be related to the momentum distributiomansfers for which these reactions have been studied, the
(more generally, to the spectral functjoof the constituents conceptual ideas used to describe the scaling phenomena in
in the target. these different fields have many features in common.

In the last 20 years or so, the conceptya$caling in the For electron-nucleus scattering, the topic of particular in-
scattering of high-energy electrons from nuclei has been acerest to this paper, scaling was already implicit in the early
tively pursued 1]. Fory scaling the focus is on protons and theoretical studies of electron-nucleus quasielastic scattering
neutrons in nuclei as the “elementary” constituents. Typi-[6] when treated in terms of the nonrelativistic Fermi gas
cally, when three-momenta gf>500 MeVk and energies at model; the cross section could be reduced to a function of a
or somewhat below the quasielastic peak positio®s (g° single variable multiplied by the elementaN elastic cross
+ mﬁ,)“z— my, wheremy is the nucleon mass, are trans- section. For treating electron scattering explicitly in terms of
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y scaling, the seminal idea originated with the work of Westworks very well in the region below the quasielastic peak, as
[2]. Early theoretical work was also undertaken by Kawazoeliscussed in Sec. llkee als¢13]). However, some breaking
et al.[7]. At that time, however, few data were available andof superscaling does occur, and in the present work we use
where they did exist they were restricted to a narrow kine-such deviations to elucidate some of the as yet not well un-
matical range at low energy. Conclusive observation of thelerstood features observed in the various measurements of
asymptoticq independence of for inclusive scattering be- the quasielastic response. In particular, in Sec. IV we focus
came possible with the availability of data that spanned #n the difference between the longitudinal and transverse
large range ofj and w and was presented by Sietal.[8] ~ 'esponses in the region .of the qqas_|elast|c _peak, and the
for 3He. Subsequent woil®,10] placed the theoretical foun- Properties of the contributions that _f|II in the “dip” between
dations of scaling on reasonably firm ground, specificallythe quasielastic and peaks—a region which has presented
addressing a variety of issues such as the role of the restri@ puzzle for a long tim¢14]. . .
tions imposed by the nature of th&{ 1) system excitation Following this introduction we proceed in Sec. Il to dis-
spectrum and recoil-nucleon FSI$1]. A summary of the Cuss the reIe\_/ant formalism mvolve.d in scalmg.of the first
various aspects of conventiondirst kind) scaling has been and second kinds for the cross sections, relegating some de-
given in the review paper of Dagt al. [1]. tails toan appenc_ilx_. Then in Sec. 11l we d|§cuss the results of
Much of the previous work has concentrated on the Stud@nalyzmg Fhe existing data on quasielastic electron scatter-
of the scaling properties of the response in the tovail of g, including recent results from TINAR5], to test the
the quasielastic peak; in this region the scaling function iddea of superscaling. Subsequently in Sec. IV we specialize
sensitive to components of the spectral function at large inithe formalism and discussion of the data to a treatment of the
tial nucleon momenta. Particular emphasis was placed 0p;1d|V|duaI_Iong|tud|nal an_d transverse responses. We end in
light nuclei A<4 where the scaling approach works particu-S€C- V with the conclusions to be drawn from the present
larly well and where sophisticated calculations of ground-Study and with some discussion of the questions that must
state nuclear wave functions and hence spectral functions apdill be regqrded as open ones in Studlgs of quaslelast|c elec-
available for theoretical studies of the scaling properties. tron scattering from nuclei at intermediate energies.
In the present paper, we explore a different aspect of scal-
ing. Rather than concentrating on the response of individual || SCALING OF CROSS SECTIONS: FORMALISM
nuclei, we compare the scaling function different nuclei
with A=4, and study the degree to which these scaling func- Let us begin by repeating and extending some of the ar-
tions are thesame—we call such behavior scaling of the guments that underlie the conceptyodcaling of the unsepa-
second kind The motivation is to explore the degree to rated cross sections; these form part of the basis of the dis-
which the concept oBuperscalingintroduced by Alberico cussions of superscaling that follow, and several identities
et al. [12] when studying the properties of the relativistic and relationships among the variables involved are presented
Fermi gasilRFG) model, that is, scaling of both the first and for the first time. In the usual approach to inclusive electron
second kinds, is applicable to nuclei. A presentation in conscattering in the quasielastic regime one assumes that the
densed form of some of this analysis is available in RE§].  dominant process is impulsive one-body knockout of nucle-
Here we Study Supersca"ng using a |arge body of inclyons together with contributions from tWO'bOdy processes that
sive scattering data. While we employ the RFG model toPlay a role when the normally dominant process is sup-
motivate the choice of the scaling variable, only minimal usePressed. Of course, for the ideas of scaling to be applicable
of this model is subsequently made in interpreting the data a@ne must avoid the regime of low energy and momentum
the actual dynamical physics content in the problem is uniransfers where strong FSI effectacluding Pauli blocking,
doubted|y more Comp|ex than the RFG model can be eXcO”ective behavior in the final states, E)tare felt. Also the
pected to address. The RFG does, however, offer a physicgistortion of the initial and final electron wave functions
scale—the Fermi momentum—that can be used to make botRoving in the Coulomb field of the nucleus must be ad-
the scaling variable and scaling function dimensionless. Théressedat least for heavy nuclei and low electron energy
emphasis of the present paper therefore is on superscaling 4 the scaling analysis to be clear.
observed in the experimental data and on the physics one can The usual approach is the following: One starts from the
deduce from this scaling property. Hefie Sec. Il and the (€,€’p) and (e,e’n) cross sections which may be written as
Appendiy we also provide a discussion in depth of the functions of the three-momentum transtgr |q | and energy
choices made for the scaling variables, their limiting exprestransfero, the electron scattering angk,, the azimuthal
sions, and the interrelationships among them. angle¢y between the planes in which the electrons lie and in
Scaling of the second kind and superscaling were actuallyvhich the momentum transfer and the outgoing nucleon lie,
implicit although unrecognized in the early work [df4] in and two variables specifying the remaining kinematics of the
which quasielastic scattering was studied at one value of mgeutgoing nucleon. For the latter one may use the three-
mentum transfer for a range of nucksi=6—208. The data momentum of the nucleopy=|p | or its energyEy=(my
at energy loss below the maximum of the quasielastic peak pﬁ)l’2 and its polar angl@y, the angle betweeq andp .
could be explained in the Fermi gas model, an observatioAlternatively one may use the magnitude of the missing mo-
that implies that scaling of the second kind did occur. Nomentump=|p |=|p y—q| and a variable to characterize the
scaling analysis of the data was performed, however. degree of excitation of the residual system; for the latter we
Using modern data we find that the superscaling ideaise
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EP)=V(Ma-1)*+p>=(M3_1)*+p*=0, (1) Ew(Ay;p)=Vmy+(q+y)*—Vmi+(q—p)?>  (6)
wheremy is the nucleon mass, aid,_, is the(in general =myt o mﬁ,+(q—p)2 %)

excited recoiling system’s mass, whM} _, is that system’s
mass when in its ground state. The target mass is denot
M,‘i and the separation energy relates three of the masse
the following way:Eg=M2_,+my—MS%=0. The variable
£ is essentially the familiar missing energy minus the sepa
ration energy.

efEing Eqg.(2). Here again we have taken the limit where
S IWI‘,%, 1— %, relegating the exact expressions to the Appendix

[see Eqs(A5)]. The spectral functiors(p,£) (see, for ex-

ample, [16]) is the probability that a nucleon of three-

The strategy in the usual scaling analyses is to determinmomentump 1S f(_)u_nd in the targe_t n_ucleus and Fhat the

the smallest value of missing momentgrthat can occur for Saughter sys'Fem isina state of gxcnatlon characterizeg by
. . ; = that is, that via Eq(1) its energy in the laboratory system is

the smallest possible value of missing enefgg., £=0), B e

since there, at least for kinematics not too far removed fronFA—l(p)_ (Ma_p)"+p7+&. .

the quasielastic peak, one might expect to have the largest _At high en_ough_value_s af one seeks thg-scaling behav-

contributions from the underlying nuclear spectral Ior: namely,.n‘ the inclusive response scales, thelmecomes

function—see, however, the discussions at the end of thignly @ function ofy,

section. This smallest value pfis traditionally defined to be

y (—y) for w larger(smalley than its value at the quasielas-

tic peak. Thus one may useg,f/) rather than ¢,w) as the

two variables together witt9, upon which the inclusive

cross section depends. In the Appendix we give complettaf

expressions foy and for the largest value g that may be

reached for giverg and w; here we give an expression only

for y in the limit whereMS_,—o, as for all but the very

lightest nuclei this is an excellent approximation:

q~>:x:

F(q,y) — F(y)=F(x,y). 8

Scaling has also been approached from a different point
view using as a starting point the RFG mofi2,1§. The
strategy there is to provide a form similar to E8) such that

in this model exact scaling is obtained. As seeifli] the
variable

Yrre= MN(AV1+ 17— k) 9

_ naturally emerges. Here, as in many past studies, we employ
wherew=w—Eg. Corrections of orderl‘(lg,l)‘1 are also  dimensionless versions af, w, and|Q?: k=qg/2my, \
given in the Appendifsee Eq(A3)]. = w/2my, and7=|Q?/4m% = k?>—\2. Below we show how

Focusing now on the region<<0, the most common ap- to interrelate the variablegandygeg. As also discussed in
proach toy scaling(see, for example1]) is then to evaluate the above-cited work, a dimensionless scaling variabie
the single-nucleon cross section at the lowest valuep@)(  strongly motivated by the RFG model. In the Appendix we
that can be reached for given values @fand y—in the  give the exact expression fgr[see Eq(A15)], whereas for

scaling region these ang=—y and £=0—and then to di- most purposes the following approximations are excellent:
vide the inclusive cross section by this quantity to define a

function of g andy: YRrRFG

Vo=V (2my+o)—q, ()

=" {1+ O[]} (10
F(aLy) d?0/dQ.dw 3 "
a.y)== e v —0)
oen(d,Y;p=—Y,E=0) sni[)\\/l-i-l/T—K], (11)
F

For the single-nucleon cross section it is common practice to

use the ccl prescription of De Forddt6] with the form 100 ke is the Fermi momentum ange=ke/my its di-

factors parametrized as [d7]. In the Appendix we provide o sionless counterpart. Typicallye is small, growing

the complete expressions for the cross section and indicaig,n .06 for deuterium to about 0.3 for the heaviest nuclei,
the degree to which the struck nucleon in plane-wave im

I atioiPWIA) is off shell. In the PWIA ‘and thus expansions such as those above are usually quite
Egsse approximatior{ ) is off shell. In the one good, since they neglect terms only of ordgr. An alter-

native approximation fogs that also proves useful to intro-
duce is the following:

Y ~
F(q.y)=2wf_yp dpn(q.y;p), (4) .
Y=ol LHVIH 1A S et OLE] |, (12)

involving the integral

_ Y where now the goodbut not as goopvariable
n(q,y;p):fO d&€S(p,d), 5

2
0= %[\/)\(1+)\)—K] (13

whose upper limit is approximately given by
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occurs and the result in E¢L2) receives lineafrather than W [
quadratig corrections when written in terms of; .
The RFG analog of Eq3) is

dzo'/dQeda) s e(p;a) at a=1 p

Fl )= —— =
awm ZVLGE‘F ;VTGﬁll

= 20
=
N

where we have made use of the usual lepton kinematicac
factorsv, and vy and the approximations for the single-

nucleon response§; and Gy which involve GZ=ZGZ,

+NGZ, with G2, defined similarly[see Egs.(A12) and

(A16—A18)]. Note that relativistic factors involving the dif- /| N

ference betweer? and 7 in Eq. (14) are very important to 50 100 150 200

retain when studying quasielastic scattering at high momen: p (MeV/c)

tum transfers. o o )
Before carrying these ideas over to an analysis of the datz(i:,u rtﬁ' ;eM(;S;;Zﬁbeender%y tvhef;’;? Ifsler;,g ;"rgm;fm'ulezglous

it is useful to bridge thg gap between Fhe uwaicahng MeV/o, 20 MeV. q—700 MeVk, andw— 200 MeV.

approach and the/-scaling ideas contained in the RFG

model(see alsd18]). First, let us use thg variable to define

its dimensionless counterpart

~Yrre=—y(a)
at a=1

]
=S
Q
[

- /

[
o
|||||||||

R
| =

(=]
N
a
o

ably reflects the fact that implicitly one is trying to build in
some aspects of the initial-state physics such as the average

Y=ylke (15) removal energy—the average of the separation energies of
the various shells making up the nuclear ground state—but
and from Eq.(2) its approximate form also some aspects of FSIs which can also produce a shift in
the position of the quasielastic peak. Actually, the difference
2 = = between the strict interpretation as a separation energy and
Yo=Y ke = ;[ VA(1+N)—«], (16 the empirical value that emerges is typically rather small.

We then adopt the same strategy when proceeding from
the RFG starting point and introduce dimensionless variables
as above)'=w'/2my and 7' =«k?—\'2, so that in parallel
with Eq. (13) we have

where \=w/2my. Clearly the two approaches will yield
rather similar results, since

$o=Y=(Es=0), (17) )
with corrections toY coming from the finite-mass effects Vo= ol A —=N']= 77_F[ A (AFA) = K]=YR(A=11)
discussed in the Append[see Eq(A3)] and toy from the (19

ne-dependent terms in E@12) (see also beloy They and ]

Y variables build in the kinematics of nucleon knockout and@nd with Eq.(12)

recognize the initial-state separation enefgy, however, 1

_they do not take into account the missing-energy _depeqdence W=y —N]= g 1+ 1+ 142 = e+ O 21|,

in the cross section. On the other hand, thevariable is 2

constructed from the RFG model whefe— at constant (20
density (and thus contains no finite-mass dependenas A simple extension of the strict RFG model should help in
though, as discussed in more detail below, it does reflederoviding an understanding of the missing-energy content
some of the missing-energy content in the probleee also retained in defining a scaling variable. The RFG model has a

[19)). spectral function which is nonzero along the line
Thus, each approach has its own merits. To bridge the gap SE— —
at least partially, it is useful to shift the energyto Erre(P) = VkE+mg—p?+my (21)
o' =w—Egx (18)  that “on the average’[19] incorporates the shell structure of

a typical (heavy nucleus. Instead let us use
by an amountEg,; to be chosen empiricallysee the next
section where we discuss the choices made for the shift and &(p;a)=alredP), (22
allow Eg,;; to take on values other theaf, the separation
energy. In the familiary-scaling analysis, already one usu- such that whenx=1 we recover the RFG model, but when
ally does not usé&; as would be demanded if strictly adher- «=0 we have=0, the constraint used in defining the fa-
ing to the PWIA, but rather lets the shift “float” to allow the Miliary variable[see Eq(A1) in the Appendi. In Fig. 1 we
quasielastic peak to occur in the correct position. This usushow £(p;1) together withéy(p) from Egs.(6) and (7) at
ally results in a somewhat larger value for the shift and probg=700 MeVkt andw =180 MeV—namely, for typical kine-
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matics for the lowe side of the quasielastiQE) peak. As  ing variabley, but it also contains scaling of tleecond kind

in the RFG model(see[18]), the intersection of the two whereinf is independent ok to leading order inr],2:. What
curves occurs at the value of missing momentuthat de-  oqyits for this model is

fines the scaling variable. Far=0 this occurs at-y, the

usual scaling variable given approximately Yy in Eq. (2) 3

(for simplicity here we have taken’ =w); for =1 it oc- frec(¥) = 7(1~ P2 0(1— )1+ (mepl2)®+ - - -].

curs at —Ygreg given in Eq. (9) (but, of course, withw (26)
shifted. More generally one obtains something very similar

to Egs.(12) and (20), namely, When both types of scaling occur as they do for the RFG

1 model we call the behavi@guperscalingIn the next section
—v. |1+ a1+ 1Ak = - 211 (2 We'proce.ed to examine the degree to which scaling of the
y(a)=y “« fax 2 7o+ OL7e] 23 various kinds does or does not occur for measured unsepa-

. . ) rated cross sections.
Clearly what emerges is the following: the term in E20)

containing a first-order correction to the “minimal” approxi-
mation to the shifted RFG scaling variablg is the one
above involvinga. When =0 (the usualy definition) no In this section we use the unseparated electron-nucleus
missing-energy dependence is taken into account, whereasclusive scattering data presently available to test the idea of
with a# 0 (as in the RFGsome average dependence&is  superscaling for kinematics below the quasielastic peak and
incorporated. also try to add some insight into the various reasons which
Thus we find that the traditiona-scaling variabley lead to the well-known fact that at large electron energy loss
=y(0) and the RFG variablggec=kg /' =y(1) are closely nonscaling behavior is observed. We restrict our attention to

Ill. SCALING OF CROSS SECTIONS: RESULTS

related, in fact we have nuclei heavier tharfHe, as the lightest nuclei are known to
have momentum distributions that are very far from the
y(1)—y(0) 1 1 e “universal” one which is at the basis of the superscaling
- = 5 MF¥0 idea.
2( 2 2
o + + . . . .
Y AL A+ 1) (24) Data on inclusive electron-nucleus scattering for a series

of nuclei (A=4-208), but only one set of kinematics, were

which, whenk becomes very large, becomes independent opbtained early on by Whitnegt al. [14]. For helium, addi-
the three-momentum transfer. In other words, if the QE retional data at long were measured by Zghiclet al., Dyt-
sponse scales for one variable at higlit must also scale for man et al, Meziani et al, Sealocket al, and von Reden
the other. Equatiof24) allows us to estimate the importance et al. [14,20-24; high-q data were obtained by Dast al.
of the scale-breaking gtdependent terms. They go as and Rocket al_. [25,26. For carb_on, low-momentum transfer
7r6/8x? at highq and accordingly provide only small cor- data are available from experiments performed by Barreau
rections there, sinckyy| is typically of order unity. For low €t al, Baranetal, and O'Connellet al. [27-30; at highq
q one finds larger differences between the two scaling variS0SS sections are available from the experiments of Day
ables, although there the concept of scaling is not expected & &l- and Heimlichet al.[25,31. For oxygen an experiment
be quite as good in any case. For a typical situation a com?@s been performed by Anghinot al. [32]. For medium-
parison of the various scaling variables discussed here mewelght nuclei the data available include those for aluminum
be found in[18] (see Fig. 11 in that wobk at highg measured by Dagt al. [251 ar_1d the ones for cal-

Indeed, if circumstances warranted, it is straightforwardtium measured by Deadst al, Mezianiet al, Yateset al,
to generalize these ideas to devise still more scaling variabléd'd Williamsoret al.[33—34 at lowq. For iron experiments
that build in the best features of both the traditional PWIA-have been performed by Altemesal, Mezianiet al, Baran
motivated extreme and the RFG model extreme, or to g§tal. Sealock etal, and Hotta et al. at low q
beyond in attempting to take into account whatever we know37,34,29,23,38 at high q measurements have been made
about the missing-energy dependence of realistic spectr®y Dayetal.and Cheret al.[25,39. For heavy nuclei in-
functions. However, as the results given in the next sectioff!USive cross sections have been measured byeday. for

show, such fine-tuning is apparently not needed at thg°ld at highq [25] and by Zghicheet al, Blatchleyet al.,
present stage of our understanding of superscaling. and Sealoclet al. for nuclei between tungsten and uranium

Finally, having obtained dimensionless scaling variablet low ¢ [20,40,23.
o, o', andY (together with approximations to them, as Not all of these data can be used, however, as some have
discussed aboyewe introduce adimensionless version of Not been corrected for radiative effects, are known to have

the scaling functioras suggested by the RFG mo@&2,18; problems such as “snout scattering,” or have a floating nor-
malization; some data are only available in the form of fig-

f=kpgXF. (25) ures, but not as numerical values, and thus are not useful in
the present context.
Not only does the RFG model contain scaling of first To begin with(see alsg13]), we have taken the available
kind so thatf (or F) becomes independent af at high-  data for the nucleA=12, . .. ,208that meet our criteria for

momentum transfers, retaining dependence only on the scahclusion and have analyzed them in terms of scaling in the
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FIG. 2. (Color) Scaling functionf(y') as

f(y’)

L 208 function of ¢ for all nucleiA=12 and all kine-
0.4 — matics. The values oA corresponding to differ-
ent symbols are shown in the inset.
0.2
—2.0 .

variable ¢'. Since ¢’ is defined in Eqs(19) and (20) in cesses other than quasielastic scattering—meson-exchange
terms of the Fermi momentum, appropriate valuekgpohad current (MEC), A excitation, deep inelastic scattering—
to be selected: specifically, we use 220, 230, 235, and 246€ontribute to the cross section, whereas the scaling as dis-
MeV/c for C, Al, Fe, and Au, with intermediate values for cussed in this paper only applies to quasielastic scattering.
the intermediate nuclei. The definition of the scaling variable In order to understand better the deviations from ideal
also involves the choice of an appropriate “shift” energy scaling, below we take different cuts through the data. The
[see Eq.(18)]. This energy accounts for the effects of both presently available data unfortunately involve strong correla-
the binding in the initial state and the interaction strength intions in the kinematics employed: as the momentum transfer
the final state. In practice we use an energy that goes from liicreases, the longitudinél) to transverséT) cross section
to 25 MeV for nuclei C...,Au; the results are quite insen- ratio for quasielastic scattering decreases. At the same time,
sitive to the exact choice. the higherg data are taken at more forward angles. A sepa-
Figure 2 shows the scaling functidiiy') defined in Eq. ration of the influence of the different driving factors such as
(25) for all kinematics(energies, angles, momentum trans-q, L/T ratio, andA dependence is therefore not straightfor-
fers) and all available nuclei meeting our selection criteria.ward.
We observe reasonably successful superscaling behavior for In order to disentangle some of these less-than-perfect
values ofy’ <0, while for 4’ >0 the superscaling property superscaling effects gt’ <0, we show in Fig. 3 the function
is badly violated. The latter is to be expected, as there prof(y') for the series of nucleh=12, . ..,197, but for fixed
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kinematics(electron energy 3.6 GeV, scattering angle 16°,understood, however, from the theoretical results for the mo-
whereq varies only mildly over the range showimhe qual- mentum distribution of nuclear matter as a function of the
ity of scaling of the second kind in the regi@ri <O is quite  nuclear matter density where, for different nuclear matter
amazing, showing that insofar as the removal of fhde-  densities, the tail of the momentum distribution is a near-
pendence is concerned the superscaling works extremelniversal function ok/kg [41]. Since at largéc we deal with
well and, importantly, that the deviations from superscalingshort-range properties of the nuclear wave funcfi®y, for
observed in Fig. 2 fory’ <0 donot arise from theA depen- finite nuclei and large momenta we can employ the local
dence. The scaling of the second kind works very well. density approximatiofLDA ), within which the nuclear mo-

As similar quality of superscaling is found when analyz- mentum distribution(spectral functioh is then a weighted
ing other momentum transfers where a set of dataXor average over the corresponding nuclear matter distributions.
=6,...,208 is available. As an example in Fig. 4 we showThis means that the large-momentum tail of the nuclear mo-
the lowerg data from the experiment of Whitnest al. [14] mentum distribution also scales wikiz , a dependence that
taken at 500 MeV electron energy and 60° scattering angldés removed when using’.

Figure 5 shows the same data as those used in Fig. 3 on a In order to emphasize the quality of this superscaling in
logarithmic scale, demonstrating that the superscaling progthe tail, in Fig. 5 we have also included the data féte
erty extends to large negative valuesydf, values which in  which were taken under the same kinematical conditions as
the PWIA correspond to large momenta for the initial the other setskr=200 MeVk, Eg.=15 MeV). While at
nucleon. A priori, this feature is not predicted within the ’=0 the superscaling functiof(y/) for “He is about 15%
RFG model used to motivate the choice ®f. It can be higher than for heavier nuclei, a consequence of the sharper
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peak of the momentum distributian(k) at k~0 for such a  experiment performed at TINARS5]. The higher product of
light nucleus, the scaling function fdtHe agrees perfectly beam current and spectrometer solid angle allowed Arrington
with the one for heavier nuclei wheff <—0.3. This reflects et al. to measure cross sections 100 times smaller than pre-
the fact that the tail of the momentum distributiofk) at  viously accessible. In Fig. 6 we show the scaling function for
largek is determined by the short-range properties ofMhe the set of dat# = 12— 197 that extends to the most negative
N interaction. values ofy/' reached, together with previous data Ar 4

Part of theA-dependent increase df ') at large ¢’ [25,26 that also extend to rather large valued #f|. Figure
results from the increase & in proceeding from light to 6 shows that the scaling of the second kind extends out to the
heavy nuclei. This amounts to an increase of the width of thenost negative values of the scaling variable presently acces-
quasielastic peaki.e., before scaling wittkz) and a corre- sible. At values ofy’ <—2 the scaling function seems to
spondingly increased overlap with nonquasifree scatteringrop more rapidly with increasingy/’|, a feature that at
processes A excitation, = production, etg. At the same present is not yet understood; however, we continue to ob-
time, the increasing average density of the heavier nucleierve very high quality scaling of the second kind.
also leads to an increase in contributions of two-body pro- We have mentioned in the previous section that superscal-
cesses such as MEC which are strongly density dependeintg in terms of the variableg’ andY [see Eq(15)] can be
[43]. This, however, appears not to be the only cause for thexpected to be quite similar; data that scale in one variable
rise (see the discussions in Sec.)lV can be expected to scale in the other one as well. As an

Recently, the inclusive scattering data on C, Fe, and Awexample of this we show in Fig. 7 the data of Fig. 3 in terms
have been extended to more negative valuegi/'oty an  of f(Y). In this paper we have concentrated ¢h rather
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e r ¢ clei A=12-197 at 3.6 GeV energy and 16° scat-
B ¥ ] tering angle as a function of the scaling variable
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thanY since the former is more directly related to the RFGtic of quasielastic electron-nucleus scattering, and for the
model that motivated superscaling in the first place, and thamomentum transfegq~500 MeVkt of Fig. 8, this ratio goes
allowed us to introduc&g as a physical scale used to define from 0.5 at the highest energy and smallest scattering angle
a dimensionless scaling variable. In the previous section wdown to less than 0.(.e., the angleyy_ defined in the next
have given the relation betweéf and ¢, pointing out the section, which characterizes tfid. ratio, goes from about
difference in the treatment of the distribution in missing en-45° down to about 15° for the four sets of kinematics cho-
ergy which distinguishes the two scaling variables. The resen. The rise off (') for decreasing longitudinal contribu-
sults show that, at the large values fand w of interest tion clearly shows that the dominant piece responsible for
here, the scaling behavior may be analyzed in terms of eitheronscaling is the transverse one, as expected from the domi-
variable. nantly transverse nature df excitation and MEC. The vio-

In order to locate the origin of nonscaling when all kine- lation of scaling is still comparatively small as the momen-
matics are considered togeth€ig. 2), for one nucleus’¢C) tum transfer of the data in Fig. 8 is small.
we have selected data sets corresponding to roughly constant Figure 9 gives a different cut through the data presently
momentum transfeq, but variable scattering anglelue to  available. Here we plot sets of data with an approximately
the discrete nature of the sets of data available, the choice @bnstant longitudinal/transverse ratio for the elastjrcross
sets at “constang” is only an approximate one With in-  section, but varying momentum transfer (here x1, is
creasing scattering angle, the ratio of the longitudinal to theoughly constant, typically within a few degrees of 25°).
total (longitudinal plus transver$ecross section decreases. The range ofg covered here is 320-1120 Me&¥/Clearly,
For example, fole-p elastic scattering, which is characteris- the nonscaling contribution at’ >0 rises rapidly withg.
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Part of this increase of the contribution #t>0 originates Af=keAF=fr—f . (32

from the fact that the quasielastic peak has a width that in-

creases withy; as a consequence, the overlap of the quasiThe universality contained in the RFG model predicts that

elastic response and the contribution from other processes

grows with increasingy. This effect is not immediately ob- fi=fr=f, (33

vious when looking at the representation in Fig. 9 as the use L .

of the scaling variabley’ removes this increase for the where the last is given in E426) and, moreover, that

guasielastic contribution. It arises partially because pion pro- 1

duction (including viaA production moves to the left with f dy fREG(yy=1+ %n§+ cee (34)

increasingq and so overlaps with the quasielastic pdak

' =0). Other processes may also play a role, in particula

those myolvmg MEC(to which we briefly return in the next It is convenient to express the relationship amongftke

two sectiongand eventually at high energies those involving (or the F’s) in the form

deep inelastic electron-nucleon scattering. We note that, ac-

cording to Fig. 8, these nonquasifree contributions are basi- f=sir? 7, f_+cof x7.f1, (35)

cally of transverse nature. This suggests going further and

attempting to disentangle theé and T contributions to  where the anglg, characterizes th&L content of the scat-

scaling—we proceed to do so in the next section. tering (x7.=0°- all T; y7.=90°- all L). It is a solution
to the equation

{vhich is closely related to the Coulomb sum r{ie3].

IV. SCALING OF SEPARATED RESPONSES

. _ tarf xr.=(v_/v1)(GL/Gy) (36)
The various ways of looking at subsamples of the data
discussed above show clearly that the violation of superscal- (Ge/Gy)2
ing is basically the same as the one observed in conventional = (37
scaling applied to a single nucleus. The deviations from scal- T+ 2k tarf gel2

ing observed in Fig. 2 can be understood in terms ofghe

andL/T dependence for a single nucleus. In particular, let u We thus have a direct relationship @ in terms off andf,

proceed to extend the formalism of Sec. Il by writing longi- see below
tudinal and. transv_erse versions of Ety). Sta_rtmg from the Af=(f—f,)/cof xr_, (39)
cross section written in terms of the individual response
functionsR, andRy, where this can be written in terms of E486) and(37) using
2 the fact that 1/cdsyr, =1+tar? y1. . In the data sets consid-
o . ) ) ) :
_ R (k. \)+V-Rr(k M), 2 ered in the previous section the angle, varies consider-
dQ.dw omlViR (e M) +veRr(h) ] @9 ably: specifically, in Figs. 3, 5, and 7 it is within a few
degrees of 29°; in Fig. 4 within a few degrees of 43°; and in
we have from Eq(14) that Fig. 6 within a few degrees of 20°; while for Figs. 8 and 9

the values were stated earlier.

Scaling of the first kind of the longitudinal and transverse
response functions has been studied some time ago by Finn
et al.[44]. These authors found that, over the reggpfiom
with G 1 given in Egs.(A17). The longitudinal and trans- 250 to 550 MeV¢, the longitudinal response ¢fC showed

B V|_G|_+VTGT, (28)

verse analogs of this equation are good scaling, while the transverse response did not. More
recently[36] ¢’ scaling ofL and T responses was investi-
RL Rr gated for the case of’Ca.
FL:G_L’ FT:G_T' (29 As pointed out above, the longitudinal and transverse con-

tributions to the cross sections should—for quasielastic scat-
As we shall see below, it proves useful to study the differ-tering in the PWIA—also show scaling of the second kind, in

ence between these two quantities: fact to the same response function; see B8). In Figs. 10
and 11 we compare the scaling functidpé') andf+(¢")
AF=F;—F . (30 obtained by Jourdaf45,46 who performed a longitudinal/

transverse separation of the data for selected nuclei and the
If the reaction mechanism in the quasielastic region is strictljower momentum transfers<(580 MeVk) where enough
(quasifreg¢ knockout of protons and neutrons, then one haglata for such a separation are available. Within the error bars
FL(x, ) =F1(x,#)=F(x,); namely, one has\F(x,) of the separated data the longitudinal response does scale to
=0. In light of the discussions in the present work we mighta universal curve, and as shown by Jourf#8i, the integral

call this universality scaling of theeroth kind over this curve does fulfill the Coulomb sum rjEeq. (34)].
The dimensionless analogs of H5) are given by Figures 10 and 11 also show that the basic problem in quasi-
elastic electron-nucleus scattering is #eess in the trans-
fLr=keFL 1, (3D verse responsat large energy loss which grows rapidly with
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FIG. 10. (Colorn Scaling function f (")
from the longitudinal response.

M
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g. It is nota lack of strength in the longitudinal response, as As the longitudinal scaling functions for the different mo-
was claimed by some of the earlier determinations of thementum transfers and mass numbers define an essentially
longitudinal response. universal curvgsee Fig. 10 we have taken a binwise aver-
Figures 10 and 11 also explain the behaviorf¢)’)  age of the data for the highgts of Fig. 10 in order to obtain
found in the previous figures at largg’s. A transverse con- the mean longitudinal response with smaller fluctuations. As
tribution is clearly present which, up t¢’~+0.6, has the response at the lowest value ®£300 MeVk is still
roughly the shape of the quasielastic peak. This leads to agbject to Pauli blocking, we use only the data at the higher
excess (_)f Fhe transverse over the Iongﬂugjmal strer_‘gth W'thq’s to determine this universal longitudinal response. Indeed,
out modifying the shape of the response in the region of thg, the extent that one believes this to the superscaled, ,
peak. Fony’ <_+O'6 sc_almg_of t_hsecond kinds quite _good, it is then possible to use the unseparated functifor any
whereas scaling of thiérst kindis not. At largery’ a (likely nucleus withA=4 andany (large enoughmomentum trans-
different nonscaling contribution comes in at the larggr fer via Eq.(38) to determineAf and hencef ;. The differ-
which is much more important for the heavier nuclei; that is’ence in F.ig 12 shows that part of the ;-(cess transverse

even scaling of the second kind is broken there. : . .
In order t% illustrate this point better, in Fig. 12 we show strength does indeed display a peak at the location of the

the differencebetween the transverse and longitudinal scal-Maximum of the quasielastic responge,=0. The strength

ing functions,Af(¢'), defined in Eq(32). at largery’, corresponding to larger electron energy loss and
:_[|| —_ T T | T T T = T -|
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of presumably different origin, rises rapidly with increasing scaling variabla}’ introduced within the context of the RFG

g. model as motivation for the definition of a dimensionless
Much of the strength oAf at ¢’ <0 is below the thresh- scaling variable using the Fermi momentum as a scale. We

old for pion production on a nucleus with=12 (and even have also discussed the relationship betwgénand the

more so for quasifree productiprrhis is shown by the ar- ysual scaling variablg, and shown that the two variables,

rows in Fig. 12 which indicate, for the variougs, the po-  which integrate somewhat different initial-state physics,
sition of the-production threshold both on the nucleus andyje|d similar results. Indeed, the superscaling property is

on the free nucleon—we consider the latter to be the more, ;nd in terms of bothy’ andY .

relevant one, since coherent production on the entire nucleus Tphe a independence of the superscaling function actually
is expected to be velry shmall. Thhe Ereljence of Iﬁrge EXCe3S much better realized than tligindependence of the nor-
transverse strgngthe owthe " t reshoid means that SOME g scaling; scaling of the first kind is known to be violated
other mechanism must be identified as its source. Varlouaue to effects from FSlgmainly at very negativa)’) and

possibilities exist, for example, nonquasifree reactions "]\/IEC pion production, and excitation of internal degrees of

which the FSls are different for nucleon knockout via the freed f the nucleofmainly aty’>0). This observation
and T contributions of the electromagnetic current, cluster reedom ot tne nu Inly aty ). Thi ) vatl
of superscaling allows us to conclude that, in the integral

knockout, and two-body MEC contributions; we return to ) X . . .
touch upon some of these in the next section. sense reflected through inclusive scattering, different nuclei

While the qualitative message of Fig. 12 is clear, we notd!@ve & more or less universal spectral functioromentum
that the numerical values of the difference in strength giverflistribution once the obvious dependence on the Fermi mo-
there should be treated with some care. It is clear that som@entumke is removed. This universality is not restricted to
processes playing a role in accounting for the excess strengthe region of the quasielastic pedk)(|<1); the superscal-
(for example, one-particle emission via ME@ise fromco-  ing extends to larger values pp’| and hence to large values
herent contributions to quasielastic scattering, and henceé@f the nucleon momentum in the nucleus, a fact which may
make any quantitative interpretation aff less straightfor- stem from the universal properties of nuclear spectral func-
ward than would be the case when only incoherent processéi@ns that arise from short-randeN interactions insofar as

are present. they can lead to a scaling in terms lofkg .
Superscaling turns out to be particularly useful when deal-
V. DISCUSSION AND CONCLUSIONS ing with the separated longitudinal and transverse responses.

In quasielastic scattering for all large enough momentum

We have analyzed the existing high-quality data ontransfers and all nuclear mass numbAes4 both of these
electron-nucleus quasielastic scattering for all nuélei4  responses should scale to tkemefunction to which the
—238. We observe that, upon use of the proper scaling variunseparated data also scale. In particular, to the extent that
able ' (or, alternatively,Y =y/kg), the data on the lows  the limited scope of the available data permits a test to be
side of the quasielastic peak/( or Y <0) showsuperscal- made, we find that thiongitudinal response does scale to a
ing behavior: the scaling functions are not only independentiniversal curve and that the integral of the superscaled result
of momentum transfer, but coincide for the differébnce  satisfies the Coulomb sum rule.
the leadingkr dependence is removed in the manner dis- However, when using superscaling to investigate further
cussed in this work. The former we call scaling of first  the reasons that lead to the observed nonscaling at electron
kind and the latter scaling of theecond kind energy lossw’>|Q?|/2my (¢'>0) for individual nuclei,

The main part of this work has been performed using theve find that the main problem resides in th@nsverse
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strength, which increases rapidly with increasmgnd less sponses and C.F. Williamson for useful discussions during
rapidly with increasingA. Some of the increase with is  the course of this work. This work was supported in part by
clearly related to the increasing overlap of the quasielasti¢unds provided by the U.S. Department of Energy under Co-
contribution with theA peak(which is predominantly trans- operative Research Agreement No. DF-FC02-94ER40818

verse, the growing contribution ofr production, and at the and by the Swiss National Science Foundation.
highest energies deep-inelastic scattering. This cannot pro-

vide all of the excess i f, however, since it clearly occurs

below threshold for meson production, as well as at higher APPENDIX
energy loss. ) _ _ _
Thus, the good quality of the scaling of the second kind is Kinematical relationships

not entirely understood. Various sources for the excess trans- Using Eq.(1) it may be shown that whefi=0 (its small-
verse strength can be identified, ranging from FSI effects test valug the minimum and maximum values of the missing-

contributions from MEC. The former could yield soréL momentum occur dty| andY, respectively, whergl]
differences through spin-isospin many-body contributions

arising from random phase approximatioRPA) correla- 1
tions or effects involving correlated knockout of nucleon Y= _—

{(M3+ @) VW2 — (MQ_;+my)?

2
pairs (for instance, the'S,—3S,+3D; channel is primarily 2W
transversg although it is completely unclear what breaking % \/WZ—(M,Q_l—mN)Z—q[WZwL(Mg_ 1)2_mm}'
of scaling of the first or second kinds might be produced and
whether the transverse/longitudinal excess could be so ex- (A1)
plained. Indeed, for example, one can argue that some con-
tributions such as those stemming from short-range FSls are .
reasonablyA independent. This is not the case for the con- , 0 5 0 5
tribution of MEC. For instance, the treatment of Van Orden ' W{(M’“Lw)‘/w ~(Ma_itmy)
and Donnelly[43] shows that the two-particle—two-hole
(2p-2h) MEC superscaled response contains an additional X AW2— (MY _ —my)?+ [ W2+ (MQ_)2—m2]},

dependence of approximatelk)i and hence strongly breaks
the second-kind scaling behavior. In fact, those calculations
yielded a rather small{2-2h contribution—which is consis-
tent with what is observed. Other stud[d¥,48 confirm this  with as usual W= 1/(|\/|A°+w)2_q2_ The variable y
behavior. In particular, even calculations involving a dy- =y(q,w) may be used together witito replace the pair of
namic A propagator, such as those of Deklaral. [47],  variables ¢,w) and is well suited to quasielastic electron
while providing somewhat largem22h MEC contributions,  scattering, since the quasielastic peak occurs yied), with

do not provide so much that they disagree with the second;<( corresponding to the so-calledyscaling region”

kind Scaling behaViOfalthOUgh note that for reasons we do which is the focal point of this work, Wherewo corre-

not yet understand recent wok9] appears to be in conflict  sponds to the resonance region and beyond to deep-inelastic

with the earlier treatments Furthermore, it should be scattering. Expanding in inverse powers of the daughter mass
pointed out that MEC effects enter in the@-ILh sector as gne has

well as in the D-2h sector. IN[50] (and confirmed if48])
it was seen that the former interfere destructively with the
one-body contributions and therefore tend to lower the total
1p-1h transverse response—when all is added up the totaly =Y=| 1
MEC effect at and below the quasielastic peak is found to be
rather small. Clearly the reasons for the good quality of the
scaling of the second kind and the limits that may be im-
posed on processes such as MEC-mediatee2R excita-  wherey., is given in Eq.(2). The upper limit may similarly
tions certainly merit further theoretical investigation. be expanded for Iargb’lg,l, yielding

In summary, superscaling, when applied to these sepa-
rated responses, allows one in a particularly obvious way to
make a point that recently has become increasingly clear: for
inclusive electron-nucleus scattering the poorly understood Y=2q
contribution is thetransverseone, and not the longitudinal
one as was usually claimed before the work of Jourdsh

in which reliable values for the longitudinal response were  apgther useful relationship needed in some of the discus-
extracted. sions presented in Sec. Il is that for the maximum value of
missing energy allowed for giverg(w) and given missing
momentunp. One finds that, which is essentially the miss-

The authors would like to thank J. Jourdan for providinging energy minus the separation enegyy, has as its maxi-
the scaling functions for the longitudinal and transverse remum value

(A2)

_(vaz+(q+yoc)2) Yo

q+y- ] V)

+O[<M21>2]],
(A3)

\/mN+(q+yoo)2

1—
M3-1

+y. (A4)
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Ew(a,y;p)=Vmi+(q+y)2— Vmi+(q—p)?

+(MO_ 2 +y2=(MQ_ )2+ p?

M%_1—o Vm2+(q+y)2— Vmi+(q—p)?

—(p*=y?)2M3_,

q—

——— (pty)—[V(ME_ )%+ p?
—(M3_1)?+Yy?]

0
Ma_1—

_—

(p+y)—(p?—y?)I2MQ_;.
(A5)

In the main part of the paper we employ only the,_ 4
—oo limit as in Eqgs.(6) and (7).

PHYSICAL REVIEW C60 065502

with o), the Mott cross section and,_t the usual Rosen-
bluth kinematical factors, where the longitudindl) and
transversdT) ccl contributions may be written

2
W (q,0:p,E)= ————| —|[G2+ 2(W,+ AW
L(qw p ) ZKW . [ E ( 2 1)
+(1+ 7AW, + (1+ 7)AW,],
wi(q,w;p,&)= ;[2?62 + 2(Wo+ AW, .
T l M 2K /—1+7]2 M 2 1
(A9)

Here we employ dimensionless variables=qg/2my, A
=w/2my, and 7=k>—\?>0, wherew=Ey—E. The ccl

prescription introduces the enerEygiven above and hence
the “equivalent on-shell energy transfes=Ey—E, with
A=w/2my and r=«k?>—\%. We have also definedy

All of the kinematic relationships given above do not de-=p/m,, where thenE/my=(1+ 5?2 and used the fact
pend on the choice of dynamical model beyond the assumphat

tion of nucleon knockout.

PWIA and the ccl off-shell prescription

If following common practice one invokes the PWIA for
the reaction, then a nucleon of energy

E(p,&)=M3—(M_)2+p?—¢€

and momentunmp is struck by the virtual photon and is
ejected from the nucleus as a plane wdwae shel) with
energyEy and momentunpy . The kinematics of the reac-
tion require the struck nucleon to be off shell; that ks,

#E, whereE=(m2+ p?)Y2 In fact the off shellness may be
characterized by the quantity

(AB)

E-E

1
_:ﬁ{(\/w_mN)
N

2my

FIVME_ )2+ p?—MS_ 1+ E+Eg=Eg2my.
(A7)

p(p,&)=

In the PWIA the cross section is given as the product of the

5= l
KZ

(A10)

Ey+E)” S
2my (1+17)

- 2
_ A—
K_TZ[ZW1+,72_1)+,72]_( ﬂ . (ALD)

K

where the relationshipHy+ E)/2my=X\ + 1+ 5? has been
used to obtain the result in EGA11). The terms containing
5% as a factor enter because the struck nucleon is moving and
contribute whether or not the nucleon is off shell. As dis-
cussed in the main texty is typically small; therefore the
first term in Eq.(A11) is very small, being of order?. For

the second term in this equation we can use as an estimate

Eqg. (16) and find that its contribution is also very small,
being of orderné. Thus the terms in EqgA9) containing
the factors? are all seen to be very small.

The single-nucleon form factors enter E@89) in the
following combinations:

Gi(1)=ZGE,+NGZ,,

half-off-shell single-nucleon cross section and the nuclear

spectral functiorS(p,E) which gives the probability that a
nucleon of momenturp and energy is found in the nuclear

ground state. We may then wrias a function of p,é).

For the single-nucleon cross section it is common practice

to use the ccl prescription of De Forg$6]. Then, integrat-

ing over azimuthal angles, summing over particles while as*

Gu(1=ZGh,+ NGy,
AG(7)=ZGg,Gyp+ NGe Gun. (A12)

whereGg,, , andGy, , are the familiar Sachs form factors

suming that the spectral function does not differ for protons2d are functions only of, and then

and neutrons, and including the kinematic fadig/q with
En=[(q +p)2+m3]"? (see[1]), one obtains the following
for the single-nucleon cross section:

Ten(9,0;p,E)= o[V W +Vviwg], (A8)

W,y (71)=7G%,

A — 1 ~2 —~2
W(r)= 7 [BE+ 751,
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o —r ~ proximations to this quantity were employed in the main part
AW, (7,7)= ——[GE+ Gy —2AG], of the paper for simplicitysee Eqs(10) and(12)], although
(1+7) computations were done with the full expression.
The exact RFG analog of EQ) is

T—T

AW, (1,7)= m

=2 =2
[Ge—Gil- (A13) d?oldQ de

om[VLGL(k,N)+viGr(k,N)]’

F(k, )= (A16)
The form given here for the ccl prescription is different from
the usual ong¢16], having been rearranged to bring out the yhere we have made use of the usual lepton kinematical

strong resemblance to the on-shell form discussed belowgciorsy, andvy and on-shell single-nucleon respong®s
Note that, when a nucleon is moving but on shell, siace angG, (see[18], and alsd51,52):

= the last two responses are zem\7v1,2= 0. That also
implies, as expected, that no terms of the fd&pG, com- (Kzlr)[éE+VV2A]

ing from AG in Eq. (A13) can occur when on shell, although GL(x,N)
they do for the ccl off-shell prescription. Finally, note that

these off-shell effects are all proportional?e 7 which may =
be written 271Gy +WLA

K ~
— __GZ O 2 ,
1 e (1t oz 2 € O]

T~
Gr(r,\)= =—G4+0[52].
_ M) 261+ Ex(1+yP) 2] K ™ L)
T—7=p(2\—p) (A14) (A17)
using Eq.(A7). Here[12]
Scaling in the RFG model
. X . . Vr(l+7) 1 T
We end this appendix by collecting some of the exact A=E&(1—y?) —+§§F(1—¢/2)—2
expressions involved in studies of the RFG mo@ele also K K
[12,18)). First they-scaling variable is fully given by 1
=5 (1= y?) ng+ O 7¢]. (A18)
1 AN—T
h=—= : (A15)
\/§—F \/(l+)\)7+ kNT(1+7) The above approximations yield the expressions used in the

main part of the papdisee Eq.(14)]. Note that the on-shell
whereég= 1+ 772F—1 and - =Kkg /my are the dimension- limits of Egs. (A9) immediately give the behavior seen in
less Fermi kinetic energy and momentum, respectively. ApEgs.(Al7), as they should.
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