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Superscaling of inclusive electron scattering from nuclei
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We investigate the degree to which the concept of superscaling, initially developed within the framework of
the relativistic Fermi gas model, applies to inclusive electron scattering from nuclei. We find that data obtained
from the low-energy loss side of the quasielastic peak exhibit the superscaling property; i.e., the scaling
functionsf (c8) are not only independent of momentum transfer~the usual type of scaling: scaling of the first
kind!, but coincide forA>4 when plotted versus a dimensionless scaling variablec8 ~scaling of the second
kind!. We use this behavior to study the as yet poorly understood properties of the inclusive response at large
electron energy loss.@S0556-2813~99!01012-2#

PACS number~s!: 25.30.Fj
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I. INTRODUCTION

The applications of scaling and dimensional analysis h
been important tools for the development of new insights
physics. Scaling in scattering experiments is observed in
cesses where a weakly interacting probe scatters from
stituents bound in a composite system and a constituen
ejected quasifreely from the system. The~unpolarized! inclu-
sive response functions, determined by observing only
scattered probe, in addition to depending on the scatte
angle, in general depend explicitly on only two more ind
pendent variables—the energyv and momentumq trans-
ferred by the probe to the constituent. In the asymptotic
gime of largeq5uq u and v, however, when appropriate
divided by the elementary probe-constituent cross sect
the responses are~approximately! functions of only asingle
variablez5z(q,v), with z in turn a function ofq and v.
This functional independence of the so-called scaling fu
tion on the momentum transfer~which sets the scale in th
scattering! is known as scaling and is seen as a signature
the scattering occurred between the probe and the spe
elementary constituent of the target, rather than arising fr
some other process such as scattering from different cons
ents. To distinguish this behavior from the additional scal
that forms the focus of the present work we call the us
independence of momentum transferscaling of the first kind.
Various choices for the functionz(q,v) can be motivated on
the basis of the kinematics of the probe-constituent ela
scattering process—several such choices are discussed i
work. Expressed in terms of a scaling function, the inclus
cross sections can be related to the momentum distribu
~more generally, to the spectral function! of the constituents
in the target.

In the last 20 years or so, the concept ofy scaling in the
scattering of high-energy electrons from nuclei has been
tively pursued@1#. For y scaling the focus is on protons an
neutrons in nuclei as the ‘‘elementary’’ constituents. Ty
cally, when three-momenta ofq.500 MeV/c and energies a
or somewhat below the quasielastic peak positionv'(q2

1mN
2 )1/22mN , where mN is the nucleon mass, are tran
0556-2813/99/60~6!/065502~16!/$15.00 60 0655
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ferred from the electron to the nucleus via exchange o
virtual photon, a nucleon is ejected from the nucleus in
reasonably ‘‘quasifree’’ manner. Namely, the nucleon lea
the nucleus with a high enough energy that the process
be treated approximately as having occurred without str
effects from final-state interactions~FSIs!. Under the appro-
priate kinematical conditions~to which we return below! the
cross section can be written as a product of the elemen
electron-nucleon elastic cross section times a functionF. It
has been shown theoretically and verified experimentally
at large momentum transfers the appropriately defined fu
tion F depends only on a single variabley5y(q,v), itself a
function of q and v; here y is a particular choice for the
general functionz referred to above~see also the next sec
tion!. The scaling function so obtained asymptotically co
tains interesting information about the dynamical propert
of the nuclear ground state, and the fact that scaling d
occur provides very useful information about the react
mechanism itself.

Indeed, scaling in electron-nucleus scattering is a spe
case of a more general phenomenon@2# occurring in various
areas of physics that deal with inelastic scattering o
weakly interacting probe from a many-body system in wh
q and v are transferred to a single constituent in the tar
system. Examples are found in the scattering of keV el
trons from electrons bound in atoms@3#, in the scattering of
eV neutrons from atoms in solids or liquids@4#, and in the
scattering of GeV electrons from quarks in the nucleon@5#.
Despite the extraordinary range of energy and momen
transfers for which these reactions have been studied,
conceptual ideas used to describe the scaling phenome
these different fields have many features in common.

For electron-nucleus scattering, the topic of particular
terest to this paper, scaling was already implicit in the ea
theoretical studies of electron-nucleus quasielastic scatte
@6# when treated in terms of the nonrelativistic Fermi g
model; the cross section could be reduced to a function
single variable multiplied by the elementarye-N elastic cross
section. For treating electron scattering explicitly in terms
©1999 The American Physical Society02-1
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y scaling, the seminal idea originated with the work of We
@2#. Early theoretical work was also undertaken by Kawaz
et al. @7#. At that time, however, few data were available a
where they did exist they were restricted to a narrow ki
matical range at low energy. Conclusive observation of
asymptoticq independence ofF for inclusive scattering be
came possible with the availability of data that spanne
large range ofq andv and was presented by Sicket al. @8#
for 3He. Subsequent work@9,10# placed the theoretical foun
dations of scaling on reasonably firm ground, specifica
addressing a variety of issues such as the role of the res
tions imposed by the nature of the (A21) system excitation
spectrum and recoil-nucleon FSIs@11#. A summary of the
various aspects of conventional~first kind! scaling has been
given in the review paper of Dayet al. @1#.

Much of the previous work has concentrated on the st
of the scaling properties of the response in the low-v tail of
the quasielastic peak; in this region the scaling function
sensitive to components of the spectral function at large
tial nucleon momenta. Particular emphasis was placed
light nuclei A<4 where the scaling approach works partic
larly well and where sophisticated calculations of groun
state nuclear wave functions and hence spectral functions
available for theoretical studies of the scaling properties.

In the present paper, we explore a different aspect of s
ing. Rather than concentrating on the response of individ
nuclei, we compare the scaling function ofdifferent nuclei
with A>4, and study the degree to which these scaling fu
tions are thesame—we call such behavior scaling of th
second kind. The motivation is to explore the degree
which the concept ofsuperscalingintroduced by Alberico
et al. @12# when studying the properties of the relativist
Fermi gas~RFG! model, that is, scaling of both the first an
second kinds, is applicable to nuclei. A presentation in c
densed form of some of this analysis is available in Ref.@13#.

Here we study superscaling using a large body of inc
sive scattering data. While we employ the RFG model
motivate the choice of the scaling variable, only minimal u
of this model is subsequently made in interpreting the dat
the actual dynamical physics content in the problem is
doubtedly more complex than the RFG model can be
pected to address. The RFG does, however, offer a phy
scale—the Fermi momentum—that can be used to make
the scaling variable and scaling function dimensionless.
emphasis of the present paper therefore is on superscalin
observed in the experimental data and on the physics one
deduce from this scaling property. Here~in Sec. II and the
Appendix! we also provide a discussion in depth of t
choices made for the scaling variables, their limiting expr
sions, and the interrelationships among them.

Scaling of the second kind and superscaling were actu
implicit although unrecognized in the early work of@14# in
which quasielastic scattering was studied at one value of
mentum transfer for a range of nucleiA562208. The data
at energy loss below the maximum of the quasielastic p
could be explained in the Fermi gas model, an observa
that implies that scaling of the second kind did occur.
scaling analysis of the data was performed, however.

Using modern data we find that the superscaling id
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works very well in the region below the quasielastic peak,
discussed in Sec. III~see also@13#!. However, some breaking
of superscaling does occur, and in the present work we
such deviations to elucidate some of the as yet not well
derstood features observed in the various measuremen
the quasielastic response. In particular, in Sec. IV we fo
on the difference between the longitudinal and transve
responses in the region of the quasielastic peak, and
properties of the contributions that fill in the ‘‘dip’’ betwee
the quasielastic andD peaks—a region which has present
a puzzle for a long time@14#.

Following this introduction we proceed in Sec. II to di
cuss the relevant formalism involved in scaling of the fi
and second kinds for the cross sections, relegating some
tails to an appendix. Then in Sec. III we discuss the result
analyzing the existing data on quasielastic electron sca
ing, including recent results from TJNAF@15#, to test the
idea of superscaling. Subsequently in Sec. IV we specia
the formalism and discussion of the data to a treatment of
individual longitudinal and transverse responses. We en
Sec. V with the conclusions to be drawn from the pres
study and with some discussion of the questions that m
still be regarded as open ones in studies of quasielastic e
tron scattering from nuclei at intermediate energies.

II. SCALING OF CROSS SECTIONS: FORMALISM

Let us begin by repeating and extending some of the
guments that underlie the concept ofy scaling of the unsepa
rated cross sections; these form part of the basis of the
cussions of superscaling that follow, and several identi
and relationships among the variables involved are prese
for the first time. In the usual approach to inclusive electr
scattering in the quasielastic regime one assumes that
dominant process is impulsive one-body knockout of nuc
ons together with contributions from two-body processes t
play a role when the normally dominant process is s
pressed. Of course, for the ideas of scaling to be applica
one must avoid the regime of low energy and moment
transfers where strong FSI effects~including Pauli blocking,
collective behavior in the final states, etc.! are felt. Also the
distortion of the initial and final electron wave function
moving in the Coulomb field of the nucleus must be a
dressed~at least for heavy nuclei and low electron energ!
for the scaling analysis to be clear.

The usual approach is the following: One starts from
(e,e8p) and (e,e8n) cross sections which may be written a
functions of the three-momentum transferq5uq u and energy
transferv, the electron scattering angleue , the azimuthal
anglefN between the planes in which the electrons lie and
which the momentum transfer and the outgoing nucleon
and two variables specifying the remaining kinematics of
outgoing nucleon. For the latter one may use the thr
momentum of the nucleonpN5up Nu or its energyEN5(mN

2

1pN
2 )1/2 and its polar angleuN , the angle betweenq andp N .

Alternatively one may use the magnitude of the missing m
mentump5up u5up N2q u and a variable to characterize
degree of excitation of the residual system; for the latter
use
2-2
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SUPERSCALING OF INCLUSIVE ELECTRON . . . PHYSICAL REVIEW C 60 065502
E~p![A~MA21!21p22A~MA21
0 !21p2>0, ~1!

wheremN is the nucleon mass, andMA21 is the~in general!
excited recoiling system’s mass, whileMA21

0 is that system’s
mass when in its ground state. The target mass is den
MA

0 and the separation energy relates three of the mass
the following way:ES[MA21

0 1mN2MA
0>0. The variable

E is essentially the familiar missing energy minus the se
ration energy.

The strategy in the usual scaling analyses is to determ
the smallest value of missing momentump that can occur for
the smallest possible value of missing energy~i.e., E50),
since there, at least for kinematics not too far removed fr
the quasielastic peak, one might expect to have the lar
contributions from the underlying nuclear spect
function—see, however, the discussions at the end of
section. This smallest value ofp is traditionally defined to be
y (2y) for v larger~smaller! than its value at the quasiela
tic peak. Thus one may use (q,y) rather than (q,v) as the
two variables together withue upon which the inclusive
cross section depends. In the Appendix we give comp
expressions fory and for the largest value ofp that may be
reached for givenq andv; here we give an expression on
for y in the limit whereMA21

0 →`, as for all but the very
lightest nuclei this is an excellent approximation:

y`5Aṽ~2mN1ṽ !2q, ~2!

whereṽ[v2ES . Corrections of order (MA21
0 )21 are also

given in the Appendix@see Eq.~A3!#.
Focusing now on the regiony,0, the most common ap

proach toy scaling~see, for example,@1#! is then to evaluate
the single-nucleon cross section at the lowest values of (p,E)
that can be reached for given values ofq and y—in the
scaling region these arep52y and E50—and then to di-
vide the inclusive cross section by this quantity to defin
function of q andy:

F~q,y![
d2s/dVe dv

s̃eN~q,y;p52y,E50!
. ~3!

For the single-nucleon cross section it is common practic
use the cc1 prescription of De Forest@16# with the form
factors parametrized as in@17#. In the Appendix we provide
the complete expressions for the cross section and indi
the degree to which the struck nucleon in plane-wave
pulse approximation~PWIA! is off shell. In the PWIA one
has

F~q,y!52pE
2y

Y

p dp ñ~q,y;p!, ~4!

involving the integral

ñ~q,y;p!5E
0

EM
dE S̃~p,E!, ~5!

whose upper limit is approximately given by
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EM~q,y;p!>AmN
2 1~q1y!22AmN

2 1~q2p!2 ~6!

>mN1ṽ2AmN
2 1~q2p!2 ~7!

using Eq. ~2!. Here again we have taken the limit whe
MA21

0 →`, relegating the exact expressions to the Appen

@see Eqs.~A5!#. The spectral functionS̃(p,E) ~see, for ex-
ample, @16#! is the probability that a nucleon of three
momentump is found in the target nucleus and that th
daughter system is in a state of excitation characterized bE,
that is, that via Eq.~1! its energy in the laboratory system
EA21(p)5A(MA21

0 )21p21E.
At high enough values ofq one seeks they-scaling behav-

ior: namely, if the inclusive response scales, thenF becomes
only a function ofy,

F~q,y! →
q→`

F~y![F~`,y!. ~8!

Scaling has also been approached from a different p
of view using as a starting point the RFG model@12,18#. The
strategy there is to provide a form similar to Eq.~3! such that
in this model exact scaling is obtained. As seen in@18# the
variable

yRFG5mN~lA111/t2k! ~9!

naturally emerges. Here, as in many past studies, we em
dimensionless versions ofq, v, and uQ2u: k[q/2mN , l
[v/2mN , andt[uQ2u/4mN

2 5k22l2. Below we show how
to interrelate the variablesy andyRFG. As also discussed in
the above-cited work, a dimensionless scaling variablec is
strongly motivated by the RFG model. In the Appendix w
give the exact expression forc @see Eq.~A15!#, whereas for
most purposes the following approximations are excellen

c5
yRFG

kF
$11O@hF

2 #% ~10!

>
1

hF
@lA111/t2k#, ~11!

where kF is the Fermi momentum andhF5kF /mN its di-
mensionless counterpart. TypicallyhF is small, growing
from 0.06 for deuterium to about 0.3 for the heaviest nuc
and thus expansions such as those above are usually
good, since they neglect terms only of orderhF

2 . An alter-
native approximation forc that also proves useful to intro
duce is the following:

c5c0F11A111/4k2
1

2
hFc01O@hF

2 #G , ~12!

where now the good~but not as good! variable

c0[
2

hF
@Al~11l!2k# ~13!
2-3
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T. W. DONNELLY AND INGO SICK PHYSICAL REVIEW C60 065502
occurs and the result in Eq.~12! receives linear~rather than
quadratic! corrections when written in terms ofc0 .

The RFG analog of Eq.~3! is

F~k,c!>
d2s/dVe dv

sMF k

2t
vLG̃E

21
t

k
vTG̃M

2 G , ~14!

where we have made use of the usual lepton kinema
factors vL and vT and the approximations for the single
nucleon responsesGL and GT which involve G̃E

2[ZGEp
2

1NGEn
2 with G̃M

2 defined similarly @see Eqs.~A12! and
~A16–A18!#. Note that relativistic factors involving the dif
ference betweenk2 andt in Eq. ~14! are very important to
retain when studying quasielastic scattering at high mom
tum transfers.

Before carrying these ideas over to an analysis of the d
it is useful to bridge the gap between the usualy-scaling
approach and thec-scaling ideas contained in the RF
model~see also@18#!. First, let us use they variable to define
its dimensionless counterpart

Y[y/kF ~15!

and from Eq.~2! its approximate form

Y`[y` /kF5
2

hF
@Al̃~11l̃ !2k#, ~16!

where l̃[ṽ/2mN . Clearly the two approaches will yield
rather similar results, since

c05Y`~Es50!, ~17!

with corrections toY coming from the finite-mass effect
discussed in the Appendix@see Eq.~A3!# and toc from the
hF-dependent terms in Eq.~12! ~see also below!. They and
Y variables build in the kinematics of nucleon knockout a
recognize the initial-state separation energyEs ; however,
they do not take into account the missing-energy depende
in the cross section. On the other hand, thec variable is
constructed from the RFG model whereA→` at constant
density ~and thus contains no finite-mass dependences!, al-
though, as discussed in more detail below, it does refl
some of the missing-energy content in the problem~see also
@19#!.

Thus, each approach has its own merits. To bridge the
at least partially, it is useful to shift the energyv to

v8[v2Eshift ~18!

by an amountEshift to be chosen empirically~see the next
section where we discuss the choices made for the shift
allow Eshift to take on values other thanEs , the separation
energy!. In the familiary-scaling analysis, already one us
ally does not useEs as would be demanded if strictly adhe
ing to the PWIA, but rather lets the shift ‘‘float’’ to allow the
quasielastic peak to occur in the correct position. This u
ally results in a somewhat larger value for the shift and pr
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ably reflects the fact that implicitly one is trying to build i
some aspects of the initial-state physics such as the ave
removal energy—the average of the separation energie
the various shells making up the nuclear ground state—
also some aspects of FSIs which can also produce a sh
the position of the quasielastic peak. Actually, the differen
between the strict interpretation as a separation energy
the empirical value that emerges is typically rather small

We then adopt the same strategy when proceeding f
the RFG starting point and introduce dimensionless variab
as above,l8[v8/2mN andt8[k22l82, so that in parallel
with Eq. ~13! we have

c08[c0@l→l8#5
2

hF
@Al8~11l8!2k#5Y`~l̃5l8!

~19!

and with Eq.~12!

c8[c@l→l8#5c08F11A111/4k2
1

2
hFc081O@hF

2 #G .
~20!

A simple extension of the strict RFG model should help
providing an understanding of the missing-energy cont
retained in defining a scaling variable. The RFG model ha
spectral function which is nonzero along the line

ERFG~p!5AkF
21mN

2 2Ap21mN
2 ~21!

that ‘‘on the average’’@19# incorporates the shell structure o
a typical ~heavy! nucleus. Instead let us use

E~p;a![aERFG~p!, ~22!

such that whena51 we recover the RFG model, but whe
a50 we haveE50, the constraint used in defining the fa
miliar y variable@see Eq.~A1! in the Appendix#. In Fig. 1 we
showE(p;1) together withEM(p) from Eqs.~6! and ~7! at
q5700 MeV/c andṽ5180 MeV—namely, for typical kine-

FIG. 1. Missing energy versus missing momentum. The vari
curves are described in the text; they are shown forkF5225
MeV/c, Eshift520 MeV, q5700 MeV/c, andv5200 MeV.
2-4
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SUPERSCALING OF INCLUSIVE ELECTRON . . . PHYSICAL REVIEW C 60 065502
matics for the low-v side of the quasielastic~QE! peak. As
in the RFG model~see @18#!, the intersection of the two
curves occurs at the value of missing momentump that de-
fines the scaling variable. Fora50 this occurs at2y, the
usual scaling variable given approximately byy` in Eq. ~2!

~for simplicity here we have takenv85ṽ); for a51 it oc-
curs at 2yRFG given in Eq. ~9! ~but, of course, withv
shifted!. More generally one obtains something very simi
to Eqs.~12! and ~20!, namely,

y~a!5y`F11aA111/4k2
1

2
hFc081O@hF

2 #G . ~23!

Clearly what emerges is the following: the term in Eq.~20!
containing a first-order correction to the ‘‘minimal’’ approx
mation to the shifted RFG scaling variablec08 is the one
above involvinga. Whena50 ~the usualy definition! no
missing-energy dependence is taken into account, whe
with aÞ0 ~as in the RFG! some average dependence onE is
incorporated.

Thus we find that the traditionaly-scaling variabley
5y(0) and the RFG variableyRFG5kFc85y(1) are closely
related, in fact we have

y~1!2y~0!

y`
>F11

1

4k2~A111/4k211!
G 1

2
hFc08 ,

~24!

which, whenk becomes very large, becomes independen
the three-momentum transfer. In other words, if the QE
sponse scales for one variable at highq, it must also scale for
the other. Equation~24! allows us to estimate the importanc
of the scale-breaking (q-dependent! terms. They go as
hFc08/8k2 at highq and accordingly provide only small cor
rections there, sinceuc08u is typically of order unity. For low
q one finds larger differences between the two scaling v
ables, although there the concept of scaling is not expecte
be quite as good in any case. For a typical situation a c
parison of the various scaling variables discussed here
be found in@18# ~see Fig. 11 in that work!.

Indeed, if circumstances warranted, it is straightforwa
to generalize these ideas to devise still more scaling varia
that build in the best features of both the traditional PWI
motivated extreme and the RFG model extreme, or to
beyond in attempting to take into account whatever we kn
about the missing-energy dependence of realistic spe
functions. However, as the results given in the next sec
show, such fine-tuning is apparently not needed at
present stage of our understanding of superscaling.

Finally, having obtained dimensionless scaling variab
c, c8, and Y ~together with approximations to them, a
discussed above!, we introduce adimensionless version o
the scaling functionas suggested by the RFG model@12,18#:

f [kF3F. ~25!

Not only does the RFG model contain scaling of thefirst
kind so that f ~or F) becomes independent ofq at high-
momentum transfers, retaining dependence only on the s
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ing variablec, but it also contains scaling of thesecond kind
whereinf is independent ofkF to leading order inhF

2 . What
results for this model is

f RFG~c!5
3

4
~12c2!u~12c2!@11~hFc/2!21•••#.

~26!

When both types of scaling occur as they do for the R
model we call the behaviorsuperscaling. In the next section
we proceed to examine the degree to which scaling of
various kinds does or does not occur for measured uns
rated cross sections.

III. SCALING OF CROSS SECTIONS: RESULTS

In this section we use the unseparated electron-nuc
inclusive scattering data presently available to test the ide
superscaling for kinematics below the quasielastic peak
also try to add some insight into the various reasons wh
lead to the well-known fact that at large electron energy l
nonscaling behavior is observed. We restrict our attention
nuclei heavier than3He, as the lightest nuclei are known t
have momentum distributions that are very far from t
‘‘universal’’ one which is at the basis of the superscali
idea.

Data on inclusive electron-nucleus scattering for a se
of nuclei (A542208), but only one set of kinematics, we
obtained early on by Whitneyet al. @14#. For helium, addi-
tional data at lowq were measured by Zghicheet al., Dyt-
man et al., Meziani et al., Sealocket al., and von Reden
et al. @14,20–24#; high-q data were obtained by Dayet al.
and Rocket al. @25,26#. For carbon, low-momentum transfe
data are available from experiments performed by Barr
et al., Baranet al., and O’Connellet al. @27–30#; at high q
cross sections are available from the experiments of D
et al. and Heimlichet al. @25,31#. For oxygen an experimen
has been performed by Anghinolfiet al. @32#. For medium-
weight nuclei the data available include those for alumin
at highq measured by Dayet al. @25# and the ones for cal-
cium measured by Deadyet al., Meziani et al., Yateset al.,
and Williamsonet al. @33–36# at low q. For iron experiments
have been performed by Altemuset al., Mezianiet al., Baran
et al., Sealock et al., and Hotta et al. at low q
@37,34,29,23,38#; at high q measurements have been ma
by Day et al. and Chenet al. @25,39#. For heavy nuclei in-
clusive cross sections have been measured by Dayet al. for
gold at highq @25# and by Zghicheet al., Blatchley et al.,
and Sealocket al. for nuclei between tungsten and uraniu
at low q @20,40,23#.

Not all of these data can be used, however, as some h
not been corrected for radiative effects, are known to h
problems such as ‘‘snout scattering,’’ or have a floating n
malization; some data are only available in the form of fi
ures, but not as numerical values, and thus are not usef
the present context.

To begin with~see also@13#!, we have taken the availabl
data for the nucleiA512, . . . ,208that meet our criteria for
inclusion and have analyzed them in terms of scaling in
2-5
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FIG. 2. ~Color! Scaling function f (c8) as
function of c8 for all nuclei A>12 and all kine-
matics. The values ofA corresponding to differ-
ent symbols are shown in the inset.
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variable c8. Since c8 is defined in Eqs.~19! and ~20! in
terms of the Fermi momentum, appropriate values ofkF had
to be selected: specifically, we use 220, 230, 235, and
MeV/c for C, Al, Fe, and Au, with intermediate values fo
the intermediate nuclei. The definition of the scaling varia
also involves the choice of an appropriate ‘‘shift’’ energ
@see Eq.~18!#. This energy accounts for the effects of bo
the binding in the initial state and the interaction strength
the final state. In practice we use an energy that goes from
to 25 MeV for nuclei C, . . .,Au; the results are quite insen
sitive to the exact choice.

Figure 2 shows the scaling functionf (c8) defined in Eq.
~25! for all kinematics~energies, angles, momentum tran
fers! and all available nuclei meeting our selection criter
We observe reasonably successful superscaling behavio
values ofc8,0, while for c8.0 the superscaling propert
is badly violated. The latter is to be expected, as there p
06550
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15
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cesses other than quasielastic scattering—meson-exch
current ~MEC!, D excitation, deep inelastic scattering—
contribute to the cross section, whereas the scaling as
cussed in this paper only applies to quasielastic scatterin

In order to understand better the deviations from id
scaling, below we take different cuts through the data. T
presently available data unfortunately involve strong corre
tions in the kinematics employed: as the momentum tran
increases, the longitudinal~L! to transverse~T! cross section
ratio for quasielastic scattering decreases. At the same t
the higher-q data are taken at more forward angles. A se
ration of the influence of the different driving factors such
q, L/T ratio, andA dependence is therefore not straightfo
ward.

In order to disentangle some of these less-than-per
superscaling effects atc8,0, we show in Fig. 3 the function
f (c8) for the series of nucleiA512, . . .,197, but for fixed
FIG. 3. ~Color! Scaling function for C, Al, Fe,
and Au and fixed kinematics (q'1000 MeV/c).
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FIG. 4. ~Color! Scaling function for Li, C,
Mg, Ca, Ni, Sn, and Pb and fixed kinematics (q
'460 MeV/c).
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kinematics~electron energy 3.6 GeV, scattering angle 16
whereq varies only mildly over the range shown!. The qual-
ity of scaling of the second kind in the regionc8,0 is quite
amazing, showing that insofar as the removal of theA de-
pendence is concerned the superscaling works extrem
well and, importantly, that the deviations from superscal
observed in Fig. 2 forc8,0 do not arise from theA depen-
dence. The scaling of the second kind works very well.

As similar quality of superscaling is found when analy
ing other momentum transfers where a set of data foA
56, . . .,208 is available. As an example in Fig. 4 we sho
the lower-q data from the experiment of Whitneyet al. @14#
taken at 500 MeV electron energy and 60° scattering an

Figure 5 shows the same data as those used in Fig. 3
logarithmic scale, demonstrating that the superscaling p
erty extends to large negative values ofc8, values which in
the PWIA correspond to large momenta for the init
nucleon.A priori, this feature is not predicted within th
RFG model used to motivate the choice ofc8. It can be
06550
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understood, however, from the theoretical results for the m
mentum distribution of nuclear matter as a function of t
nuclear matter density where, for different nuclear mat
densities, the tail of the momentum distribution is a ne
universal function ofk/kF @41#. Since at largek we deal with
short-range properties of the nuclear wave function@42#, for
finite nuclei and large momenta we can employ the lo
density approximation~LDA !, within which the nuclear mo-
mentum distribution~spectral function! is then a weighted
average over the corresponding nuclear matter distributio
This means that the large-momentum tail of the nuclear m
mentum distribution also scales withkF , a dependence tha
is removed when usingc8.

In order to emphasize the quality of this superscaling
the tail, in Fig. 5 we have also included the data for4He
which were taken under the same kinematical conditions
the other sets (kF5200 MeV/c, Eshift515 MeV!. While at
c850 the superscaling functionf (c8) for 4He is about 15%
higher than for heavier nuclei, a consequence of the sha
FIG. 5. ~Color! Scaling function for nucleiA
54 –197 and fixed kinematics (q'1000 MeV/c)
on a logarithmic scale.
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FIG. 6. ~Color! Scaling function for nucleiA
54 –197 at q'1650 MeV/c. The 4.405 GeV
data have been taken at 23° scattering angle,
4He data at 25° and 8°.
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peak of the momentum distributionn(k) at k'0 for such a
light nucleus, the scaling function for4He agrees perfectly
with the one for heavier nuclei whenc8,20.3. This reflects
the fact that the tail of the momentum distributionn(k) at
largek is determined by the short-range properties of theN-
N interaction.

Part of theA-dependent increase off (c8) at large c8
results from the increase ofkF in proceeding from light to
heavy nuclei. This amounts to an increase of the width of
quasielastic peak~i.e., before scaling withkF) and a corre-
spondingly increased overlap with nonquasifree scatte
processes (D excitation, p production, etc.!. At the same
time, the increasing average density of the heavier nu
also leads to an increase in contributions of two-body p
cesses such as MEC which are strongly density depen
@43#. This, however, appears not to be the only cause for
rise ~see the discussions in Sec. IV!.

Recently, the inclusive scattering data on C, Fe, and
have been extended to more negative values ofc8 by an
06550
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experiment performed at TJNAF@15#. The higher product of
beam current and spectrometer solid angle allowed Arring
et al. to measure cross sections 100 times smaller than
viously accessible. In Fig. 6 we show the scaling function
the set of dataA5122197 that extends to the most negati
values ofc8 reached, together with previous data onA54
@25,26# that also extend to rather large values ofuc8u. Figure
6 shows that the scaling of the second kind extends out to
most negative values of the scaling variable presently ac
sible. At values ofc8,22 the scaling function seems t
drop more rapidly with increasinguc8u, a feature that at
present is not yet understood; however, we continue to
serve very high quality scaling of the second kind.

We have mentioned in the previous section that supers
ing in terms of the variablesc8 andY @see Eq.~15!# can be
expected to be quite similar; data that scale in one varia
can be expected to scale in the other one as well. As
example of this we show in Fig. 7 the data of Fig. 3 in term
of f (Y). In this paper we have concentrated onc8 rather
t-
le
FIG. 7. ~Color! Scaling functionf (Y) for nu-
clei A512–197 at 3.6 GeV energy and 16° sca
tering angle as a function of the scaling variab
Y.
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FIG. 8. ~Color! Scaling function for 12C at
approximately constantq'500 MeV/c, but vary-
ing angle. The energies~in GeV! and angles~in
degrees! of the different data sets are identified
the plot.
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thanY since the former is more directly related to the RF
model that motivated superscaling in the first place, and
allowed us to introducekF as a physical scale used to defi
a dimensionless scaling variable. In the previous section
have given the relation betweenY andc8, pointing out the
difference in the treatment of the distribution in missing e
ergy which distinguishes the two scaling variables. The
sults show that, at the large values ofq and v of interest
here, the scaling behavior may be analyzed in terms of ei
variable.

In order to locate the origin of nonscaling when all kin
matics are considered together~Fig. 2!, for one nucleus (12C)
we have selected data sets corresponding to roughly con
momentum transferq, but variable scattering angle~due to
the discrete nature of the sets of data available, the choic
sets at ‘‘constantq’’ is only an approximate one!. With in-
creasing scattering angle, the ratio of the longitudinal to
total ~longitudinal plus transverse! cross section decrease
For example, fore-p elastic scattering, which is characteri
06550
at

e
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er

ant

of

e

tic of quasielastic electron-nucleus scattering, and for
momentum transferq'500 MeV/c of Fig. 8, this ratio goes
from 0.5 at the highest energy and smallest scattering a
down to less than 0.1~i.e., the anglexTL defined in the next
section, which characterizes theTL ratio, goes from about
45° down to about 15° for the four sets of kinematics ch
sen!. The rise off (c8) for decreasing longitudinal contribu
tion clearly shows that the dominant piece responsible
nonscaling is the transverse one, as expected from the d
nantly transverse nature ofD excitation and MEC. The vio-
lation of scaling is still comparatively small as the mome
tum transfer of the data in Fig. 8 is small.

Figure 9 gives a different cut through the data presen
available. Here we plot sets of data with an approximat
constant longitudinal/transverse ratio for the elastice-p cross
section, but varying momentum transferq ~here xTL is
roughly constant, typically within a few degrees of 25°
The range ofq covered here is 320–1120 MeV/c. Clearly,
the nonscaling contribution atc8.0 rises rapidly withq.
d
n

FIG. 9. ~Color! Scaling function for12C and
roughly constant ratio of the longitudinal an
transversee-p elastic cross section, as a functio
of the momentum transferq.
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T. W. DONNELLY AND INGO SICK PHYSICAL REVIEW C60 065502
Part of this increase of the contribution atc8.0 originates
from the fact that the quasielastic peak has a width that
creases withq; as a consequence, the overlap of the qua
elastic response and the contribution from other proce
grows with increasingq. This effect is not immediately ob
vious when looking at the representation in Fig. 9 as the
of the scaling variablec8 removes this increase for th
quasielastic contribution. It arises partially because pion p
duction ~including viaD production! moves to the left with
increasingq and so overlaps with the quasielastic peak~at
c850). Other processes may also play a role, in particu
those involving MEC~to which we briefly return in the nex
two sections! and eventually at high energies those involvi
deep inelastic electron-nucleon scattering. We note that,
cording to Fig. 8, these nonquasifree contributions are b
cally of transverse nature. This suggests going further
attempting to disentangle theL and T contributions to
scaling—we proceed to do so in the next section.

IV. SCALING OF SEPARATED RESPONSES

The various ways of looking at subsamples of the d
discussed above show clearly that the violation of supers
ing is basically the same as the one observed in conventi
scaling applied to a single nucleus. The deviations from s
ing observed in Fig. 2 can be understood in terms of thq
andL/T dependence for a single nucleus. In particular, let
proceed to extend the formalism of Sec. II by writing long
tudinal and transverse versions of Eq.~14!. Starting from the
cross section written in terms of the individual respon
functionsRL andRT ,

d2s

dVe dv
5sM@vLRL~k,l!1vTRT~k,l!#, ~27!

we have from Eq.~14! that

F5
vLRL1vTRT

vLGL1vTGT
, ~28!

with GL,T given in Eqs.~A17!. The longitudinal and trans
verse analogs of this equation are

FL5
RL

GL
, FT5

RT

GT
. ~29!

As we shall see below, it proves useful to study the diff
ence between these two quantities:

DF[FT2FL . ~30!

If the reaction mechanism in the quasielastic region is stri
~quasifree! knockout of protons and neutrons, then one h
FL(k,c)5FT(k,c)5F(k,c); namely, one hasDF(k,c)
50. In light of the discussions in the present work we mig
call this universality scaling of thezeroth kind.

The dimensionless analogs of Eq.~25! are given by

f L,T[kFFL,T , ~31!
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D f [kFDF5 f T2 f L . ~32!

The universality contained in the RFG model predicts tha

f L5 f T5 f , ~33!

where the last is given in Eq.~26! and, moreover, that

E dc f RFG~c!511
1

20
hF

21•••, ~34!

which is closely related to the Coulomb sum rule@18#.
It is convenient to express the relationship among thef ’s

~or theF ’s! in the form

f [sin2 xTL f L1cos2 xTL f T , ~35!

where the anglexTL characterizes theTL content of the scat-
tering (xTL50°↔ all T; xTL590°↔ all L). It is a solution
to the equation

tan2 xTL[~vL /vT!~GL /GT! ~36!

>
~G̃E /G̃M !2

t12k2 tan2 ue/2
. ~37!

We thus have a direct relationship forD f in terms off and f L
~see below!:

D f 5~ f 2 f L!/cos2 xTL , ~38!

where this can be written in terms of Eqs.~36! and~37! using
the fact that 1/cos2 xTL511tan2 xTL . In the data sets consid
ered in the previous section the anglexTL varies consider-
ably: specifically, in Figs. 3, 5, and 7 it is within a few
degrees of 29°; in Fig. 4 within a few degrees of 43°; and
Fig. 6 within a few degrees of 20°; while for Figs. 8 and
the values were stated earlier.

Scaling of the first kind of the longitudinal and transver
response functions has been studied some time ago by
et al. @44#. These authors found that, over the regionq from
250 to 550 MeV/c, the longitudinal response of12C showed
good scaling, while the transverse response did not. M
recently @36# c8 scaling ofL and T responses was invest
gated for the case of40Ca.

As pointed out above, the longitudinal and transverse c
tributions to the cross sections should—for quasielastic s
tering in the PWIA—also show scaling of the second kind,
fact to the same response function; see Eq.~33!. In Figs. 10
and 11 we compare the scaling functionsf L(c8) and f T(c8)
obtained by Jourdan@45,46# who performed a longitudinal
transverse separation of the data for selected nuclei and
lower momentum transfers (,580 MeV/c) where enough
data for such a separation are available. Within the error b
of the separated data the longitudinal response does sca
a universal curve, and as shown by Jourdan@45#, the integral
over this curve does fulfill the Coulomb sum rule@Eq. ~34!#.
Figures 10 and 11 also show that the basic problem in qu
elastic electron-nucleus scattering is theexcess in the trans
verse responseat large energy loss which grows rapidly wit
2-10
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FIG. 10. ~Color! Scaling function f L(c8)
from the longitudinal response.
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q. It is not a lack of strength in the longitudinal response,
was claimed by some of the earlier determinations of
longitudinal response.

Figures 10 and 11 also explain the behavior off (c8)
found in the previous figures at largerq’s. A transverse con-
tribution is clearly present which, up toc8'10.6, has
roughly the shape of the quasielastic peak. This leads to
excess of the transverse over the longitudinal strength w
out modifying the shape of the response in the region of
peak. Forc8,10.6 scaling of thesecond kindis quite good,
whereas scaling of thefirst kind is not. At largerc8 a ~likely
different! nonscaling contribution comes in at the largerq,
which is much more important for the heavier nuclei; that
even scaling of the second kind is broken there.

In order to illustrate this point better, in Fig. 12 we sho
the differencebetween the transverse and longitudinal sc
ing functions,D f (c8), defined in Eq.~32!.
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As the longitudinal scaling functions for the different m
mentum transfers and mass numbers define an essen
universal curve~see Fig. 10!, we have taken a binwise ave
age of the data for the higherq’s of Fig. 10 in order to obtain
the mean longitudinal response with smaller fluctuations.
the response at the lowest value ofq'300 MeV/c is still
subject to Pauli blocking, we use only the data at the hig
q’s to determine this universal longitudinal response. Inde
to the extent that one believes this to bethe superscaledf L ,
it is then possible to use the unseparated functionf for any
nucleus withA>4 andany ~large enough! momentum trans-
fer via Eq. ~38! to determineD f and hencef T . The differ-
ence in Fig. 12 shows that part of the excess transve
strength does indeed display a peak at the location of
maximum of the quasielastic response,c850. The strength
at largerc8, corresponding to larger electron energy loss a
FIG. 11. ~Color! Scaling function f T(c8)
from the transverse response.
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FIG. 12. ~Color! Difference between the
transverse and longitudinal scaling function
D f (c8). The arrows indicate the values ofc8 for
p production on the free nucleon and the nucle
at the three values ofq.
g

nd
o
le
ce
e
ou
i

te
to

ot
e

om
ng

c

ss

on

a

en

is

th

ss
We

s,
s,
is

lly
-
d

of

ral
clei

o-
to

s
ay
nc-

al-
ses.
um

that
be
a
sult

her
tron
of presumably different origin, rises rapidly with increasin
q.

Much of the strength ofD f at c8,0 is below the thresh-
old for pion production on a nucleus withA>12 ~and even
more so for quasifree production!. This is shown by the ar-
rows in Fig. 12 which indicate, for the variousq’s, the po-
sition of thep-production threshold both on the nucleus a
on the free nucleon—we consider the latter to be the m
relevant one, since coherent production on the entire nuc
is expected to be very small. The presence of large ex
transverse strengthbelow the p threshold means that som
other mechanism must be identified as its source. Vari
possibilities exist, for example, nonquasifree reactions
which the FSIs are different for nucleon knockout via theL
and T contributions of the electromagnetic current, clus
knockout, and two-body MEC contributions; we return
touch upon some of these in the next section.

While the qualitative message of Fig. 12 is clear, we n
that the numerical values of the difference in strength giv
there should be treated with some care. It is clear that s
processes playing a role in accounting for the excess stre
~for example, one-particle emission via MEC! arise fromco-
herent contributions to quasielastic scattering, and hen
make any quantitative interpretation ofD f less straightfor-
ward than would be the case when only incoherent proce
are present.

V. DISCUSSION AND CONCLUSIONS

We have analyzed the existing high-quality data
electron-nucleus quasielastic scattering for all nucleiA54
2238. We observe that, upon use of the proper scaling v
ablec8 ~or, alternatively,Y5y/kF), the data on the low-v
side of the quasielastic peak (c8 or Y,0) showsuperscal-
ing behavior: the scaling functions are not only independ
of momentum transfer, but coincide for the differentA once
the leadingkF dependence is removed in the manner d
cussed in this work. The former we call scaling of thefirst
kind and the latter scaling of thesecond kind.

The main part of this work has been performed using
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scaling variablec8 introduced within the context of the RFG
model as motivation for the definition of a dimensionle
scaling variable using the Fermi momentum as a scale.
have also discussed the relationship betweenc8 and the
usual scaling variabley, and shown that the two variable
which integrate somewhat different initial-state physic
yield similar results. Indeed, the superscaling property
found in terms of bothc8 andY.

The A independence of the superscaling function actua
is much better realized than theq independence of the nor
mal scaling; scaling of the first kind is known to be violate
due to effects from FSIs~mainly at very negativec8) and
MEC, pion production, and excitation of internal degrees
freedom of the nucleon~mainly atc8.0). This observation
of superscaling allows us to conclude that, in the integ
sense reflected through inclusive scattering, different nu
have a more or less universal spectral function~momentum
distribution! once the obvious dependence on the Fermi m
mentumkF is removed. This universality is not restricted
the region of the quasielastic peak (uc8u,1); the superscal-
ing extends to larger values ofuc8u and hence to large value
of the nucleon momentum in the nucleus, a fact which m
stem from the universal properties of nuclear spectral fu
tions that arise from short-rangeNN interactions insofar as
they can lead to a scaling in terms ofk/kF .

Superscaling turns out to be particularly useful when de
ing with the separated longitudinal and transverse respon
In quasielastic scattering for all large enough moment
transfers and all nuclear mass numbersA>4 both of these
responses should scale to thesamefunction to which the
unseparated data also scale. In particular, to the extent
the limited scope of the available data permits a test to
made, we find that thelongitudinal response does scale to
universal curve and that the integral of the superscaled re
satisfies the Coulomb sum rule.

However, when using superscaling to investigate furt
the reasons that lead to the observed nonscaling at elec
energy lossv8.uQ2u/2mN (c8.0) for individual nuclei,
we find that the main problem resides in thetransverse
2-12
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SUPERSCALING OF INCLUSIVE ELECTRON . . . PHYSICAL REVIEW C 60 065502
strength, which increases rapidly with increasingq and less
rapidly with increasingA. Some of the increase withq is
clearly related to the increasing overlap of the quasiela
contribution with theD peak~which is predominantly trans
verse!, the growing contribution ofp production, and at the
highest energies deep-inelastic scattering. This cannot
vide all of the excess inD f , however, since it clearly occur
below threshold for meson production, as well as at hig
energy loss.

Thus, the good quality of the scaling of the second kind
not entirely understood. Various sources for the excess tr
verse strength can be identified, ranging from FSI effects
contributions from MEC. The former could yield someT/L
differences through spin-isospin many-body contributio
arising from random phase approximation~RPA! correla-
tions or effects involving correlated knockout of nucle
pairs ~for instance, the1S0→3S113D1 channel is primarily
transverse!, although it is completely unclear what breakin
of scaling of the first or second kinds might be produced a
whether the transverse/longitudinal excess could be so
plained. Indeed, for example, one can argue that some
tributions such as those stemming from short-range FSIs
reasonablyA independent. This is not the case for the co
tribution of MEC. For instance, the treatment of Van Ord
and Donnelly @43# shows that the two-particle–two-hol
~2p-2h! MEC superscaled response contains an additio
dependence of approximatelykF

3 and hence strongly break
the second-kind scaling behavior. In fact, those calculati
yielded a rather small 2p-2h contribution—which is consis-
tent with what is observed. Other studies@47,48# confirm this
behavior. In particular, even calculations involving a d
namic D propagator, such as those of Dekkeret al. @47#,
while providing somewhat larger 2p-2h MEC contributions,
do not provide so much that they disagree with the seco
kind scaling behavior~although note that for reasons we d
not yet understand recent work@49# appears to be in conflic
with the earlier treatments!. Furthermore, it should be
pointed out that MEC effects enter in the 1p-1h sector as
well as in the 2p-2h sector. In@50# ~and confirmed in@48#!
it was seen that the former interfere destructively with
one-body contributions and therefore tend to lower the to
1p-1h transverse response—when all is added up the t
MEC effect at and below the quasielastic peak is found to
rather small. Clearly the reasons for the good quality of
scaling of the second kind and the limits that may be i
posed on processes such as MEC-mediated 2p-2h excita-
tions certainly merit further theoretical investigation.

In summary, superscaling, when applied to these se
rated responses, allows one in a particularly obvious wa
make a point that recently has become increasingly clear
inclusive electron-nucleus scattering the poorly underst
contribution is thetransverseone, and not the longitudina
one as was usually claimed before the work of Jourdan@45#
in which reliable values for the longitudinal response we
extracted.
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APPENDIX

Kinematical relationships

Using Eq.~1! it may be shown that whenE50 ~its small-
est value! the minimum and maximum values of the missin
momentum occur atuyu andY, respectively, where@1#

y5
1

2W2
$~MA

01v!AW22~MA21
0 1mN!2

3AW22~MA21
0 2mN!22q@W21~MA21

0 !22mN
2 #% ,

~A1!

Y5
1

2W2
$~MA

01v!AW22~MA21
0 1mN!2

3AW22~MA21
0 2mN!21q@W21~MA21

0 !22mN
2 #%,

~A2!

with as usual W5A(MA
01v)22q2. The variable y

5y(q,v) may be used together withq to replace the pair of
variables (q,v) and is well suited to quasielastic electro
scattering, since the quasielastic peak occurs neary50, with
y,0 corresponding to the so-called ‘‘y-scaling region’’
which is the focal point of this work, whereasy.0 corre-
sponds to the resonance region and beyond to deep-inel
scattering. Expanding in inverse powers of the daughter m
one has

y5y`F12SAmN
2 1~q1y`!2

q1y`
D y`

2MA21
0

1O@~MA21
0 !22#G ,

~A3!

wherey` is given in Eq.~2!. The upper limit may similarly
be expanded for largeMA21

0 , yielding

Y>2qF12
AmN

2 1~q1y`!2

MA21
0 G1y. ~A4!

Another useful relationship needed in some of the disc
sions presented in Sec. II is that for the maximum value
missing energy allowed for given (q,v) and given missing
momentump. One finds thatE, which is essentially the miss
ing energy minus the separation energyEs , has as its maxi-
mum value
2-13
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EM~q,y;p!5AmN
2 1~q1y!22AmN

2 1~q2p!2

1A~MA21
0 !21y22A~MA21

0 !21p2

M A21
0 →`

——→
AmN

2 1~q1y!22AmN
2 1~q2p!2

2~p22y2!/2MA21
0

——→
q→`

~p1y!2@A~MA21
0 !21p2

2A~MA21
0 !21y2#

M A21
0 →`
——→

~p1y!2~p22y2!/2MA21
0 .

~A5!

In the main part of the paper we employ only theMA21
→` limit as in Eqs.~6! and ~7!.

All of the kinematic relationships given above do not d
pend on the choice of dynamical model beyond the assu
tion of nucleon knockout.

PWIA and the cc1 off-shell prescription

If following common practice one invokes the PWIA fo
the reaction, then a nucleon of energy

E~p,E!5MA
02A~MA21

0 !21p22E ~A6!

and momentump is struck by the virtual photon and i
ejected from the nucleus as a plane wave~on shell! with
energyEN and momentumpN . The kinematics of the reac
tion require the struck nucleon to be off shell; that is,E

ÞĒ, whereĒ[(mN
2 1p2)1/2. In fact the off shellness may b

characterized by the quantity

r~p,E![
Ē2E

2mN
5

1

2mN
$~AmN

2 1p22mN!

1@A~MA21
0 !21p22MA21

0 #1E1ES%>ES/2mN .

~A7!

In the PWIA the cross section is given as the product of
half-off-shell single-nucleon cross section and the nucl
spectral functionS̃(p,E) which gives the probability that a
nucleon of momentump and energyE is found in the nuclear
ground state. We may then writeS̃ as a function of (p,E).

For the single-nucleon cross section it is common prac
to use the cc1 prescription of De Forest@16#. Then, integrat-
ing over azimuthal angles, summing over particles while
suming that the spectral function does not differ for proto
and neutrons, and including the kinematic factorEN /q with
EN5@(q 1p )21mN

2 #1/2 ~see@1#!, one obtains the followin
for the single-nucleon cross section:

s̃eN~q,v;p,E![sM@vLw̃L1vTw̃T#, ~A8!
06550
-
p-

e
r

e

-
s

with sM the Mott cross section andvL,T the usual Rosen-
bluth kinematical factors, where the longitudinal~L! and
transverse~T! cc1 contributions may be written

w̃L~q,v;p,E!5
1

2kA11h2 S k2

t̄
D @G̃E

21d2~W̃21DW̃1!

1~11 t̄ !DW̃11~11t!DW̃2#,

w̃T~q,v;p,E!5
1

2kA11h2
@2t̄G̃M

2 1d2~W̃21DW̃1!#.

~A9!

Here we employ dimensionless variablesk[q/2mN , l
[v/2mN , and t[k22l2.0, wherev5EN2E. The cc1
prescription introduces the energyĒ given above and henc
the ‘‘equivalent on-shell energy transfer’’v̄5EN2Ē, with
l̄[v̄/2mN and t̄[k22l̄2. We have also definedh
[p/mN , where thenĒ/mN5(11h2)1/2, and used the fac
that

d2[
t̄

k2 S EN1Ē

2mN
D 2

2~11 t̄ ! ~A10!

5
t̄

k2
@2l̄~A11h221!1h2#2S l̄2 t̄

k
D 2

, ~A11!

where the relationship (EN1Ē)/2mN5l̄1A11h2 has been
used to obtain the result in Eq.~A11!. The terms containing
d2 as a factor enter because the struck nucleon is moving
contribute whether or not the nucleon is off shell. As d
cussed in the main text,h is typically small; therefore the
first term in Eq.~A11! is very small, being of orderh2. For
the second term in this equation we can use as an estim
Eq. ~16! and find that its contribution is also very sma
being of orderhF

2 . Thus the terms in Eqs.~A9! containing
the factord2 are all seen to be very small.

The single-nucleon form factors enter Eqs.~A9! in the
following combinations:

G̃E
2~t![ZGEp

2 1NGEn
2 ,

G̃M
2 ~t![ZGMp

2 1NGMn
2 ,

DG̃~t![ZGEpGMp1NGEnGMn , ~A12!

whereGEp,n andGMp,n are the familiar Sachs form factor
and are functions only oft, and then

W̃1~t![tG̃M
2 ,

W̃2~t![
1

11t
@G̃E

21tG̃M
2 #,
2-14
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DW̃1~t,t̄ !5
t̄2t

~11t!2
@G̃E

21G̃M
2 22DG̃#,

DW̃2~t,t̄ !5
t̄2t

~11t!2
@G̃E

22G̃M
2 #. ~A13!

The form given here for the cc1 prescription is different fro
the usual one@16#, having been rearranged to bring out t
strong resemblance to the on-shell form discussed be
Note that, when a nucleon is moving but on shell, sincet

5 t̄ the last two responses are zero,DW̃1,250. That also
implies, as expected, that no terms of the formGEGM com-
ing from DG̃ in Eq. ~A13! can occur when on shell, althoug
they do for the cc1 off-shell prescription. Finally, note th
these off-shell effects are all proportional tot̄2t which may
be written

t̄2t5r~2l2r! ~A14!

using Eq.~A7!.

Scaling in the RFG model

We end this appendix by collecting some of the ex
expressions involved in studies of the RFG model~see also
@12,18#!. First thec-scaling variable is fully given by

c5
1

AjF

l2t

A~11l!t1kAt~11t!
, ~A15!

wherejF5A11hF
221 andhF5kF /mN are the dimension-

less Fermi kinetic energy and momentum, respectively.
v.

y

n-

,

06550
w.

t

t

-

proximations to this quantity were employed in the main p
of the paper for simplicity@see Eqs.~10! and~12!#, although
computations were done with the full expression.

The exact RFG analog of Eq.~3! is

F~k,c![
d2s/dVe dv

sM@vLGL~k,l!1vTGT~k,l!#
, ~A16!

where we have made use of the usual lepton kinemat
factorsvL andvT and on-shell single-nucleon responsesGL
andGT ~see@18#, and also@51,52#!:

GL~k,l!5
~k2/t!@G̃E

21W̃2D#

2k@11jF~11c2!/2#
5

k

2t
G̃E

21O@hF
2 #,

GT~k,l!5
2tG̃M

2 1W̃2D

2k@11jF~11c2!/2#
5

t

k
G̃M

2 1O@hF
2 #.

~A17!

Here @12#

D5jF~12c2!FAt~11t!

k
1

1

3
jF~12c2!

t

k2G
5

1

2
~12c2!hF

21O@hF
3 #. ~A18!

The above approximations yield the expressions used in
main part of the paper@see Eq.~14!#. Note that the on-shel
limits of Eqs. ~A9! immediately give the behavior seen
Eqs.~A17!, as they should.
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