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Spin polarizabilities of the nucleon in a largeN. baryon model with dispersion relations
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We calculate the spin polarizabilities of the nucleon by means of the dispersion relations applied to model-
independent pion photoproduction amplitudes both inNkeand A 7 channels. Here, we follow the idea of
the 1N, expansion. By careful application of dispersion relations we show that the spin polarizabilities
coincide with those in heavy baryon chiral perturbation theory, if we take the narrow decay-width limit of the
A particle.[S0556-28189)02311-

PACS numbd(s): 13.60.Fz, 12.39.Dc, 13.60.Le

[. INTRODUCTION integrals of the magnetic part of the amplitudes converge. In
The electromagnetic polarizabilities are the quantities tdhis sense we study the subject from the view point of the
represent the response of the nucleon to external electroma@N. expansion.
netic fields and reflect its internal structure. Recently, Ragusa We show in this paper that the results on the spin polar-
showed[1] that there are four independent spin polarizabil-izabilities also reduce to the same ones by HBChPT at the
ities y;(i=1, ... ,4) in theamplitude ofO(w?), and that the narrow width limit of theA state, if we carefully apply the
forward spin polarizability y, is given by yo=v,—7,  dispersion relations. We argue that the convergent dispersion
—2v,. There has not yet been any experiment about the spititegral does not necessarily mean no need of the subtrac-
polarizabilities. tion, and discuss how to remedy the ill-defined dispersion
Theoretical investigations on the spin polarizabilities haveintegrals. We discuss the contributions from the interference
been carried out within the framework of the heavy baryonterms between the electric and magnetic amplitudes in the
chiral perturbation theoryHBChPT). Bernard etal. [2] N and Aw channels, which appear at the finite width.
showed that the value of, from the leading\ = loops has These are not taken into account in HBChPT, because they
an opposite sign to that of the pion photoproduction multi-are of higher order in the small parameter expansion. Com-
pole analysig3], and that the contribution of tha&(1232)  parison with the multipole analys¢$0,11] is given.
pole is inevitable to reduce largely that of tiwm-loop In Sec. Il we calculate the imaginary parts of Compton
terms. Hemmeret al. [4,5] gave the spin polarizabilitiep; ~ scattering amplitude with use of the electric pion photopro-
to y, within a small scale expansion framework, wheresahe duction amplitude in theNw channel, and argue a subtle
is introduced as an independent field, and the mass differoblem in the application of the dispersion relation. The
ence between the nucleon andstate is treated as an addi- contributions from the magnetic pion photoproduction am-
tional small scale. plitudes andA 7 channels are discussed in Secs. Il and 1V,
In this paper we study the spin polarizabilitigs, . . .,y, respectively. Numerical results and discussion are given in
by careful application of the dispersion relations to the pionseC- V.
photoproduction amplitudes, which satisfy the low energy
theorems and then are model independent. Such model- Il. THE ELECTRIC PION PHOTOPRODUCTION
independent amplitudes can also be constructed in the chiral ~ AMPLITUDES AND DISPERSION RELATIONS
soliton model6]. In previous papers, we calculated with use . .
of the dispersion relations the electric and magnetic polariz: Wwe co.n3|der the spm-dependent part of Compton scatter-
abilities [6] and the forward spin polarizability, [7], and ing amplitude excluding the nucleon-pole terms, which is
found that our calculations well reproduce the results of thdepresented, at the center-of-mass systenisps
N7-loop andA-pole terms calculated in HBChPT, if we take ¢ = —
the narrow width limit of theA state[7]. Fopn=Aa( @, 6)Ra+ Ag( @, O)Rs* As(, 6)Rs + Ac(w, 6)Re,

The chiral soliton model has flavor-spin symmetry in the 2.1
large N, QCD, which implies the larg&l, consistency con- whereR;, etc., are defined as
dition on meson-baryon reaction amplitud&s9], whereN, ) )
is the number of colors. The consistency condition makes the Ry=io-(e*Xe), Ry=io-(k'XKk)(e* e,
pion production amplitudes with the magnetic dipole inter-
action vertices finite at high energies and then the dispersion Rs=io-[(€ *XKk) (e k')—(exk')(€*K)], (2.2
Re=io-[(€*XK)(eK)—(exk)(€*-K)].
*Electronic address: tanushi@nuc-th.phys.nagoya-u.ac.jp
TElectronic address: saito@nuc-th.phys.nagoya-u.ac.jp Here, e(€') and k(k') are the polarization vector and the
*Electronic address: ueharam@cc.saga-u.ac.jp momentum of the incidenfoutgoing photon, respectively,
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and o denotes the Pauli matrix of the nucleon. The indepen—Vv?)/(2v)In{(1+v)/(1-v)} with v the pion velocity defined
dent structure functiond(w,6) with i=3,...,6 arefunc- asv=g/w in the static kinematics, antj(v, #) are functions
tions of the photon energy(=w') and the scattering angle depending orv and . At =0 they are given by

6. We note thatd; is O(w®) at low energies, but othek;’s

with i being from 4 to 6 behave a®(w) because of the 3,(v.0)=(1-v?) 1 1_V2In 1+v 2.7
additionalw? dependence coming frof;, except forRs. ne 2 4y 1-v) | '
We apply the forward dispersion relations to the structure
functions A;(w,0) except for the anomalous part coming Jo(v,0)=J3(v,0)/(1—Vv?)
from the 7%y interaction. The forward spin polarizability 5
Yo=7Y1— Y2— 274 is given as the following dispersion inte- =(1-v?)| - §+ 3-v In 1+_V) 2.9
gral of Im Az(w,0): 4 8v 1-v '
2 (= Im Az(w,0) It is known that the spin factoR; of the last term in Eqg.
Yo= o do———. (2.3 (2.6) is not independent of the other spin factors; actually,

Wih w
we have

The other polarizabilitiesy,, y3, and y, are given by the 4 i , )

dispersion integrals of InA,(»,0), Im Ag(w,0), and R7=[@" = (K"-K)* ]R3+ (k" -K) Rs—@"Rg, (2.9

Im As(w,0) divided by w? respectively, instead of _ o

Im ASEZ 0;/w4 in Eq. (2?/3).wThe angmalouz terms contrib- Where we have used the relation= ’. Redistributing the

ute t0371’ Y, andya. last term in Eq.(2.6) into the first, the third, and the fourth

The imaginary part of the scattering amplitude is calcu-l€rms in Eq.(2.6), we find that ImAs(w,0)=Im AGZ(“"O)
lated from the photoabsorption one of the nucleon using the 0 due to the cancellatiod,(v,0)—Js(v,0)/(1~v?) =0.
unitarity condition. In this section we evaluate the contribu-'N€ nave apﬁILcatlon of the dispersion integrals, therefore,
tion of the y+N— =+ N amplitude with the electric inter- Yields 3= 7,""=0, except for the anomalous term. How-

action, which we call the electric Born amplitude. The am-€Ver, we point out that the last term in H@.6) should not

plitude is decomposed into three terms as be taken into account as the contribution to the spin polariz-
abilities: Let us consider the coefficient function 8%,
fa=ieapmf )+ 72O+ 5,51, (2.4 which we denote temporarily &,(w,0) até=0. Following
N ) ) ) the argument by LoW12], we see thaf\;(w,0) has no sin-
wherer*'s are the isospin matrices. gularities asn— 0, because we are considering the non-Born
The electric Born amplitude satisfying the low energyterms of the Compton scattering with the minimum excita-
theorem within the static kinematics is written as tion energy to bem_,. This means tha#,(w,0) behaves as
. w or higher at low energies, and théwy(w,0) R; does not
F) = ( €Gunr +2' o-(k—a)(eq (2.5  contribute to the spin polarizabilities, becawgitself is of
Ne | 8mM m2—(k—q)2 ' order ofw*, while the spin polarizabilities are defined as the

coefficients ofw® terms of the amplitudes,;(»,0)R;’s. We
wherek andq are the incident photon and the outgoing pion must, therefore, disregard the(w,0) R, term, and neglect
four-momenta, respectively the polarization vector of the it in the application of the dispersion relations. Thus, both
incident photon. This amplitude is also obtained in the chiralm A.(w,0) and ImAg(w,0) are proportional td,(v) and
soliton model, where it is seen from theNL/viewpoint: The  do not vanish. We shall see in the Appendix how this situ-
7NN coupling constanGyy,, is of O(N?), the nucleon ation is described in the case of HBChPT.
mass of O(N.) and the pion mass and momenta ©f1). The spin polarizabilities are thus given through the dis-
We, then, see that{ ) is of O(Ny?), while f{.” are of persion integrals of the electric part i(w,0)’s with i
O(N; Y and behave a®(w), that is, though the latter am- =3, ...,6 in theN7 channel as
plitudes satisfy the low energy theorem, they do not lead to
finite results without unitarization, and are discarded in the Ne Ne Ne Ne e’Giny
following. Y1 =2y =4y =4y = 96 M2

With use of the unitarity condition we find the imaginary M*mz,

part of the spin-dependent part as

(2.10

q which are the same as those of the loops in HBChPT5].
Ef dQg 212712 Because the proton-neutron difference depends on the ampli-
tude (), we cannot predict the difference between them. It

2
=2q € Cnnir {1(V)R3+J1(V, O)Ry /M2 — Jo(v, ) Rg /m2
87M 3 1LV, 4 T 2\V, 5 T

IL'vov already argued about this problem and states that the dis-
+J5(v,0) RG/mf;I— Js(v,0) R7/mi}, (2.6 persion relation does not work in this case from the high-energy
. behavior of the relativistic invariant amplitudes with Regge-pole
with  Ry=io- (k' XKk)(e *Kk)(e-k’). Here, I(v)=(1 assumptiorf13].
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is also known that the prediction of HBChPT up to chiral .
order €2 yields no isospin dependence. .
. !
k Lo k
Ill. CONTRIBUTIONS FROM MAGNETIC BORN '/ : \
AMPLITUDES AND INTERFERENCE TERMS : \.
M /
The magnetic Born amplitude for the+ N— 7+ N pro- p : p

cess is written as
FIG. 1. An example of the diagrams of the interference between
the electric and magnetic amplitudes. The solid, double-solid,
{t(f)Pl(fL%)+t(3i)P3(fL§)}, (3.1 dashed, and wavy lines denote the nucletdnparticle, pion, and
photon, respectively. The vertical dotted line denotes the on shell.

wherepuy, is the vector part of the nucleon magnetic moment Nm_ e°Glny (* dw J @A%(0+8A)
defipgd by gﬁp—ﬂ,l)/z in unitsA 9f theAnycIear rpagngton, Yoo & 192:73M4 wtth (02— A?)2+AT3
P1(0,9)=(0-0g)(0o-s) and P3(q,5)=3(q-s)—(o-g)(0o-S3)

states, respectively, ang=q/q and s=gk with s=kXe. (0 +A)?
t(*) are given by

are theP-wave projection operators for the=1/2 and 3/2 247 } 3.4

Since the above integrand contait@®\,/2M)?q>, the same
form asT',(q) appears in the numerator, and then we may

tiH) = o) = obtain, at the limit ofl'y,—0,
! 3M w+A’
2 2
€y
N,m
M=, 3.
(o 24 2 A 70" T gaMZA? @9
3 T oMl T T 2_A2i; 2 )
M o™= ATHIATy - 3 o(0t4) which is equal to the results of th&-pole contribution in
HBChPT[5].
(—)_ 9o A 2 A The interference term between the electric and magnetic
B = oM| 0?—AZFIAT, 3w(e+h)| (32  termsis also calculated similarly. As an example we show a

diagram for the interference part in Fig. 1. This kind of dia-
) ) ) grams is not taken into account in HBChPT, because they are
with A being the mass difference of the nucleon and thet higher order. Contrary, the baryon propagator in thé,1/
A(1232). In the above we use the relatiopy expansion is the same order as the pion propagator, so that

= —(3V2)py as well asG sy, = — (3/V2) Gy, Obtained i such terms are not of higher order. The interference term in
the chiral soliton model, which are shared with the lakjge  the N+ channel is calculated to be

baryon mode[8]. Here, in order to avoid the pole at=A

on the real axis, we have introduced the finite width of she , e?Gn ity (= do
state given byl",=(1/67)(Gan,/2M)?g3. This is the ex- VE’IZ_TJ —q| [v2=1+1(v)]
pression given by Kokkedee without relativistic correction 16m°M* J o @
[14], and yields 145 MeV with the experimental value of wA(w?—A2) ,
Gnnr atq=227 MeV. —|zvei=1+1(v) | ———|,
NIT shoﬂld here be noted that each of tNe and A-pole (“’Z_AZ)ZJFAZFi 3 ( w+A
terms inf(Ni],?1 is of O(NE/Z) owing to the isovector magnetic b2
moment,eu\/2M, of O(N.) [8,14], but the sums reduce to N © Ginmty [ do
O(NY? due to the cancellation among tiNe and A-pole LC Py T Lthﬁq[l—l(v)]
terms, that is due to the lardé. consistency condition. This
is a remarkable point of the chiral soliton model as well as y wA(w®—A?) 2A 36
the largeN, baryon model, because the cancellation makes (02— A%+ Mri w+A|’ )
the amplitudes finite at infinite» at the same time. The am-
plitude f{%, is of O(N; %), where the consistency condition and y)'=y}"'=0.
does not work, and is then discarded in the following.
For the magnetic part we obtain IV. CONTRIBUTIONS FROM A CHANNEL

In this section we examine thg+N— 7+ A contribu-

Nm_ _ Nm_ _Nm Nm_ ~N,m_ ) . - !
Y2 Yam=v0 v =y =00 B o The amplitude is also decomposed into three terms as

where f3=iegp7Pf )+ 72f O+ T,6(7, (4.1)
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TABLE I. Calculated spin polarizabilities of the nucleon in the laMyebaryon model. For a comparison
those in HBChPT are also shown. Parameters are taken to be empirical ones, except\fartthasition
parameters predicted in the soliton model. In the result of the lakgenodel E, M, and | denote the
contributions of the electric, magnetic, and interference parts, respectively, and the values at the narrow-
width limit of the A particle are given in the parentheses. For the results of HBChPT the numbers in the
parentheses are the values with the old estimation ofrtid and yNA couplings. All values are in units of

104 fm*.
Large N, model HBChPT[5]
N channel A channel
E M | E M I Sum. Nmloop A pole Awmloop  Sum.
Y1 51 0.0 00 -04 00 0.0 4.7 4.56 0 -0.21 4.35
(=04 (4D
Vo 25 -25 -01 -04 01 0.5 0.1 228 —-240 -0.23 -0.35
(-4.0 (0.0 (-1.3 (-4.0 (=05 (=22
V3 1.3 0.0 0.0 —-02 0.0 0.0 1.1 1.14 0 —-0.12 1.02
(=02 (09
ve —1.3 2.5 1.2 02 -01 -01 25 —-1.14 2.40 0.12 1.38
(4.0 (0.0 (2.9 (4.0 0.2 3.9
Yo 51 -25 -—-24 -04 01 -03 -04 4.5 —-2.4 —-0.2 2.0
(-4.0 (0.0 (0.5 (-4.00 (=04 (0.2
where7? is the transition isospin matrix froml to A, and ,yé,ezz,yé,e: _274A,e
T=T%% 3+ 373,72 The electric part is obtained by re-
placing o and G- in EqQ. (2.5 by the transition spin op- B e’G3y., 1 AInR
erator San and G,y ,, respectively. The magnetic part is T 86473M2 Az—mi (Az—mf,)3’2 '
given by
4.3
£() = eGannhty || (San-Q) (0 9)
Am= | T 62 P with R=A/m,+ JA?/m2—1. The results are the same as

4 (Saa- D (San-9) +2(SAN'S)(0" o))

the results of thel 7 loops in HBChPT. For the magnetic
terms we obtainy} ™= y5""=0, and

5 o wq
1 (Sya-9)(San-0) am_ am_ €°GAnzaymy | A(24m7—20m7AZ—A%)
5 w ’ 72 ve 43273M4A 3 6m3(A%—m?)
4 2 A2 4
eGanrity (San-A) (o 9) (8mi —12m7 A"+ 347 INR
£ = _ + 27+ > N
A,m 16’7TM2 w ZmW(A —mw)
4.4
_1(S1-0(Sw'S)_ (S 9(0-0) “-4
S Wq @Wq - A A
The interference part yieldg;" = y3" =0, and
1 (Spa-9(San:
+§( Aa+S) (San Q)]’ 4.2
@ ai OGN (= do[1-1(v) 1 (vZ 1-1(v)
- - : : - e Jo. @ 20 B2\3 T2 )
whereS, , is the spin matrix for the\ state, andw, is the 72m°M* J o,
energy of pion. The above amplitudes are also finite at infi-
nite energy owing to the cancellation between thand A e2G2 A (= de 1—1
pole terms. The results are as follows. The electric part is Ai_ 2 2ANTHVE do 171(v) (4.5
given by 14473M3 J oy @
N e2G3,. | AZ+2m? 3m2AINR whereb=w/wq with w4 the energy of pion. The magnetic
e T T T . .
Y1t=— PR R , and interference parts in Eg&t.4) and (4.5 are not taken
864 M?| (A"—m7)%  (A2—m?)5? into account in HBChPT.
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V. RESULTS AND DISCUSSION TABLE Il. Spin polarizabilities of the nucleon in the largé.

Numerical results of the polarizabilities calculated by baryon model compared with the results in HBChPT and of the

means of the dispersion relations are given in Table I, Wher@_ultipqle_ analysis. In .the parepthes_es the values at the narrow-
empirical values of the constants in the formulas are used iﬁlrlgtihnlmitt %ffti]gf fﬂt'de are given in the former one. All values
order to compare the results with those by HBChPT; namely; '
f,=93 MeV, M=939 MeV, A=293 MeV, G, yv=13.5,
andm_=138 MeV, provided that the relative sizes®f .
and u, are taken so as to satisfy the lariye consistency

condition. The results of HBChPJ[5] are also given in the

Multipole analysis
LargeN; model HBChPT[5] HDT [10] SAID [11]

p n P n

table. In the results of HBChPT we give two cases forshe y, 4.7 4.4 51 61 31 63

pole andA 7-loop terms: the upper ones are obtained usingy, 0.1 -0.3 -11 -08 -08 —09

the 7NA and yNA coupling constants determined by the (-1.3

“small scale expansion” itself, while the lower in the paren- ,, 1.1 1.1 -06 -06 03 -0.7

theses are by a tree-level relativistic analysis. V4 25 1.3 34 34 27 38
We note that, although the electric part of the polarizabil- (2.9

ities is the same as tHd7 and A7 loops in HBChPT, the

numerical values are slightly different, because we did not, 01 20 —06 -02 —15 —04

use the Goldberger-Treiman relation. For the loops the 0.5

values in the parentheses are corresponding to the electric
part for theA 7 channel. The results of the magnetic part of
the N7 channel with the narrow-width limit shown in the

. polarizabilities and compare those with the results of
parentheses, are the same as those ofAtheoles in HB- HBChPT[5] and of the multipole analysis, where HDT and

ChPT. The finipe—vyidth effect of tha particle reduce_s the  sip refer to[10] and[11], respectively. We see good agree-
magnetic contribution in the same as for the magnetic polar-

9 ) . ment with the results of HBChPT, but the value of is
izability B [7]. In HBChPT the numerical results with the large compared with that of HBChPT, and seems to be close
parameters which are determined by the “small scale expal :

N imilar to th ith the finite width Mo the results of the multipole analysis. This is due to the
sion” are simriar to the ones wi € finite width. ._effect of the interference part between the electric and mag-
As shown in Sec. Ill, no interference part of the electric

X ; ) i netic amplitudes. As a result, the forward spin polarizability
and magnetic amplitudes is calculated in HBChPT, becausg is also close to those of the multipole analysis. We cannot

these terms are of higher orders. We see that the interferen aluate the proton and neutron difference, since we have
part contributes toy, andy,, and that their values are small discarded the amplitud® as it is of higher o,rders.

n 72, bu.t_con5|derably Igrgg iy,. For the forvyard spin In conclusion we have calculated the spin polarizabilities
polarizability -y, the contribution Of. the ”?ag”e“c part be- of the nucleon, where the dispersion relation was used with
comes smaller by the effect of the finite width of thestate, yne jmaginary part of the Compton scattering amplitudes
but that of the interference part becomes large; as a resully gy cted from  the pion photoproduction amplitudes
the ﬁulm of :hﬁmA's nearly the same as that at the narmow, o qh the unitarity condition. The form of these amplitudes
width fimit o the A state. h i h 0 is model independent, but we imply the lalyg consistency
The electric part of thelz channel is rather small in - iion on the coupling constants. It may be said, there-
agreement with the result for ther loops in HBChPT. The fore, that our approach is a large, chiral perturbation

magnetic and the interference parts in the channel are  yhaqry e have shown that the electric and magnetic parts
almost negligible small. It is expected that the contrlbutlonsagree with the results of thii7 loops, A poles, andA
of the An channel are small ccf)lnjpared with those of e |55 calculated in HBChPT. The numerical results are also
channel because of the factef' in the denominator of the  gimjjar with each other and qualitatively agree with those of
dispersion relation. We infer that the effect of the highery,e myitipole analysis. The interference term of the electric
resonances other than thestate is very small. _and magnetic amplitudes in tHés channel, which is not

The anomalous_, part is also calculated within the chiral.ynsidered in HBChPT as higher orders, is, however, large
soliton model, which tumns out to be the same form as thegpecially iny,, and the resulting values of the polarizabil-
conventional ong15] and given as follows: ities are closer to those of the multipole analysis. The next-

) to-leading-order calculation with thE® amplitudes is nec-
anom_ _ 5 anom_ o anom_ _ &"Gnnr ry, (5.1) €ssay to evaluate the difference between the proton and
Y1 e Ya 3 > 73 . neut
1673Mf . m2 eutron.

and y3"°™=0. The numerical values are APPENDIX: DISPERSION RELATION

FOR N ELECTRIC PART
YO _ 9, AN0ML 5 \anom_ _ 59 g (5.2 .

The relevant structure function of the forward scattering
in units of 104 fm* for the parameters. amplitude As(w, 8=0), which is equal to- Ag(w,8=0), in
In Table Il we show the calculated results of the spinHBChPT[15] is given by two terms as follows:
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e’gx (1 (1—x)3sin lux
A51((1),O):— 327T3f§rmwfo dX .—1_u2X2 (Al)
and
e’gx U2 ! x(1-x)°%
A52(w,0) W o Xm(sm ux
+xuy1—u?x?), (A2)

whereu=w/m_, and 1/(4r) is multiplied so as to fit our
definition of A;. The integration ovex can be carried out
and leads to

e’gi [u
A51(w,0)=—W 1 90+ oW | (A3)
and
2 2 3
€°ga 5
As( w,0)= W + O(u )) (A4)

where theu® and the higher order terms are the same except
for the signs in both functions. The sum is exactly given by

e’ga U
3273f2m, 12
(A5)
This shows that there is no branch cut on the real axis in th
complex o plane; namely, ImMAs;(w,0)=0, but each of
Asi(w,0) andAsy(w,0) has the same imaginary part except
for the signs. The analytic continuation &>m_. gives

As(,0)=As)(0,0) +Agxf @,0)=—

Im A52((1),0) =—Im A51(w,0)

G
 327%2m,, 8u®

w

2

( —Bu\u?-1
u-—1

+(1+2u?)Inu+
u—vu?—1

(AB)

PHYSICAL REVIEW C60 065213

The fact that ImAs(w,0)=0 is the same as the situation
that the imaginary part of\s(w,0) vanishes after the redis-
tribution of the last term of Eq(2.6) as we encountered in
Sec. Il. Indeed, we can see with use of the Goldberger-
Treiman relation that EA6) is equal to the last term in Eq.
(2.6) multiplied by ? coming from the identity, Eq(2.9).

Now, let us consider the dispersion relations Agf( w,0)
and Asy(w,0). We have forAg;(w,0)

f ’2
1 A "0
+ —Im J’ d(l),ﬂ),
v C )
w

where the second term denotes the semicircle integral with
the radiuswax. The same is valid foAs(w,0). From Eq.
(A3) the left-hand sidéLHS) in Eq. (A7) is

M As(w',0)

Re

(AT)

e’ga 1
32732 12m2”

In the right-hand sidéRHS) the dispersion integral with the
imaginary part in Eq(A6) is found to be equal to the LHS
with the vanishing semicircle integral. On the other hand, for
the dispersion relation ofs,(w,0), the fact that the LHS is
zero is realized as the cancellation between the ses@mi-
circle) integral and the first conventional one in the RHS.
Therefore, if we consider the dispersion relation of the sum
As(w,0) with Im Ag(w,0)=0, it is necessary to calculate the
semicircle integral, which is generally very difficult. How-
ever, when we notice the fact that Rgy(w,0) is of O(w?)

and higher at low energies, as seen in E), the ampli-
tude Asx(w,0) does not participate in determining the coef-
ficient of the amplitude ab®. Thus, we are allowed to con-
sider only the conventional dispersion relation in E47),
where the semicircle integral vanishes because of its
asymptotic behavior. This is in complete agreement with the
prescription we adopt in Sec. Il.
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