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Spin polarizabilities of the nucleon in a largeNc baryon model with dispersion relations
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We calculate the spin polarizabilities of the nucleon by means of the dispersion relations applied to model-
independent pion photoproduction amplitudes both in theNp andDp channels. Here, we follow the idea of
the 1/Nc expansion. By careful application of dispersion relations we show that the spin polarizabilities
coincide with those in heavy baryon chiral perturbation theory, if we take the narrow decay-width limit of the
D particle.@S0556-2813~99!02311-0#
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I. INTRODUCTION

The electromagnetic polarizabilities are the quantities
represent the response of the nucleon to external electrom
netic fields and reflect its internal structure. Recently, Rag
showed@1# that there are four independent spin polarizab
ities g i( i 51, . . . ,4) in theamplitude ofO(v3), and that the
forward spin polarizability g0 is given by g05g12g2
22g4. There has not yet been any experiment about the
polarizabilities.

Theoretical investigations on the spin polarizabilities ha
been carried out within the framework of the heavy bary
chiral perturbation theory~HBChPT!. Bernard et al. @2#
showed that the value ofg0 from the leadingNp loops has
an opposite sign to that of the pion photoproduction mu
pole analysis@3#, and that the contribution of theD(1232)
pole is inevitable to reduce largely that of theNp-loop
terms. Hemmertet al. @4,5# gave the spin polarizabilitiesg1
to g4 within a small scale expansion framework, where theD
is introduced as an independent field, and the mass di
ence between the nucleon andD state is treated as an add
tional small scale.

In this paper we study the spin polarizabilitiesg1 , . . . ,g4
by careful application of the dispersion relations to the p
photoproduction amplitudes, which satisfy the low ener
theorems and then are model independent. Such mo
independent amplitudes can also be constructed in the c
soliton model@6#. In previous papers, we calculated with u
of the dispersion relations the electric and magnetic pola
abilities @6# and the forward spin polarizabilityg0 @7#, and
found that our calculations well reproduce the results of
Np-loop andD-pole terms calculated in HBChPT, if we tak
the narrow width limit of theD state@7#.

The chiral soliton model has flavor-spin symmetry in t
largeNc QCD, which implies the largeNc consistency con-
dition on meson-baryon reaction amplitudes@8,9#, whereNc
is the number of colors. The consistency condition makes
pion production amplitudes with the magnetic dipole int
action vertices finite at high energies and then the disper
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integrals of the magnetic part of the amplitudes converge
this sense we study the subject from the view point of
1/Nc expansion.

We show in this paper that the results on the spin po
izabilities also reduce to the same ones by HBChPT at
narrow width limit of theD state, if we carefully apply the
dispersion relations. We argue that the convergent disper
integral does not necessarily mean no need of the sub
tion, and discuss how to remedy the ill-defined dispers
integrals. We discuss the contributions from the interfere
terms between the electric and magnetic amplitudes in
Np and Dp channels, which appear at the finiteD width.
These are not taken into account in HBChPT, because
are of higher order in the small parameter expansion. Co
parison with the multipole analyses@10,11# is given.

In Sec. II we calculate the imaginary parts of Compt
scattering amplitude with use of the electric pion photop
duction amplitude in theNp channel, and argue a subt
problem in the application of the dispersion relation. T
contributions from the magnetic pion photoproduction a
plitudes andDp channels are discussed in Secs. III and I
respectively. Numerical results and discussion are given
Sec. V.

II. THE ELECTRIC PION PHOTOPRODUCTION
AMPLITUDES AND DISPERSION RELATIONS

We consider the spin-dependent part of Compton sca
ing amplitude excluding the nucleon-pole terms, which
represented, at the center-of-mass system, as@5#

f spin5A3~v,u!R31A4~v,u!R41A5~v,u!R51A6~v,u!R6 ,

~2.1!

whereR3, etc., are defined as

R35 i s•~e8*3e!, R45 i s•~k83k!~e8*•e!,

R55 i s•@~e8*3k!~e•k8!2~e3k8!~e8*•k!#, ~2.2!

R65 i s•@~e8*3k8!~e•k8!2~e3k!~e8*•k!#.

Here, e(e8) and k(k8) are the polarization vector and th
momentum of the incident~outgoing! photon, respectively,
©1999 The American Physical Society13-1
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ands denotes the Pauli matrix of the nucleon. The indep
dent structure functionsAi(v,u) with i 53, . . . ,6 arefunc-
tions of the photon energyv(5v8) and the scattering angl
u. We note thatA3 is O(v3) at low energies, but otherAi ’s
with i being from 4 to 6 behave asO(v) because of the
additionalv2 dependence coming fromRi except forR3.

We apply the forward dispersion relations to the struct
functions Ai(v,0) except for the anomalous part comin
from the p0gg interaction. The forward spin polarizabilit
g05g12g222g4 is given as the following dispersion inte
gral of Im A3(v,0):

g05
2

pEv th

`

dv
Im A3~v,0!

v4
. ~2.3!

The other polarizabilitiesg2 , g3, and g4 are given by the
dispersion integrals of ImA4(v,0), Im A6(v,0), and
Im A5(v,0) divided by v2, respectively, instead o
Im A3(v,0)/v4 in Eq. ~2.3!. The anomalous terms contrib
ute tog1 , g3, andg4.

The imaginary part of the scattering amplitude is calc
lated from the photoabsorption one of the nucleon using
unitarity condition. In this section we evaluate the contrib
tion of the g1N→p1N amplitude with the electric inter
action, which we call the electric Born amplitude. The a
plitude is decomposed into three terms as

f N
a 5 i ea3btbf N

(2)1taf N
(0)1da3f N

(1) , ~2.4!

whereta’s are the isospin matrices.
The electric Born amplitude satisfying the low ener

theorem within the static kinematics is written as

f N,e
(2)5S eGNNp

8pM D H i s•e12
i s•~k2q!~e•q!

mp
2 2~k2q!2 J , ~2.5!

wherek andq are the incident photon and the outgoing pi
four-momenta, respectively,e the polarization vector of the
incident photon. This amplitude is also obtained in the ch
soliton model, where it is seen from the 1/Nc viewpoint: The
pNN coupling constantGNNp is of O(Nc

3/2), the nucleon
mass ofO(Nc) and the pion mass and momenta ofO(1).
We, then, see thatf N,e

(2) is of O(Nc
1/2), while f N,e

(1,0) are of
O(Nc

21/2) and behave asO(v), that is, though the latter am
plitudes satisfy the low energy theorem, they do not lead
finite results without unitarization, and are discarded in
following.

With use of the unitarity condition we find the imagina
part of the spin-dependent part as

q

4pE dVq 2 f N,e
(2)†f N,e

(2)

52qS eGNNp

8pM D 2

$I ~v !R31J1~v,u!R4 /mp
2 2J2~v,u!R5 /mp

2

1J2~v,u! R6 /mp
2 1J3~v,u!R7 /mp

4 %, ~2.6!

with R75 i s•(k83k)(e8*•k)(e•k8). Here, I (v)5(1
06521
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2v2)/(2v)ln$(11v)/(12v)% with v the pion velocity defined
asv5q/v in the static kinematics, andJi(v,u) are functions
depending onv andu. At u50 they are given by

J1~v,0!5~12v2!F1

2
2

12v2

4v
lnS 11v

12v D G , ~2.7!

J2~v,0!5J3~v,0!/~12v2!

5~12v2!F2
3

4
1

32v2

8v
lnS 11v

12v D G . ~2.8!

It is known that the spin factorR7 of the last term in Eq.
~2.6! is not independent of the other spin factors; actua
we have

R75@v42~k8•k!2#R31~k8•k! R52v2R6 , ~2.9!

where we have used the relationv5v8. Redistributing the
last term in Eq.~2.6! into the first, the third, and the fourth
terms in Eq.~2.6!, we find that ImA5(v,0)5Im A6(v,0)
50 due to the cancellationJ2(v,0)2J3(v,0)/(12v2)50.
The naive application of the dispersion integrals, therefo
yields g3

N,e5g4
N,e50, except for the anomalous term. How

ever, we point out that the last term in Eq.~2.6! should not
be taken into account as the contribution to the spin pola
abilities: Let us consider the coefficient function ofR7,
which we denote temporarily asA7(v,0) atu50. Following
the argument by Low@12#, we see thatA7(v,0) has no sin-
gularities asv→0, because we are considering the non-Bo
terms of the Compton scattering with the minimum exci
tion energy to bemp . This means thatA7(v,0) behaves as
v or higher at low energies, and thenA7(v,0) R7 does not
contribute to the spin polarizabilities, becauseR7 itself is of
order ofv4, while the spin polarizabilities are defined as t
coefficients ofv3 terms of the amplitudesAi(v,0)Ri ’s. We
must, therefore, disregard theA7(v,0) R7 term, and neglect
it in the application of the dispersion relations. Thus, bo
Im A5(v,0) and ImA6(v,0) are proportional toJ2(v) and
do not vanish.1 We shall see in the Appendix how this situ
ation is described in the case of HBChPT.

The spin polarizabilities are thus given through the d
persion integrals of the electric part inAi(v,0)’s with i
53, . . . ,6 in theNp channel as

g1
N,e52g2

N,e54g3
N,e524g4

N,e5
e2GNNp

2

96p3M2mp
2

,

~2.10!

which are the same as those of theNp loops in HBChPT@5#.
Because the proton-neutron difference depends on the am
tude f N,e

(0) , we cannot predict the difference between them

1L’vov already argued about this problem and states that the
persion relation does not work in this case from the high-ene
behavior of the relativistic invariant amplitudes with Regge-po
assumption@13#.
3-2
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is also known that the prediction of HBChPT up to chir
ordere3 yields no isospin dependence.

III. CONTRIBUTIONS FROM MAGNETIC BORN
AMPLITUDES AND INTERFERENCE TERMS

The magnetic Born amplitude for theg1N→p1N pro-
cess is written as

f N,m
(6) 5S eGNNpmV

16pM2 D $t1
(6)P1~ q̂,ŝ!1t3

(6)P3~ q̂,ŝ!%, ~3.1!

wheremV is the vector part of the nucleon magnetic mome
defined by (mp2mn)/2 in units of the nuclear magneton
P1(q̂,ŝ)5(s•q̂)(s• ŝ) and P3(q̂,ŝ)53(q̂• ŝ)2(s•q̂)(s• ŝ)
are theP-wave projection operators for theJ51/2 and 3/2
states, respectively, andq̂5q/q and ŝ5s/k with s5k3e.
t i
(6) are given by

t1
(1)52t1

(2)52
2q

3M

D

v1D
,

t3
(1)5

qv

2M F2
2D

v22D21 iDGD
1

2

3

D

v~v1D!G ,
t3
(2)5

qv

2M F D

v22D21 iDGD
2

2

3

D

v~v1D!G , ~3.2!

with D being the mass difference of the nucleon and
D(1232). In the above we use the relationmV

DN

52(3/A2)mV as well asGDNp52(3/A2)GNNp obtained in
the chiral soliton model, which are shared with the largeNc
baryon model@8#. Here, in order to avoid the pole atv5D
on the real axis, we have introduced the finite width of theD
state given byGD5(1/6p)(GDNp/2M )2q3. This is the ex-
pression given by Kokkedee without relativistic correcti
@14#, and yields 145 MeV with the experimental value
GNNp at q5227 MeV.

It should here be noted that each of theN- and D-pole
terms in f N,m

(6) is of O(Nc
3/2) owing to the isovector magneti

moment,emV/2M , of O(Nc) @8,14#, but the sums reduce t
O(Nc

1/2) due to the cancellation among theN- and D-pole
terms, that is due to the largeNc consistency condition. This
is a remarkable point of the chiral soliton model as well
the largeNc baryon model, because the cancellation ma
the amplitudes finite at infinitev at the same time. The am
plitude f N,m

(0) is of O(Nc
21/2), where the consistency conditio

does not work, and is then discarded in the following.
For the magnetic part we obtain

g2
N,m52g4

N,m5g0
N,m, g1

N,m5g3
N,m50, ~3.3!

where
06521
l

t

e

s
s

g0
N,m52

e2GNNp
2 mV

2

192p3M4 Ev th

` dv

v4 q3F vD2~v18D!

~v22D2!21D2GD
2

2
2D2

~v1D!2G . ~3.4!

Since the above integrand contains (GNNp/2M )2q3, the same
form asGD(q) appears in the numerator, and then we m
obtain, at the limit ofGD→0,

g0
N,m52

e2mV
2

8pM2D2 , ~3.5!

which is equal to the results of theD-pole contribution in
HBChPT @5#.

The interference term between the electric and magn
terms is also calculated similarly. As an example we sho
diagram for the interference part in Fig. 1. This kind of di
grams is not taken into account in HBChPT, because they
of higher order. Contrary, the baryon propagator in the 1Nc
expansion is the same order as the pion propagator, so
such terms are not of higher order. The interference term
the Np channel is calculated to be

g2
N,i52

e2GNNp
2 mV

16p3M3 E
v th

` dv

v3qF @v2211I ~v !#

3
vD~v22D2!

~v22D2!21D2GD
2 2S 2

3
v2211I ~v ! D D

v1DG ,
g4

N,i52
e2GNNp

2 mV

64p3M3 E
v th

` dv

v3q@12I ~v !#

3F vD~v22D2!

~v22D2!21D2GD
2 2

2D

v1DG , ~3.6!

andg1
N,i5g3

N,i50.

IV. CONTRIBUTIONS FROM Dp CHANNEL

In this section we examine theg1N→p1D contribu-
tion. The amplitude is also decomposed into three terms

f D
a 5 i ea3bT bf D

(2)1T af D
(0)1T a3

1 f D
(1) , ~4.1!

FIG. 1. An example of the diagrams of the interference betw
the electric and magnetic amplitudes. The solid, double-so
dashed, and wavy lines denote the nucleon,D particle, pion, and
photon, respectively. The vertical dotted line denotes the on sh
3-3
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TABLE I. Calculated spin polarizabilities of the nucleon in the largeNc baryon model. For a compariso
those in HBChPT are also shown. Parameters are taken to be empirical ones, except for theND transition
parameters predicted in the soliton model. In the result of the largeNc model E, M, and I denote the
contributions of the electric, magnetic, and interference parts, respectively, and the values at the n
width limit of the D particle are given in the parentheses. For the results of HBChPT the numbers
parentheses are the values with the old estimation of thepND andgND couplings. All values are in units o
1024 fm4.

LargeNc model HBChPT@5#

Np channel Dp channel
E M I E M I Sum. Np loop D pole Dp loop Sum.

g1 5.1 0.0 0.0 20.4 0.0 0.0 4.7 4.56 0 20.21 4.35
(20.4! ~4.1!

g2 2.5 22.5 20.1 20.4 0.1 0.5 0.1 2.28 22.40 20.23 20.35
(24.0! ~0.0! (21.3! (24.0! (20.5! (22.2!

g3 1.3 0.0 0.0 20.2 0.0 0.0 1.1 1.14 0 20.12 1.02
(20.2! ~0.9!

g4 21.3 2.5 1.2 0.2 20.1 20.1 2.5 21.14 2.40 0.12 1.38
~4.0! ~0.0! ~2.8! ~4.0! ~0.2! ~3.1!

g0 5.1 22.5 22.4 20.4 0.1 20.3 20.4 4.5 22.4 20.2 2.0
(24.0! ~0.0! ~0.5! (24.0! (20.4! ~0.1!
-

is

nfi

t

s
c

c

whereT a is the transition isospin matrix fromN to D, and

T a3
1 5T a 1

2 t31 1
2 T DD

3 T a. The electric part is obtained by re
placing s and GNNp in Eq. ~2.5! by the transition spin op-
erator SDN and GDNp , respectively. The magnetic part
given by

f D,m
(2) 5S eGDNpmV

16pM2 D H 2
~SDN•q!~s•s!

v

2
4

5

~SDD•q!~SDN•s!

vq
12

~SDN•s!~s•q!

vq

2
1

5

~SDD•s!~SDN•q!

v J ,

f D,m
(1) 5S eGDNpmV

16pM2 D H 2
~SDN•q!~s•s!

v

2
1

5

~SDD•q!~SDN•s!

vq
1

~SDN•s!~s•q!

vq

1
1

5

~SDD•s!~SDN•q!

v J , ~4.2!

whereSDD is the spin matrix for theD state, andvq is the
energy of pion. The above amplitudes are also finite at i
nite energy owing to the cancellation between theN andD
pole terms. The results are as follows. The electric par
given by

g1
D,e52

e2GDNp
2

864p3M2 F D212mp
2

~D22mp
2 !22

3mp
2 D lnR

~D22mp
2 !5/2G ,
06521
-

is

g2
D,e52g3

D,e522g4
D,e

52
e2GDNp

2

864p3M2 F 1

D22mp
2 2

D ln R

~D22mp
2 !3/2G ,

~4.3!

with R5D/mp1AD2/mp
2 21. The results are the same a

the results of theDp loops in HBChPT. For the magneti
terms we obtaing1

D,m5g3
D,m50, and

g2
D,m52g4

D,m52
e2GDNp

2 mV
2mp

3

432p3M4D3 FD~24mp
4 220mp

2 D22D4!

6mp
3 ~D22mp

2 !

12p1
~8mp

4 212mp
2 D213D4!ln R

2mp~D22mp
2 !3/2 G .

~4.4!

The interference part yieldsg1
D,i5g3

D,i50, and

g2
D,i5

e2GDNp
2 mVD

72p3M3 E
v th

` dv

v3F12I ~v !

2b
1

1

b2 S v2

3
2

12I ~v !

2 D G ,

g4
D,i52

e2GDNp
2 mVD

144p3M3 E
v th

` dv

v3

12I ~v !

2b
, ~4.5!

whereb5v/vq with vq the energy of pion. The magneti
and interference parts in Eqs.~4.4! and ~4.5! are not taken
into account in HBChPT.
3-4
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V. RESULTS AND DISCUSSION

Numerical results of the polarizabilities calculated
means of the dispersion relations are given in Table I, wh
empirical values of the constants in the formulas are use
order to compare the results with those by HBChPT; nam
f p593 MeV, M5939 MeV, D5293 MeV, GpNN513.5,
andmp5138 MeV, provided that the relative sizes ofGDNp

andmDN are taken so as to satisfy the largeNc consistency
condition. The results of HBChPT@5# are also given in the
table. In the results of HBChPT we give two cases for theD
pole andDp-loop terms: the upper ones are obtained us
the pND and gND coupling constants determined by th
‘‘small scale expansion’’ itself, while the lower in the pare
theses are by a tree-level relativistic analysis.

We note that, although the electric part of the polarizab
ities is the same as theNp andDp loops in HBChPT, the
numerical values are slightly different, because we did
use the Goldberger-Treiman relation. For theDp loops the
values in the parentheses are corresponding to the ele
part for theDp channel. The results of the magnetic part
the Np channel with the narrow-width limit shown in th
parentheses, are the same as those of theD poles in HB-
ChPT. The finite-width effect of theD particle reduces the
magnetic contribution in the same as for the magnetic po
izability b @7#. In HBChPT the numerical results with th
parameters which are determined by the ‘‘small scale exp
sion’’ are similar to the ones with the finite width.

As shown in Sec. III, no interference part of the elect
and magnetic amplitudes is calculated in HBChPT, beca
these terms are of higher orders. We see that the interfer
part contributes tog2 andg4, and that their values are sma
in g2, but considerably large ing4. For the forward spin
polarizability g0 the contribution of the magnetic part be
comes smaller by the effect of the finite width of theD state,
but that of the interference part becomes large; as a re
the sum of them is nearly the same as that at the narr
width limit of the D state.

The electric part of theDp channel is rather small in
agreement with the result for theDp loops in HBChPT. The
magnetic and the interference parts in theDp channel are
almost negligible small. It is expected that the contributio
of theDp channel are small compared with those of theNp
channel because of the factorv4 in the denominator of the
dispersion relation. We infer that the effect of the high
resonances other than theD state is very small.

The anomalous part is also calculated within the ch
soliton model, which turns out to be the same form as
conventional one@15# and given as follows:

g1
anom522g3

anom52g4
anom52

e2GNNp

16p3M f pmp
2

t3 , ~5.1!

andg2
anom50. The numerical values are

g1
anom522g3

anom52g4
anom5222.8t3 ~5.2!

in units of 1024 fm4 for the parameters.
In Table II we show the calculated results of the sp
06521
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y,

g
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polarizabilities and compare those with the results
HBChPT @5# and of the multipole analysis, where HDT an
SAID refer to@10# and@11#, respectively. We see good agre
ment with the results of HBChPT, but the value ofg4 is
large compared with that of HBChPT, and seems to be cl
to the results of the multipole analysis. This is due to t
effect of the interference part between the electric and m
netic amplitudes. As a result, the forward spin polarizabil
g0 is also close to those of the multipole analysis. We can
evaluate the proton and neutron difference, since we h
discarded the amplitudef (0) as it is of higher orders.

In conclusion we have calculated the spin polarizabilit
of the nucleon, where the dispersion relation was used w
the imaginary part of the Compton scattering amplitud
constructed from the pion photoproduction amplitud
through the unitarity condition. The form of these amplitud
is model independent, but we imply the largeNc consistency
condition on the coupling constants. It may be said, the
fore, that our approach is a largeNc chiral perturbation
theory. We have shown that the electric and magnetic p
agree with the results of theNp loops, D poles, andDp
loops calculated in HBChPT. The numerical results are a
similar with each other and qualitatively agree with those
the multipole analysis. The interference term of the elec
and magnetic amplitudes in theNp channel, which is not
considered in HBChPT as higher orders, is, however, la
especially ing4, and the resulting values of the polarizab
ities are closer to those of the multipole analysis. The ne
to-leading-order calculation with thef (0) amplitudes is nec-
essary to evaluate the difference between the proton
neutron.

APPENDIX: DISPERSION RELATION
FOR Np ELECTRIC PART

The relevant structure function of the forward scatteri
amplitude,A5(v,u50), which is equal to2A6(v,u50), in
HBChPT @15# is given by two terms as follows:

TABLE II. Spin polarizabilities of the nucleon in the largeNc

baryon model compared with the results in HBChPT and of
multipole analysis. In the parentheses the values at the nar
width limit of the D particle are given in the former one. All value
are in unit of 1024 fm4.

Multipole analysis
LargeNc model HBChPT@5# HDT @10# SAID @11#

p n p n

g1 4.7 4.4 5.1 6.1 3.1 6.3
g2 0.1 20.3 21.1 20.8 20.8 20.9

(21.3!
g3 1.1 1.1 20.6 20.6 0.3 20.7
g4 2.5 1.3 3.4 3.4 2.7 3.8

~2.8!

g0 20.1 2.0 20.6 20.2 21.5 20.4
~0.5!
3-5
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A51~v,0!52
e2gA

2

32p3f p
2 mp

E
0

1

dx
~12x!2sin21ux

A12u2x2
~A1!

and

A52~v,0!5
e2gA

2

32p3f p
2 mp

u2E
0

1

dx
x~12x!3

3~12u2x2!3/2
~sin21ux

1xuA12u2x2!, ~A2!

whereu5v/mp , and 1/(4p) is multiplied so as to fit our
definition of Ai . The integration overx can be carried ou
and leads to

A51~v,0!52
e2gA

2

32p3f p
2 mp

S u

12
1

u3

90
1O~u5! D ~A3!

and

A52~v,0!5
e2gA

2

32p3f p
2 mp

S u3

90
1O~u5! D , ~A4!

where theu3 and the higher order terms are the same exc
for the signs in both functions. The sum is exactly given

A5~v,0!5A51~v,0!1A52~v,0!52
e2gA

2

32p3f p
2 mp

u

12
.

~A5!

This shows that there is no branch cut on the real axis in
complex v plane; namely, ImA5(v,0)50, but each of
A51(v,0) andA52(v,0) has the same imaginary part exce
for the signs. The analytic continuation tov.mp gives

Im A52~v,0!52Im A51~v,0!

5
e2gA

2

32p3f p
2 mp

p

8u3 S 26uAu221

1~112u2!ln u1A u221

u2Au221
D .

~A6!
cl.

ev

. D

et

06521
pt
y

e

t

The fact that ImA5(v,0)50 is the same as the situatio
that the imaginary part ofA5(v,0) vanishes after the redis
tribution of the last term of Eq.~2.6! as we encountered in
Sec. II. Indeed, we can see with use of the Goldberg
Treiman relation that Eq.~A6! is equal to the last term in Eq
~2.6! multiplied by v2 coming from the identity, Eq.~2.9!.

Now, let us consider the dispersion relations forA51(v,0)
andA52(v,0). We have forA51(v,0)

Re
A51~v,0!

v U
v50

5
2

p
PE

mp

vmax
dv8

Im A51~v8,0!

v82

1
1

p
Im E

C
dv8

A51~v8,0!

v82
, ~A7!

where the second term denotes the semicircle integral w
the radiusvmax. The same is valid forA52(v,0). From Eq.
~A3! the left-hand side~LHS! in Eq. ~A7! is

2
e2gA

2

32p3f p
2

1

12mp
2 .

In the right-hand side~RHS! the dispersion integral with the
imaginary part in Eq.~A6! is found to be equal to the LHS
with the vanishing semicircle integral. On the other hand,
the dispersion relation ofA52(v,0), the fact that the LHS is
zero is realized as the cancellation between the second~semi-
circle! integral and the first conventional one in the RH
Therefore, if we consider the dispersion relation of the s
A5(v,0) with Im A5(v,0)50, it is necessary to calculate th
semicircle integral, which is generally very difficult. How
ever, when we notice the fact that ReA52(v,0) is of O(v3)
and higher at low energies, as seen in Eq.~A4!, the ampli-
tude A52(v,0) does not participate in determining the coe
ficient of the amplitude atv3. Thus, we are allowed to con
sider only the conventional dispersion relation in Eq.~A7!,
where the semicircle integral vanishes because of
asymptotic behavior. This is in complete agreement with
prescription we adopt in Sec. II.
.
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