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Regularization of covariant calculations of meson decay amplitudes at one-loop order:
Properties of the a0„980… resonance
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The unitary quark model of To¨rnqvist and Roos provides an extremely interesting description of the prop-
erties of the scalar meson nonet. The model is quite phenomenological and has six parameters. In this work we
are interested in seeing whether a theoretical foundation for the unitary quark model can be created using our
generalized Nambu–Jona-Lasinio~NJL! model, which includes a covariant model of confinement. To make
contact with To¨rnqvist’s work, it is necessary to go beyond the leading vacuum polarization diagram of the
NJL model,J(P2), which is of ordernc , and calculate the~complex! functionK(P2), which is of order 1, and
which describes the decay ofqq̄ states to the continuum of two-meson states. The central issue is the creation
of a model for the regularization of the one-loop amplitudes with three vertices. We choose a regulator that has

been used in our recent study off 0 mesons. The same regularization is used for theph, KK̄, and ph8
channels, when studying the properties of thea0(980) resonance. The coupling to the decay channels described
by K(P2) is an important feature of the model, since the mass of thea0 mass would be 1090 MeV in the
absence of such coupling. The peak width obtained for thea0(980) resonance is 23 MeV, which is smaller
than the values of 50–100 MeV usually quoted.~Larger values may be obtained in our calculation with another
form of the regulator.! While our model is not parameter free, we believe we have made significant progress
toward putting the unitary quark model on a firmer foundation.@S0556-2813~99!04412-X#

PACS number~s!: 13.25.2k, 12.39.Fe, 14.40.2n, 12.39.Ki
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I. INTRODUCTION

In a series of papers we have been developing a gen
ized Nambu–Jona-Lasinio~NJL! model which includes a co
variant model of confinement@1–11#. We have studiedh
2h8, f2v, andp2a1 mixing, including both singlet-octe
and pseudoscalar–axial-vector mixing, where appropr
@3#. We have also made a comprehensive fit to states of
pseudoscalar and vector meson nonets and have made
preliminary studies of the axial-vector and the scalar none
states. In these works, we have studied radial excitation
to 2 GeV @9# and beyond@11#. In addition, we have studied
the spectrum off 2 tensor mesons@10# and have calculated
decay rates for the processesp→gg, h→gg, and h8
→gg @7,8#. Reference@5# contains a study of the radial ex
citations of the pion and a calculation of the rates for
processesp(1300)→ps andp(1300)→pr.

In the present work we extend our calculations to consi
the a0(980) resonance, with particular attention paid to t
role of meson decay channels in modifying the properties
that meson.@Thea0(980) resonance is a member of the sc
lar nonet, which is depicted in Fig. 1.# Our work is closely
related to that of To¨rnqvist who studied the scalar nonet
states in a unitary quark model which required the introd
tion of six parameters@12#. In that work, the meson-deca
amplitudes for the channelsKp, Kh, Kh8, pp, ph, ph8,
hh, hh8, andh8h8 were parametrized and used to constr
the imaginary parts of the various vacuum polarization fu
tions, P(P2). The real part of eachP(P2) was then ob-

*Electronic address: casbc@cunyvm.cuny.edu
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tainedvia a dispersion relation. In addition, a ‘‘bare mass
m0 , was assigned to theqq̄ states, so that the inverse mes
propagator had the formP22m0

21P(P2). ~A value of m0

51420 MeV was used, if theqq̄ system was composed o
only u andd quarks. This ‘‘bare mass’’ finds a natural inte
pretation in our analysis of the unitary quark model.! Törn-
qvist was able to fit a large body of data using his pheno
enological model@12#. In the work reported upon here, w
will see that our generalized NJL model can provide a th
retical foundation for the unitary quark model. In principl
no new parameters, other than those determined in our ea
studies@1–11#, should be required. However, we require
procedure for regularizing one-loop amplitudes with thr
vertices that describe meson decay. We use a Gaussian
lator for these amplitudes, that has been used in a re
study of f 0 mesons@13#. ~The results are quite sensitive t
the parameter choice made for the regulator. That is in c
trast to the situation found when fitting meson spectra, wh
a change in the regularization parameter may be comp
sated for by a change in the magnitude of the coupling c

FIG. 1. States of the scalar nonet are shown.
©1999 The American Physical Society10-1
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stants of the short-range NJL interaction. For example,
have made use of Minkowski momentum-space cutoffs
uku<L3 with L350.622 GeV@9# and L350.80 GeV@11#,
with similar results for meson spectra. A Gaussian regula
has also been used in Ref.@13#.!

The organization of our work is as follows. In Sec. II w
describe some aspects of the vacuum polarization diagr
of the NJL model and discuss their role in the calculation
variousT matrices. In Sec. III we describe the calculation
decay amplitudes for the decay of scalar-isovector meson
the two-meson continuum states. In Sec. IV we present
numerical results for various vacuum polarization functio
andT matrices. Section V is devoted to some further disc
sion and conclusions.

II. VACUUM POLARIZATION DIAGRAMS
OF A GENERALIZED NJL MODEL

Since our methods of calculation have been descri
elsewhere@1–11,13#, we will only provide a short review of
our formalism. The Lagrangian of the model is

L5q̄~ i ]”2m0!q1
GS

2 (
i 50

8

@~ q̄l iq!21~ q̄ig5l iq!2#

2
GV

4 (
i 50

8

@~ q̄gml iq!21~ q̄gmg5l iq!2#

1
GD

2
$det@ q̄~11g5!q#1det@ q̄~12g5!q#%1Lconf,

~2.1!

while Lconf denotes our model of confinement. In Eq.~2.1!,
m0 is the current quark mass matrix,m05diag(mu

0,md
0,ms

0),
the l i ( i 51, . . . ,8) are theGell-Mann matrices, andl0

5A2/3I , with I being the unit matrix in flavor space. Th
fourth term is the ’t Hooft interaction. ~We note that addi-
tional interaction terms are needed for the study of ten
mesons@10#.!

We first introduce the vacuum polarization function r
quired for the study of scalar-isovector excitations of t
NJL model, in the absence of a model of confinement

2 iJS~P2!5~21!2nc

3E d4k

~2p!4 Tr@ iS~P/21k!iS~2P/21k!#.

~2.2!

@See Fig. 2~a!.# Herenc53 and the factor 2 arises from th
flavor trace. The propagator isS(P)5(P” 2m1 i e)21, where
m is the constituent quark mass. The function defined in
~2.2! becomes complex forP2.(2m)2, since both the quark
and antiquark can go on their~positive! mass shell. This
unphysical feature limits the use of the NJL model to re
tively low energies. To remedy this defect, we introduce
confining interactionVC and a corresponding vertex operat
ḠS(P,k), shown as a filled triangle area in Fig. 2~b!. In Figs.
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2~b! and 3~b!, we show a perturbative expansion of the ve
tex. With the vertex in place,JS(P2) is real and given by

2 iJS~P!5~21!2ncE d4k

~2p!4 Tr@ iS~P/21k!

3ḠS~P,k!iS~2P/21k!#. ~2.3!

Equations forḠS(P,k) are given in Appendix A.
Values forJS(P2), calculated in Ref.@9#, are shown in

Fig. 4. We note thatJS(P2) has singularities when the verte
operator is singular, which occurs at the energies of bo
states in the confining field~in the absence of the NJL inter
action!. If we work in the rest frame of the scalar meson, it
useful to define the functionsGS

12 , GS
21 , GS

11 , andGS
22 .

We introduce

FIG. 2. ~a! The diagram shows the basic vacuum polarizat
diagram of the NJL model in the absence of a confinement m
el. ~b! The diagram serves to define the tensorJmn(P) in the pres-
ence of a confinement vertex, represented by the shaded trian
area~see Fig. 3!. The right-hand side of the figure shows a pe
turbative expansion forJmn(P).

FIG. 3. ~a! The equation for the vertex operatorGm(P,k) is
shown. The vertex is represented by the filled triangular area
the dashed line represents the confining interaction.~b! A perturba-
tive expansion is shown for the equation in~a!. We see that the
vertex serves to sum a ‘‘ladder’’ of confining interactions.
0-2
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REGULARIZATION OF COVARIANT CALCULATIONS OF . . . PHYSICAL REVIEW C 60 065210
L~1 !~k!5
k”1m

2m
~2.4!

and

L~2 !~2k!5
k”1m

2m
, ~2.5!

with km5@E(k),k# and k̃m5@2E(k),k#. We then define

L~1 !~k!ḠS~P,k!L~2 !~2k!5GS
12~P,k!L~1 !~k!L~2 !

~2k!, ~2.6!

L~1 !~k!ḠS~P,k!L~1 !~k!5GS
11~P,k!L~1 !~k!L~1 !~k!,

~2.7!

etc. It is found thatGS
12(P,k)5GS

21(P,k) and GS
11(P,k)

5GS
22(P,k). It is readily seen thatJS(P2) depends only

uponGS
12(P2), the propagators appearing in Eq.~2.3!, and

the regularization scheme adopted. Note that, si
GS

12(P,k) vanishes whenboth the quark and antiquark in
Eq. ~2.3! go on mass shell,JS(P2) is a real function, without
spurious cuts in the complexP2 plane. WhileJS(P2) is of
ordernc , the next important term,KS(P2), which is shown
in Fig. 5~b!, is of order 1. @The functionP(P2) of Törn-
qvist’s work is related to our functionKS(P2).# We have
P(P2)52g2(P2)KS(P2), whereg(P2) is the meson-quark
coupling constant, which is momentum dependent, in g
eral. Note that there is no function analogous toJS(P2) in
Törnqvist’s work.

In this work we study the properties of thea0(980) reso-
nance. There is some difficulty in extracting a width for t
a0(980) resonance from the data. For example, in the c
pilation of experimental data by the Particle Data Group,
find a broad range of values, with a suggested peak widt
50–100 MeV, although widths as small as 30 MeV ha
been found in one experiment@15#. We note that To¨rnqvist
obtains 100 MeV for the peak width@12#.

FIG. 4. The figure exhibits the values of the functionJud
S (P2),

when the subscripts are a reminder that the calculation is mad
mu5md50.364 GeV. The horizontal line representsG88

21 and
yields a graphical solution of the equationG88

212JS(P2)50.
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At this point, we describe the role played by the function
JS(P2) and KS(P2), in parametrizing theT matrix in a
simple case, with a single open channel. We consider thT
matrix

tS~P2!52
GS

12GS@JS~P2!1KS~P2!#
, ~2.8!

which we may write as

tS~P2!52
1

GS
212@JS~P2!1ReKS~P2!#2 i Im KS~P2!

.

~2.9!

We expandJS(P2)1ReKS(P
2) about the massmR that sat-

isfies the equation

GS
212@JS~mR

2 !1ReKS~mR
2 !#50, ~2.10!

so that

tS~P2!

.
1

~P22mR
2 !F]JS~P2!

]P2 1
] ReKS~P2!

]P2 G1 i Im KS~mR
2 !

.

~2.11!

Here the derivatives are evaluated atP25mR
2. We then de-

fine

g225
]JS~P2!

]P2 U
P25m

R
2
, ~2.12!

Z5F11g2
] ReKS~P2!

]P2 G
P25m

R
2

21

, ~2.13!

for

FIG. 5. ~a! The vacuum polarization diagram that serves to d
fine 2 iJS(P2) is shown. The shaded triangular region represe

the ~scalar! confining vertexḠS(P,k). ~b! The vacuum polariza-
tion diagram that serves to define2 iK S(P2) is shown. The wavy
lines denote mesons, while the shaded region represents the

finement verticesḠS(P,k) or ḠP(P,k). ~The only singularities of
this diagram arise when the mesons go on mass shell.!
0-3
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and g̃5Z1/2g so that

tS~P2!5
g̃2

P22mR
21 imRGR

, ~2.14!

with mRGR5g̃2 Im KS(mR
2). The functiontS(P2) has an ob-

vious physical interpretation.
Now let us consider the multichannel case, withN chan-

nels. It is then useful to define a dimensionlessT matrix for
channel 1 to be

T11~P2!52
Im K1~P2!

GS
212@JS~P2!1ReKT~P2!#2 i Im KT~P2!

,

~2.15!

whereKT(P2)5( i 51
N Ki(P2). ~If only a single channel is

open, we may writeT(P2)52exp@id#sind, whered is the
phase shift.! In this work, the channels considered areph,
KK̄, andph8, where theph is channel 1,KK̄ is channel 2,
and ph8 is channel 3. Therefore,T11(P2) describesp2h
scattering@12# with inelasticity arising at the thresholds fo
the KK̄ andph8 channels.

We now describe the procedure used to calcu
ReKi(P

2) for each channel. The first observation is th
whenGS5GD50, the confining potential has boundP states
at P051.373, 1.665, 1.898, 2.098, 2.263, and 2.410 G
The confining vertex is singular at each of these energ
giving rise to singularities inJS(P2) and Ki(P2) @See Fig.
4#. However, it can be seen that double counting of d
grams arises if these singularities were to appear inKi(P2).
For the caseP50, the singularities inKi(P2) may be re-
moved by the following procedure. We define a ‘‘wave fun
tion’’

C12~P0,uku!5
GS

12~P0,uku!
P022E~k!

, ~2.16!

and then systematically orthogonalizeC12(P0,uku) to the
bound-state wave functions in the confining field@13#. The
result of this procedure yields a ‘‘wave function
F12(P0,uku) and a vertex ĜS

12(P0,uku)5@P0

22E(k)#F12(P0,uku) that are free of the singularities de-
scribed above.

Using the vertex ĜS
12(P0,uku), we can calculate

Im Ki(P
2). We then obtain the values of ReKi(P

2) using the
dispersion relation

ReKi~P2!52
P

p E dP82
Im Ki~P82!

P22P82 . ~2.17!

We place an upper limit of 6.0 GeV2 on the integral in Eq.
~2.17!.

We have noted that the integrals that yieldJS(P2) require
regularization. If we calculateJS(P2) in the frame where
P50, we may insert a Gaussian regulator of the for
R(k2)5exp@2k2/a2# in Eq. ~2.2! or Eq. ~2.3!. That form
06521
e
,

.
s,

-

-

may be written in a covariant fashion, so that it may be us
in any frame. For example, with reference to Fig. 5, we m
define

kc
m5km2~k•P!Pm/P2 ~2.18!

and write

R~kc
2!5exp@kc

2/a2#. ~2.19!

Note thatkc
252k2 in the frame in whichP50. @In this

work we usea50.605 GeV, when regulatingJS(P2).#

III. COVARIANT CALCULATION OF MESON DECAY
AMPLITUDES

The decay amplitude calculated in this work is shown
Fig. 6 for the ph8 channel. The momentum entering th
diagram isP, theh8 has momentumP/21k, and thep has
momentumP/22k, with both theh8 andp on mass shell.
The shaded areas represent our confining vertex functi
which we describe in further detail in Appendix B. It is us
ful to complete the integral overk0, after writing each propa-
gator using the representation

FIG. 7. Various diagrams that arise upon completing the integ
over k0 in the calculation ofM (P2) shown in Fig. 6~a!. There are
two additional diagrams that serve to double the contribution of
diagrams in~c! and~d!. The shaded regions denote the confinem
vertices of the model.~We neglect confinement for the pion in ou
calculations.! Here, lines directed to the right represent quar
while lines directed to the left represent antiquarks.

FIG. 6. The diagram that defines the amplitudeM (P2) for the
decay to theph8 channel. The mesons are represented by w
lines and are on mass shell. We designate the amplitude of~a! as the
direct term and that of~b! as the exchange term.
0-4
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S~p!5
m

E~p! F L~1 !~p!

p02E~p!1 i e
2

L~2 !~2p!

p01E~p!2 i eG .
~3.1!

The k0 integral is completed in either the upper or lowerk0

plane. Since there are three propagators for each diag
eight terms are obtained when using Eq.~3.1!. However,
only six of these are nonzero. Four of the six terms
shown in Fig. 7, where the shaded region denotes the
e

h

f.
in
t
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fining vertex. @The other two nonzero terms serve to doub
the contribution of the amplitudes in Figs. 7~c! and 7~d!.#

In order to better understand the role of confinement a
covariance in our calculation, we present expressions for
of the diagrams in Fig. 7. For example, for Fig. 7~a!, we have

M1
hp~P2!5M1

hp~1!~P2!1M1
hp~2!~P2!, ~3.2!

with P50, P05Ep(k)1Eh8(k), and
M1
hp~1!~P2!5ncE d3k

~2p!3 F 1

Ep~k!2E~k!2E~k2k!G$2@mk•~k2k!2mk2#%

3S 1

2E2~k!E~k2k! D ĜS
12~P0,uku!

P022E~k!
gpqq@h1b0~mh8

2 ,kc,h8
2

!2mh8
2 h2d1~mh8

2 ,kc,h8
2

!#R~kc,s
2 !. ~3.3!
in
at

in
Here,h1 and h2 are constants defined in Appendix B. Th
functions b0(mh8

2 ,kc,h8
2 ) and d1(mh8

2 ,kc,h8
2 ) implement our

confinement model and are also defined in Appendix B. T
function R(kc,s

2 ) is a covariant Gaussian regulator

R~kc,s
2 !5A2

3
expFkc,s

2

a1
2 G , ~3.4!

wherea150.325 GeV. ~That value was also used in Re
@13#.! Herekc,s

2 is the square of the four-vector defined
Eq. ~2.18!. @By choosinga1 approximately, we can adjus
the relative magnitude ofJS(P2) and KS(P2). That is an
important feature of our regularization scheme. For exam
it is desirable thatuReKS(P

2)u be less than about 25% o
e

e,

JS(P2), a criterion that is consistent with 1/nc counting pro-
cedures.#

Because of the small pion mass, the first bracketed term
Eq. ~3.3! is not singular. Our confinement model is such th
Ĝ12(P0,uku)/@P022E(k)# is finite. The function

M1
h8p(2)(P2), which has a similar expression to that given

Eq. ~3.3!, is not given here@see Appendix B#. We see that
there are no singularities associated with theh8 vertex of
Fig. 7~a!.

We now consider Fig. 7~b! and define

M2
h8p~P2!5M2

h8p~1!~P2!1M2
h8p~2!~P2!, ~3.5!

with
M2
h8p~1!~P2!52ncE d3k

~2p!3 F 1

E~k!2Eh8~k!1E~k2k!G$2@mk•~k2k!2mk2#%

3S 1

2E2~k!E~k2k! D ĜS
12~P0,uku!

P022E~k!
gpqq@h1b0~mh8

2 ,kc,h8
2

!2mh8
2 h2d1~mh8

2 ,kc,h8
2

!#R~kc,s
2 !. ~3.6!
of
There are two terms in Eq.~3.6! that would be singular in the
absence of our confinement model. The first bracketed t
in Eq. ~3.6! has a zero value for the denominator, when
quark and the antiquark at theh8 vertex go on mass shel
However, our confinement model is such that if we calcul
all the terms describing decay to theph8 channel, the nu-
merator of the bracketed term has a corresponding zer
that point, leading to a finite value for the amplitude. A
noted above, the termĜ12(P0,uku)/@P022E(k)# is also
finite. We have seen that, ifP50, the scalar vertex may be
expressed in terms ofĜS

12(P0,uku), when calculating the
diagrams of Figs. 7~c! and 7~b!. For the diagrams of Fig. 7~c!
m
e

e

at

and 7~d!, the scalar vertex introduces a factor
GS

11(P0,uku). That function plays only a minor role in the
calculation and little is changed if we putGS

11(P0,uku)
5GS

22(P0,uku)51. The treatment of theh8 vertex in Fig.
7~c! is similar to that described for theh8 vertex in Fig. 7~b!.
When we evaluate the diagram in Fig. 7~d! we do not en-
counter any singular terms, sincemp,2mu , wheremu is the
constituent mass of the up quark.~Here, mu5md
50.364 GeV andms50.565 GeV.!

For a given channel,ph, KK̄, or ph8, the summation of
all relevant amplitudes defines a functionMi(P2). Then, for
that channel,
0-5
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Im Ki~P2!5
Si

8p

kon

P0 uMi~P2!u2, ~3.7!

where, for theph8 channel, for example,

kon
2 5

@~P0!22mp
2 2mh8

2
#224mp

2 mh8
2

4~P0!2 . ~3.8!

In Eq. ~3.7!, Si is a statistical factor arising, in part, from th
flavor trace. For theph and ph8 channels, we takeS51,
since the flavor trace is incorporated in the definition ofh1
andh2 . ~See Appendix B.!

IV. RESULTS OF NUMERICAL CALCULATIONS

For the channelsph, KK̄, and ph8 we have calculated
Im Ki(P

2) and ReKi(P
2) ( i 51,2,3) using the vertex function

given in Appendixes B and C.@The orthogonalization pro
cedure that leads to replacingGS

12(P0,uku) by

ĜS
12(P0,uku) is also used.# For theh andh8, we include

the complete structure of the vertex that arises when ca
lating both singlet-octet and pseudoscalar–axial-vector m
ing @8#. ~We remark that it is essential to include a mod
of confinement for theh8 when calculating the decay ampl
tude for theph8 channel.! Here we have used the regulat
of Eq. ~3.4!, with a150.325 GeV. Our results for ImKi(P

2)
and ReKi(P

2) are given in Figs. 8–10. The values
ReKi(P

2) are obtained from ImKi(P
2) upon using Eq.~2.17!.

For the calculation ofJs(P2) we use a Gaussian regulat
of the form exp@2k2/a2# with a50.605 GeV. Our value for
G88 is 12.46 GeV22. If we solve the equationG88

21

2Js(P2)50, we find the mass of thea0 to be 1090 MeV.
We may add ReKT(P

2) to Js(P2) and attempt to solve the
equationG88

212Js(P2)2ReKT(P
2)50. However, the cusp

like behavior seen in Figs. 8–10 makes that procedure p
lematic. Therefore, it is best to include ImKT(P

2) at the same
time that we introduce ReKT(P

2).
We now consider the function

uT11u25
@ Im K1~P2!#2

$GS
212@JS~P2!1ReKT~P2!#%21@ Im KT~P2!#2 .

~4.1!

~For an elastic resonance,uT11u2 is equal to sin2 d, whered is
the phase shift.! When using Eq.~4.1!, we found it necessary
to addDKT50.008 GeV2 to ReKT(P

2) to move thea0 mass
to 974 MeV ~see Fig. 11!. The parameterDKT is the only
parameter used in our analysis that has not been fixed in
earlier work. It is meant to represent contributions
ReKT(P

2) from decay channels whose effects have not b
calculated in this work or to compensate for a calculation
Im KT(P

2) that yields a result that is too small. Our value f
the peak width at half-maximum is 23 MeV, which may b
seen in Fig. 11. The width of 23 MeV suggests that we h
underestimated ImK1(P

2). Therefore, we multiply ImK1(P
2)

by 2 and obtain the curve shown in Fig. 12, whereGpeak
547 MeV.
06521
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V. DISCUSSION

In this work we have studied the regularization of loo
integrals that describe meson decay in a generalized
model, which includes a covariant model of confineme
and made an application in a study of thea0(980) resonance
It was found that the choice of the covariant regulator of E
~3.4! gave reasonable results. We have also seen that
model can provide a theoretical basis for the unitary qu
model of Törnqvist and Roos@12,16#.

The study of thea0(980) resonance is made complicat
by theKK̄ channel, which has a 990 MeV threshold. In th
regard, it is generally believed that the ‘‘peak width’’ of th
a0(980) resonance can be distinguished from the total wi
when one studies the pole structure of the scattering am
tudes in the complex plane. For example, in Ref.@17#, a
K-matrix analysis leads to a mass and total width for
a0(980) resonance ofm598263 MeV andG59268 MeV.
However, the features responsible for thea0 peak yield a full
width at half maximum of 45 MeV, which is about half th

FIG. 8. The values of ImK1(P
2) and ReK1(P

2) are shown for
the meson channelph. @See Fig. 5~b!.# Herea150.325 GeV.

FIG. 9. The values of ImK2(P
2) and ReK2(P

2) are shown for

the meson channelKK̄. ~This channel includes bothK0K̄0 and
K1K2 states.! Herea150.325 GeV.
0-6
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total width. A peak width of 45 MeV is about one-half the
value of about 100 MeV quoted in Refs.@12, 16#. The theo-
retical analysis of Ref.@18#, however, obtains a value of the
ma4

5991 MeV and a total width ofGa0
5202 MeV from the

pole position in the complex energy plane. The value
Gpeak;110 MeV is given for the peak width, which may be
compared to values obtained from Breit-Wigner fits to dat
ma0

598263 MeV, Gpeak554610 MeV @19# and ma0

598464 MeV, Gpeak595614 MeV @20#. Our theoretical
analysis yields a peak width ofGpeak523 MeV, which may
be adjusted upward by increasing the parametera1 or by
increasing ImK1(P

2) ~see Fig. 12!.
It is occasionally stated that it is natural to assume that t

a0(1450),K0* (1430), andf 0(1370) resonances form a none
based upon a 13P0 state @21#. However, that observation

FIG. 10. The values of ImK3(P
2) and ReK3(P

2) are shown for
the meson channelph8. Herea150.325 GeV.

FIG. 11. The solid line represents the values ofuT11(E)u2, with

E5AP2, obtained when we include thep h, KK̄, andph8 decay
channels. The width at half maximum isGpeak523 MeV. Here we
use KT(P2)1DKT with DKT50.008 GeV2, and G88

512.46 GeV22.
06521
f
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requires that thea0(980) resonance is either aKK̄ molecule
@22,23# or represents a type of ‘‘threshold effect’’ due to th
presence of theKK̄ threshold at 990 MeV@18#. Those sug-
gestions may be contrasted with the results of our study
broad range of light mesons and their radial excitations@9#.
In our work, thea0(980) resonance was seen to be a 13P0
state, while thea0(1450) resonance appeared as the 23P0
state. ~In Ref. @9# we used a sharp cutoff ofL350.622
GeV. The Gaussian parametera50.605 GeV used here
leads to similar results for the spectrum of light mesons.! In
Ref. @9#, we found the energy of theT51, 1 3P0 state to be
1063 MeV, while theT51, 2 3P0 state was at 1556 MeV
when we usedG88512.46 GeV22 andL350.622 GeV. We
have seen that inclusion of ReKT(P

2) in the formalism
moves such states to somewhat lower energy. Thus, from
work, we concluded that thea0(980) andK0* (1430) reso-
nances are in the same nonet, while thea0(1450) and a
~predicted! K0* (1738) resonance are in a 23P0 nonet of
states@9#. Our observations are in general accord with tho
of Törnqvist @12#, who describes thea0(980) resonance as
T51qq̄ state, which is strongly coupled to theKK̄ con-
tinuum.

While our analysis does not exclude the interpretation
the a0(980) resonance as aKK̄ ‘‘molecule,’’ or as a thresh-
old effect, the fact that we find aJPC5011 isovector state at
974 MeV, when we include ReKT(P

2)1DKT and useG88
512.46 GeV22, is suggestive of a significantqq̄ component
of the a0(980). ~The use of a sharp cutoff ofL3
50.622 GeV leads to the choiceG88512.46 GeV22 made in
Ref. @9#. In that case we foundma0

51063 MeV in the ab-

sence of ReKT(P
2), which, if calculated, would lower the

value of ma0
somewhat. As noted above, the choicea

50.605 GeV yields similar results to those obtained w
L350.622 GeV.!

ACKNOWLEDGMENTS

This work was supported in part by a grant from the N
tional Science Foundation and by the PSC-CUNY Facu
Research Award Program.

FIG. 12. Here we have replaced ImK1(P
2) by 2 ImK1(P

2) and
found Gpeak547 MeV. @See caption to Fig. 11.#
0-7



is
y

re

that

re,

on-

CELENZA, HUANG, WANG, AND SHAKIN PHYSICAL REVIEW C60 065210
APPENDIX A

The scalar vertex for our confining interaction was d
cussed in Ref.@1#. For our model, which has zero energ
transfer in the frame withP50,

ḠS~P,k!5c0~P,k!1k”̂c1~P,k!, ~A1!

with k̂m5km2(k•P)Pm/P2. We define

L~1 !~k!ḠS~P,k!L~2 !~2k!5GS
12~P,k!L~1 !~k!L~2 !~2k!

~A2!

and

L~2 !~2k!ḠS~P,k!L~1 !~k!5GS
21~P,k!L~2 !~2k!L~1 !~k!.

~A3!

The relations betweenGS
12 andGS

21 andc0 andc1 are

GS
12~P,k!5c0~P,k!1mc1~P,k! ~A4!

and

GS
11~P,k!5c0~P,k!2

k2

m
c1~P,k!. ~A5!

The formalism is made covariant by using Eq.~A1! and the
procedure described in Sec. VI of Ref.@1#.

Equations forGS
12 andGS

21 were given in Ref.@1#. We
repeat those equations here, taking the opportunity to cor
two misprinted signs. Withk5uku andk85uk8u,
we have

GS
12~P0,uku!5124pE k82dk8

~2p!3 F28k82

E~k8! G
3

V0
C~k,k8!1~m2/2kk8!V1

C~k,k8!

~P0!22@2E~k8!#2

3GS
12~P0,k8! ~A6!

and

GS
11~P0,uku!5124pE k82dk8

~2p!3 F28k82

E~k8! G
3

V0
C~k,k8!2~k/2k8!V1

C~k,k8!

~P0!22@2E~k8!#2 GS
12~P0,k8!.

~A7!

In these equations

Vl
C~k,k8!5

1

2 E21

1

dxPl~x!VC~k2k8!. ~A8!

Coupled equations forc0(P,k) andc1(P,k) are
06521
-

ct

c0~P,k!5124pE k82dk8

~2p!3 F28k82

E~k8! G
3

V0
C~k,k8!@c0~P,k8!1mc1~P,k8!#

~P0!22@2E~k8!#2 ~A9!

and

c1~P,k!54pE k82dk8

~2p!3 F4mk8/k

E~k8! G
3

V1
C~k,k8!@c0~P,k8!1mc1~P,k8!#

~P0!22@2E~k8!#2 ,

~A10!

where we have again corrected two misprinted signs
appear in Ref.@1#. Note thatGS

12(P0,uku) is singular when
the homogeneous version of Eq.~A6! has a solution. At
those points, the eigenvalueP0 is the energy of one of the
bound states in the confining field~see Fig. 4!.

We remark that, except for small values ofP0, we usually
make the replacement

1

~P0!22@2E~k!#2 → 1

4E~k!

1

P022E~k!
~A11!

in Eqs.~A6!–~A10!.

APPENDIX B

In this appendix we describe our treatment of theh and
h8. For these mesons we included the full vertex structu
as well as our model of confinement. In Refs.@6# and@9#, we
calculated theh andh8 vertices, which took the form

Vh~P!5ghqqig5@2sinûl01cosûl8#1
g̃hqq

2
iP” g5

@2sinũl01cosũl8#, ~B1!

where P” is the h ~or h8! momentumentering the vertex.
Inclusion of confinement led to the form@6,8#

Ṽh~P,k!5ghqqig5@b0~P,k!1P” b1~P,k!#@2sinûl0

1cosûl8#1
g̃hqq

2mus
iP” g5@d0~P,k!1P” d1~P,k!#

3@2sinũl01cosũl8#. ~B2!

For the purpose of this work, we have introduced the c
stants

h15ghqq Tr@2sinû~l3
2l0!1cosû~l3

2l8!#, ~B3!

and

h25
g̃hqq

2mus
Tr@2sinũ~l3

2l0!1cosũ~l3
2l8!#. ~B4!
0-8
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In Ref. @8# we have found the parameters for theh to be
ghqq55.97, g̃hqq51.45, û5211.2°, ũ5215.1°, when we
put mus50.433 GeV and used a Gaussian cutoff witha
50.605 GeV. For theh8, the parameters weregh8qq

54.66, g̃h8qq51.58, û52115.5°, andũ52107.5° for the
same Gaussian cutoff. Equation~B2! may be rewritten as a
term proportional toig5 and another term proportional t
iP” g5 . The term proportional toP” gave rise to the contribu

tions M1
h8p(2)(P2) and M2

h8p(2)(P2), introduced in Eqs.
~3.2! and~3.5!. These terms are rather lengthy, so we do
reproduce them here. Various figures in Ref.@8# exhibit the
functions b0 , b1 , d0 , and d1 for P25mh

2 and P25mh8
2 ,

with mh5547 MeV andmh85958 MeV.

APPENDIX C

In this appendix we describe our treatment of the pion a
kaon vertex functions. IfP is the momentum entering th
vertex, the vertex for the pion is

i Ḡ5~P!5 ig5FcosuP2
P”

AP2
sinuPG . ~C1!
. C

. C

C

M

M

M

06521
t

d

We found uP523.09° andgpqq54.57. For the kaon, we
havegKqq58.09 and

i ḠK~P,kc!5 i H g5 cosuK@b01b1P” 1b2k”̂ c#

1sinuK

P” g5

AP2
@d01P” d1#J , ~C2!

with uK527.05°. The various functions, b0

5b0(AP2,A2kc
2), etc., that implement our model of con

finement are described in Ref.@14#, where figures represent
ing these functions are presented.@In the case thatP is the
momentum leaving the vertex, we need to change the sig
P” andk”̂ c in Eq. ~C2!.#

For simplicity, in this work we usei Ḡ5(P)5 ig5 , with
gpqq53.93 andi ḠK(P,kc)5 ig5 with gKqq58.09. However,
we include the full complexity of theh and h8 vertices as
described in Appendix B.
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