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The unitary quark model of “Taqvist and Roos provides an extremely interesting description of the prop-
erties of the scalar meson nonet. The model is quite phenomenological and has six parameters. In this work we
are interested in seeing whether a theoretical foundation for the unitary quark model can be created using our
generalized Nambu—Jona-LasinidJL) model, which includes a covariant model of confinement. To make
contact with Teonqvist's work, it is necessary to go beyond the leading vacuum polarization diagram of the
NJL model,J(P?), which is of ordem,., and calculate thecompley functionK (P?), which is of order 1, and
which describes the decay qfj states to the continuum of two-meson states. The central issue is the creation
of a model for the regularization of the one-loop amplitudes with three vertices. We choose a regulator that has
been used in our recent study & mesons. The same regularization is used for #hg KK, and 7y
channels, when studying the properties of@j€980) resonance. The coupling to the decay channels described
by K(P?) is an important feature of the model, since the mass ofathenass would be 1090 MeV in the
absence of such coupling. The peak width obtained foral{{®80) resonance is 23 MeV, which is smaller
than the values of 50—-100 MeV usually quotédarger values may be obtained in our calculation with another
form of the regulatoy. While our model is not parameter free, we believe we have made significant progress
toward putting the unitary quark model on a firmer foundat{@0556-281®9)04412-X]

PACS numbgs): 13.25-k, 12.39.Fe, 14.46:n, 12.39.Ki

[. INTRODUCTION tainedvia a dispersion relation. In addition, a “bare mass,”
my, was assigned to thegq states, so that the inverse meson
In a series of papers we have been developing a genergiopagator had the forrﬁz—mS+H(P2). (A value of mg
ized Nambu—Jona-LasinitNJL) model which includes a co- =1420MeV was used, if thgq system was composed of
variant model of confinemerjtl—11]. We have studied;  only u andd quarks. This “bare mass” finds a natural inter-
— 7', ¢— w, andm—a, mixing, including both singlet-octet pretation in our analysis of the unitary quark mogdlorn-
and pseudoscalar—axial-vector mixing, where appropriat@Vist was able to fit a large body of data using his phenom-
[3]. We have also made a comprehensive fit to states of th@nological mode[12]. In the work reported upon here, we
pseudoscalar and vector meson nonets and have made soid see that our generalized NJL model can provide a theo-
preliminary studies of the axial-vector and the scalar nonet of€tical foundation for the unitary quark model. In principle,
states. In these works, we have studied radial excitations u® NeW parameters, other than those determined in our earlier
to 2 GeV[9] and beyond11]. In addition, we have studied tudies[1-11], should be required. However, we require a

the spectrum of , tensor mesonEL0] and have calculated proc_edure for regglarizing one-loop amplitudes with_ three
decay rates forzthe process vy, 7—7yy, and 7' vertices that describe meson decay. We use a Gaussian regu-

lator for these amplitudes, that has been used in a recent

etstudy of f, mesond13]. (The results are quite sensitive to
he parameter choice made for the regulator. That is in con-

processesr(1300)— mo and m(1300)— mp. trast to the situation found when fitting meson spectra, where

In the present work we extend our calculations to consideé change in the regularization parameter may be compen-
the 8,(980) resonance, with p"?‘”icu'af "’?“e”“"” paid to thesated for by a change in the magnitude of the coupling con-
role of meson decay channels in modifying the properties ofc'

that meson[The a5(980) resonance is a member of the sca-
lar nonet, which is depicted in Fig. ]J1Our work is closely
related to that of Tinqvist who studied the scalar nonet of
states in a unitary quark model which required the introduc-
tion of six parameter§l2]. In that work, the meson-decay . 0
amplitudes for the channelsw, K#n, Kn', 7w, 7y, 77’, g * a, fo

[K31° [K51"

nm, nn', andn’ ' were parametrized and used to construct fg
the imaginary parts of the various vacuum polarization func-
tions, I1(P?). The real part of eacfil(P?) was then ob- - 0
[K5] [K5]
*Electronic address: casbc@cunyvm.cuny.edu FIG. 1. States of the scalar nonet are shown.
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stants of the short-range NJL interaction. For example, we P/2+k
have made use of Minkowski momentum-space cutoffs of P .}}<>\{“
|k|<Aj3 with A3=0.622 GeV[9] and A;=0.80 GeV[11],
with similar results for meson spectra. A Gaussian regulator -Pr2+k
has also been used in R¢L3].) (a)

The organization of our work is as follows. In Sec. Il we Posk
describe some aspects of the vacuum polarization diagrams |, v m v n v
of the NJL model and discuss their role in the calculation of Q = Q *
variousT matrices. In Sec. Il we describe the calculation of PRk
decay amplitudes for the decay of scalar-isovector mesons to i v n v
the two-meson continuum states. In Sec. IV we present our + * *er
numerical results for various vacuum polarization functions (b)

andT matrices. Section V is devoted to some further discus-

sion and conclusions. FIG. 2. (&) The diagram shows the basic vacuum polarization

diagram of the NJL model in the absence of a confinement mod-

el. (b) The diagram serves to define the tenddf(P) in the pres-

ence of a confinement vertex, represented by the shaded triangular

area(see Fig. 3 The right-hand side of the figure shows a per-
Since our methods of calculation have been describetiirbative expansion fod“*(P).

elsewherd1-11,13, we will only provide a short review of

our formalism. The Lagrangian of the model is 2(b) and 3b), we show a perturbative expansion of the ver-

tex. With the vertex in placels(P?) is real and given by

II. VACUUM POLARIZATION DIAGRAMS
OF A GENERALIZED NJL MODEL

Gsw . . A
L=Tqis-m)a+ 2 3 (@ ')+ (T ysha)’) e
o —iJS(P)z(—l)zncf WTr[iS(P/2+k)

G - ) o .
-7 2 (@2 @y ysh'9)?] -
1=0 XT'g(P,k)iS(—P/2+K)]. (2.3

Gp _ _
+ —{defq(1+ +defq(l— + Leonts —
2 tdeta(1+ys)al tatl=ys)alh+ Leon Equations forl'g(P,k) are given in Appendix A.

(2.1) Values forJg(P?), calculated in Ref[9], are shown in

Fig. 4. We note thalg(P?) has singularities when the vertex
while £, denotes our model of confinement. In Eg.1), operator is singular, which occurs at the energies of bound
m° is the current quark mass matrimozdiag(nho,mg,mg), states in the confining fieldn the absence of the NJL inter-
the \; (i=1,...,8) are theGell-Mann matrices, and, action. If we work in the rest frame of the scalar meson, it is
— 231, with | being the unit matrix in flavor space. The useful to define the functiorg ~, I's ™, I's ", andl's ™.
fourth term is the 't Hooft interaction. (We note that addi- We introduce
tional interaction terms are needed for the study of tensor

mesong10].) Pi2+k Pr2+k Pr2+k
We first introduce the vacuum polarization function re- " %
quired for the study of scalar-isovector excitations of the p.t = P oo §VC
NJL model, in the absence of a model of confinement '
-Pr2+k -P/2+k -P/2+k
—iJg(P?)=(—1)2n, (a)
d“k P/2+k Pr2+k
X f WTr[iS(P/ZﬂL K)iS(—P/2+k)]. _ B LB Ve
(2.2 Pr2ek -Pr2+k
[See Fig. 2a).] Heren.=3 and the factor 2 arises from the nT\e
flavor trace. The propagator &P)=(P—m+ie) !, where S S

m is the constituent quark mass. The function defined in Eq.
(2.2) becomes complex fdP?>(2m)?, since both the quark
and antiquark can go on the{positive mass shell. This
U,”phys'ca' featqre limits the use O,f the NJL moldel to rela'shown. The vertex is represented by the filled triangular area and
t'VeIY !ow.energlelzs. To remedy this de“,:"Ct' we introduce 8he dashed line represents the confining interactionA perturba-
confining interaction/ and a corresponding vertex operator e expansion is shown for the equation (@. We see that the
I's(P,k), shown as a filled triangle area in Figb2 In Figs.  vertex serves to sum a “ladder” of confining interactions.

FIG. 3. (@ The equation for the vertex operatb*(P,k) is
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1.0 - P/2+k
0.8
osl _,Js(pZ) S P
< o4r -P/2+k
D 0.2 a
I @
€ o2l P/2+1
G 04r Kg(PP) P P
0.6 |-
081 P/2-x
-1.00.0 I 0r5 1?0 1T5 ‘ 2!0 . 215 3!0 3!5 4!0 (b)
P? (GeV?)

FIG. 5. (a) The vacuum polarization diagram that serves to de-

FIG. 4. The figure exhibits the values of the functigfy(P?), fine —iJg(P?) is shown. The shaded triangular region represents
when the subscripts are a reminder that the calculation is made fqpe (scalay confining vertexI's(P,k). (b) The vacuum polariza-
m,=my=0.364 GeV. The horizontal line represer@;g and  tion diagram that serves to defineiK s(P?) is shown. The wavy

yields a graphical solution of the equati@yg' — Js(P?)=0. lines denote mesons, while the shaded region represents the con-
finement verticed'g(P,k) or I'p(P,k). (The only singularities of
K+m this diagram arise when the mesons go on mass shell.
A(Jr)(k)zﬂ (2.4) g g B
At this point, we describe the role played by the functions,
and Js(P?) and Kg(P?), in parametrizing theT matrix in a
simple case, with a single open channel. We consideiTthe
(=) K+m matrix
AT(=k)= S (2.9
2 Gs
tg(P?)=— (2.9

with k*=[E(k),k] andk#=[ — E(k),k]. We then define 1-GdJs(P?) +Ks(P*)]’

A(“(k)FS(P,k)A(*)(—k):Fg’(P,k)A(*)(k)A(*) which we may write as
1
(—k), (2.9 tg(P?2)=—

Gs'—[Js(P?) +ReKg(P?)]—i ImKg(P?)’
(2.9

AT (P RAD () =T$ " (P)AT(K)AT(K),
27 We expandlg(P?) + ReKg(P?) about the massg that sat-

etc. It is found that"g ~(P,k)=T's " (P,k) and g F(p,ky  Ses the equation
=1“g_(+P_,k).2 It is readily seen thaﬂS(Ez) glepends only Ggt—[Jg(m3)+ReKg(m3)]=0, (2.10
uponI'g ™ (P?), the propagators appearing in Eg.3), and
the regularization scheme adopted. Note that, sinceo that
Fg‘(P,k) vanishes wherboth the quark and antiquark in
Eq. (2.3) go on mass shellls(P?) is a real function, without ts(P?)
spurious cuts in the compleR? plane. WhileJg(P?) is of 1
ordern, the next important term g(P?), which is shown ~ 5 5
in Fig. 5b), is of order 1. [The functionII(P?) of Torn- (P?—m2) 3Js(P?) N d ReKg(P?)
quist's work is related to our functioi¢(P?).] We have ROl oP? JP?
I1(P?) = —g?(P?)Kg(P?), whereg(P?) is the meson-quark 2.19)
coupling constant, which is momentum dependent, in gen- '
eral. Note that there is no function analogousJP?) in  Here the derivatives are evaluatedRét=m2. We then de-
Torngvist's work. fine

In this work we study the properties of tlag(980) reso-
nance. There is some difficulty in extracting a width for the PARED)
a,(980) resonance from the data. For example, in the com- g’éW
pilation of experimental data by the Particle Data Group, we
find a broad range of values, with a suggested peak width of
50-100 MeV, although widths as small as 30 MeV have 2&ReKS(PZ)
been found in one experimefit5]. We note that Togvist z:{1+ IT-Y A
obtains 100 MeV for the peak widft.2]. P2=m

+iImKg(m3)

: (2.12

22
P2=m?

-1

: (2.13
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andg=2z%?g so that
'gZ

ts(PY) = oy,
s(P) P2—m3+imglg

(2.14

with mgI'r=32 Im Km&). The functiontg(P?) has an ob-
vious physical interpretation.

Now let us consider the multichannel case, wittchan-
nels. It is then useful to define a dimensionl@&ssatrix for
channel 1 to be

ImK,(P?)
G -[J5(P?)+ReK1(P?)]—i ImK(P?)’
(2.15

T1y(P?)=

whereK(P?)=3N K;(P?). (If only a single channel is
open, we may writél (P?) = —exdidlsin 8, where § is the
phase shif). In this work, the channels considered are,
KK, andw#’, where thery is channel 1KK is channel 2,
and w7’ is channel 3. Thereforel,,(P?) describesr— 7

scattering[12] with inelasticity arising at the thresholds for

the KK and %' channels.

We now describe the procedure used to -calculat
ReK;(P?) for each channel. The first observation is that

whenGg=Gp =0, the confining potential has bouRdstates

at P°=1.373, 1.665, 1.898, 2.098, 2.263, and 2.410 GeV.
The confining vertex is singular at each of these energies

giving rise to singularities inlg(P?) and K;(P?) [See Fig.
4].
grams arises if these singularities were to appea; {P?).
For the caséP=0, the singularities irK;(P?) may be re-

However, it can be seen that double counting of dia

PHYSICAL REVIEW C60 065210

-P/2+k n P24k pom’

P/2-x

FIG. 6. The diagram that defines the amplitud¢P?) for the
decay to thern’ channel. The mesons are represented by wavy
lines and are on mass shell. We designate the amplitut® a$ the
direct term and that ofb) as the exchange term.

may be written in a covariant fashion, so that it may be used
in any frame. For example, with reference to Fig. 5, we may
define
Ke=k+— (k- P)P#/P? (2.18
and write
R(k2)=exd k2/a?]. (2.19

Note thatk?=—k? in the frame in whichP=0. [In this

§vork we usea=0.605 GeV, when regulatings(P?).]

Ill. COVARIANT CALCULATION OF MESON DECAY
AMPLITUDES

'’ The decay amplitude calculated in this work is shown in
Fig. 6 for the w#' channel. The momentum entering the

“diagram isP, the " has momentuni/2+ «, and thew has

momentumP/2— k, with both the»’ and 7 on mass shell.
The shaded areas represent our confining vertex functions,

moved by the following procedure. We define a “wave func-\hich we describe in further detail in Appendix B. It is use-

tion”

ré (P k)

‘I’+‘(P°,|k|)=m'

(2.19

and then systematically orthogonalide® ~(P°,|k|) to the
bound-state wave functions in the confining fi¢k8]. The
result of this procedure vyields a *“wave function”
O (POlk]) and a vertex I'&(PO|k|)=[P°
—2E(k)]®* ~(PY,|k]|) that are free of the singularities de-
scribed above.

Using the vertex ' (P%|k|), we can calculate
Im K;(P?). We then obtain the values of RgP?) using the
dispersion relation

. 12
ReKi(PZ)z—;f dP’ZL(P) (2.17

P2_ PIZ

We place an upper limit of 6.0 Gé\bn the integral in Eq.
(2.17.

We have noted that the integrals that yiélg P?) require
regularization. If we calculatdg(P?) in the frame where

ful to complete the integral ové®, after writing each propa-
gator using the representation

P2+ - P21k .
Pr2+k " P/2+k
k+x¢ k+x
P.. T .. bis
-Pro+k P/2-x -Pr2+k P2
(a) (b)
P/2+x , P/2+x ,
P/2+k P/o+k n
P... §
K-ic P... ke
-Pr2+k
I T
o -P/2+k

FIG. 7. Various diagrams that arise upon completing the integral
overk® in the calculation oM (P2?) shown in Fig. 6a). There are
two additional diagrams that serve to double the contribution of the
diagrams in(c) and(d). The shaded regions denote the confinement
vertices of the modelWe neglect confinement for the pion in our

P=0, we may insert a Gaussian regulator of the form calculations. Here, lines directed to the right represent quarks,

R(k?)=exd —k? «?] in Eq. (2.2 or Eq.(2.3. That form

while lines directed to the left represent antiquarks.
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m [ A)(p) AT (=p) } fining vertex. [The other two nonzero terms serve to double
S(p)= 0 - 0 —. the contribution of the amplitudes in Figs(cY and 7d).]
E(p) |p°—E(p)+ie p°+E(p)—ie] 3.1 In order to better understand the role of confinement and

covariance in our calculation, we present expressions for two
The k? integral is completed in either the upper or lo8r  of the diagrams in Fig. 7. For example, for Figa) we have
plane. Since there are three propagators for each diagram,
eight terms are obtained when using Eg.1). However, MZ7(P2)=M7"N(P2)+M7™(2)(p2), (3.2
only six of these are nonzero. Four of the six terms are
shown in Fig. 7, where the shaded region denotes the comwith P=0, P°:E7(K)+E,7,(K), and

|
d3k [ 1 ]
(2m)%| E(k)—E(k)—E(k— 1)

M7 (P?)=n,

27 mk- (k— x) — mk>2]}

1\ Ts POk

X 2E2(K)E(k—1) | PO—2E(K)

Grad habo(m?, K2 ) =m? hody(m?, K2 )IR(KZ)). (3.3

Here,h; andh, are constants defined in Appendix B. The J5(P?), a criterion that is consistent withrl/ counting pro-
functions bo(mi,,ki 7],) and dl(mf?,,ki 7],) implement our  cedures,
confinement model and are also defined in Appendix B. The Because of the small pion mass, the first bracketed term in
function R(k§ J) is a covariant Gaussian regulator I?q. (3.3) is not singular. Our confinement model is such that
' , I~ (PO|k|)/[P°—2E(k)] is finite. The function
R(K2 )= \Eexr{kﬁ (3.4) Mf'”(z)(P.Z), Whigh has a similar expres_sion to that given in
s 3 af |’ Eq. (3.3, is not given herdsee Appendix B We see that

) there are no singularities associated with thie vertex of
where a;=0.325GeV. (That value was also used in Ref. Fig, 7q).

[13].) Here kés is the square of the four-vector defined in  we now consider Fig. (B) and define

Eqg. (2.18. [By choosinga; approximately, we can adjust

the relative magnitude odg(P?) and Kg(P?). That is an MZ (P2 =MZ "D (P2)+MZ "2 (P2), (3.5
important feature of our regularization scheme. For example,

it is desirable thafReKg(P?)| be less than about 25% of with

d3k 1

"m(1) I
M TH(P%) =~ (ZW)S[E(k)—E,?,(K)JrE(k—

K)}{Z[mk-(k—x)—mkz]}

1 | PS(POk]

| 2E2(K)E(k—r) | PO—2E(Kk) 974

[hibo(m?,,kZ ) —m?, hody(m?, ke )IR(KZS). (3.6

There are two terms in E@3.6) that would be singular inthe and 7d), the scalar vertex introduces a factor of
absence of our confinement model. The first bracketed terifid *(P%,|k|). That function plays only a minor role in the
in Eq. (3.6) has a zero value for the denominator, when thecalculation and little is changed if we pats *(PO,|k|)
quark and the antiquark at thg’ vertex go on mass shell. =I5 (P%|k|)=1. The treatment of the;’ vertex in Fig.
However, our confinement model is such that if we calculatey(c) s similar to that described for the’ vertex in Fig. Tb).

all the terms describing decay to then’ channel, the nu- \vhen we evaluate the diagram in Figdy we do not en-

merator of the bracketed term has a corresponding zero @bunter any singular terms, singe,<2m,, wherem, is the
that point, leading to a finite value for the amplitude. AS -gnstituent mass of the up quark(Here, m,=my

noted above, the terri * ~(P°, |k|)/[P°—2E(k)] is also =0.364 GeV andn=0.565 GeV)
finite. We have seen that, #=0, the scalar vertex may be For a given channelyy, KK, or 7', the summation of

expressed in terms df & (PP |k|), when calculating the all relevant amplitudes defines a functibh(P2). Then, for
diagrams of Figs. (€) and 7b). For the diagrams of Fig.(@) that channel,
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0.003 -
MK (P?)= o o, (P22, 3.7

where, for them ' channel, for example, 0.002

0\2_ 2 _m2 12 2 2
, LP)T=mi—mi, J7—4mem’,

on 4( PO)Z 0.001

K

(3.9

In Eq.(3.7), S is a statistical factor arising, in part, from the
flavor trace. For thern and w7’ channels, we tak&=1,
since the flavor trace is incorporated in the definitiorhef
andh,. (See Appendix B.

0.000

ReK,(P?) and ImK,(P?) (GeV?)

-0.001 1 L ) 2 1 L 1 L 1 1 1

IV. RESULTS OF NUMERICAL CALCULATIONS P? (GeV?)

For the channelsry, KK, and 77’ we have calculated  FIG. 8. The values of InK,(P?) and ReK(P?) are shown for
Im K;(P?) and ReX;(P?) (i=1,2,3) using the vertex functions the meson channets. [See Fig. §).] Herea;=0.325 GeV.
given in Appendixes B and C.[The orthogonalization pro-
cedure that leads to replacingl's “(P%|k|]) by V. DISCUSSION

I's (P |k]) is also used. For thenand ', we include In this work we have studied the regularization of loop
the complete structure of the vertex that arises when calcuntegrals that describe meson decay in a generalized NJL
lating both singlet-octet and pseudoscalar—axial-vector mixmodel, which includes a covariant model of confinement,
ing [8]. (We remark that it is essential to include a modeland made an application in a study of tg980) resonance.

of confinement for the;" when calculating the decay ampli- |t was found that the choice of the covariant regulator of Eq.
tude for themr»’ channel. Here we have used the regulator (3.4) gave reasonable results. We have also seen that our
of Eq. (3.4), with @;=0.325GeV. Our results for I#(P?)  model can provide a theoretical basis for the unitary quark
and ReK;(P?) are given in Figs. 8-10. The values of model of Tanqvist and Roo$12,16].

ReK;(P?) are obtained from In;(P?) upon using Eq(2.17). The study of theay(980) resonance is made complicated

For the calculation 08,(P?) we use a Gaussian regulator py the KK channel, which has a 990 MeV threshold. In this
of the form exp—k?/ a] with «=0.605 GeV. Our value forregard, it is generally believed that the “peak width” of the
Ggs is 12.46 GeVZ2 If we solve the equationGgs  a,(980) resonance can be distinguished from the total width
—J4(P?)=0, we find the mass of tha, to be 1090 MeV. when one studies the pole structure of the scattering ampli-
We may add R&(P?) to J¢(P?) and attempt to solve the tudes in the complex plane. For example, in Réf7], a
equationGgg — J5(P?) — ReK(P?)=0. However, the cusp- K-matrix analysis leads to a mass and total width for the
like behavior seen in Figs. 8—10 makes that procedure proka,(980) resonance oh=982+3 MeV andl’ =92+8 MeV.
lematic. Therefore, it is best to include Ky(P?) at the same However, the features responsible for thegpeak yield a full

time that we introduce Ré&(P?). width at half maximum of 45 MeV, which is about half the
We now consider the function

0.012 -
[ImK,(P?)]?
Gs'—[Js(P?)+ReK(P)]}2+[ImK(P?)]?
(4.1

|T11|2:{

0.008

(For an elastic resonandd,,;|? is equal to siAd, wheresis

the phase shift.When using Eq(4.1), we found it necessary
to addAK=0.008 GeV to ReK(P?) to move thea, mass

to 974 MeV (see Fig. 11 The parameteAK is the only
parameter used in our analysis that has not been fixed in ou
earlier work. It is meant to represent contributions to
ReK(P?) from decay channels whose effects have not been @
calculated in this work or to compensate for a calculation of

0.004

0.000

ReK,(P%) and ImK,(P?) (GeV?)

Im K+(P?) that yields a result that is too small. Our value for R
the peak width at half-maximum is 23 MeV, which may be P2 (GeV?)

seen in Fig. 11. The width of 23 MeV suggests that we have

underestimated Ii{;(P?). Therefore, we multiply In,(P?) FIG. 9. The values of InK,(P?) and ReK,(P?) are shown for
by 2 and obtain the curve shown in Fig. 12, whétg,  the meson channé{K. (This channel includes botk°K® and
=47 MeV. K*K~ states. Here a;=0.325 GeV.
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FIG. 10. The values of If;(P?) and ReKy(P?) are shown for FIG. 12. Here we have replaced K3(P?) by 2 ImK,(P?) and

the meson channetz’. Herea;=0.325 GeV. found I pea=47 MeV.  [See caption to Fig. 11.

requires that the@y(980) resonance is eitherkalK molecule
[22,23 or represents a type of “threshold effect” due to the
. . - resence of th&K threshold at 990 Me\18]. Those sug-
retical analysis of Ref.18], hpwever, obtains a value of the Sestions may be contrasted with the I’eS\lKJHS] of our stud?/ of a
m,, =991 MeV and a total width of 5 =202 MeV fromthe 1054 range of light mesons and their radial excitati#is
pole pOSitiOﬂ in the complex energy plane. The value ofin our work, thea0(980) resonance was seen to be %P_]a
I peai~110 MeV is given for the peak width, which may be state, while theay(1450) resonance appeared as th&Pg
compared to values obtained from Breit-Wigner fits to datastate. (In Ref. [9] we used a sharp cutoff ok ;=0.622
My, = 9823 MeV, TI'peq=54=10 MeV [19] and m,  GeV. The Gaussian parameter=0.605 GeV used here
=984+4 MeV, I pea=95+14 MeV [20]. Our theoretical leads to similar results for the spectrum of light mespirs.
analysis yields a peak width df =23 MeV, which may ~ Ref.[9], we found the energy of the=1, 1 *P, state to be
be adjusted upward by increasing the parametgror by ~ 1063 MeV, while theT=1, 2 °P, state was at 1556 MeV,
increasing InK,(P?) (see Fig. 12 when we usedSgg=12.46 GeV 2 andA;=0.622 GeV. We
It is occasionally stated that it is natural to assume that théave seen that inclusion of Rg(P?) in the formalism
ap(1450),K¢ (1430), and ,(1370) resonances form a nonet MoOves such states to somewhat lower energy. Thus, from our
based upon a 2P, state[21]. However, that observation Work, we concluded that they(980) andKg(1430) reso-
nances are in the same nonet, while #@yg1450) and a
12 _ (predicted Kg(1738) resonance are in a®P, nonet of

total width. A peak width of 45 MeV is about one-half the
value of about 100 MeV quoted in Refd.2, 16. The theo-

stateqd9]. Our observations are in general accord with those
of Tornqgvist[12], who describes thay(980) resonance as a

o T=1qq state, which is strongly coupled to th€K con-

tinuum.

0.8 While our analysis does not exclude the interpretation of
o~ the ay(980) resonance askK “molecule,” or as a thresh-
o o6f old effect, the fact that we find#©=0"* isovector state at
~= 974 MeV, when we include Ré&(P?)+AKr and useGgg
= 04l =12.46 GeV?, is suggestive of a significanfq component

' of the ay(980). (The use of a sharp cutoff ofAj
=0.622 GeV leads to the choi€®gs=12.46 GeV? made in

0.2} Ref. [9]. In that case we foundh, =1063 MeV in the ab-

sence of R&(P?), which, if calculated, would lower the

0.0 — L1 = 1 value of m, somewhat. As noted above, the choiae

0.6 0.7 0.8 0.9 1.0 1.1 1.2 0 . , )
=0.605 GeV vyields similar results to those obtained with
E (GeV) A5=0.622 GeV)
FIG. 11. The solid line represents the valueg©f,(E)|?, with ACKNOWLEDGMENTS

E=/PZ, obtained when we include the 7, KK, and 7n' decay

channels. The width at half maximum i%,e,= 23 MeV. Here we This work was supported in part by a grant from the Na-

use Ki(P?)+AK; with AK;=0.008 GeV, and Gg tional Science Foundation and by the PSC-CUNY Faculty

=12.46 GeV2 Research Award Program.
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APPENDIX A

The scalar vertex for our confining interaction was dis-

cussed in Ref[1]. For our model, which has zero energy
transfer in the frame witiP=0,

T's(P,k)=co(P,k) + ke, (P, k), (A1)

with k#=k*— (k- P)P#/P2. We define
APRTP AT (—k) =T~ (PAT (KA (—k)
(A2)

and

AT (=K)Tg(PKAD (K)=Tg " (P,k)A (=K AT)(K).
(A3)
andl'g ™"

The relations betweeRg ~ andcy andc, are

I's ™ (P,k)=co(P,k)+mc(P,k) (Ad)

and

2

I's " (Pk)=co(P,k)— k—Cl(P k). (A5)

The formalism is made covariant by using E41) and the
procedure described in Sec. VI of REL.
Equations forl' ~ andI's © were given in Ref[1]. We

repeat those equations here, taking the opportunity to correc

two misprinted signs. Withk=|k| andk’=|k’|,
we have
i (PO|k|)=1—4 Jklzdk/ 8K’
s (PYlk)=1-4m B

VS (kK" )+ (m2/2kk" )V (k,K")
(P%)?—[2E(k")]?

xT'& (POk") (A6)
and
Fé*(P°,|k|)=1—4wf%[%}
Bk} BV 1 o,
(A7)
In these equations
VE(k,k') = % f_lldxpl(x)vc(k—k’). (A8)

Coupled equations fory(P,k) andc,(P,k) are

PHYSICAL REVIEW C60 065210

k'2dk’ [ —8K’2
CO(P,k)=1—4’7T W m

VS (k,k [ co(Pk")+mey(P,k")]

(PO~ [2E(K) T (A9
and
B k'2dK’ [4mKk'/K
Cl(P,k)—47T W W
VE(k,k [ co(Pk")+mey(P,k")]
(P9)2—[2E(k")]? ’
(A10)

where we have again corrected two misprinted signs that
appear in Ref[1]. Note thatl'$ ~(PC,|k|) is singular when
the homogeneous version of EGA6) has a solution. At
those points, the eigenvallR?® is the energy of one of the
bound states in the confining fieldee Fig. 4.

We remark that, except for small valueskf, we usually
make the replacement

1
(POZ—[2E() P

1 1
4E(k) P°—2E(k)

(A11)
in Egs.(A6)—(A10).

APPENDIX B

t In this appendix we describe our treatment of thand

. For these mesons we included the full vertex structure,
as weII as our model of confinement. In Rd®} and[9], we
calculated thep and 7’ vertices, which took the form

ﬂqq

V,(P)=0,qql vs[ — SN O\ o+ costrg 1+ 2HiPys

[ —sinO\ o+ coshrg], (B1)

where P is the n (or ') momentumentering the vertex.
Inclusion of confinement led to the forf6,8]

V,(P,K)=0,qqi vs[ bo(P.K) + Pby (P,k) ][ —sin g

Ynaq
2mys

+CcosOg]+ iP ys[do(P,k) + Pdy(P,k)]

X[ —Ssin\ o+ cosbNg]. (B2)

For the purpose of this work, we have introduced the con-
stants

hy=0,qq THL —SiNB(A5\o) +CcOSB(NINg)],  (B3)
and
hzzmTr[—sin@(k%)\o)nLcos@()\%)\g)]. (B4)
2mye

065210-8
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In Ref. [8] we have found the parameters for theto be ~ We found #p=—3.09° andg,qq=4.57. For the kaon, we
9yqq=5.97,T,qq= 1.45, = —11.2°, 9= —15.1°, when we havegyqq=8.09 and

put m,;=0.433 GeV and used a Gaussian cutoff with
=0.605 GeV. For then’, the parameters werg, qq
=4.66,7,qq= 1.58, 6= —115.5°, andd= —107.5° for the
same Gaussian cutoff. Equati¢B2) may be rewritten as a
term proportional toiys and another term proportional to
iPys. The term proportional té gave rise to the contribu- _ Pys

tions M7 "®(P2) and MZ "@(P?), introduced in Egs. +sin QK—\/Ez[doJF Pdi] ¢, (C2
(3.2 and(3.5. These terms are rather lengthy, so we do not

reproduce them here. Various figures in R&f exhibit the

iTk(P, ko) =i{ v5cosc[by+ b P+bok.]

. 2
functions by, by, do, andd, for PZ=m and P?=m_,, .o 6c=—7.05°. The various functions, b,
with m,, =547 MeV andm,,, =958 MeV. =bo(P?%,\—K3), etc., that implement our model of con-
finement are described in R¢f.4], where figures represent-
APPENDIX C ing these functions are presentedin the case thaP is the

In this appendix we describe our treatment of the pion andnomentum leaving the vertex, we need to change the sign of
kaon vertex functions. IP is the momentum entering the P andKk; in Eq. (C2).]
vertex, the vertex for the pion is For simplicity, in this work we useéI's(P)=iys, with
9rqq=3.93 and ' (P,k;) =1ivys with gk qq=8.09. However,
_ (C1 we include the full complexity of the; and %’ vertices as
described in Appendix B.

_ P
iI's(P)=ivys| cOSOp— —Sinbp
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