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Resonating mean-field theoretical approach to the Nambu–Jona-Lasinio model

Seiya Nishiyama* and Joa˜o da Provideˆncia†
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Using the Nambu–Jona-Lasinio~NJL! model, the dynamical chiral-symmetry breaking, the light-mesons
spectra, and the properties of the mesons have been investigated on the basis of a conventional Hartree-Fock
approach. In order to show the advantage of the resonating~Res! mean-field theory for a fermion system with
large quantum fluctuations over the usual mean-field theory, we apply it to the NJL model to describe more
precisely such phenomena associated with the pionic excitation. For the sake of simplicity, a state with large
quantum fluctuations is approximated by the superposition of two Dirac seas, namely nonorthogonal Slater
determinants~S-dets! with different correlation structures. We consider two cases: in the first case both Dirac
seas are composed ofequal‘‘constituent quark masses’’ while in the second case the constituent quark masses
are unequal. We make a direct optimization of the Res-mean-field energy functional, i.e., a variation of the
Res-mean-field ground-state energy with respect to the Res-mean-field parameters, the ‘‘constituent quark
masses.’’ Then the Res-mean-field ground and excited states generated with the S-dets explain most of a mass
spectrum and associated properties of the pion.@S0556-2813~99!05811-2#

PACS number~s!: 24.85.1p, 12.39.Ki, 14.40.Aq, 21.60.2n
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I. INTRODUCTION

In transitional nuclei, resonances between different sup
conducting states with small deformations, and between
ferent deformed states with large deformations having ne
degenerate energies, are known to arise. The effects of
resonances becomes important at the lower end of supe
formed bands, where a transition to the ground-state m
mum occurs. This effect reflects the importance of quant
fluctuations. It is the advantage of microscopic investigatio
that there are methods at hand to go to beyond the mean-
theory and to take these quantum fluctuations into acco
Fukutome and one of the present authors~S.N.! have pro-
posed theories called the resonating Hartree-Fock~Res-HF!
theory @1# and the resonating Hartree-Bogoliubov~Res-HB!
theory@2# to treat the problem of large quantum fluctuatio
in normal fermion systems and superconducting fermion s
tems.

A fermion system with small quantum fluctuations can
described by a standard method of fermion many-bo
theory, namely the mean-field theory. The ground state of
system is well approximated by a single determinantal HF
HB mean-field wave function. Quantum fluctuations can
taken into account as zero-point oscillations of a tim
dependent mean field with small amplitudes around the m
mum in the energy functional surface. Such fluctuations
collective excitations connected with them can be treated
the well-known random-phase approximation~RPA!. If the
quantum fluctuations around the mean field become la
and so the energy functional has a large anharmonicity in
low-energy portion, then nonlinear couplings between
RPA excitation modes, the so-called mode-mode couplin
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become important. When the anharmonicity in the ene
functional surface increases so much that the surface
multiple low-energy minima, the approximation by a sing
mean-field wave function is certainly no longer possible a
the RPA also breaks down.

In the Res-HF and Res-HB theories, the ground stat
assumed to become a superposition of multiple mean-fi
wave functions, namely to be resonating between differ
correlation structures. The first application of the Res-H
theory was made to the problem of describing the resona
of multiple shapes coexistence in nuclei by using a sim
model with strong pairing correlations@3#. The Res-HF
theory has been applied to a well-known exactly solva
model in order to clarify some essential features of the the
and to show its advantage over the usual HF theory. In
study, the Res-HF ground state with a few Slater deter
nants~S-dets! reproduces the exact ground-state energy
explains most of the ground-state correlation energy in
the correlation regimes@4–6#. Then it has turned out that th
Res-HF approximation is a promising tool and provides
method to work better than the usual HF. Very recently,
Res-mean-field theory has also been successfully applie
one of the present authors~S.N.! @7# to a resonating relativ-
istic mean-field description of exotic phenomena in nuclei
the spirit of the relativistic mean-field approach.

Quantum chromodynamics~QCD! is now widely recog-
nized as the fundamental theory of strong interactions.
QCD, spontaneous breaking of chiral symmetry, leading t
condensate of quark-antiquark pairs in the QCD vacuu
plays a crucial role in the description of low-energy chara
teristics of hadrons. The quark-antiquark condensat
caused by dynamical chiral-symmetry breaking was p
posed by Nambu and Jona-Lasinio~NJL! in 1961 @8#. The
NJL model, which contains a chiral effective interaction b
tween quarks~the four-fermion interaction!, has been shown
to provide a framework for the spontaneous realization
chiral-symmetry breaking and allows for the collective m
sonic excitations whose properties have the characteristic

y,
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physical particles. The NJL model has been regarded
reasonable approximation to QCD for intermediate len
scales. The context of the original NJL model has been
cepted as a manageable approximation to dynamical ch
symmetry breaking because it has the advantage of b
easier to handle than QCD itself. Then in this context
problem of a deeper understanding of mechanism of ch
symmetry breaking arises naturally as well as its con
quences for the low-energy properties of hadrons, namely
spectra and the properties of the light mesons.

Using the NJL model Hamiltonian, one of the prese
authors~J. da P.!, Ruivo, and Sousa have investigated d
namical chiral-symmetry breaking, light-mesons spectra
properties of the mesons on the basis of the conventiona
and time-dependent HF~TDHF! approaches@9#. This theo-
retical framework and technique in many-body problem
very familiar to nuclear physicists, turned out to be approp
ate to describe the properties of hadrons in an exceedi
intuitive way in the spirit of a mean-field approximation. Th
HF procedure describes the realization of a stable equ
rium configuration in the context of the mean-field appro
mation in the sense that a vacuum expectation value of
Hamiltonian takes a minimal value. The TDHF method giv
RPA collective excitations with small amplitudes which a
low to interpret both the low-energy light-mesons mass sp
tra and properties of the mesons@10–12#.

The Res-mean-field theories are able to treat in a rigor
manner large quantum fluctuations and strong correlation
fects due to quantum- and dynamical-tunneling effects f
ing outside the scope of the RPA and of mode-mode c
pling theories. Of course, they can also deal with sm
quantum fluctuations which are describable by the us
RPA. Thus, they have a possibility to reveal surprising
dramatic aspects of the physics of fermion systems w
large quantum fluctuations. The Res-mean-field meth
have been constructed on the basis of a group-theore
deduction starting from the fact that they are based, in th
group-theoretical backgrounds, on the Lie algebras of
fermion pair operators arising from the canonical antico
mutation relation of the fermion. Therefore, from the abov
mentioned reasons, they should have a universal applic
ity to problems of current topics in wider fields of physic
The radical spirit of the Res-mean-field theory may be
pected to open a new field also for the exploration of
low-energy hadron physics taking notice of the strong an
ogy between a chiral effective Hamiltonian with a fou
fermion interaction and a familiar nonrelativistic fermio
Hamiltonian with a two-body force.

In order to investigate the advantage of the Res-me
field theory over the usual mean-field theory, we apply it
the naive NJL model without isospin@8# to describe more
precisely such phenomena of the pion mentioned previou
For the sake of simplicity, a state with large quantum flu
tuations is approximated by the superposition of two Di
seas, namely nonorthogonal S-dets with different correla
structures. We consider two cases: in the first case both D
seas are composed ofequal ‘‘constituent quark masses,’
while in the second, the constituent quark masses areun-
equal. We make a direct optimization of the Res-mean-fie
06520
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energy functionals, i.e., a variation of the Res-mean-fi
ground-state energy with respect to the Res-mean-field
rameters, namely the ‘‘constituent quark masses.’’ Our fi
objective is to explain the mass spectrum and associ
properties of the pion by the Res-mean-field ground and
cited states generated with the two S-dets.

Along the above lines this paper is organized as follow
In Sec. II we present the naive NJL model and a brief re
pitulation of the resonating mean-field approximation.
Sec. III we consider only two S-dets with different correl
tion structures havingequal constituent quark masses. W
introduce isometric matrices in terms of components o
matrix induced by a Thouless transformation to get over
integral, interstate density matrix and matrix element of
Hamiltonian between nonorthogonal S-dets. Instead of s
ing the Res-mean-field equations, we make a direct opti
zation of the Res-mean-field energy functional, i.e., a va
tion of the Res-mean-field ground-state energy. In Sec.
we adopt two S-dets with different correlation structur
with unequalconstituent quark masses. In Sec. V we give
Res-mean-field ground-state energy and describe a colle
excitation around the stable equilibrium vacuum which
interpreted as a pion mass spectrum. In Sec. VI we calcu
an order parameter and a pion decay constant by using
self-consistent solution of the Res-mean-field equation.
nally, in Sec. VII, after discussing the behavior of the ove
lap integral in the Res-mean-field approximation of the N
model, we give a summary and the concluding remarks.
might be expected, we find that the present numerical res
are very similar to those of the previous works@10,12#.

II. MODEL AND RESONATING MEAN-FIELD
APPROXIMATION

We consider a naive NJL model which describes a sys
of many quarks interacting via a two-body force according
the chiral-invariant Hamiltonian

H5(
i 51

N

pi•ai2g(
iÞ j

N

d~r i2r j !@b ib j2b ig i
5b jg j

5#,

~2.1!

whereai , b i , andg i
5 stand for the standard Dirac matrice

acting on the degrees of freedom of the quarki andg is the
coupling constant. Here we use the former version of
NJL model with only one single flavor but without isosp
@8#. Following the work by one of the present authors~J. da.
P.!, Ruivo, and Sousa@9#, wheng50, the above NJL Hamil-
tonian describes a massless Dirac free quark and a Dirac
~the S-det! of massless quark having zero chirality is given

uF0&5)
i 51

N

di
†~0!u0&, ~2.2!

wheredi
†(0) is the creation operator of a massless negati

energy state andu0& is the absolute vacuum. The indexi
stands for the momentump and helicitys and the absolute
value of pi satisfiesupi u<L ~the highest momentum of th
occupied states!. Wheng is switched on, the system unde
3-2
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RESONATING MEAN-FIELD THEORETICAL APPROACH . . . PHYSICAL REVIEW C60 065203
goes a phase transition into a state of chiral broken symm
above a critical value of the coupling strengthgcr . As the
consequence of the chiral-symmetry breaking, the nonz
constituent quark massM is produced dynamically: namely
the quarks acquire a dynamical mass. A Dirac sea~the S-det!
of massive quarks is written as

uF&5)
i 51

N

di
†u0&, ~2.3!

where di
† is the creation operator of a massive negati

energy state. According to Refs.@8, 9#, the operatorsbi (bi
†)

and di (di
†) are related tobi

(0) (bi
†(0)) and di

(0) (di
†(0)) by

means of the canonical transformation

@b2p,s ,bp,s ,d2p,s
† ,dp,s

† #

5U~g!@b2p,s
~0! ,bp,s

~0! ,d2p,s
†~0! ,dp,s

†~0!#U†~g!

5@b2p,s
~0! ,bp,s

~0! ,d2p,s
†~0! ,dp,s

†~0!#g. ~2.4!

The U(g) is a unitary operator to induce a Thouless tra
formation @13# and the 434 matrix g is given as

g5A11bp

2
•I 1A12bp

2
•g5bS1 ,

~2.5!
gg†5g†g5I 4 , detg51,

where bp5upu/Ep and Ep5Ap21M2. By detg we denote
the determinant of the matrixg. By I 4 we denote the four
dimensional unit matrix and byS1 the first component of the
434 matrix-valued vectorS5(S1 ,S2 ,S3) which is repre-
sented as

S5Fs

0
0
sG , s5~s1 ,s2 ,s3!, ~2.6!

where s denotes the vector having the Pauli matrices
components. In the Res-mean-field approximation, the c
stituent quark massM is treated as a variational paramete
The total number of quarks in the negative-energy statesN
and a momentum cutoffL is used in order to regularize th
Res-mean-field theory@9#.

Following Fukutome@1#, we give here a brief recapitula
tion of the resonating mean-field approximation. We co
sider ann-fermion system withN single-particle states. Le
ai andai

† , i 51,2,...,N, be the annihilation and creation op
erators of the fermion, and let the Hamiltonian of the syst
be

H5hji aj
†ai1

1

4
@kiu l j #ak

†al
†ajai , ~2.7!

wherehi j and@kiu l j # denote the single-particle Hamiltonia
and the antisymmetrized interaction-matrix elements, resp
tively. Here and hereafter we use the summation conven
over repeated indices unless the possibility of misund
standing arises.
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A wave functionuC& is exactly represented in an integr
form as

uC&5NCnE U~g!uf&^fuU†~g!uC&dg

5NCnE ug&^guC&dg, ~2.8!

and the Schro¨dinger equation (H2E)uC&50 can be con-
verted into an integral equation

E $H@W~g,g8!#2E%^gug8&C~g8!dg850, ~2.9!

where the integration is the group integration over a unit
group U(N) of N dimension made of a unitary matrixg
corresponding to coefficients of linear combinations of t
fermions. The stateuC& is a coherent-state representation~CS
rep! of fermion state vectors represented by a funct
C(g)5^guC& on U(N). The ket ug& is given as ug&
5U(g)uf& in which the unitary operatorU(g) induces a
Thouless transformation of a reference S-detuf& @13#. The
U(N) CS rep ofn particle state is a representation on t
coset U(N)/U(n) denoted asu which is anN3n submatrix
of a U(N) matrix. The Hamiltonian matrix element and ove
lap integral between two nonorthogonal S-detsuu& and uu8&
are given as

^uuHuu8&5H@W~u,u8!#^uuu8&, ^uuu8&5detz,

z5u†u8, ~2.10!

wherez is ann3n matrix and detz is the determinant ofz.
The interstate density matrixW(u,u8) is defined as

W~u,u8!5u8z21u†, ~2.11!

which is anN3N dimensional matrix and satisfies

W~u,u8!5W2~u,u8!, W†~u,u8!5W~u8,u!.
~2.12!

This reduces to the usual mean-field density matrix ifu
5u8.

We approximateuC& by a discrete superposition of S-de
as

uC&5(
f

uuf&cf . ~2.13!

We denote sampling S-dets asuuf&. The mixing coefficients
cf are normalized by

^CuC&5(
f , f 8

^uf uuf 8&cf* f f 85(
f , f 8

detzf f 8cf* cf 851,

~2.14!

wherezf f 85uf
†uf 85zf 8 f

† .
The expectation value of the HamiltonianH ~2.7! in uC& is

expressed as
3-3



-

n-

a-
te
-

t
d

of

th
er
ive

he

e-
rgy

-

an-

-
is

q.

a-
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^CuHuC&5(
f , f 8

^uf uHuuf 8&cf* cf 8

5(
f , f 8

H@Wf f 8#detzf f 8cf* cf 8 , ~2.15!

H@Wf f 8#5hji ~Wf f 8! i j 1
1

2
@kiu l j #~Wf f 8! ik~Wf f 8! j l ,

~2.16!

where Wf f 85uf 8zf f 8
21uf

† is the interstate density matrix be
tweenuuf& and uuf 8&.

We determine both thecf and uuf& variationally by the
following set of equations:

(
f 8

~H@Wf f 8#2E!detzf f 8cf 850, ~2.17!

(
f 8

K f f 8cf* cf 850, ~2.18!

where

K f f 85$~12Wf f 8!F@Wf f 8#1H@Wf f 8#2E%Wf f 8•detzf f 8 .

~2.19!

Equation~2.17! is called the Res-mean-field configuratio
interaction~CI! equation. Optimization of the orbitalsuf is
made by Eq.~2.18! which we call the Res-mean-field equ
tion. The N3N matrix-valued Res-mean-field intersta
Fock operatorFi j @Wf f 8# is given through the functional de
rivative of the Hamiltonian matrix element as

Fi j @Wf f 8#5
dH@Wf f 8#

d~Wf f 8! j i
5hi j 1@ i j ukl#~Wf f 8! lk .

~2.20!

The Res-mean-field interstate Fock operator reduces to
usual Fock operator if the sampling S-dets are restricte
only one S-det.

III. RESONATING MEAN-FIELD EQUATION
WITH EQUAL CONSTITUENT QUARK MASSES

Any S-detuF(g)&(5ug&) can be constructed by the action
U(g) given by Eq.~2.4! on a reference S-detuF0&, Eq. ~2.2!,
~the Thouless theorem@13#! as

ug&5U~g!uF0&

5)
p,s

S 11bp

2 DexpS (
p,s
A12bp

11bp
bp,s

†~0!dp,s
~0!D uF0&,

~3.1!

which means that the S-det of massive quarks in
negative-energy states may be written as a coherent sup
sition of massless quark-antiquark pairs in the negat
06520
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e
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energy states. The constituent quark massM is generated as
the result of the dynamical chiral-symmetry breaking of t
system@9#.

For simplicity, we here consider only two S-dets corr
sponding to the usual mean-field states of two local ene
minima with different correlation structures havingequal
constituent quark massesM. We denote them asug1& and
ug2&. They are distinguished by writing explicitly the sub
scripts 1 and 2@5#.

In order to get the explicit expression for the Res-me
field equation, we must calculate the overlap integral detz12,
the interstate density matrixW(u1 ,u2), the matrix element
of the Hamiltonian̂ u1uHuu2& and the interstate Fock opera
tor F@W(u1 ,u2)# between nonorthogonal S-dets. For th
aim, we introduce two 432 isometric matricesu1,p,r and
u2,p,r and a 232 matrix z12,p by

u1,p,r5F 2A12bp

2
s•n•x r

A11bp

2
•x r

G , u2,p,r5g5u1,p,r

~3.2!
~r 51,2!,

x15F10G , x25F01G , ~3.3!

u1~2!,p,r
† u1~2!,p,r 85d rr 8 , ~r ,r 851,2!,

z12,p,rr 85u1,p,r
† u2,p,r 8 , ~3.4!

wheren is the unit vector for components. Substituting E
~3.2! into the second equation of Eq.~3.4!, we have

z12,p,rr 852
1

Ep
x r

†s•px r 8 , ~r ,r 851,2!, ~3.5!

from which explicit forms of the matrix and the inverse m
trix together with the determinantal value of thez12,p,rr 8 are
obtained as

z12,p52
1

Ep
s•p, z12,p

21 52
Ep

p2 s•p, detz12,p52
p2

Ep
2 .

~3.6!

Then the overlap integral detz12 is calculated as

detz125)
p

detz12,pu~L22p2!

5expS (
p

~ ln detz12,p!u~L22p2! D
5expFaS ln

1

11x222x212x3 tan21
1

x D G , x[
M

L
,

~3.7!

where we have usedSp5V*d3p/(2p)3 and V56p2a/L3

~a is the dimensionless volume parameter!. Here, we had to
3-4
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introduce the dimensionless volume parametera to get a
finite value of the overlap integral detz12. It may be inter-
preted that thea gives a confinement volume of quarks, i.e
a volume of a space in which the quarks are confined. It i
general agreed that the main drawback of the NJL mode
the lack of confinement. It is known that the NJL vacuum
unstable. The NJL vacuum associated with a chiral rota
eiBg5z of the NJL Hamiltonian may have indeed a low
energy than the original vacuum. This deficiency may b
manifestation of the lack of confinement. Some sort of s
bilizing mechanism may be indeed required@14#. The use of
a confinement volume, as in the present calculation, i
possible choice. The step functionu is defined as

u~x!5 H1, x>0,
0, x,0.

The usual mean-field density matricesW11,p andW22,p for
the negative-energy state and the interstate density m
W12,p are calculated as

W11,p5(
r 51

2

u1,p,ru1,p,r
† 5

1

2 S 12
p•a1bM

Ap21M2 D u~L22p2!,

~3.8!

W22,p5(
r 51

2

u2,p,ru2,p,r
†

5
1

2 S 12
p•a2bM

Ap21M2 D u~L22p2!5g5W11,pg
5,

~3.9!

W12,p5 (
r ,r 851

2

u2,p,r~z12,p
21 !rr 8u1,p,r 8

†

5
1

2 S 12
p•a~Ep2bM !

p2 D u~L22p2!. ~3.10!

To get the correct density matrixW11,p for the negative-
energy state given in Ref.@9#, we have replacedbp
5upu/Ep with bp5M /Ep in Eq. ~3.2!. The interstate density
matrix W12,p obviously satisfies the idempotency conditio
but is not Hermitian.

The usual mean-field energy functional̂u1uHuu1&
(5H@W11#) has already been obtained in Ref.@9# and ex-
pressed as

H@W11#52
1

4p2 L4FA11x22
3

2
x2v~x!1

gL2

p2 x2v2~x!

1
2

9

gL2

p2 GV, ~3.11!

wherev(x)[A11x22x2 ln f(x) and f (x)[1/x1A111/x2.
Owing to the property of the density matrixW22,p
06520
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5g5W11,pg
5, Eq. ~3.9!, the mean-field energy functiona

^u2uHuu2&(5H@W22#) is simply expressed as

H@W22#5H@W11#. ~3.12!

This important result means that the S-detsuu1& and uu2&
have degenerate energies but different correlation struct
with each other. By using the explicit form for the intersta
density matrixW12,p Eq. ~3.10!, the matrix element of the
Hamiltonian^u1uHuu2& can be easily calculated as

^u1uHuu2&5H@W12#•detz12,

H@W12#52
1

4p2 L4FA11x21
1

2
x2v~x!1

2

9

gL2

p2 GV,

~3.13!

detailed computation of which is given in the appendixes
The Res-mean-field configuration-interaction~CI! equa-

tion to determine the mixing coefficientsc1 andc2 is written
simply in terms of the real quantities as follows:

F H@W11#2E ~H@W12#2E!•detz12

~H@W12#2E!•detz12 H@W22#2E G Fc1

c2
G50,

~3.14!

together with the normalization condition

c1
21c2

212c1c2 detz1251. ~3.15!

Due to the relationH@W11#5H@W22#, Eq. ~3.12!, which we
denote simply asH@W#, we can get the Res-mean-field e
ergy E and the corresponding magnitudes of the mixing c
efficientsc1 andc2 as follows:

E5
1

12~detz12!
2 $H@W#2H@W12#~detz12!

2

7uH@W#2H@W12#udetz12%,

c1
25c2

25S 11
~H@W#2E!2

~H@W12#2E!2~detz12!
222

H@W#2E

H@W12#2ED 21

.

~3.16!

Then the Res-mean-field energyE is classified into the fol-
lowing two kinds of solutions:

case I: H@W#2H@W12#.0,

Eg
Res5

1

11detz12
~H@W#1H@W12#•detz12!,

Eex
Res5

1

12detz12
~H@W#2H@W12#•detz12!, ~3.17!
3-5
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case II: H@W#2H@W12#,0,

Egr
Res5

1

12detz12
~H@W#2H@W12#•detz12!,

Eex
Res5

1

11detz12
~H@W#1H@W12#•detz12!. ~3.18!

It should be stressed that the Res-mean-field energies an
corresponding mixing coefficients must be determined so
to optimize the energy expectation value by the superpo
wave functionc1uu1&1c2uu2&.

Instead of solving the Res-mean-field equatio
( f 51

2 K1 fc1* cf50 and( f 51
2 K2 fc2* cf50, we here make a di

rect optimization of the Res-mean-field energy function
This is easily achieved by a variation of the Res-mean-fi
ground-state energyEgr

Res with respect to the Res-mean-fie
variational parameterx,

d

dx
Egr

Res50, ~3.19!

which leads to

d

dx
H@W#~11detz12!1

d

dx
H@W12#•detz12~11detz12!

2~H@W#2H@W12# !
d

dx
detz1250 ~ for case I!,

~3.20!
06520
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d

dx
H@W#~12detz12!2

d

dx
H@W12#•detz12~12detz12!

1~H@W#2H@W12# !
d

dx
detz1250 ~ for case II!.

~3.21!

These are the self-consistency conditions for cases I an
respectively, in the Res-mean-field approximation. The si
larity between the self-consistency conditions and the
called ‘‘gap equation’’ in the BCS theory@15,16# and in the
Res-HB theory@2,3# is a manifestation of the analogy of th
present Res-mean-field theory with the BCS theory wh
motivated the NJL model@8#. Substituting the differential
formulas for the diagonal and off-diagonal matrix eleme
of the Hamiltonian

d

dx
H@W#52

1

4p2 L4
•6xFgL2

p2 v~x!21G
3Fv~x!2

2

3

1

A11x2GV, ~3.22!

d

dx
H@W12#52

1

4p2 L4
•2xv~x!V, ~3.23!

into Eqs.~3.20! and~3.21!, we can get the following formu-
las connecting the coupling constantg with the variational
parameterx for both cases I and II
gL2

p2 5
1

v~x!Fv~x!2
2

3

1

A11x2G ~11detz12!2
1

6
xv2~x!

d

dx
detz12

H S v~x!2
2

3

1

A11x2D ~11detz12!

2
1

3
v~x!detz12~11detz12!2

1

3
xv~x!

d

dx
detz12J ~ for case I! ~3.24!

gL2

p2 5
1

v~x!Fv~x!2
2

3

1

A11x2G ~12detz12!1
1

6
xv2~x!

d

dx
detz12

H S v~x!2
2

3

1

A11x2D ~12detz12!

1
1

3
v~x!detz12z2~12detz12!1

1

3
xv~x!

d

dx
detz12J ~ for case II!, ~3.25!

where the differential of the overlap integral is given by

d

dx
detz12526axS 12x tan21

1

x D •detz12. ~3.26!
3-6
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It is easily seen that Eqs.~3.24! and ~3.25! just coincide with the result in Ref.@9# if we set detz1250. It turns out that the
occurrence of the relations~3.24! and ~3.25! of the coupling constant to the variational parameter is attributed to the co
quence of taking quantum- and dynamical-tunneling effects into account.

IV. RESONATING MEAN-FIELD EQUATION WITH UNEQUAL CONSTITUENT QUARK MASSES

We are now in a stage to superpose the S-dets withunequalconstituent quark massesM1 andM2 . Along the same line as
in Sec. III, we introduce two 432 isometric matricesu1,1p,r andu2,2p,r and a 232 matrix z12,p by

u1,1p,r5F 2A12b1p

2
s•n•x r

A11b1p

2
•x r

G , u2,2p,r5g5u1,2p,r ~r 51,2!, ~4.1!

u1~2!,1~2!p,r
† u1~2!,1~2!p,r 85d rr 8 ~r ,r 851,2!, z12,p,rr 85u1,1p,r

† u2,2p,r 8 . ~4.2!

Substituting Eq.~4.1! into Eq. ~4.2!, we have

z12,p,rr 852
1

2
~A12b1pA11b2p1A11b1pA12b2p!x r

†s•px r 8 , ~r ,r 851,2!, ~4.3!

whereb1(2)p5M1(2) /E1(2)p and E1(2)p5Ap21M1(2)
2 . From Eq.~4.3! explicit forms of the matrix and the inverse matr

together with the determinantal value of thez12,p,rr 8 are obtained as

z12,p52
1

Ẽp

s•p, z12,p
21 52

Ẽp

p2
s•p, detz12,p52

1

2
S 11

p22M1M2

E1pE2p
D , ~4.4!

where

Ẽp5
2AE1pAE2p

AE1p /p2M1 /pAE2p /p1M2 /p1AE1p /p1M1 /pAE2p /p2M2 /p
. ~4.5!

Then the overlap integral detz12 is calculated as

detz125)
p

detz12,pu~L22p2!5expS (
p

~ ln detz12,p!u~L22p2! D 5exp@az~x1 ,x2!#, x1[
M1

L
, x2[

M2

L
. ~4.6!

The functionz(x1 ,x2) is given as

z~x1 ,x2!5
1

3
2 ln 22~x1

21x2
2!1S x1

3 tan21
1

x1
1x2

3 tan21
1

x2
D1 lnS 11

12x1x2

A11x1
2A11x2

2D 2
1

3
~122x1

213x1x22x2
2!A11x1

2

11x2
2

2
1

3
x1~2x1

223x1x212x2
2!ES tan21

1

x2
,A12

x2
2

x1
2D 1

1

3
x1x2

2FS tan21
1

x2
,A12

x2
2

x1
2D , ~x1>x2! ~4.7!

z~x1 ,x2!5
1

3
2 ln 22~x2

21x1
2!1S x2

3 tan21
1

x2
1x1

3 tan21
1

x1
D1 lnS 11

12x2x1

A11x2
2A11x1

2D 2
1

3
~122x2

213x2x12x1
2!A11x2

2

11x1
2

2
1

3
x2~2x2

223x2x112x1
2!ES tan21

1

x1
,A12

x1
2

x2
2D 1

1

3
x2x1

2 FS tan21
1

x1
,A12

x1
2

x2
2D ~x2>x1!, ~4.8!
065203-7
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where E(f,k) and F(f,k) are the Legendre’s incomplet
elliptic integral of the second kind and the incomplete ellip
integral of the first kind, respectively, and detailed compu
tion of them are given in the appendixes@17#. By using the
two isometric matrices~4.1! and the inverse matrix~4.4!, the
usual mean-field density matricesW11,p and W22,p for the
negative-energy states are shown to have essentially
same forms as those of Eqs.~3.8! and~3.9! and are given as

W11,p5
1

2 S 12b
M1

E1p
2g5

S•p

E1p
D u~L22p2!, ~4.9!

W22,p5
1

2 S 11b
M2

E2p
2g5

S•p

E2p
D u~L22p2!

5g5W11,p~M1→M2!g5, ~4.10!

but the interstate density matrixW12,p is shown to change
drastically from Eq.~3.10! including a term proportional tob
and is calculated as

W12,p5
1

2 S 11b
Ap2Bp

Ap1Bp
2g5

Cp1Dp

Ap1Bp
S•p

2bg5
Cp2Dp

Ap1Bp
S•pD u~L22p2!, ~4.11!

where

Ap[AE1p /p2M1 /pAE2p /p1M2 /p ,

Bp[AE1p /p1M1 /pAE2p /p2M2 /p,

Cp[AE1p /p1M1 /pAE2p /p1M2 /p•
1

p
,

Dp[AE1p /p2M1 /pAE2p /p2M2 /p•
1

p
. ~4.12!

The interstate density matrixW12,p obviously satisfies the
idempotency condition but is not Hermitian and just co
cides with Eq.~3.10! if we setM15M25M .

As was already shown in Sec. III, the usual mean-fi
energy functionals^u1uHuu1&(5H@W11#) and ^u2uHuu2&
(5H@W22#) are expressed as

H@W11#52
1

4p2 L4FA11x1
22

3

2
x1

2v~x1!1
gL2

p2 x1
2v2~x1!

1
2

9

gL2

p2 GV, ~4.13!
06520
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H@W22#52
1

4p2 L4FA11x2
22

3

2
x2

2v~x2!1
gL2

p2 x2
2v2~x2!

1
2

9

gL2

p2 GV. ~4.14!

By using the explicit form for the interstate density matr
W12,p , Eq. ~4.11!, the matrix element of the Hamiltonia
^u1uHuu2& is easily calculated as

^u1uHuu2&5H@W12#•detz12,

H@W12#52
1

4p2 L4H 1

x11x2
Fx1SA11x2

21
1

2
x2

2v~x2! D
1x2SA11x1

21
1

2
x1

2v~x1! D G
1

1

4

gL2

p2

1

~x11x2!2 FA11x1
21

1

2
x1

2v~x1!

2A11x2
22

1

2
x2

2v~x2!G2

1
2

9

gL2

p2 J V, ~4.15!

detailed computation of which is given in the appendix
This expression for thêu1uHuu2& reduces to that given by
Eq. ~3.13! if we setx15x25x.

By solving the Res-mean-field CI equation~3.14!, we can
get the Res-mean-field energyE and the corresponding mag
nitudes of the mixing coefficientsc1 andc2 as follows:

E5FEgr
Res

Eex
ResG

5
1

222~detz12!
2 $H@W11#1H@W22#22H@W12#~detz12!

2

7AEdis%, ~4.16!

Edis[~H@W11#2H@W22# !214~H@W11#2H@W12# !

3~H@W22#2H@W12# !~detz12!
2, ~4.17!

c1
25S 11

~H@W11#2E!2

~H@W12#2E!2~detz12!
222

H@W11#2E

H@W12#2ED 21

,

~4.18!

c2
25S 11

~H@W22#2E!2

~H@W12#2E!2~detz12!
222

H@W22#2E

H@W12#2ED 21

.

~4.19!

A direct optimization of the Res-mean-field energy fun
tional is easily achieved by a variation of the Res-mean-fi
ground-state energyEgr

Res with respect to the Res-mean-fie
variational parametersx1 andx2 ,

]

]x1
Egr

Res~x1 ,x2!50,
]

]x2
Egr

Res~x1 ,x2!50, ~4.20!

which leads us to
3-8
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]

]x1~2!
H@W11~22!#$H@W11#1H@W22#22H@W12#22~H@W22~11!#2H@W12# !@12~detz12!

2#%@12~detz12!
2#

2
]

]x1~2!
H@W12#2~H@W11#1H@W22#22H@W12# !~detz12!

2@12~detz12!
2#

1$~H@W11#1H@W22#22H@W12# !21Edis%~detz12!
]

]x1~2!
detz12

5H 2~H@W11#1H@W22#22H@W12# !~detz12!
]

]x1~2!
detz12

1S ]

]x1~2!
H@W11~22!#22

]

]x1~2!
H@W12#~detz12!

2D @12~detz12!
2#JAEdis, ~4.21!
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where (]/]x1(2))H@W11(22)# stands for (]/]x1)H@W11# or
(]/]x2)H@W22#, etc. The partial differentials of the detz12
are given in the appendixes.

V. RESONATING GROUND-STATE ENERGY
AND PION MASS SPECTRUM

There are actually three parametersL ~the cutoff param-
eter!, g ~the coupling constant!, and a ~the volume param-
eter! in the present NJL model. According to@10#, however,
in the present paper we use the value of the cutoff param
L5631.0 MeV. First we solve numerically the resonati
mean-field equation forequalconstituent quark masses. Th
dimensionless quantitygL2 for both cases I (H@W#
2H@W12#.0) and II (H@W#2H@W12#,0) is plotted as a
function of an inverse of the Res-mean-field variational
rameter 1/x(5L/M ) through Eqs.~3.24! and~3.25! for sev-
eral values of the model parametera. We show in Fig. 1 the
behavior of the dimensionless quantitygL2 plotted against
L/M for several values of the dimensionless volume para
eter a and compare with that of the conventional HF a
proach@9#.

The behavior of the dimensionless quantitygL2 for both
cases I and II is very similar to that of the usual HF approa
@9# if L/M is small. It, however, decreases rapidly asL/M
becomes larger for case I and increases for case II tho
in the case of the usual HF approach it approac
p2(.9.87) as closely as possible, as indicated by the th
solid curve@9#. We can see that the behavior of thegL2 for
case II is quite opposite to that for case I. This tendenc
more conspicuous as the dimensionless volume paramea
becomes smaller. ThegL2 well reproduces a reasonab
value of the magnitude of the coupling constantg if the L/M
is small. Let us investigate the signature of the energy
ferenceH@W#2H@W12# for both cases I and II by using th
gL2 calculated through Eqs.~3.24! and ~3.25!. It is shown
numerically that the energy difference is always positive
both cases I and II. Then for case II we have no phys
solution. The value of thegL2/p2 for case I shows a gradua
decrease asx and a become small and a slow increase to
positionL/M.3.0 for a59.

If we give a value of the constituent quark massM, i.e.,x,
06520
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the quantitygL2 is obtained and then the Res-mean-fie
ground- and excited- state energies for case I are determ
through Eq.~3.17!. In order to determinex, if we intend to
solve the nonlinear equation~3.20! by using the simple itera-
tive method, we would surely encounter a very serious pr
lem of nonconvergence as we have often experienced in
usual HF and HB calculations. To avoid such a converge
difficulty, we will employ a direct-optimization method. Fo
the purpose of constructing a tractable-optimization al
rithm, let us introduce a quantityDx which brings us the
most effective change to decrease the value of the Res-m
field ground-state energyEgr

Res at each iteration step. To ge
fast convergence the Res-mean-field quantityDx must be
determined so as to optimize the energy variation up to
second order. It is the quadratic steepest descent of the
mean-field ground-state energyEgr

Res with respect to the
S-dets, uu1& and uu2& but with equal constituent quark
massesM. Starting from a certain initial value ofx, we cal
culate the quadratic steepest descentDx. We employ the
calculatedx1Dx as the new trial value ofx in the next
iteration step. We must continue our Res-mean-field calc
tions by iterating in succession many time steps until conv
gence is achieved. Our numerical calculations are carried
at the regiongL2511.00– 15.50 anda53.00– 7.50. If the
value of eithergL2 or a become large, the value of th
constituent quark masses become small. After searching
the parameters to reproduce good constituent quark ma
we arrive at the optimal numerical values for the parame
gL2514.63 and a55.12 giving the constituent quar
massesM5350.38 MeV, the mixing coefficientsc1,gr5c2,gr
50.684 and the overlap integral detz1250.069. In order to
get an appropriate value of the constituent quark massM, it
is preferable to use a comparatively large magnitude of
dimensionless volume parametera. Then in the present pape
we have chosengL2514.63 anda55.12. Using the relation
L356p2a/L3 we can see that the valuea55.12 corre-
sponds to a ‘‘confinement volume’’ of a cube with sidesL
52.10 fm long. We give in Fig. 2 the Res ground-state N
energy map for the values of the parametersgL2514.63 and
a55.12.

In this case, we find only one extreme minimum point
the Res ground-state energy atx15x2 , i.e., M15M2 .
3-9
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In a strict sense, generally it is very difficult to calcula
the Res-mean-field excited-state energy self-consistently
a direct-orbital-optimization algorithm. However, we ca
easily calculate the approximate Res-mean-field excited-s
energyEex

Res, which is given by another solution of the Re
mean-field CI equation called aresonon, different from the
Res-mean-field ground-state energyEgr

Res. But it is evaluated
by using the value of the Res-mean-field variational para
eter already determined in the Res-mean-field ground s
The energy differenceEex

Res2Egr
Res corresponds to the excita

tion energy for the Res-excited state above the Res-gro
state.

The stability of the vacuum ensured by the Res-me
field theoretical prescription is intimately connected with t
possible occurrence of stable~undamped! excitations of the
chirally deformed vacuum. The pionic collective mode
well described as a bound state of quark-antiquark exc
tions of the chirally deformed vacuum of the original NJ
model @9#. Then the energy differenceEex

Res2Egr
Res for case I

Eexcitation
Res 5Eex

Res2Egr
Res

5
2 detz12

12~detz12!
2 ~H@W#2H@W12# ! ~ for case I!,

~5.1!

can be interpreted as the pion mass spectrum in the spir
the Res-mean-field theory. It must be emphasized that
make no use of the concept of the RPA excitation to desc
06520
by
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te.
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the pion mass spectrum and associated physical quantitie
contrast to the previous works@9–12#. Using the above cal-
culated value, we also can obtain a very good pion m
spectrummp5139.70 MeV. Thus we have reproduced t
experimental value of the pion mass spectrummp

5139.6 MeV in good accuracy. Further it becomes clear t
if we adopt a comparatively small magnitude of the dime
sionless volume parametera, a smaller value of the constitu
ent quark massesM and a larger value of the coupling con
stantg are produced as the result of the present Res-me
field numerical calculations.

We are now in a position to solve the resonating me
field equation forunequalconstituent quark masses. In th
case we must search for the energy minimum in the t
directions of the quadratic steepest descentDx1 and Dx2
which becomes more complicated than forequalconstituent
quark masses. Let us introduce variational quantities

d1Egr
Res~x1 ,x2!5

]

]x1
Egr

Res, d2Egr
Res~x1 ,x2!5

]

]x2
Egr

Res.

~5.2!

Our tractable-optimization algorithm consists of the follow
ing procedure: Let us prepare trial values ofx1 andx2 suit-
able for initial values. First, we calculate the overlap integ
and the Hamiltonian-matrix elements. Then, from Eq
~4.16!, ~4.17!, ~4.18!, and~4.19! we can determine the Res
mean-field ground-state energy and the corresponding m
ing coefficients. Next we calculate the quadratic steepest
scentDx1,n andDx2,n in the nth iteration step
Dx1,n52
1

detdEgr
Res~x1,n ,x2,n!

detF d1Egr
Res~x1,n ,x2,n!

]

]x2
d1Egr

Res~x1,n ,x2,n!

d2Egr
Res~x1,n ,x2,n!

]

]x2
d2Egr

Res~x1,n ,x2,n!
G , ~5.3!

Dx2,n52
1

detdEgr
Res~x1,n ,x2,n!

detF ]

]x1
d1Egr

Res~x1,n ,x2,n! d1Egr
Res~x1,n ,x2,n!

]

]x1
d2Egr

Res~x1,n ,x2,n! d2Egr
Res~x1,n ,x2,n!

G , ~5.4!

where

detdEgr
Res~x1,n ,x2,n![detF ]

]x1
d1Egr

Res~x1,n ,x2,n!
]

]x2
d1Egr

Res~x1,n ,x2,n!

]

]x1
d2Egr

Res~x1,n ,x2,n!
]

]x2
d2Egr

Res~x1,n ,x2,n!
G . ~5.5!
3-10
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Here (]/]x1)d1Egr
Res(x1,n ,x2,n) stands for

(]/]x1)d1Egr
Res(x1 ,x2)ux15x1,n ,x25x2,n

, etc. We employ the

calculatedx1,n115x1,n1Dx1,n and x2,n115x2,n1Dx2,n as
the new trial values ofx1 andx2 in the nextn11th iteration
step. We must also continue our Res-mean-field calculat
by iterating in succession many time steps until a conv
gence is achieved.

Our numerical calculations are carried out at the reg
gL2512.00– 16.00 anda55.00– 9.00. On the contrary t
the case ofequal constituent quark masses, in the pres
case ofunequalconstituent quark masses we can find in t
way a very interesting and good numerical result for
parametersgL2513.80 anda57.50 which gives the con
stituent quark masses M15335.90 MeV and M2
5235.82 MeV, the mixing coefficientsc1,gr50.810 and
c2,gr50.538 and the overlap integral detz1250.063. The
valuea57.50 corresponds to the ‘‘confinement volume’’
a cube with sidesL52.39 fm long.

Using these calculated values, from the excitation ene
Eexcitation

Res 5Eex
Res2Egr

Res in Eq. ~4.16! we can also obtain the
very good pion mass spectrummp5139.61 MeV, in excel-
lent agreement with the experimental value of the pion m
spectrummp5139.6 MeV. Introduction of the confinemen
volume will lead automatically to a nonvanishing pion ma
We assume that the pion mass is exclusively due to
effect. This assumption is in contrast with the traditional id
that the nonvanishing pion mass is due to a nonvanish
current quark mass which causes an explicit chiral symm
breaking.

We give in Fig. 3 the Res ground-state energy map
NJL for the values of the parametersgL2513.80 anda

FIG. 1. L/M dependence of the dimensionless quantitygL2

with different dimensionless volume parametersa. Solid and
dashed curves represent results for case I and case II, respect
A thick solid curve represents a result for the usual HF approa
06520
ns
r-

n

t

e

y

s

.
is
a
g

ry

f

57.50. In this case, contrary to Fig. 2 we can find a drasti
structural change in the energy map. Two extreme minimum
points of the Res ground-state energy atx15x2 andx1Þx2
(M1ÞM2) can be observed in the regionx1>x2 except at a
trivial extreme minimum pointx1Þ0, x250. Of course, we
are interested in the solution withx1Þx2 .

VI. ORDER PARAMETER AND PION DECAY CONSTANT

First we consider the solution forequalconstituent quark
masses. In Fig. 1 we observe the behavior of the dimensio
less quantitygL2 which satisfies the ‘‘gap equation’’ for
case I ~3.24!. This solution causes the breaking of chiral
symmetry because the constituent quark mass is differe
from zero. Then, the system undergoes a phase transiti
into a state of broken chiral symmetry. When the constituen
quark massM takes a nonzero value, the S-detuF(g)&
(5ug&) is no longer an eigenstate of chirality. Using the
Res-mean-field ground-state wave functionuCgr

Res&
5c1,gruu1&1c2,gruu2&, the order parameter for the quarks,
which measures the chiral deformation in the Res-mean-fie
approximation, is given by the expectation value

ely.
.

FIG. 2. Resonating ground-state energy map of NJL (gL2

514.63 anda55.12).
3-11
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^c̄c&5^Cgr
Resuc̄cuCgr

Res&. ~6.1!

Unfortunately, we find the expection value^Cgr
Resuc̄cuCgr

Res&
vanishes trivially as is seen clearly from the explicit stru
tural forms of the usual mean-field density matricesW11,p ,
Eq. ~3.8!, andW22,p , Eq. ~3.9!, for the negative-energy stat
and the interstate density matrixW12,p , Eq. ~3.10!, and from
the relationc1,gr5c2,gr, Eq. ~3.16!.

However, if we consider the solution forunequalcon-
stituent quark masses, the order parameter has a non
value given by

^c̄c&5^Cgr
Resuc̄cuCgr

Res&5c1,gr
2 (

p
Tr@bW11,p#

1c2,gr
2 (

p
Tr@bW22,p#1c1,grc2,gr(

p
~Tr@bW12,p#

1Tr@bW12,p
† # !)

p
detz12,pu~L22p2!, ~6.2!

from which the quantity per normalization volum
2$^c̄c&/V%1/3 is evaluated as

2$^c̄c&/V%1/35
L

~2p2!1/3 H c1,gr
2 x1v~x1!2c2,gr

2 x2v~x2!

1c1,grc2,grdetz12

1

x11x2
FA11x1

2

1
x1

2

2
v~x1!2A11x2

22
x2

2

2
v~x2!G J 1/3

.

~6.3!

In the above, if we setx15x2 and c1,gr5c2,gr the order pa-
rameter vanishes trivially. On the other hand, if we assu
c1,gr51 andc2,gr50, the above equation just coincides wi
the formula for the order parameter given in@9#. Substituting
a
e

-

m

06520
-

ero

e

the solution for the parametersgL2513.80 (L
5631.0 MeV) anda57.50 presented in the preceeding se
tion, i.e., x150.532, x250.374, c1,gr50.810, c2,gr50.538,
and detz1250.063 into Eq.~6.3!, we are led to a numerica
result2$^c̄c&/V%1/35129.80 MeV. This value is a little bit
small when compared with the theoretical one and the
perimental one given in Refs.@10# and@12#. However, if the
degrees of freedom of isospin, flavor, and color are fu
taken into consideration, it may be expected that a m
improved value for2$^c̄c&/V%1/3 will be obtained.

Thus, by taking into account quantum- and dynamic
tunneling effects between the two S-dets withunequalcon-
stituent quark masses and with different correlation str
tures, the present Res-mean-field approach throws some
light on the dynamics of chiral-symmetry breaking and of t
collective pionic state.

The Res-mean-field method is able to describe an ass
ated decay process if we notice the similarity of the forms
the interstate density matrix and the generator which p
duces the RPA pionic state given in@9#.

In the usual RPA, the pion decay constantf p is defined as
the time component of the axial-vector matrix eleme
^0u j 5upp&5 f p@v(p)#1/2 @v~p! being a pion mass spectrum#,
j 55S j 51

N g j
5e2 ip•r j for the RPA pionic stateupp& of momen-

tum p and vacuumu0& @9#. In the Res-mean-field RPA@18#
the pion decay constantf p may be described a
^0Resu j 5upp

Res&5 f p@Eexcitation
Res #1/2 for the Res-mean-field RPA

pionic stateupp
Res& of momentump and vacuumu0Res&. Both

in the usual RPA and in the Res-mean-field RPA an oper
similar in form to that of the interstate density matrixW12,p
plays a crucial role as is shown in Refs.@10, 12#, and @19#,
respectively. The Res-mean-field RPA pionic state can
approximated asupp

Res&.NW12,p
† u0Res&, whereN is the nor-

malization factor to be determined later. Then, within t
framework of the Res-mean-field approximation, by usi
the Res-mean-field excited-state wave functionuCex

Res&
5c1,exuu1&1c2,exuu2& and the helicity operatorSp defined as
Sp5S•p/upu we get
f p5^0Resu j 5upp
Res&@Eexcitation

Res #21/2.N^0Resu j 5W12,p
† u0Res&@Eexcitation

Res #21/2.N^Cgr
ResuS i 51

N ~g i
5Spi

!uCex
Res&@Eexcitation

Res #21/2

⇒NH c1,grc1,ex(
p

Tr@~g5Sp!W11,p#1c2,grc2,ex(
p

Tr@~g5Sp!W22,p#1S c1,grc2,ex(
p

Tr@~g5Sp!#W12,p

1c2,grc1,ex(
p

Tr@~g5Sp!W12,p
† # D)

p
detz12,pu~L22p2!J @Eexcitation

Res #21/2. ~6.4!
nt
e

Here we have used a slightly modified definition of the m
trix element ofg5 to get a significant nonzero value of th
f p . The mixing coefficientsc1,ex and c2,ex are determined
through Eqs.~4.18! and ~4.19! and the orthogonality condi
tion ^Cgr

ResuCex
Res&50.

Let us consider again the solution forequal constituent
quark mass as an elementary exercise. We also find the
-

a-

trix element^Cgr
ResuS i 51

N (g i
5Spi

)uCex
Res& vanishes trivially as

is seen clearly from the explicit forms ofW11,p , Eq. ~3.8!,
W22,p , Eq.~3.9!, andW12,p , Eq.~3.10! and from the relations
c2,gr5c1,gr andc2,ex52c1,ex, Eq. ~3.16!.

However, if we consider the solution forunequalcon-
stituent quark masses, the matrix eleme
^Cgr

Resu( i 51
N (g i

5Spi
)uCex

Res& obtains a nonzero value. First w
3-12
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must evaluate the normalization factor. For the Res-me
field RPA pionic stateupp

Res&5NW12,p
† u0Res&, the normaliza-

tion factor follows from the normalization requirement

(
p

^pp
Resupp

Res&515N2^0Resu(
p

W12,pW12,p
† u0Res&

5N2^0Resu(
p

@W12,p ,W12,p
† #u0Res&,

~6.5!

which is approximated as

1.N2^Cgr
Resu(

p
@W12,p ,W12,p

† #detz12,puCgr
Res&. ~6.6!

For the sake of simplicity, instead of Eq.~6.6!, we use an
approximate normalization

1.N2F ^Cgr
Resu(

p
u~L22p2!(

p

3Tr$@W12,p ,W12,p
† #%2S detz12,p

Tr@ I 4# D 2

uCgr
Res&G1/2

, ~6.7!

from which we obtain
06520
n-
N5F ^Cgr

Resu(
p

u~L22p2!(
p

3Tr$@W12,p ,W12,p
† #%2S detz12,p

Tr@ I 4# D 2

uCgr
Res&G21/4

.

~6.8!

On the other hand, from the explicit expression for the int
state density matrixW12,p , Eq. ~4.11!, we derive easily a
commutation relation

@W12,p ,W12,p
† #5

E1pE2p2p21M1M2

~M11M2!2p2 @2~E1p2E2p!g5S•p

1~E1pM21E2pM1!b#u~L22p2!. ~6.9!

With the use of the relation detz12,p521/2@11(p2

2M1M2)/(E1pE2p)#, Eq. ~4.4!, and the above commutatio
relation, we get a matrix-valued identity relation

$@W12,p ,W12,p
† #%2~detz12,p!25

1

2 F12
p2

E1pE2p

1b1pb2pG I 4u~L22p2!.

~6.10!

Substitution of Eq.~6.10! into Eq. ~6.8! leads to an explicit
expression for the normalization factorN
N52H E d3p

~2p!3 u~L22p2!E d3p

~2p!3

1

2 F12
p2

E1pE2p
1b1pb2pG4u~L22p2!J 21/4

52H V
1

6p2 L3V
1

3p2 L3F12~122x1
223x1x22x2

2!A11x1
2

11x2
22x1~2x1

213x1x212x2
2!ES tan21

1

x2
,A12

x2
2

x1
2D

1x1x2
2FS tan21

1

x2
,A12

x2
2

x1
2D G J 21/4

~x1>x2!. ~6.11!

By using the explicit forms ofW11,p , Eq. ~4.9!, W22,p , Eq. ~4.10!, and W12,p , Eq. ~4.11!, the matrix element
^Cgr

Resu( i 51
N (g i

5Spi
)uCex

Res& is calculated as

^Cgr
Resu( i 51

N ~g i
5Spi

!uCex
Res&52V

1

3p2 L3H c1,grc1,ex@A11x1
2~122x1

2!12x1
3#1c2,grc2,ex@A11x2

2~122x2
2!12x2

3#

1~c1,grc2,ex1c2,grc1,ex!•detz12

1

x11x2
@x1~11x2

2!3/21x2~11x1
2!3/22x1x2~x1

21x2
2!#J .

~6.12!

Then finally we obtain the ratio of the pion decay constantf p to the square root of the normalization volumeAV
3-13
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f p

AV
52

4L

A6&p
FEexcitation

Res

L G21/2F12~122x1
223x1x22x2

2!A11x1
2

11x2
22x1~2x1

213x1x212x2
2!ES tan21

1

x2
,A12

x2
2

x1
2D

1x1x2
2FS tan21

1

x2
,A12

x2
2

x1
2D G21/4H c1,grc1,ex@A11x1

2~122x1
2!12x1

3#1c2,grc2,ex@A11x2
2~122x2

2!12x2
3#

1~c1,grc2,ex1c2,grc1,ex!•detz12

1

x11x2
@x1~11x2

2!3/21x2~11x1
2!3/22x1x2~x1

21x2
2!#J ~x1>x2!. ~6.13!
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Substituting the solution for the parametersgL2513.80 (L
5631.0 MeV) anda57.50 in the preceding section, i.e.,x1
50.532,x250.374,c1,gr50.810,c2,gr50.538,c1,ex50.590,
c2,ex520.845, and detz1250.063 into Eq.~6.13!, we are led
to a numerical resultf p /AV529.7 MeV. This value is a
little bit small when compared with the theoretical one a
the experimental one given in Refs.@10# and@12#. However,
if the degrees of freedom of the isospin, the flavor, and
color are taken into consideration fully, it may be expected
get a much improved value for thef p /AV. The normaliza-
tion factor is also computed asN50.0009 whose value is too
small but plays a crucial role in achieving a reasonable va
of the f p /AV.

VII. SUMMARY AND CONCLUDING REMARKS

We will now describe in detail other numerical quantiti
in the Res-mean-field approach to the NJL model. In
Res-mean-field approximation the overlap integral detz12 be-
tween the two S-dets as well as the interstate density ma
W12 plays an important role, allowing to take into accoun
quantum tunneling effect between the two S-dets. To ge
finite value of the detz12 it is necessary to introduce th
dimensionless parametera which gives the ‘‘confinemen
volume.’’

Under the use of the S-dets withequalconstituent quark
masses, the overlap integral detz12 is plotted as a function o
M /L for the different dimensionless parametersa ~see Fig.
4!. The value of the detz12 decreases rapidly as the constit
ent quark mass becomes heavier and as the confinemen
ume is increased. This result is considered to be reason

Under the use of the S-dets withunequal constituent
quark masses, the overlap integral detz12 is also plotted as a
function of M1 /L andM2 /L for the two sets of parameter
a55.12,gL2514.63 anda57.50,gL2513.80~see Fig. 5!.
These sets of parameters give the directly optimized s
tions of the Res-mean-field equations for theequalconstitu-
ent quark masses and for theunequal constituent quark
masses, respectively. The value of the detz12 for the former
set shows a more gradual decrease than that for the latte
as both the constituent quark masses become heavier.
latter a57.50 corresponds to the confinement volume o
cube with sidesL52.38 fm long.

To show the advantage of the Res-mean-field theory f
fermion system with large quantum fluctuations over
usual mean-field theory, in this paper we have applied i
06520
e
o

e

e

ix

a

ol-
le.

u-

set
he

a

a
e
o

the naive NJL model without isospin. For the sake of si
plicity, a state with large quantum fluctuations is appro
mated by the superposition of two Dirac seas, the non
thogonal two S-dets with different correlation structures. W
have treated two cases: in the first case the Dirac seas
composed ofequal constituent quark masses, while in th
second the quark masses areunequal. We have made a direc
optimization of the Res-mean-field orbitals by variations
the Res-mean-field ground-state energy with respect to
Res-mean-field parameters, constituent quark masses.
Res-mean-field ground and excited states generated with
two S-dets explain most of the pion mass spectrum.

We also have investigated, in the framework of the N

FIG. 3. Resonating ground-state energy map of NJL (gL2

513.80 anda57.50).
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model, effects of the explicit chiral-symmetry breaking
the associated properties of the Dirac sea and the collec
pionic state in the sprit of the Res-mean-field approximati

The present treatment has following characteristic po
quite similar to those in@9#: ~i! There are actually three
model parametersL ~the cutoff parameter!, g ~the coupling
constant!, anda ~the dimensionless volume parameter!. ~ii !
The coupling constantg does not enter the vacuum prope
ties as is seen from the explicit form of the S-detuF(g)&
(5ug&), Eq. ~3.1!. ~iii ! The regime of the results depend
only on the dimensionless ratioM1 /L andM2 /L and only
the constituent quark massesM1 and M2 determine the en-
ergy ~or length! scale through Eq.~4.20!. We interpretM1
andM2 (M1>M2) as the constituent quark masses and
as the variational parameters. But only the heavier one h
significant physical meaning because the magnitude
square of the corresponding mixing coefficientc1,gr

2 is much
larger than that of the other,c2,gr

2 .
Finally, summarizing, we present in Tables I and II n

merical results for various physical quantities. Especially,
numerical values ofgL2, constituent quark massesM1 , M2 ,
pion massmp , order parameter2$^c̄c&/V%1/3 and pion de-
cay constantf p /AV tabulated in Table II compare compar
tively well with the experimental datas.

The radical spirit of the Res-mean-field theory may
expected to open a new field for the exploration of the lo
energy hadron physics using the strong analogy betwe
chiral effective Hamiltonian with four-fermion interactio
and a familiar nonrelativistic fermion two-body Hamiltonia
The present calculation is oversimplified as far as we c
sider only the two S-dets. Then the following problems
main open questions:~1! The consideration of the degrees
freedom of the isospin, the flavor, and the color.~2! The

TABLE I. Use of the S-dets withequalconstituent quark mass
es. Pionic properties in the context of the Res-mean-field the
with equal constituent quark masses. The asterisk denotes re
concerning the NJL in the harmonic order, taken from@10#. We also
include in brakets some experimental or phenomenological val
The Res-MFT means the resonating mean-field theory. The ou
value 12.0 ofgL2 in the column TDHF corresponds to the outp
value 2.0 of the same quantity in@10# if we take the degree of the
freedom of the flavorNf52 and that of the colorNc53.

NJL model
Res-MFT TDHF

Inputs a 5.12
L ~MeV! 631.0 631.0*

Outputs gL2 14.63 12.0
M ~MeV! 350.38 335.0*

~350!

2^c̄c&1/3 ~MeV! 0 246.6*

(225625)
mp ~MeV! 139.70 138.0*

~139.6!
f p ~MeV! 0 93.0*

~93!
06520
ve
.

ts

e
a

of

e

-
a

-
-

inclusion of collectives mesonic state.~3! Chiral projection
to project out good chiral state if small current quark mas
are introduced.

Very recently, one of the present authors~J. da P.! and his
collaborators investigated the connection between the lin
s model and the NJL model on the basis of the usual me
field theory. They have shown the conditions for soliton fo
mation and the stability of the soliton when the Dirac sea
included@20#. Then we have another interesting problem

FIG. 4. Overlap integral detz12 as a function ofM /L for the
different parametersa.

ry
lts

s.
ut

TABLE II. Use of the S-dets withunequalconstituent quark
masses. Pionic properties in the context of the Res-mean-
theory withunequalconstituent quark masses.

NJL model

Res-MFT TDHF

Inputs a 7.50
L ~MeV! 631.0 631.0*

Outputs gL2 13.80 12.0
M1 ,M2 ~MeV! 335.90, 235.82 335.0*

~350!

2^c̄c&1/3 ~MeV! 129.80 246.6*

(225625)
mp ~MeV! 139.61 138.0*

~139.6!
f p ~MeV! 29.70 93.0*

~93!
3-15
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SEIYA NISHIYAMA AND JOÃ O DA PROVIDÊNCIA PHYSICAL REVIEW C 60 065203
be solved in the near future:~4! The relation between thes
model with quarks and the present Res-mean-field theore
approach to the NJL model.
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APPENDIX A: MATRIX ELEMENT
OF THE HAMILTONIAN WITH EQUAL CONSTITUENT

QUARK MASSES

Here we give detailed computation of the matrix elem
of the Hamiltonian~2.1! ^u1uHuu2& along the same way a
the one in@9#. Using the explicit expression for the intersta
density matrixW12,p , Eq. ~3.10!, for the kinetic part we have

Tr@g5S•pW12,p#522Epu~L22p2!. ~A1!

For the direct term of the interaction part, we have triv
relations

Tr@bW12,p#50, Tr@bg5W12,p#50. ~A2!

For the exchange terms of the interaction part, we have

Tr@b~1!W12,p1
~1!b~2!W12,p2

~2!#

5F12
p1•p2

p1
2p2

2 ~Ep1
Ep2

2M2!Gu~L22p2!,

~A3!

Tr@b~1!g5~1!W12,p1
~1!b~2!g5~2!W12,p2

~2!#

5F211
p1•p2

p1
2p2

2 ~Ep1
Ep2

1M2!Gu~L22p2!.

~A4!

Performing the space integration and both the summa
and the product overp, p1 , andp2 , then the matrix elemen
of the Hamiltonian is transformed to

^u1uHuu2&5E d3rSpH@W12,p#)
p

detz12,pu~L22p2!

5H@W12#•detz12. ~A5!

Changing the summation overp into the integration overp,
H@W12# is given simply as
06520
al

or

e
e

.

e

t

l

n

H@W12#5E d3rE d3p

~2p!3 Tr@g5S•pW12,p#

22gE d3r S E d3p

~2p!3 u~L22p2! D 2

, ~A6!

which is calculated to be

H@W12#522F E d3p

~2p!3 Epu~L22p2!GV
22gF E d3p

~2p!3 u~L22p2!G2

V. ~A7!

From Eq.~A7! thus we can reach to a desired form of t
matrix element of the Hamiltonian, i.e., Eq.~3.13!.

In @9# it has already been proved thatH@W11# is invariant
under a chiral transformation. And thenH@W22# is also in-
variant. We can easily prove thatH@W12# becomes invariant
under the chiral transformation as can be seen in deta
Appendix C. As the consequence of this fact, the expecta
value of the NJL Hamiltonian~2.1! by the superposed wav
function c1uu1&1c2uu2& becomes invariant under the chir
transformation.

FIG. 5. Overlap integral detz12 as a function ofM1 /L and
M2 /L for the two sets of parametersa55.12,gL2514.63 anda
57.50,gL2513.80.
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APPENDIX B: CALCULATIONS OF THE OVERLAP INTEGRAL AND ITS PARTIAL DIFFERENTIALS

In this appendix we present some useful formulas of elliptic integrals. These are taken or easily derived from form
@17#. First, to calculate the overlap integral detz12, it is convenient to use the following reduction formulas of algebr
integrands to the elliptic functionsE andF:

E
0

L

dp
p2

Ap21M1
2Ap21M2

2
55 LA11x1

2

11x2
22Lx1ES tan21

1

x2
,A12

x2
2

x1
2D , ~x1>x2!,

LA11x2
2

11x1
22Lx2ES tan21

1

x1
,A12

x1
2

x2
2D , ~x2>x1!,

~B1!

E
0

L

dp
p4

Ap21M1
2Ap21M2

2

55
1

3
L3~122x1

22x2
2!A11x1

2

11x2
21

1

3
L3x1F2~x1

21x2
2!ES tan21

1

x2
,A12

x2
2

x1
2D 2x2

2FS tan21
1

x2
,A12

x2
2

x1
2D G , ~x1>x2!,

1

3
L3~122x2

22x1
2!A11x2

2

11x1
21

1

3
L3x2F2~x2

21x1
2!ES tan21

1

x1
,A12

x1
2

x2
2D 2x1

2FS tan21
1

x1
,A12

x1
2

x2
2D G , ~x2>x1!.

~B2!

To calculate partial differentials of the overlap integral detz12, formulas for partial differentiation of the elliptic integralsE
andF used in the text are the following, which are also taken from formulas in@17#:

]E~f,k!

]k
5

E~f,k!2F~f,k!

k
, ~B3!

]E~f,k!

]f
5A12k2 sin2 f, ~B4!

]F~f,k!

]k
5

E~f,k!2k82F~f,k!

kk82 2
k sinf cosf

k82A12k2 sin2 f
, k85A12k2, ~B5!

]F~f,k!

]f
5

1

A12k2 sin2 f
. ~B6!

Using the above formulas~B3!–~B6!, partial differentials of the overlap integral detz12 given by Eqs.~4.7! and~4.8! with
respect to the variablesx1 andx2 , respectively, are calculated as

]

]x1
detz125a~detz12!

1

x11x2
F123x1x223x1

213x1
2~x11x2!tan21

1

x1
2~122x1

212x2
2!A11x1

2

11x2
2

2x1~2x1
22x2

2!ES tan21
1

x2
,A12

x2
2

x1
2D 1x1x2

2FS tan21
1

x2
,A12

x2
2

x1
2D G , ~x1>x2!, ~B7!

]

]x2
detz125a~detz12!

1

x21x1
F123x2x123x2

213x2
2~x21x1!tan21

1

x2
2~12x2

21x1
2!A11x1

2

11x2
2

2x1~2x2
22x1

2!ES tan21
1

x2
,A12

x2
2

x1
2D 1x2

2x1FS tan21
1

x2
,A12

x2
2

x1
2D G , ~x1>x2!, ~B8!
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]

]x1
detz125a~detz12!

1

x11x2
F123x1x223x1

213x1
2~x11x2!tan21

1

x1
2~12x1

21x2
2!A11x2

2

11x1
2

2x2~2x1
22x2

2!ES tan21
1

x1
,A12

x1
2

x2
2D 1x1

2x2FS tan21
1

x1
,A12

x1
2

x2
2D G , ~x2>x1!, ~B9!

]

]x2
detz125a~detz12!

1

x21x1
F123x2x123x2

213x2
2~x21x1!tan21

1

x2
2~122x2

212x1
2!A11x2

2

11x1
2

2x2~2x2
22x1

2!ES tan21
1

x1
,A12

x1
2

x2
2D 1x2x1

2FS tan21
1

x1
,A12

x1
2

x2
2D G , ~x2>x1!. ~B10!

APPENDIX C: MATRIX ELEMENT OF THE HAMILTONIAN WITH UNEQUAL CONSTITUENT QUARK MASSES

We here give detailed computation of the matrix element of the Hamiltonian~2.1! ^u1uHuu2& along the same line as the on
in the preceeding appendix. Using the explicit expression for the interstate density matrixW12,p , Eq.~4.11!, for the kinetic part
we have

Tr@g5S•pW12,p#522
E1pM21E2pM1

M11M2
u~L22p2!. ~C1!

The direct terms of the interaction part are calculated as

Tr@bW12,p#522
E1p2E2p

M11M2
u~L22p2!, Tr@bg5W12,p#50, ~C2!

the first of which is nonzero but it reduces to the first of Eq.~A2! whenM15M25M . The exchange terms of the interactio
part are also computed as

Tr@b~1!W12,p1
~1!b~2!W12,p2

~2!#5F11
E1p1

2E2p1

M11M2
•

E1p2
2E2p2

M11M2
2

p1•p2

p1
2p2

2 S E1p1
M21E2p1

M1

M11M2

E1p2
M21E2p2

M1

M11M2

2
E1p1

E2p1
2p1•p11M1M2

M11M2

E1p2
E2p2

2p2•p21M1M2

M11M2
D Gu~L22p2!, ~C3!

Tr@b~1!g5~1!W12,p1
~1!b~2!g5~2!W12,p2

~2!#5F211
E1p1

2E2p1

M11M2

E1p2
2E2p2

M11M2

1
p1•p2

p1
2p2

2 S E1p1
M21E2p1

M1

M11M2

E1p2
M21E2p2

M1

M11M2

1
E1p1

E2p1
2p1•p11M1M2

M11M2

E1p2
E2p2

2p2•p21M1M2

M11M2
D Gu~L22p2!.

~C4!

Performing the integration overp, p1 , andp2 , then the matrix element of the HamiltonianH@W12# defined by Eq.~A5! is
given as

H@W12#5E d3rE d3p

~2p!3 Tr@g5S•pW12,p#2gE d3r S E d3p

~2p!3 Tr@bW12,p# D 2

22gE d3r S E d3p

~2p!3 u~L22p2! D 2

,

~C5!
065203-18
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which is calculated to be

H@W12#522F E d3p

~2p!3

E1pM21E2pM1

M11M2
u~L22p2!GV2gF22E d3p

~2p!3

E1p2E2p

M11M2
u~L22p2!G2

V

22gF E d3p

~2p!3 u~L22p2!G2

V. ~C6!

From Eq.~C6! thus we can get a final form of the matrix element of the Hamiltonian, i.e., Eq.~4.15!.
Following Ref.@9#, it is easy to prove that the matrix element of the Hamiltonian^u1(u)uHuu2(u)& is invariant when the

S-detuu1(2)& undergoes the chiral transformation generated by exp@i(u/2)Sj51
N gj

5#.
We can easily find

^u1~u!uHuu2~u!&5E d3rSpH@W12,p~u!#)
p

detz12,pu~L22p2!5H@W12#detz12, ~C7!

where

W12,p~u![ei ~u/2!g5
W12,pe

2 i ~u/2!g5
5

1

2 S 11b~u!
Ap2Bp

Ap1Bp
2g5

Cp1Dp

Ap1Bp
S•p2b~u!g5

Cp2Dp

Ap1Bp
S•pD u~L22p2!,

b~u![ei ~u/2!g5
be2 i ~u/2!g5

5b cosu1bg5~2 i sinu!. ~C8!

In fact, we have successively

E d3p

~2p!3 Tr@e2~u/2!g5
g5ei ~u/2!g5

S•pW12,p#5E d3p

~2p!3 Tr@g5S•pW12,p#, ~C9!

E d3p

~2p!3 Tr@e2 i ~u/2!g5
bei ~u/2!g5

W12,p#5E d3p

~2p!3 Tr@bei ~u/2!g5
W12,pe

2 i ~u/2!g5
#5E d3p

~2p!3 Tr@bW12,p#cosu, ~C10!

E d3p

~2p!3 Tr@e2 i ~u/2!g5
bg5ei ~u/2!g5

W12,p#5E d3p

~2p!3 Tr@bg5ei ~u/2!g5
W12,pe

2 i ~u/2!g5
#5 i E d3p

~2p!3 Tr@bW12,p#sinu.

~C11!
e

ge
io

of
cta-

e

Equation~C9! shows trivially the chiral invariance. On th
other hand, from Eqs.~C10! and ~C11! it turns out that the
direct term in addition with contributions of the exchan
terms becomes also invariant under the chiral transformat
This fact holds also in the case ofM15M25M which is
p

ing
,

06520
n.

already pointed out in Appendix A. As the consequence
the use of these results, thus we can prove that the expe
tion value of the NJL Hamiltonian~2.1! by the superposed
wave functionc1uu1&1c2uu2& becomes invariant under th
chiral transformation.
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