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Resonating mean-field theoretical approach to the NambuJona-Lasinio model
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Using the Nambu-Jona-LasinidNJL) model, the dynamical chiral-symmetry breaking, the light-mesons
spectra, and the properties of the mesons have been investigated on the basis of a conventional Hartree-Fock
approach. In order to show the advantage of the resoné®ag mean-field theory for a fermion system with
large quantum fluctuations over the usual mean-field theory, we apply it to the NJL model to describe more
precisely such phenomena associated with the pionic excitation. For the sake of simplicity, a state with large
quantum fluctuations is approximated by the superposition of two Dirac seas, namely nonorthogonal Slater
determinantgS-det$ with different correlation structures. We consider two cases: in the first case both Dirac
seas are composed eflual“‘constituent quark masses” while in the second case the constituent quark masses
are unequal We make a direct optimization of the Res-mean-field energy functional, i.e., a variation of the
Res-mean-field ground-state energy with respect to the Res-mean-field parameters, the “constituent quark
masses.” Then the Res-mean-field ground and excited states generated with the S-dets explain most of a mass
spectrum and associated properties of the {i60556-28189)05811-2

PACS numbes): 24.85+p, 12.39.Ki, 14.40.Aq, 21.66.:n

[. INTRODUCTION become important. When the anharmonicity in the energy
functional surface increases so much that the surface has
In transitional nuclei, resonances between different supemultiple low-energy minima, the approximation by a single
conducting states with small deformations, and between difmean-field wave function is certainly no longer possible and
ferent deformed states with large deformations having nearlthe RPA also breaks down.
degenerate energies, are known to arise. The effects of such In the Res-HF and Res-HB theories, the ground state is
resonances becomes important at the lower end of superdassumed to become a superposition of multiple mean-field
formed bands, where a transition to the ground-state miniwave functions, namely to be resonating between different
mum occurs. This effect reflects the importance of quantuntorrelation structures. The first application of the Res-HB
fluctuations. It is the advantage of microscopic investigationsheory was made to the problem of describing the resonance
that there are methods at hand to go to beyond the mean-fietsf multiple shapes coexistence in nuclei by using a simple
theory and to take these quantum fluctuations into accountmodel with strong pairing correlationg3]. The Res-HF
Fukutome and one of the present auth@@sN) have pro- theory has been applied to a well-known exactly solvable
posed theories called the resonating Hartree-R&ds-HB model in order to clarify some essential features of the theory
theory[1] and the resonating Hartree-Bogoliub@®es-HB  and to show its advantage over the usual HF theory. In this
theory[2] to treat the problem of large quantum fluctuationsstudy, the Res-HF ground state with a few Slater determi-
in normal fermion systems and superconducting fermion sysaants(S-det$ reproduces the exact ground-state energy and
tems. explains most of the ground-state correlation energy in all
A fermion system with small quantum fluctuations can bethe correlation regimeigi—6]. Then it has turned out that the
described by a standard method of fermion many-bodyRes-HF approximation is a promising tool and provides a
theory, namely the mean-field theory. The ground state of thenethod to work better than the usual HF. Very recently, the
system is well approximated by a single determinantal HF oRes-mean-field theory has also been successfully applied by
HB mean-field wave function. Quantum fluctuations can beone of the present autho(S.N) [7] to a resonating relativ-
taken into account as zero-point oscillations of a time-istic mean-field description of exotic phenomena in nuclei, in
dependent mean field with small amplitudes around the minithe spirit of the relativistic mean-field approach.
mum in the energy functional surface. Such fluctuations and Quantum chromodynamid€CD) is now widely recog-
collective excitations connected with them can be treated byized as the fundamental theory of strong interactions. In
the well-known random-phase approximati@RPA). If the  QCD, spontaneous breaking of chiral symmetry, leading to a
quantum fluctuations around the mean field become largeondensate of quark-antiquark pairs in the QCD vacuum,
and so the energy functional has a large anharmonicity in itplays a crucial role in the description of low-energy charac-
low-energy portion, then nonlinear couplings between theeristics of hadrons. The quark-antiquark condensation
RPA excitation modes, the so-called mode-mode couplingssaused by dynamical chiral-symmetry breaking was pro-
posed by Nambu and Jona-LasinidJL) in 1961[8]. The
NJL model, which contains a chiral effective interaction be-
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physical particles. The NJL model has been regarded as energy functionals, i.e., a variation of the Res-mean-field

reasonable approximation to QCD for intermediate lengthground-state energy with respect to the Res-mean-field pa-
scales. The context of the original NJL model has been agameters, namely the “constituent quark masses.” Our final

cepted as a manageable approximation to dynamical chirapbjective is to explain the mass spectrum and associated
symmetry breaking because it has the advantage of beirgyoperties of the pion by the Res-mean-field ground and ex-
easier to handle than QCD itself. Then in this context thecited states generated with the two S-dets.

problem of a deeper understanding of mechanism of chiral- Along the above lines this paper is organized as follows.

symmetry breaking arises naturally as well as its conseln Sec. Il we present the naive NJL model and a brief reca-

quences for the low-energy properties of hadrons, namely theitulation of the' resonating mean-fielq ap.proximation. In
spectra and the properties of the light mesons. Sec. lll we consider only two S-dets with different correla-

Using the NJL model Hamiltonian, one of the presenttion structures havingqual constituent quark masses. We

authors(J. da P, Ruivo, and Sousa have investigated dy_mtroduce isometric matrices in terms of components of a
namical chiral-symmetry breaking, light-mesons spectra an@lrix induced by a Thouless transformation to get overlap
properties of the mesons on the basis of the conventional HIPt€dral, interstate density matrix and matrix element of the
and time-dependent HETDHF) approache$9]. This theo- Hamiltonian between nonorthogonal S-dets. Instead of solv-
retical framework and technique in many-body problemsind the Res-mean-field equations, we make a direct optimi-

very familiar to nuclear physicists, turned out to be appropri-2ation of the Res-mean-field energy functional, i.e., a varia-

ate to describe the properties of hadrons in an exceedingljon Of the Res-mean-field ground-state energy. In Sec. IV

intuitive way in the spirit of a mean-field approximation. The W€ adopt two 5“?'6‘5 with different correlation structures
HF procedure describes the realization of a stable equilip?ith unequaiconstituent quark masses. In Sec. V we give a
rium configuration in the context of the mean-field approxi- R&S-mean-field ground-state energy and describe a collective
mation in the sense that a vacuum expectation value of thgxmtatlon around_the stable equilibrium vacuum which is
Hamiltonian takes a minimal value. The TDHF method givesmterpreted as a pion mass spectrum. In Sec. Vi we ca!culate
RPA collective excitations with small amplitudes which al- an order parameter and a pion decay constant by using the

low to interpret both the low-energy light-mesons mass Specgelf—cqnsstent solution (_)f the 'Res—mean—fle_ld equation. Fi-

tra and properties of the mesof0—13. nally, in Seq. VII, after dlscusslng the behavu_)r of the over-
The Res-mean-field theories are able to treat in a rigoroul@P integral in the Res-mean-field approximation of the NJL

manner large quantum fluctuations and strong correlation ef10d€l, we give a summary and the concluding remarks. As

fects due to quantum- and dynamical-tunneling effects fa”_mlght be e_xp_ected, we find that the present numerical results

ing outside the scope of the RPA and of mode-mode cou@r® Very similar to those of the previous woifk®,12.

pling theories. Of course, they can also deal with small

quantum fluctuations which are describable by the usual Il. MODEL AND RESONATING MEAN-FIELD

RPA. Thus, they have a possibility to reveal surprisingly APPROXIMATION

dramatic aspects of the physics of fermion systems with

large quantum fluctuations. The Res-mean-field method

have been constructed on the basis of a group-theoretic

deduction starting from the fact that they are based, in their

We consider a naive NJL model which describes a system
3 many quarks interacting via a two-body force according to
e chiral-invariant Hamiltonian

group-theoretical backgrounds, on the Lie algebras of the N N

fermion pair operators arising from the canonical anticom- H:E pi.ai_gz S(ri—r)[BiB;— Bi 7i5:8j 715],
mutation relation of the fermion. Therefore, from the above- i=1 i#]

mentioned reasons, they should have a universal applicabil- (2.)

ity to problems of current topics in wider fields of physics. . .
ytop P PRy whereea;, g8, and yi5 stand for the standard Dirac matrices

The radical spirit of the Res-mean-field theory may be ex-_ . ) ;
pected to open a new field also for the exploration of theActing on the degrees of freedom of the quaekdg is the

low-energy hadron physics taking notice of the strong anaI-Coupllng constant. Here We use the former_ver5|o_n of _the
ogy between a chiral effective Hamiltonian with a four- NJL model with only one single flavor but without isospin

fermion interaction and a familiar nonrelativistic fermion (8]. Fo[lowing the work by one of the present auth(n]sdq.
Hamiltonian with a two-body force. P.), Ruivo, and SousgB], wheng=0, the above NJL Hamil-

In order to investigate the advantage of the Res-meartonian describes a massless Dirac free quark and a Dirac sea

field theory over the usual mean-field theory, we apply it to(the S-dek of massless quark having zero chirality is given as
the naive NJL model without isospif8] to describe more N

precisely such phenomena of the pion mentioned previously. |¢O>:H d_T(o>|0>, (2.2

For the sake of simplicity, a state with large quantum fluc- =1

tuations is approximated by the superposition of two Dirac

seas, namely nonorthogonal S-dets with different correlatiomvhered?(o) is the creation operator of a massless negative-
structures. We consider two cases: in the first case both Diragnergy state andD) is the absolute vacuum. The indéx
seas are composed efjual “constituent quark masses,” stands for the momentum and helicitys and the absolute
while in the second, the constituent quark massesuare value ofp; satisfies|p;|<A (the highest momentum of the
equal We make a direct optimization of the Res-mean-fieldoccupied states Wheng is switched on, the system under-
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goes a phase transition into a state of chiral broken symmetry A wave function| W) is exactly represented in an integral
above a critical value of the coupling strengil. As the  form as

consequence of the chiral-symmetry breaking, the nonzero

constituent quark magd is produced dynamically: namely, _ f t

the quarks acquire a dynamical mass. A Dirac(sea S-dek [W)=nCn | Ulg)[¢){¢[U"(a)|¥)dg

of massive quarks is written as

! -G [ l9)gl)dg, 8
|@)y=11 dfo), 2.3 - ,
i=1 and the Schidinger equation Kl —E)|¥)=0 can be con-

. . . _verted into an integral equation
where d; is the creation operator of a massive negative-

energy state. According to Refs, 9], the operators; (b)) J’ , , o

means of the canonical transformation ) o ) ) )
where the integration is the group integration over a unitary

[b—p,svbp,sadtps’d; N group UN) of N dimension made of a unitary matrix
(0)’ ('0) HOY AHO) 1 it corresponding to coefficients of linear combinations of the

=U(g)[b®) ¢, b2 ,d"0%.d U (g) fermions. The statgl) is a coherent-state representati@®
(0 n(0) 4H0)  AtH0) rep of fermion state vectors represented by a function

=[b=ps:bps.d g dps’10- (24 W(g)=(g|¥) on U(N). The ket |g) is given as|g)

=U(g)|#) in which the unitary operatol(g) induces a
Thouless transformation of a reference S-#t[13]. The
U(N) CS rep ofn particle state is a representation on the
148 13 coset UN)/U(n) denoted asi which is anNXxXn submatrix
g= 1 [ZPp 4\ Pr YB3, of a U(N) matrix. The Hamiltonian matrix element and over-
2 2 lap integral between two nonorthogonal S-diedsand |u’)
(25 are given as

The U(Qg) is a unitary operator to induce a Thouless trans
formation[13] and the 4<4 matrix g is given as

gg'=g'g=1,, detg=1,
(u[H|u"y=H[W(u,u”) ulu"), (ulu’)=detz,
where B,=|p|/E, and E,,= Jp?+M?Z2. By detg we denote
the determinant of the matrig. By |, we denote the four z=u'u’, (2.10
dimensional unit matrix and b¥, the first component of the ) ) _ )
4x 4 matrix-valued vectoE=(3,,3,,33) which is repre- Wherezis annXn matrix and det is the determinant of.
sented as The interstate density matriW/(u,u’) is defined as

o 0 W(u,u’)=u'z"tu', (2.11
0 o/

P

0=(01,05,03), (2.6

which is anN X N dimensional matrix and satisfies

where o denotes the vector having the Pauli matrices for W(u,u)=W3(u,u’), W'(u,u’)=W(u’,u).

components. In the Res-mean-field approximation, the con- (2.12

stituent quark masM is treated as a variational parameter.

The total number of quarks in the negative-energy statBis is This reduces to the usual mean-field density matriwu if

and a momentum cutofk is used in order to regularize the =u’.

Res-mean-field theor}9]. We approximaté¥) by a discrete superposition of S-dets
Following Fukutomd 1], we give here a brief recapitula- as

tion of the resonating mean-field approximation. We con-

sider ann-fermion system withN single-particle states. Let _

a; anda, i=1,2,...N, be the annihilation and creation op- |W>_§f: luper. (213
erators of the fermion, and let the Hamiltonian of the system

be We denote sampling S-dets ag). The mixing coefficients

c; are normalized by

1
H=h;ala+ 7 [killjlata/aa;, 2.7
N <\P|\P>:E <Uf|Uf/>C?ff/:2 dethfrC?Cf/:]_,
f,f’ ff!

whereh;; and[ki|lj ] denote the single-particle Hamiltonian (2.19
and the antisymmetrized interaction-matrix elements, respec-

tively. Here and hereafter we use the summation conventiowherez;;, = ufu;, =z;r,f .

over repeated indices unless the possibility of misunder- The expectation value of the Hamiltonigh(2.7) in |¥) is
standing arises. expressed as
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energy states. The constituent quark mielsis generated as
<‘1’|H|‘I’>=E (ug[H|ug)ef err the result of the dynamical chiral-symmetry breaking of the
£ system[9].
For simplicity, we here consider only two S-dets corre-
=2, H[W;p]detzcic, (219 sponding to the usual mean-field states of two local energy
f.t minima with different correlation structures haviregjual
1 constituent quark masseéd. We denote them afy;) and
HIW g ]=hyi (Wi )y + E[ki“j](wff')ik(wff’)jl 7 |gz}. They are distinguished by writing explicitly the sub-
scripts 1 and 25].
(2.16 In order to get the explicit expression for the Res-mean-
1t _ _ _ field equation, we must calculate the overlap integrakget
where W = Uyt i, Us is the interstate density matrix be- the interstate density matrw/(u,,u,), the matrix element

tween|us) and|us). of the Hamiltonian(u,|H|u,) and the interstate Fock opera-
We determine both the and |u;) variationally by the tor F[W(u,,u,)] between nonorthogonal S-dets. For this
following set of equations: aim, we introduce two X2 isometric matricesi;,, and
Upp,r @nd a 2<2 matrix z;,, by
Z (H[Wff/]_E)dethfrCf/:O, (217) 1_Bp
f —_ 2 o an
Uipr= /1+,3 v Ugpr= 75u1,p,r
* _ p
2 Kff/Cf Cfr—o, (218) 2 " Xr
f!
(3.2
where (r=1,2),
K ={(1—Wis ) F[Wip 1+ H[Wip 1— E}Wyy, - detzgg . 1 0
0= {(1= Wy ) F[Wye ]+ H[Wqp ]— E} Wy, - detzqg Xle' XZ=M. 33
(2.19
Equation(2.17) is called the Res-mean-field configuration- ULz),p,rU1<2>,p,r'=5rr', (r,r'=12,
interaction(Cl) equation. Optimization of the orbitals is
made by Eq(2.18 which we call the Res-mean-field equa- ZlZp,rr’:uI,p,ruZp,r’ , (3.9

tion. The NXN matrix-valued Res-mean-field interstate . _ o
Fock operatoiF ;[ W] is given through the functional de- wheren is the unit vector for components. Substituting Eq.

rivative of the Hamiltonian matrix element as (3.2 into the second equation of E(B.4), we have
1
5H[Wff!] . z [ R r_
.. ,|= ———=h.: , 12p,rr’ Xr o pXr' 1 (I’,r 112)1 (35)
Fij[ Wss/] 3(Wre); hij + [ [KIT(Wegr) i - E, '

(2.20 from which explicit forms of the matrix and the inverse ma-

The Res-mean-field interstate Fock operator reduces to tﬁ[ Ix together with the determinantal value of thg,, .- are

usual Fock operator if the sampling S-dets are restricted t8 tained as
only one S-det. 1 B €, ,
le,p:_ E_po.p' lep: — Fo-p’ detZlZ,p:_ ?
I1l. RESONATING MEAN-FIELD EQUATION (%.6)

WITH EQUAL CONSTITUENT QUARK MASSES

Then the overlap integral daf, is calculated as
Any S-detd(g))(=|g)) can be constructed by the action of b integral b

U(g) given by Eq.(2.4) on a reference S-ddty), Eq.(2.2),

(the Thouless theorefii3]) as det212=1;[ detzlzpa(Az— p?)
9)=U(9)|®
o7 |1 O; i =exp<§p‘, (Indetzlz,p)a(AZ—pz))
+ —
_ P P 1(0)4(0)
= ——b S d L] [ ®g),
lp_[s( 2 exp(pE’S 1+:8p p.s p,s)l 0> 1 1 M
=exgal In s—2x2+2x3tan 1= ||, x=—,
(3.1 1+x X A
(3.7

which means that the S-det of massive quarks in the
negative-energy states may be written as a coherent superpohere we have usell,=V[d*p/(2m)* and V=67?a/A3
sition of massless quark-antiquark pairs in the negativefa is the dimensionless volume paramgtétere, we had to
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introduce the dimensionless volume paramedeto get a =y5W11p75, Eqg. (3.9, the mean-field energy functional
finite value of the overlap integral dgt. It may be inter-  (u,|H|u,)(=H[W,,]) is simply expressed as

preted that the gives a confinement volume of quarks, i.e.,

a volume of a space in which the quarks are confined. It is in H[ W, ]=H[Wj,]. (3.12
general agreed that the main drawback of the NJL model is

the lack of confinement. It is known that the NJL vacuum isThis important result means that the S-diig) and |u,)
unstable. The NJL vacuum associated with a chiral rotatiomave degenerate energies but different correlation structures
e'B7°2 of the NJL Hamiltonian may have indeed a lower with each other. By using the explicit form for the interstate
energy than the original vacuum. This deficiency may be alensity matrixWy,, Eqg. (3.10, the matrix element of the
manifestation of the lack of confinement. Some sort of staHamiltonian(u,|H|u,) can be easily calculated as

bilizing mechanism may be indeed requifddl]. The use of

a confinement volume, as in the present calculation, is a (u1|H|uy) =H[W,,] - detz,,,

possible choice. The step functighns defined as

1, x=0 H[W4,] —21 A4 1+ 7, 1y ( )+2—2—9A2v
, x=0, =— X+ =XV(X)+ = ,
g(x):[o «<0. ! A7 2 9 = (313

The usgal mean-field density matr_idﬁ&il,p andWZ?P for detailed computation of which is given in the appendixes.
the negative-energy state and the interstate density matriX 1o Res-mean-field configuration-interactié@l) equa-

Wip, are calculated as tion to determine the mixing coefficients andc, is written
simply in terms of the real quantities as follows:

z 1 -a+ M
W= 2, ul,p,rUI,pfg( —ppzﬁ 6(A?—p?), HIWi]—E  (H[Wy,]~E)-detzipc;]
(38) (H[Wlil_E)'detzlz H[sz—l_E Cz '
(3.19
2
W= > u2,p,ru£pr together with the normalization condition
r=1 .
Ca— c2+c3+2c,c,detzy,=1. 3.1
1 1— p-a”pM (A%~ p?) = yWy1 7", 1T €3+ 2C1C2 A€lZyp (3.19
2 JpZ+ M2 P . .
Due to the relatioH[ W,;]=H[W.,], Eq. (3.12), which we
(3.9  denote simply asi[W], we can get the Res-mean-field en-
ergy E and the corresponding magnitudes of the mixing co-
2 : efficientsc, andc, as follows:
Wiop= E u2,p,r(ZI2],-p)rr'u1‘p'rr
e E ! {H[W]—H[W,,](detz;,)?
. — T 1_(detz.)2 N 1 1
:%(1_p a(Ep2 ﬁM))a(Az_pz)_ (3.10 1—(detz;,)
P T [HW]— H[Wy]| detz;3},
To get the correct density matriw,,, for the negative- ) .
energy state given in Ref[9], we have replaceds, c2=c2=|1+ (HIW]—-E) _ HIW]-E
=|p|/E, with 8,=M/E, in Eqg.(3.2. The interstate density ~* 2 (H[Wy,]—E)?(detz;,)? “H[Wy,]—E
matrix W, obviously satisfies the idempotency condition (3.16

but is not Hermitian.

The usual mean-field energy functiondlu;|H|u;)  Then the Res-mean-field energyis classified into the fol-
(=H[W,,]) has already been obtained in REJ] and ex- lowing two kinds of solutions:
pressed as

2 case I H[W]—H[W,,]>0,

1 3 gA
H[Wy]=— mA4 V1+x2— Ex2v(x)+ ?xzvz(x)

1
2 gA? EReS= ———— (H[W]+H[W,,]- det
+§g—z}V, (3.11 g 1+det212( [WI+HIW,] - detzp),
wh(?rev(x)E\/sz—x2 Inf(x) and f(x)=1/x+ y1+ 1. ERe= — —  (H[W]—H[W,,]-detz;,), (3.17
Owing to the property of the density matrisVs,,, 1—detzy,
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case Il H[W]—H[W,,]<0, d d
d—XH[W](l— detz,,) — ax H[W,] - detz,5(1—detz,,)

ERes ;(H[W]— H[Wy,]- detz;,),

= — d
1—detzy, +(H[W]—H[W12‘])d—xdetzlz=0 (for case ).

S (3.21)
Res__ )
Eo= 1+det212(H[W]+ H[Wy,]-detz;p). (3.18

These are the self-consistency conditions for cases | and II,
It should be stressed that the Res-mean-field energies and tfRSpectively, in the Res-mean-field approximation. The simi-
corresponding mixing coefficients must be determined so afity between the self-consistency conditions and the so

to optimize the energy expectation value by the superposeglled “gap equation” in the BCS theoiyd5,16 and in the
wave functionc, |u,) + C,|u,). Res-HB theory2,3] is a manifestation of the analogy of the

32 Kycte;=0 and32_ K, ckc,=0, we here make a di- ;’notlv?tedf thehNJIT modtTHS]. Suf?st!tutmg Ithe d!ffer:ent|al
rect optimization of the Res-mean-field energy functionalformulas for the diagonal and off-diagonal matrix elements

This is easily achieved by a variation of the Res-mean-fiel®’ the Hamiltonian

ground-state energﬁgfswith respect to the Res-mean-field

variational parametex, d y - 1 N gA2
& [W]——m - 6X FV(X)—].
iEReSZO (3.19
dx 9 ' ' - 2 1 v (322
X|v(X)— 5 —=|V, .
3 J1+x2
which leads to
dH 1+d OIHW d 1+d OIHW— 1/\42 v 3.2
dx [W](1+ etzlz)"‘& [Wio] - detz;5(1+detzyy) dx [Wio]= a2 XV(X)V, (3.23
d ) .
—(H[W]=H[Wy5]) &detzlzzo (for case }, into Egs.(3.20 and(3.21), we can get the following formu-

las connecting the coupling constamiwith the variational
(3.20 paramete for both cases | and Il

gA* ! ( 2 1 (1+detzy,)
= VIX)— 5 — etz

s 2 1 [ 1 ) 3 1+x2 !

V(X)| v(X)— 3 \/ﬁ (1+detz;,) — EXV (x) ax etz,,

1 1 d

- §v(x)detzlz(1+detzlz)— §xv(x) &detzlz] (for case ) (3.29
gA? 1 2 1 1 d
772 B V(X)_§ ,—1—|—X2 ( - etzlz)

2 1
VT3 V1+x°

1 d
v(x) ](1—detzlz)+ ngz(x)d—xdetzlz

1 1 d
+ §v(x)det21222(1— detz;,) + §xv(x) d—Xdetzlz} (for case 1), (3.29
where the differential of the overlap integral is given by

—— detz;,= —6ax

1
Ix 1—xtan‘1;) -detz,,. (3.2
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It is easily seen that Eq$3.24) and(3.25 just coincide with the result in Ref9] if we set detz;,=0. It turns out that the
occurrence of the relation8.24) and(3.25 of the coupling constant to the variational parameter is attributed to the conse-
guence of taking quantum- and dynamical-tunneling effects into account.

IV. RESONATING MEAN-FIELD EQUATION WITH UNEQUAL CONSTITUENT QUARK MASSES

We are now in a stage to superpose the S-dets wvidgualconstituent quark masséé, andM,. Along the same line as
in Sec. lll, we introduce two %2 isometric matricesl; i, andu, ,,, and a 2<2 matrix z;,, by

— 1_Blpo-nX
V 2 r
_ _ .5 _
Uppr= 17 B, v Ugop =Y Uiy, (r=1,2), (4.7
T'Xr

t _ .t
U1(2).1(2)p.r U1(2) 12)p.r = Srr? (r,r'=1,2), Zyop = U gp Uz r - (4.2

Substituting Eq(4.1) into Eq. (4.2), we have

1
Zizprr' = E(\/l_ﬁlp\/l+32p+ \/1+B1p\/1_B2p)X;ro" Pxyr, (r,r'=12), 4.3

where B1(2y,=M1(2)/Eq(2), and E;(3),= \/p2+M12(2). From Eq.(4.3 explicit forms of the matrix and the inverse matrix
together with the determinantal value of thg, . are obtained as

1 E p>*—MM,
-1 P
Zizp=—— 0P, Zi=——a-p, detzy, =——(1+— , (4.4
P Ep P p2 P 2 ElpEZp
where
~ 2+VE,VE
E 1pVE2p 45

P VE1p/P—M1/pVEsp/p+My/p+Ey,/p+M/pyEsy/p—Myip

Then the overlap integral de}, is calculated as

M
detz;,=[ ] detzlzPB(Az—p2)=exp<E(|ndet212p)0(A2—p2))=eX[{aZ(X1,X2)], X1= T Xo= (4.9
P P

The functionz(x4,x,) is given as

(X1,%5) L2 (2+x2) + | x3t 1L S tan 1t | | 14 XX 1(1 2x2+3 2) Lx
Z(Xq,Xp)==—In2—(x{+X X;tan '— +x5tan '— | +1In | — = (1—2X{+ 3X1X,— X
1,42 3 1T A2 1 Xq 2 X, mm 3 1 1R27 A2 1?)(2
1 ) ) 1 X\ 1, 1 X5
_§x1(2x1—3x1x2+2x2)E tan % 1—;5 +§x1x2F tan %' 1—;5 , (X1=X9) 4.7
1 1 1 1—XoX; 1+x5
Z(X1, %)= =—In2— (x3+x2) + | x3tan '— +xC tan 1 — +In 1—2X24 3x,X, — X2)
(X1,%o 3 ( 2 1 2 X, 1 \/1+—)(2\/1+—)(1 3( 2 281 1 m{
1o, ) 1 xi 1 X3
_§x2(2x2—3x2x1+2x1)E tan X 1- Xz +3x2x1F tan X 1_x_22 (X2=X1), 4.9

065203-7



SEIYA NISHIYAMA AND JOA O DA PROVIDENCIA PHYSICAL REVIEW C 60 065203

2

where E(¢,k) and F(¢,k) are the Legendre’'s incomplete 3 gA
1+ x5 §X§V(Xz)+ FXEVZ(Xz)

1
elliptic integral of the second kind and the incomplete elliptic H[Wa2]=— m/\
integral of the first kind, respectively, and detailed computa-

tion of them are given in the appendixgls/]. By using the 2 gA?
two isometric matrice$4.1) and the inverse matrigd.4), the tg 7|V (4.14

usual mean-field density matricéd,;,, and Wy, for the
negative-energy states are shown to have essentially t

e . - . . .
same forms as those of Eq8.8) and(3.9) and are given as qSy using the explicit form for the interstate density matrix

Wi, EQ. (4.11), the matrix element of the Hamiltonian
(uy|H]u,) is easily calculated as

1 s2p
Wll,p 2 ( 1- ﬁ Elp 7 Elp ) 0(A2_ pz) (49) <U1| H|U2>: H[le—l . detzlz,
H[Wﬂ=—i/\4 X \/1+x2+3x2v(x)
1 Mz EP ) ! 4m? 7 Xy xp |t 27 p72nn2
2p 2p 5 1 2
+X 1+X7+ =Xjv(X
= PP Wi1p(M1—My) 75, (4.10 2| VIHXIH 5 xv(x)

+1 gA? 1
Z ’772 (X1+X2)2

1.
- \/1+x27— §X2V(X2)

p detailed computation of which is given in the appendixes.
This expression for théu,|H|u,) reduces to that given by
Co— Eqg. (3.13 if we setx;=X,=X.
- By° AT B, pE p) O(A2—p?), (4.11 By solving the Res-mean-field Cl equatit®114), we can
get the Res-mean-field energyand the corresponding mag-
nitudes of the mixing coefficients; andc, as follows:

1
\/1+Xi+ EX%V(X]’)

but the interstate density matrW/,,, is shown to change
drastically from Eq(3.10 including a term proportional t8

and is calculated as 2

+29A2V 4.1
9 2V (4.19

Lo P By CotDy
+BA+B 7A+B

W12p 2

where ERes
E= ERes
Ap=VE1,/p—M1/pVE/p+M,/p, L
= 2 2(detzyy) {H[ W]+ H[Wa,] — 2H[ Wy, (detz;,)?
BpE \/Elp/p+ Mllp\/EZp/p_ M2/p,
+ VEgst (4.19
C E\/El /p+M1/p\/E2 /p+M2/p- - EdisE(H[Wlﬂ_H[sz-l)2+4(H[W11]_H[le-|)
P P P ’
X (H[ Wy, — H[Wi,]) (detz;)?, (4.17
(g, (HIWu]-B)?  HIWy,]-E| ™
Dp=VE1p/p—M1/pVEg/p—Ma/p-—. (412 1 T (H[Wpo —E)%(detzy)? “H[Wg]—E/
(4.18
The interstate density matri¥/y,, obviously satisfies the - (H[Wy,] - E)? H[Wo,]—E| !
idempotency condition but is not Hermitian and just coin- €2~ 1 (H[Wlﬂ—E)z(detzlz)z_ H[W,,]—E
cides with Eq.(3.10 if we setM;=M,=M. (4.19
As was already shown in Sec. lll, the usual mean-field _ o .
energy functionals(u,|H|u,)(=H[Wy]) and (u,|H|u,) A direct optimization of the Res-mean-field energy func-
(=H[W,,]) are expressed as tional is easily achieved by a variation of the Res-mean-field

ground-state energt;‘tReSWith respect to the Res-mean-field

5 variational parametensl andxs,

1 3 gA
H[Wy,]=— WA4 V1+xi— Eva(xl)Jr 7x§v2(xl)

J
a_MEgl’e?X]- 1X2):O! a_XZEgreiX]_!XZ):O! (42@

(4.13

which leads us to
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J
m H[Wi1(20 {H[ Wy1] + H[ W] — 2H[Wy,] = 2(H[ W11 | — H[ W) [ 1 - (detzy»)?]}[1— (detz;»)?]

o) HIW,5]2(H[Wy1]+ H[W,5] — 2H[Wy,]) (detzy) [ 1 — (detz;)?]

+{(H[Wy1]+ H[ Wyo] = 2H[ Wy,])?+ E gl (detzy) detz;,

(?Xl(z)

:rZ(H[Wlﬂ+H[sz—l_ZH[le—l)(detzlz) detzlz

&Xl(Z)

J
+ <—&X H[Wluzz)]_z—ax H[Wlﬂ(detzlz)z) [1_(det212)2]] VEdis (4.21)
1(2) 1(2)

where @/9X1(2)) H[Wi1(22)] stands for §/dx;)H[Wy,] or  the quantitygA? is obtained and then the Res-mean-field
(a9l ax2)H[Wo,], etc. The partial differentials of the dgt  ground- and excited- state energies for case | are determined

are given in the appendixes. through Eq.(3.17). In order to determing, if we intend to
solve the nonlinear equatidB.20 by using the simple itera-
V. RESONATING GROUND-STATE ENERGY tive method, we would surely encounter a very serious prob-
AND PION MASS SPECTRUM lem of nonconvergence as we have often experienced in the

usual HF and HB calculations. To avoid such a convergence

There are actually three parametérgthe cutoff param- difficulty, we will employ a direct-optimization method. For
ete, g (the coupling constantanda (the volume param- the purpose of constructing a tractable-optimization algo-
etey in the present NJL model. According fa0], however, rithm, let us introduce a quantitgx which brings us the
in the present paper we use the value of the cutoff paramet@iost effective change to decrease the value of the Res-mean-
A=631.0MeV. First we solve numerically the resonatingfield ground-state energii*°at each iteration step. To get
mean-field equation foequalconstituent quark masses. The fast convergence the Res-mean-field quantity must be
dimensionless quantitygA? for both cases | K[W] determined so as to optimize the energy variation up to the
—H[W,,]>0) and Il H[W]—H[W,,]<0) is plotted as a second order. It is the quadratic steepest descent of the Res-
function of an inverse of the Res-mean-field variational paimean-field ground-state energ:}rgfs with respect to the
rameter I¥(=A/M) through Eqs(3.24 and(3.25 for sev-  S-dets, |u;) and |u,) but with equal constituent quark
eral values of the model parameterWe show in Fig. 1 the massedV. Starting from a certain initial value of, we cal
behavior of the dimensionless quantigy\? plotted against culate the quadratic steepest descAmt We employ the
A/M for several values of the dimensionless volume paramealculatedx+ Ax as the new trial value ok in the next
etera and compare with that of the conventional HF ap-iteration step. We must continue our Res-mean-field calcula-
proach[9]. tions by iterating in succession many time steps until conver-

The behavior of the dimensionless quantity? for both  gence is achieved. Our numerical calculations are carried out
cases | and Il is very similar to that of the usual HF approachat the regiongA?=11.00—-15.50 ané=3.00—7.50. If the
[9] if A/M is small. It, however, decreases rapidly &8V value of eithergA? or a become large, the value of the
becomes larger for case | and increases for case Il thougtonstituent quark masses become small. After searching for
in the case of the usual HF approach it approachethe parameters to reproduce good constituent quark masses,
m?(=9.87) as closely as possible, as indicated by the thickve arrive at the optimal numerical values for the parameters
solid curve[9]. We can see that the behavior of tha? for gA?=14.63 and a=5.12 giving the constituent quark
case Il is quite opposite to that for case |. This tendency isnassedVl =350.38 MeV, the mixing coefficients; g=C5 4
more conspicuous as the dimensionless volume pararaeter=0.684 and the overlap integral dgj=0.069. In order to
becomes smaller. ThgA? well reproduces a reasonable get an appropriate value of the constituent quark nMsi
value of the magnitude of the coupling constgiiftthe A/M is preferable to use a comparatively large magnitude of the
is small. Let us investigate the signature of the energy dif-dimensionless volume parametefThen in the present paper
ferenceH[W]—H[W,,] for both cases | and Il by using the we have chosegA?=14.63 anda=5.12. Using the relation
gA? calculated through Eq$3.24) and (3.25. It is shown L3=67%a/A® we can see that the value=5.12 corre-
numerically that the energy difference is always positive forsponds to a “confinement volume” of a cube with sides
both cases | and Il. Then for case Il we have no physicak2.10 fm long. We give in Fig. 2 the Res ground-state NJL
solution. The value of thgA 2/ 72 for case | shows a gradual energy map for the values of the parametph$=14.63 and
decrease ag anda become small and a slow increase to aa=5.12.
position A/M=3.0 fora=29. In this case, we find only one extreme minimum point of

If we give a value of the constituent quark madsi.e.,x,  the Res ground-state energyxat=x,, i.e., M{=M,.
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In a strict sense, generally it is very difficult to calculate the pion mass spectrum and associated physical quantities, in
the Res-mean-field excited-state energy self-consistently bgontrast to the previous work9—12). Using the above cal-
a direct-orbital-optimization algorithm. However, we can culated value, we also can obtain a very good pion mass
easily calculate the approximate Res-mean-field excited-staspectrumm,_=139.70 MeV. Thus we have reproduced the
energyEEfs, which is given by another solution of the Res- experimental value of the pion mass spectrum,
mean-field Cl equation called rsonon different from the  =139.6 MeV in good accuracy. Further it becomes clear that
Res-mean-field ground-state enefy> But it is evaluated if we adopt a comparatively small magnitude of the dimen-
by using the value of the Res-mean-field variational paramsionless volume parametaya smaller value of the constitu-
eter already determined in the Res-mean-field ground statént quark masseldl and a larger value of the coupling con-
The energy differenCESeS_ ngs corresponds to the excita- Stantg are produced as the result of the present Res-mean-

X

tion energy for the Res-excited state above the Res-grourféeld numerical calculations. _
state. We are now in a position to solve the resonating mean-

The stability of the vacuum ensured by the Res-meanfield equation forunequalconstituent quar!< masses. In this
field theoretical prescription is intimately connected with thecase we must search for the energy minimum in the two
possible occurrence of stablendampell excitations of the directions of the quadratic steepest descary and Ax,
chirally deformed vacuum. The pionic collective mode is Which becomes more complicated than émual constituent
well described as a bound state of quark-antiquark excitaduark masses. Let us introduce variational quantities
tions of the chirally deformed vacuum of the original NJL

. J J
model[9]. Then the energy differendef; ™~ Eqc°for case | S1ERT Xy Xp) = e RS 6,ER %, = o ERe
(5.2
Esfgtation: EE;?S_ EgRres

Our tractable-optimization algorithm consists of the follow-
(H[W]—H[Wy,]) (for case }, ing procgdt_;re: Let us prepare trial valuesxgfandx, ;uit-

able for initial values. First, we calculate the overlap integral

(5.1) and the Hamiltonian-matrix elements. Then, from Egs.

(4.106), (4.17), (4.18, and(4.19 we can determine the Res-
can be interpreted as the pion mass spectrum in the spirit shean-field ground-state energy and the corresponding mix-
the Res-mean-field theory. It must be emphasized that wing coefficients. Next we calculate the quadratic steepest de-
make no use of the concept of the RPA excitation to describecentAx; , andAx,, in the nth iteration step

_ 2detz,
~ 1—(detzy,)?

J
51E§I‘eixl,n !X2,n) - 51EngS(X1’n 7X2,I”I)

A ! d e (5.3
Xin=— Re € ) .
: detSES (X1 0, X2n) d
ar n n 52EgRreiX1’n 'X2,n) (9—)(2 52EgRreiX1’n !X2,n)
J Re Re
1 ﬁ_Xl 51Egr ’ixlyn ,Xz‘n) 51Egr ixl,n ’XZ,n)
AX2 n— — R de ’ (54)
: detSE; (X1 0, X2n) J
or mhmen (9_)(1 52EgRres(X1,n X2n) 52E§res(xl,n Xan)
where
J Re J Re
9_X1 01Eg X1pX2p) a_xz 01Egr XinX2p)
detSEG Xy, Xpn) =de J ; . (5.5
(9_)(1 52E§res(xl,n aXZ,n) ‘?—XZ 52E§F;res(xl,n :X2,n)
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Here @1 x4) 61E§re5(xlyn X2n) stands for =7.50. Inthis case, contrary to Fig. 2 we can find a drastic
(91 9%1) 5,ER®(x4 ,x )x. - _ etc. We employ the structural change in the energy map. Two extreme minimum
gr \R1LsR2)IXg =X n Xp=Xp ! .
points of the Res ground-state energyxat X, and X, # X,

the new trial values o, andx, in the nextn+ 1th iteration (M_ﬁt M) can b? (_)bserved_ in the regiop=x, except at a
ntémal extreme minimum poink; # 0, Xx,=0. Of course, we

step. We must also continue our Res-mean-field calculatio . , . .
by iterating in succession many time steps until a conver@'® interested in the solution withy #X,.
gence is achieved.
Our numerical calculations are carried out at the region;; orRpeEr PARAMETER AND PION DECAY CONSTANT
gA2=12.00—16.00 anch=5.00—-9.00. On the contrary to
the case ofequal constituent quark masses, in the present First we consider the solution fagualconstituent quark
case ofunequalconstituent quark masses we can find in thismasses. In Fig. 1 we observe the behavior of the dimension-
way a very interesting and good numerical result for theless quantitygA? which satisfies the “gap equation” for
parametergyA2=13.80 anda=7.50 which gives the con- case [(3.24. This solution causes the breaking of chiral
stituent quark massesM;=335.90MeV and M, symmetry because the constituent quark mass is different
=235.82MeV, the mixing coefficients; ;,=0.810 and from zero. Then, the system undergoes a phase transition
C,4=0.538 and the overlap integral dgj=0.063. The into a state of broken chiral symmetry. When the constituent
valuea=7.50 corresponds to the “confinement volume” of quark massM takes a nonzero value, the S-deb(g))
a cube with sides =2.39 fm long. (=|g)) is no longer an eigenstate of chirality. Using the
Using these calculated values, from the excitation energiRes-mean-field ~ground-state wave functionW g°
ERSS o= ERes— Egresin Eq. (4.16 we can also obtain the =Cyg{U1)+Cy4lU,), the order parameter for the quarks,

calculated Xy 41 =Xy n+AXyn @and Xpp1=Xon+AXp, as

 tior™=
Vé?f,' ag'?,”od pion mass spectrum,_=139.61 MeV, in excel- Which measures the chiral deformation in the Res-mean-field

lent agreement with the experimental value of the pion masg@pproximation, is given by the expectation value
spectrumm_=139.6 MeV. Introduction of the confinement
volume will lead automatically to a nonvanishing pion mass. -
We assume that the pion mass is exclusively due to thi =12 ] ~6460
effect. This assumption is in contrast with the traditional idea gA*=14.63
that the nonvanishing pion mass is due to a nonvanishin
current quark mass which causes an explicit chiral symmetr
breaking.

We give in Fig. 3 the Res ground-state energy map o
NJL for the values of the parametegs\?=13.80 anda

] —6480

1 -6500
[ -6520

'] -6540

N

"1 -6560

'] -6580
-6600
-6620

| -6640

A2
82 95

~6660
-6680

20 -6700

~6720
-6740

15 -6760

104

100 i
w0

aann

0 T T T I T T 1

0 2 4 6 8 10 12 14
AM

FIG. 1. A/M dependence of the dimensionless quangjty’
with different dimensionless volume parameteas Solid and
dashed curves represent results for case | and case |l, respectively. FIG. 2. Resonating ground-state energy map of N@A{
A thick solid curve represents a result for the usual HF approach.=14.63 anda=5.12).
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<J¢>:<qrngﬁ1$¢|qrng ) (6.1) the solution for the paramete_rsgA2=13.80 _ A
o =631.0 MeV) anda=7.50 presented in the preceeding sec-
Unfortunately, we find the expection valg@ g3y w5 tion, i.e., x;=0.532, x,=0.374, ¢; 3=0.810, ¢; 4= 0.538,
vanishes trivially as is seen clearly from the explicit struc-and det;,=0.063 into Eq.(6.3), we are led to a numerical
tural forms of the usual mean-field density matriatfs, ,, result —{(yy)/V}3=129.80 MeV. This value is a little bit
Eq. (3.8, andWy,,, Eq.(3.9), for the negative-energy state small when compared with the theoretical one and the ex-
and the interstate density mati;,,, Eq.(3.10, and from  perimental one given in Reff10] and[12]. However, if the
the relationc; o= C o, EQ. (3.16). degrees of freedom of isospin, flavor, and color are fully
However, 'i% we ’?:onsider the solution famequal con- taken into consideration, it may be expected that a much
stituent quark masses, the order parameter has a nonzeraproved value for—{(y)/V}** will be obtained.
value given by Thus, by taking into account quantum- and dynamical-
tunneling effects between the two S-dets wittequalcon-
— . Res . Res _ 2 stituent quark masses and with different correlation struc-
(P =(V o T W g™ = Cl,gr§p: T BW11,] tures, the present Res-mean-field approach throws some new
light on the dynamics of chiral-symmetry breaking and of the
2 collective pionic state.
+02,grzp Tr[IBWHP]“LCl’ngZ,ngp: (T AW12] The Res-mean-field method is able to describe an associ-
ated decay process if we notice the similarity of the forms of
the interstate density matrix and the generator which pro-
T 2_RK2
+Tr['8W12P])1_p[ detz;5,6(A"—p%), 6.2 guces the RPA pionic state given[if].

In the usual RPA, the pion decay constantis defined as
from which the quantity per normalization volume the time component of the axial-vector matrix element
—{(yp)IV}* is evaluated as (0ljs|mp) =t [ @(p) ]2 [w(p) being a pion mass spectrim

js=3]L;ye 'P"i for the RPA pionic statém,) of momen-

— A tum p and vacuumn|0) [9]. In the Res-mean-field RPAL8]
1/3_ 2 2
—(Y)IV; _(2772)173(Cl,grxlv(xl)_cZ,gerV(x?) the pion decay constantf, may be described as
(ORjg 3y =1 [ Efesaion V2 for the Res-mean-field RPA

Ny pionic state| 75*9 of momentump and vacuunjoR®S. Both
L in the usual RPA and in the Res-mean-field RPA an operator
13 similar in form to that of the interstate density mati,
plays a crucial role as is shown in Refd0, 172, and[19],
] respectively. The Res-mean-field RPA pionic state can be
(6.3 approximated b9 =AW, |0R), where\ is the nor-
malization factor to be determined later. Then, within the
In the above, if we sex;=x, andc; g=Cc, 4 the order pa- framework of the Res-mean-field approximation, by using
rameter vanishes trivially. On the other hand, if we assuméhe Res-mean-field excited-state wave functiplr e
c1g=1 andc, 4=0, the above equation just coincides with =c; ¢Ju;)+CyeU,) and the helicity operatd, defined as
the formula for the order parameter giver(@]. Substituting ~ S,=3-p/|p| we get

1
+ Clvgpzygrdetzlm

2 2

X X
+ ?lv(xl)— JI+x2- Ezv(xz)

f o <0Res“ 5| Wﬁes)[ Esfgtatiori] T~ M OREE“ SWIZ,pl 0R65>[ Eg?(;sitation] T~ J\/-(\P gF;reSI 2 iN: l( 7i5$pi) | v Sxes)[ EeRf(;sitatiorJ e

zﬁdcl,gpl,eg Tr[(yssp>w11p]+c2,gpz,ex2p Tr (¥°S) Wagpl + cl,gpz,eg T (¥°Sy) Wiz,

+c2,gpl,ex§ T (¥°Sp) Wi, 1;[ detzupe(Az—pZ)][Eﬁfsma1’2- (6.4)

Here we have used a slightly modified definition of the ma-trix eIement(‘IfgfstEiNzl(yisspi)|\[f§fs) vanishes trivially as

trix eIemenF pfys to get a significant nonzero value pf the js seen clearly from the explicit forms 11, EQ. (3.9,

fz. The mixing coefficients, ¢, and ¢, ¢, are determined W, . Eq.(3.9), andW,,,, Eq.(3.10 and from the relations

through Eqs(4.18 and (4.19 and the orthogonality condi- C2,/= C1.gr ANACy 0= — C1 e, EQ. (3.16).

tion (WEeIWES9 =0. However, if we consider the solution famequal con-
Let us consider again the solution fequal constituent  stituent quark masses, the matrix element

quark mass as an elementary exercise. We also find the ma¥ §*1=i; (S, )| W e) obtains a nonzero value. First we
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must evaluate the normalization factor. For the Res-mean-

field RPA pionic statd 59 =AW, |07, the normaliza-
tion factor follows from the normalization requirement

% (mpeg )= 1=N2<0Re?% WizpWip,|07%

=N2<0R61§ [Wizp, Wi, ,1]0R,
(6.5

which is approximated as

1=N%(Vg 512 [lepaWnp]detlepN’gre- (6.6

For the sake of simplicity, instead of E¢(6.6), we use an
approximate normalization

L=N(TGr12 0(A%-p2) 2

1/2

, (6.7

etz,,)?
XTr{[WIZ,p!WlZ,p]} ( T ]p) |quRre

from which we obtain

p2

d®p d’p 1
NZZH<2w>39(A2_p2)f(2w>3§[1 ExoEar

=2

1 X
+x1x§F(tan‘1X— \/1- —2)
2 X1

—1/4
] (X1=X3).

1 3 1 3 2 2 1+X1 2 2
VWA VWA 1—(1—2x7—3X1X,—X53) 1+—X§—x1(2x1+3x1x2+2x2)E

\PR'ﬁE O(A%—p? >E

—1/4

et 2
XTr{[W12p*W12,p]} ( Tr[ZIlz]p) | Re

(6.8

On the other hand, from the explicit expression for the inter-

state density matrixVy,,, Eq. (4.11), we derive easily a

commutation relation

ElpEzp_ p2+ M 1M2
(My+My)%p?

+(EgpMo+E M) Bl1O(A%—p?). (6.9

With the use of the relation def,,=—1/21+ (p
—M;M)/(E1pEzp)], Eq.(4.4), and the above commutation
relation, we get a matrix-valued identity relation

p
E1pEop

[Wizp,Wi,p]1= [—(E1p—Ezp)¥°S-p

2

1
{[W12p 'V\/Izp]}z(detzlzp)zzE [ 1—

+:81p:82p} 4‘9( —-p )

(6.10

Substitution of Eq(6.10 into Eq. (6.8) leads to an explicit
expression for the normalization fact&f

~1/4
= ,31p,32p} 46(A?— pz)]

1 X3
tan 1X—, - —2>

By using the explicit forms ofW,;,, Eq. (4.9, Wp,, Edq. (4.10, and W,,,, Eq. (4.11), the matrix element

(PerI=iL (17S,) | WESY is calculated as

<‘PRES‘E 1(7|Sp)|q’Re __V3 s A3 Clng1e>[V1+X1(1 2X1)+2X1]+C29rC2e){\/1+X2(1 2X2)+2X2]

+(C1,9C2,exT C2,gC1ex) * de'[zlzx

[x1(1+x2)3’2+ Xo(1+X2)32—x 1 xo( x5+ x3) 1} .

(6.12

Then finally we obtain the ratio of the pion decay constignto the square root of the normalization volunf¥
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excitatio

A

ERes n} —1/2

WV 6vV2

2 2 1+X§ 2 2
1—(1—2x7—3X1X,—X5) m—x1(2xl+ XX+ 2X5)E
2
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2
tanfli, \/1- Xﬁ)
Xo Xl

—1/4
+xlx§F(tanl, 1—” [clvgrclye)[\/leri(l—2x§)+ZXi]+czygpzye{\/1+x§(1—2x§)+2x§]

1
+ (Cl,grcz,ex+ Cz,grcl,ex) ' detzlzm [Xl( 1+ X§)3/2+ X2( 1+ X§)3/2_ X1X2(Xi+ Xg)]

(X1=X5). (6.13

Substituting the solution for the parametegra®=13.80 (A the naive NJL model without isospin. For the sake of sim-
=631.0 MeV) anda=7.50 in the preceding section, i.&, plicity, a state with large quantum fluctuations is approxi-
=0.532,x,=0.374,¢; ;=0.810,C; 3= 0.538,C, .= 0.590, mated by the superposition of two Dirac seas, the nonor-
Co.ex= —0.845, and det;,=0.063 into Eq(6.13, we are led  thogonal two S-dets with different correlation structures. We
to a numerical resulf_/\V=29.7MeV. This value is a have treated two cases: in the first case the Dirac seas are
little bit small when compared with the theoretical one andcomposed ofequal constituent quark masses, while in the
the experimental one given in Refd0] and[12]. However, second the quark masses arequal We have made a direct

if the degrees of freedom of the isospin, the flavor, and theptimization of the Res-mean-field orbitals by variations of
color are taken into consideration fully, it may be expected tdhe Res-mean-field ground-state energy with respect to the
get a much improved value for tHe./\/V. The normaliza- Res-mean-field parameters, constituent quark masses. The
tion factor is also computed ag=0.0009 whose value is too Res-mean-field ground and excited states generated with the

small but plays a crucial role in achieving a reasonable valu&vo S-dets explain most of the pion mass spectrum.
of the f ./ V. We also have investigated, in the framework of the NJL

VII. SUMMARY AND CONCLUDING REMARKS a=13

gA’=138

We will now describe in detail other numerical quantities
in the Res-mean-field approach to the NJL model. In the
Res-mean-field approximation the overlap integralzggthe-
tween the two S-dets as well as the interstate density matri
Wy, plays an important role, allowing to take into account a
guantum tunneling effect between the two S-dets. To get ¢
finite value of the det;, it is necessary to introduce the
dimensionless parameter which gives the *“confinement
volume.”

Under the use of the S-dets widlgual constituent quark
masses, the overlap integral dgtis plotted as a function of
M/A for the different dimensionless parametearg¢see Fig.

4). The value of the deg;, decreases rapidly as the constitu-
ent quark mass becomes heavier and as the confinement vc
ume is increased. This result is considered to be reasonabl

Under the use of the S-dets witlnequal constituent
guark masses, the overlap integral letis also plotted as a
function ofM (/A andM, /A for the two sets of parameters
a=5.12,gA*=14.63 anca=7.50,gA %= 13.80(see Fig. 5.
These sets of parameters give the directly optimized solu-
tions of the Res-mean-field equations for trgpial constitu-
ent quark masses and for thenequal constituent quark
masses, respectively. The value of thezlgtor the former
set shows a more gradual decrease than that for the latter s
as both the constituent quark masses become heavier. Tt
latter a=7.50 corresponds to the confinement volume of a
cube with sided =2.38fm long.

To show the advantage of the Res-mean-field theory for ¢

-9480

-9500

-9520

-9540

-9560

-9580

fermion system with large quantum fluctuations over the FIG. 3. Resonating ground-state energy map of N@A{

usual mean-field theory, in this paper we have applied it to=13.80 anda=7.50).
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TABLE I. Use of the S-dets witlequalconstituent quark mass- TABLE Il. Use of the S-dets withunequal constituent quark
es. Pionic properties in the context of the Res-mean-field theorynasses. Pionic properties in the context of the Res-mean-field
with equal constituent quark masses. The asterisk denotes resultbeory with unequalconstituent quark masses.
concerning the NJL in the harmonic order, taken fid@i]. We also
include in brakets some experimental or phenomenological values. NJL model
The Res-MFT means the resonating mean-field theory. The output

value 12.0 ofgA?2 in the column TDHF corresponds to the output Res-MFT TDHF
value 2.0 of the same quantity ji0] if we take the degree of the Inputs a 7.50
freedom of the flavoN;=2 and that of the coloN.=3. A (MeV) 631.0 631.0
NJL model Outputs gA? 13.80 12.0
Res-MFT TDHF M{,M, (MeV) 335.90, 235.82 3350
Inputs a 5.12 — 129.80 (222)6
A (MeV) 631.0 631.0 —(¢p)*"> (MeV) : :
(225+ 25)
Outputs gA? 14.63 12.0 m,. (MeV) 139.61 138.0
M (MeV) 350.38 335.0 (139.6
B (350 f,. (MeV) 29.70 93.0
—(y)*® (Mev) 0 246.6 (93
(225+25)
m,, (MeV) 139.70 138.0
(139.6 inclusion of collectives mesonic state(3) Chiral projection
f. (MeV) 0 93.0¢ to project out good chiral state if small current quark masses
(93 are introduced.

Very recently, one of the present auth@sda P). and his
o ] ] collaborators investigated the connection between the linear
model, effects of the explicit chiral-symmetry breaking on ; model and the NJL model on the basis of the usual mean-
the associated properties of the Dirac sea and the collectiigsg theory. They have shown the conditions for soliton for-
pionic state in the sprit of the Res-mean-field approximationmation and the stability of the soliton when the Dirac sea is

The present treatment has following characteristic pOint%cIuded[ZO]. Then we have another interesting problem to
quite similar to those if9]: (i) There are actually three

model parameterd (the cutoff parameter g (the coupling det
constan), anda (the dimensionless volume parameéteii) 121_
The coupling constarg does not enter the vacuum proper-
ties as is seen from the explicit form of the S-dét(g))
(=19)), Eq. (3.2). (iii) The regime of the results depends
only on the dimensionless ratMd /A andM,/A and only
the constituent quark massbk;, and M, determine the en-
ergy (or length scale through Eq(4.20. We interpretM
andM, (M;=M,) as the constituent quark masses and use 0.7
as the variational parameters. But only the heavier one has a
significant physical meaning because the magnitude of 0.6
square of the corresponding mixing coeffici(mil;gr is much

a=3

.......... a=5

larger than that of the othec . 0.5+
Finally, summarizing, we present in Tables | and Il nu-

merical results for various physical quantities. Especially, the 0.4

numerical values of A2, constituent quark massib;, M,

pion masan,., order parameter {()/V}Y® and pion de- 03]

cay constanf_/\V tabulated in Table Il compare compara-

tively well with the experimental datas. 0.2

The radical spirit of the Res-mean-field theory may be
expected to open a new field for the exploration of the low-
energy hadron physics using the strong analogy between a
chiral effective Hamiltonian with four-fermion interaction
and a familiar nonrelativistic fermion two-body Hamiltonian.

The present calculation is oversimplified as far as we con- 0 02 04 06 08 1 12 MIA
sider only the two S-dets. Then the following problems re-

main open question$l) The consideration of the degrees of  FIG. 4. Overlap integral dej, as a function ofVI/A for the
freedom of the isospin, the flavor, and the col®) The  different parametera.
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be solved in the near futur¢4) The relation between the

model with quarks and the present Res-mean-field theoretical

approach to the NJL model.
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d3p 5
(277)3 Tr[ Y E : leZ,p]

H[Wlﬂ=J d3rJ
—29[ d3r(

which is calculated to be

dp
(2m)?

2
(A~ IOZ)) . (AB)

d3
H[W,]=-2 f(zﬂ_r))e,Epﬁ(Az—pz)}V
3 2
—29[f(27_r)39(/\2—p2) V. (A7)

and Professor C. A. de Sousa for their careful reading of the
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APPENDIX A: MATRIX ELEMENT
OF THE HAMILTONIAN WITH EQUAL CONSTITUENT
QUARK MASSES

From Eq.(A7) thus we can reach to a desired form of the
matrix element of the Hamiltonian, i.e., E®.13.

In [9] it has already been proved thdf W, ;] is invariant
under a chiral transformation. And théf{ W,,] is also in-
variant. We can easily prove thef W;,] becomes invariant
under the chiral transformation as can be seen in detail in

Here we give detailed computation of the matrix elementAppendix C. As the consequence of this fact, the expectation

of the Hamiltonian(2.1) (u;|H|u,) along the same way as
the one in9]. Using the explicit expression for the interstate
density matrixXW,,,, Eq.(3.10), for the kinetic part we have

T °2 - pWypp]= —2E,0( A%~ p?). (A1)
For the direct term of the interaction part, we have trivial
relations

T BWi1,5]=0, T BY°W;,,]=0. (A2)

For the exchange terms of the interaction part, we have

T B(1)Wizp, (1) B(2)Wi2p,(2)]

[1_

P1-P2
oef (5

Mz)}ﬂ(/\z—pz),

(A3)
TA(1) ¥ (1) Wizp, (1) B(2) ¥*(2) Wi,(2)]
—[—1+ %(Ep Ep,+ Mz)}a(AZ—pZ).
pipz Tt 2
(A4)

Performing the space integration and both the summation

and the product ovep, p;, andp,, then the matrix element
of the Hamiltonian is transformed to

<u1|H|u2>=f d3r2pH[W12p]]_p[ detz;,,0( A%~ p?)

Changing the summation overinto the integration ovep,
H[W,] is given simply as

value of the NJL Hamiltoniari2.1) by the superposed wave
function c4|u;)+c,|u,) becomes invariant under the chiral
transformation.

a=5.12
gA2=14.63

0.9
0.8
0.7
0.6
0.5
.04
0.3
0.2
0.1

BT[]

FIG. 5. Overlap integral det, as a function ofM,/A and
M, /A for the two sets of parametess=5.12,gA?=14.63 anda
=7.50,gA%=13.80.
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APPENDIX B: CALCULATIONS OF THE OVERLAP INTEGRAL AND ITS PARTIAL DIFFERENTIALS

In this appendix we present some useful formulas of elliptic integrals. These are taken or easily derived from formulas in
[17]. First, to calculate the overlap integral dgf, it is convenient to use the following reduction formulas of algebraic
integrands to the elliptic functions andF:

A 1XiAEt‘11 1X% (X1=X3),
J‘A p? 1x2 RN S N =T ) T
p = (B1)
Vp?+Mi\p2+ M3 1+x5 1 X
1l - X>=X1),
A T X,E| tan X 1 2| (X2=X1)
J, @
p
o \Jp?+MiVp®+M3
L AS(1- 25— x2 X2+1A3 202+ x2)E| tam 1 /1 X2 2| a1t /1 s (X1=Xy)
B 3 ( X1 —X5) 1+x 2 X1 (Xl Xz) an- X, Xl X5F| tan” X, Xi , 1=X2),
1 +x2 1 1 X5 1 X
§/\3(1—2x§—x§) I 2+3A3x2 2(x2+x1)E(tan 1X—1, 1- XZ)—xlF tan” 1X—1, 1—X—§ , (Xa=Xq).
(B2)

To calculate partial differentials of the overlap integral et formulas for partial differentiation of the elliptic integres
andF used in the text are the following, which are also taken from formuldg 7h

JE(.K)  E(¢,K)—F(4.k)

ak k ’ B3)
_‘?E;‘Z"” - I-Ksi7 4, (B4)
IF(¢,K)  E(¢k)—K'?F(p,k)  ksingcose N
ok - kk,2 k/2 1_k25in2¢' k'=V1 k’ (BS)
IF($k) 1 (86)
e V1-KZsiF ¢

Using the above formula@B3)—(B6), partial differentials of the overlap integral dg} given by Egs(4.7) and(4.8) with
respect to the variables, andx,, respectively, are calculated as

1 2 o2 ! s o, [1EXS
% 1—3%;X,— 3x7+ 3X{(X1+Xp)tan X—l—(1—2x1+2x2) 1+—x§

- det212: a(detzlz) X
1

X,
1/ x5 1 X3
—x1(2x§—x§)E(tanl—, 1- = +x1x§F(tan1—, 1— ||, (%=Xp), (B7)
X2 X1 X2 X1
— detz;,=a(detzy,) ————| 1— 3xXoX; — 3X5+ 3X3(X,+ X )tan‘li—(l—x2+x2) 1+—Xi
(9X2 12 12 X2+Xl 221 2 2\A2 1 X, 2 1 1+X%
1 X 1 X
—x1(2x§—x§)E(tanl—, \/1-—5 +x§x1F(tan1—, N 1-=2]1, (x=xy), (B8)
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2

2 2 1 2,2 1+
1—3x1Xp—3XT+ 3X(Xg+x)tan *—— (1 —=X7+X5) \/ 73
X1 1+x7

1 x4
+x§x2F( tan l—,\/1— —;)
X, X5

2

1+x5

1
1—3X,X1 — 3X3+ 3X3(Xo+ X )tan I—— (1= 2x34+ 2x) \/ ——
Xz Xp+ X1 X1~ 3Xe+ 350G+ x) Xp ( 2+ 2x3) 1+x3

1 X 1 X
2,2 — 1 2 — 1
—x2(2x2—x1)E(tan 1X—1,\/1—X—% +x2xlF(tan 1X—1,\/1—X—%

APPENDIX C: MATRIX ELEMENT OF THE HAMILTONIAN WITH UNEQUAL CONSTITUENT QUARK MASSES

J
—detz,,= tz
0dee 12=a(detz;) X1+ X,

v (Xe=Xq), (B9)

.1
—x2(2x§—x§)E(tan 1X—1, 1_x_§

d
- det212= a( detzlz)

v (X2=Xy). (B10)

We here give detailed computation of the matrix element of the Hamiltdgidh(u,|H|u,) along the same line as the one
in the preceeding appendix. Using the explicit expression for the interstate density WigtgixEq. (4.11), for the kinetic part

we have

E;pM,+Ey My
T "% PWagp] = =2 =20 O(AZ—p?). (&)

the first of which is nonzero but it reduces to the first of E&R) whenM;=M,=M. The exchange terms of the interaction
part are also computed as

+ . —
1 M1+M2 M1+M2 pipg M1+M2 M1+M2

THA(1)Wazp, (1) B(2) Wiz (2)]=

- E1p,E2p, —P1-P1t MMy Eqp Ezp —Pa- P2+ MM 2)

2_ 12
M +M, M +M, 0(A"=p), €3

E1p,~E2p, E1p,— Ezp,
Mi+M, M +M,

TIB(1) ¥ (1) Wiy (1) B(2) ¥2(2) Wiy, (2)]=| =1+

E1p Mo+ Ezp My Eqp Mo+ Epy My
M.+ M, M.+ M,

+pl’p2(

PiP
Eip,E2p, —P1-P1t MMy Eqp Eop —P2-p2+ MM,
M1+M2 M1+M2

O(A%—p?).

(C4

Performing the integration over, p;, andp,, then the matrix element of the Hamiltoniati W,,] defined by Eq(A5) is
given as

H[Wlﬂzf d3rf

d3p d3p 2 d3p 2
(Zw)ng[’y‘r’Elezp]—gf d3r(f(zT)STr[,8W12p]) _ng dgr(f(zT)s@(Az_pz)) )
(CH)
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which is calculated to be

d®p EipMo+EzpMy s d°p Ejp—Egp 2_ 2 ?
d3p ) ) 2
—29 fWQ(A -p9)| V. (Co)

From Eq.(C6) thus we can get a final form of the matrix element of the Hamiltonian, i.e.(£#&5.

Following Ref.[9], it is easy to prove that the matrix element of the Hamiltoriag( 8)|H|u,(6)) is invariant when the
S-det|u;(»)) undergoes the chiral transformation generated b)[iéﬁla)zjh':lyf].

We can easily find

<U1(9)|H|U2(9)>:f d3rEpH[W12p(0)]];[ detz;,,0( A%~ p?) =H[Wy,]detz;,, (C7)
where
_ . 1 A,—B C,+D C,—D
—ai(0/2)y° —i(012)y°_ — P 2p_ 5P " “Py 5P “by 2_ 2
B(6)=¢€27° e~ 1927’ = B cosh+ By5(—i sing). (C9
In fact, we have successively
dp _ 5 & 5 d’p

f WTr[e (612)y 75e|(0/2)7 2’pW12p]:fWTV[)’SE'me,p], (C9)

dp e dp s s d®p
J 2 Tr[e (927 gei (¥12)Y WlZP]:J (Zw)aTr[Bewwz)y Wy, e |(0/2)7]:f (zw)aTr[ﬁme]cosa, (C10

dsp T —~i(012)y° .. 5 i(0/2)y5W _ dsp T 5 i(9/2)y5W —i(62)y°1_; d3p T BW. ;
(2m)° e Bvy’e 12p]= W Bye 12p€ 1=i W M BWizp]sing.

(C1D)

Equation(C9) shows trivially the chiral invariance. On the already pointed out in Appendix A. As the consequence of
other hand, from Eq9C10 and(C1J) it turns out that the the use of these results, thus we can prove that the expecta-
direct term in addition with contributions of the exchangetion value of the NJL Hamiltoniari2.1) by the superposed
terms becomes also invariant under the chiral transformatiowave functionc,|u;)+c,|u,) becomes invariant under the
This fact holds also in the case M,=M,=M which is  chiral transformation.
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