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Quark distributions in the nucleon based on a relativistic three-body approach
to the Nambu—Jona-Lasinio model
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Quark light cone momentum distributions in the nucleon are calculated in a relativistic three-body approach
to the Nambu—Jona-Lasinio model by using a simple “static approximation” for the Faddeev kernel. A
method is presented which automatically satisfies the number and momentum sum rules, even in the regular-
ized theory. In order to assess the sensitivity to the regularization scheme, two schemes which can be formu-
lated in terms of light cone variables are discussed. The effects dttmposit¢ pion cloud are taken into
account in a convolution approach, and the violation of the Gottfried sum rule is discussed. After performing
the Q2 evolution, the resulting distributions are compared to the empirical $66§56-28189)06011-7

PACS numbgs): 12.39.Ki, 14.20.Dh

I. INTRODUCTION Gribov-Lipatov-Altarelli-Parisi(DGLAP) equations[7] for
the u dependence of the distribution functions, which in turn
Deep inelastic lepton-nucleon scattering experiments aralso determines th@? dependence of the structure func-
providing detailed information on the quark and gluon dis-tions. One can therefore use effective quark theories to cal-
tributions in the nucleori1]. By analyzing the distribution Culate the distribution functions at some “low energy scale
functions derived from the measured cross sections with thﬁ‘;eQO' where a description in terms of quark degrees of

: . dom alone is expected to be valid, and then use the DG-
2 L

help of theQ evc_>|ut|on based on per’turbatlve QCD, one can ap equations to relate them to the distribution functions
extract the fraction of the nucleon’s momentum and spi

; o extracted from experimental data at Q.

carried by the quarks at some renormalization sgalend As an effective quark theory in the low energy region, the
obtain valuable information on the spin-flavor structure ofNambu—Jona-Lasini6NJL) model[8] is a powerful tool to

the nucleon(2]. For example, of great interest in this con- investigate the properties of hadrdi8s. It exhibits the spon-
nection are the flavor dependences of the valence quark diganeous breaking of chiral symmetry in a simple and clear
tributions[3] and of the sea quark distributioh4,5], which ~ way, and allows the solution of the relativistic two- and
reflect the roles ofyq (diquark andqg (mesonig correla-  three-body equations in the ladder approximation due to the
tions in the nucleon. Current experiments at HERA are exSimplicity of the interaction[10,11,13. Concerning the
ploring the region of smalt in order to get more information 9round state properties of baryons, the Faddeev approach to

on large-distancénonperturbative phenomena, and future (€ NIL model has been quite succes$fi], and since in
: . . ... this approach the translational invariance and covariance are
experiments at RHIC will concentrate on the spin distribu-

. preserved, it is natural to apply it also to the structure func-
tions. , tions of the nucleon. Actually, the NJL model has been
An ess_entla! tool to gnalyze. th_e .data on the .nuc'leon StruGormulated recently on the light corieC) and the structure
ture functions in the Bjorken limit is the factorization theo- function of the pion has been Ca|cu|a][df5]_ For the case of
rems[6], which allow us to separate the long-distance partshe nucleon, however, there is the problem that the relativis-
(parton distributions from the short-distance partéhard tic Faddeev equations are usually solved by performing a
scattering cross sectiong he latter ones are calculable from Wick rotation using the Euclidean sharp cutdff], and this
perturbative QCD, while the parton distributions requiremethod cannot be applied directly to the calculation of the
knowledge of the nucleon wave function. The central pointtC momentum distributions. A possibility is first to go to the
of the factorization theorems is that the infrared-divergentnoment space and then reconstruct the distribution functions
(long-distancg contributions to the perturbative diagrams by the inverse Mellin 'transformation. It 'is, however,'des.ir-
can be absorbed into the definition of “renormalized” parton@ble for a first orientation to use some simple approximation
distributions[2]. Because of this procedure, the parton dis-Which allows a direct calculation of the distributions. The
tributions eventually depend on a factorization scgle, ' Static approximation” to the Faddeev kerrdl6,17, which
which is usually taken to be the same as the renormalizatiodMounts to neglecting the momentum dependence of the
scale. The requirement that the structure functions should ndopagator of the exchanged quark, allows an analytic solu-

depend on this scale then leads to the famous Dokshitzeflon of the Faddeev equation, and it has been shown in Ref.
[17] that for the nucleon mass this approximation is not un-

reasonable. However, the overbinding of the nucleon com-
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diquark interaction lead to radii which are too snja#], and particular form of £,, we will treat g, and the ratior
therefore we can expect that the resulting momentum distri=g_/g_ as free parameters, where the latter reflects different
butions will be too stiff. However, our main purpose here ispossible forms ofZ, [10].
to see some general trends, to investigate the influence of the The reduced matrices in the pionic and scalar diquark
regularization scheme, and to demonstrate that in the Faghannels are obtained from the respective Bethe-Salpeter
deev approach the validity of the number and momentumBs) equations a$10]
sum rules is guaranteed from the outset, which is not the case
in the soliton or bag model approaches. The calculation em-
ploying the static approximation to the Faddeev kernel re-
sembles the quark-diquark calculations performed earlier
[19]. We will go beyond these calculations by including the
structure of the diquarkand also of the pion when estimat- ith the bubble graph
ing the pionic cloud effecisand investigating the sensitivity
to the regularization scheme, while preserving the number
and momentum sum rules.

Besides the Faddeev approach to the NJL model, the soli-
ton approach is also used frequently, and several investiga-

tions of the nucleon structure functions have been carried oyt heare S(q)=1/(¢—Mqo+ie€) is the Feynman propagator
in this framework{20,21]. Since in the soliton approach the andMy, the constituer?t quark mass.

pionic effects(corresponding to correlations in tiogj chan- If the interacting two-body channels are restricted to the
nel) are _ta_ken into account on the mean field level from theg.g(ar diquark one, the relativistic Faddeev equafti@} can
outset, it is natural that recent works concentrated on thge requced to an effective BS equation for a composite scalar
flavor dependence of the quark distributid2d]. The Fad- diquark and a quark, interacting via quark exchaf2g. As
deev approach is complementary in the sense that the corrg;, explained in the previous section, in this paper we will
lations in theqq channel are included from the outset, and asirict ourselves to the static approximatid,17), where
pionic effects are then treated by perturbation theory methg, Feynman propagator in the quark exchange kernel is sim-
ods [22]. It is of course desirable to unify these two ap- ply replaced by—1/Mq. Then the effective BS equation
proaches, and an interesting attempt towards this direCtiOﬂaduces to a geometric series of quark-diquark bubble graphs

has been made in Refl1]. _ [TI(p)], and the solution for thematrix in the color singlet
The rest of this paper is organized as follows: In Sec. ll.hannel is

we explain the model for the nucleon wave function, in Sec.

[Il we explain our method to calculate the quark distribution 3 1

functions, and in Sec. IV we discuss the numerical results. A T(p)= M. 3

summary is presented in Sec. V. Q1+ —TIn(p)
Mq

4igs
1+2glls(k)
(2.3

-2ig,

Tw(k)=m, 7o(K) =

[ d%q
Hw(k)zns(k)=6|JWtrD[VSS(Q)VSS(q_k)],
(2.4

(2.5

II. NJL MODEL FOR THE NUCLEON WAVE FUNCTION with

The NJL model is characterized by a chirally symmetric 4K
four-fermloq interaction Lagra_nglaflI - By means of Fierz y(p)= _f 2 S(K) 7(p—K).
transformations, one can rewrite afly in a form where the (2m)
interaction strength in a particulag or qq channel can be _ _ _ _
read off directly{ 10]. That part which generates the constitu- The quark-diquark vertex functiofiy(p) in the covariant
ent quark mas$1q and the pion as a collectivgq bound ~ normalization is then obtained from the pole behavior
state is given by — 3PS Th(ps)/(p?P—MZ+ie), where My is the

nucleon mass, as

(2.6

B (7 e P 1 N Cu(P)=Zyun(p) )

. . ' ' . ' 1 1/2 p_ /MN 1/2
T B I et Tl
i 2.9

L, =9 ¥(ysC) B YT (C L) 1B Y], (2.2

where gA=\3I2\* (A=2,5,7) are the color 3natrices and
C=ivy,y,. The coupling constantg,. andgs are related to
the ones appearing in the origind| by numerical factors

%Our conventions for LC variables aes = (1#/2)(a’+a%), a.
=(1M2)(ag*as), and a, =—a,; (i=1,2). The Lorentz scalar
product isa-b=a_,b*+a_b —a, -b, . We will frequently call

due to the Fierz transformation, but instead of choosing @_ (p.) the “LC minus (plus component” of the four-vectop.
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whereuy(p) is a free Dirac spinor with madsl, normal-
ized byuy(p)uy(p)=2My. In this normalization, the ver-
tex function satisfies the relation

dlln(p) r
p+

1 —
7FN(p) n(p)=1, (2.9

2p

which leads to charge and baryon number conservation iﬂis

any treatment which preserves the Ward identity

dlln(p)
Agrp(Pp)=— =

o, (2.10

Nq/P

for the vertex of the quark number current of the proton a

q=0 (Nyp=2,Ngp=1)72
Il. QUARK DISTRIBUTION FUNCTIONS

The twist-2 quark LC momentum distribution in the pro-
ton (momentump) is defined a$24,25

~ 1(dz _ _
fq/P(X)ZEJ ﬁelp_xz <p|T[‘/’q(0)7+‘//q(zi)]|p>v
(3.

whereq denotes the quark flavap) is the proton state, and
x is the Bjorken variable which corresponds to the fraction o
the proton’s LC momentum componept carried by the
quarkg. As has been discussed in detail in Re#,25, for
connected LC correlation functions tieproduct is identical
to the usual product, from which it follows that the distribu-
tion (3.1) is nonzero in the interval 1<x<1. The physical

quark and antiquark distributions which determine the struc

ture functionsF,; and F, are obtained for &x<1 as
fop(X)=Typ(X) and fgyp(x)=—Typ(—x). The valence
(v) and sea(s) quark distributions are then given by
fa, P()=Tap() ~fge(x),  and  fo_p(x)=fg p(X)

=fapr(X).
The evaluation of the distributiof8.1) can be reduced to

PHYSICAL REVIEW &0 065201

fp(x) =

FIG. 1. Graphical representation of the quark LC momentum
tribution in the Faddeev framework. The singlouble line
denotes the quark propagaiscalar diquark matrix), the hatched
circle stands for the quark-diquark vertex function, and the operator
insertion denoted by a cross stands fofS(k_ —p_x)(1=*7,)/2

for the U(D) quark distribution. The second diagram stands sym-
bolically for those two diagrams obtained by inserting the cross into

tboth particle lines in the diquark. The quark-diquark vertex contains

the isospin operator,. The diagram where the operator insertion is
made on the exchanged quark is not shown here since it does not
contribute in the static approximation.

We therefore have to evaluate the Feynman diagrams for the
quark propagator in the nucleon, trace it with, fix the LC
minus component of the quark momentumkas=p_x, and
integrate over the remaining componekts andk, . Since

in our model for the nucleon discussed in the previous sec-
tion the quark can either appear as a spectator or as a con-
stituent of the scalar diquark, the Feynman diagrams to be

fevaluated are shown in Fig. dn the full Faddeev approach,

there is also a diagram where the external operator acts on
the exchanged quark, but in the present static approximation
this diagram does not contribute.

To present the formulas for the diagrams Fig. 1, we note
that the second diagrartthe diquark contributioncan be
expressed conveniently as a convolution integral if we insert

the identity

_ oo A= _k_) 2 o
1—fdyf de dC]o5(y p_)5(z aq- 6(q qoz:;4)

a straightforward Feynman diagram calculation by noting-€.,Y is the fraction of the nucleon’s momentum component

that it can be expressed*d@4-26
Typ()=— 5 o' ol x— | T y* M(p.k
q/P(X)——K 2o\ X o[y a(p.k),
(3.2

with the quark two-point function in the proton given by

Mq,Ba(pvk):if d*z €4(p| T[ 1hq,a(0) thq 6(2)1|P).
(3.3

This vertex is defined by(p|#(0)y [(1= 7,)/2]4(0)|p)
=T\(p)Agp(P.P)T'n(p) for g=u(d).

“The original Lorentz-invariant expression is recovered
k_/p_—k-qg/p-q andy*/p_—¢/p-q. The expressiofi3.2) cor-
responds to the Bjorken limit in the frame wheye=0, q,<0, i.e.,
q+—®, q-——p-X.

by

p_ carried by the diquarkz is the fraction of the diquark’s
momentum componerd_ carried by the quark inside the
diquark x=y2z), andqﬁ is the virtuality of the diquark. Us-
ing also the identity

IS(k)
ak+ !

S(k)y*S(k)= - (3.5

and performing partial integrations in the plus components of
the loop momenta, which is permissible since these integra-
tions are convergent and not restricted by the regularization
schemes to be discussed later, we obtain the following
expression

5To distinguish the case without the pion cloGehlence quark
picture from that including the pion cloud, we replage-Q in the
formulas corresponding to the diagrams of Fig. 1.
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1 notation[?Q,p(x)=fQ,p(x)] and in the integration limits in
farp(X)=dq.uFqp(x)+ EFQ(DVP(X)' (3.6 Eqg. (3.9, and corresponds to a valence quark model
[forp(x)=0].
Here the first term corresponds to the first diagram in Fig. 1 Using the above expressions and the normaliza{®$),
and is expressed as it is a simple matter to confirm the validity of the number
and momentum sum rul®s

1 —( 9
FQ/P(X):KFN(W__FHN(Xap))FNy (3.7 )
f dxfop(X)=Ng/p, (3.19
where ITy(x,p) is the quark-diquark bubble graph for the 0
fixed minus component of the quark momentum:
1
d*k k_ j dx X fup(X)+fpp(X)]=1. 3.1
HN<x,p>:—f (277)45()(_ p__)s(k),rs(p_k)_ DL () + Fosp(x)] (319

(3.9
] ) In more general terms, what we have really confirmed here is
The second term in Eq3.6) corresponding to the second the validity of the Ward identities for quark number and

diagram in Fig. 1 is purely isoscalar and given by the conmomentum conservation: Concerning the number conser-

volution integral vation, if we integrate the distribution function of Fig. 1 over
1 N X, the restrictiork_=p_x is lifted, and the diagrams corre-
FQ(D),p(x)=J dyf dzs(x—yz) spond toAg,P(p,p)IZp, . The validity of the Ward identity
0 0

(2.10 follows then from Eq(3.5) and partial integrations in
. the plus components of the loop momenta. A similar argu-
XJ d@Fon(2.93)Fop(y,q3), (3.9  mentholds for the Ward identity expressing momentum con-
- servation. Therefore, the Ward identities and the sum rules
o 5 ) ] (3.14 and (3.15 hold in any regularization scheme which
where the distributions o/p(z,05) andFp,p(y,dp) for fixed  goes not restrict the LC plus components of the loop mo-

virtuality of the diquark(D) are expressed as menta. The regularization schemes to be discussed at the end
I1(2.6) of this section satisfy this requirement.
Z, . .
FQ/D(quS) _ 2g2(q§) s(Z,dp , (3.10 As we have noted above, the model described so far gives

aq(z) essentially only valencelike distributions at the low energy
scale. Although sea quark distributions will be generated in
o [ 1 a d ) the process of th&? evolution, those will be flavor indepen-
Fop(y.do) =T'n 7 Wﬂ/ﬁz Hn(y.agP) N dent (fyp=fgp), Which contradicts the experimentally
o 0 (3.11 measured violation of the Gottfried sum rild. Also, it is a
general trend of valence quark models that the resulting va-
Here I1(z,g3) is the quark-quark bubble graph for fixed lence quark distributions are too stiftoo strongly pro-
minus momentum component of the quark?(q?) nounced peak and too small support at low values)otVe
—_ 1/[(9H3(q§)/(9q§] is the quark-diquark coupling con- therefore consider here the effects of the pion dressing of the

stant, and]N(y,qg;p) is the quark-diquark bubble graph for constituent quarks, as has been done also in previous works

. . ) . . [27]. (For a recent investigation using the LC quantization,
fixed virtuality and minus momentum component of the di see Ref[28])  In order to take into account the pion cloud,

quark: in principle we should solve the Schwinger-Dyson equation
d*k K for the quark Feynman propagato8(q)=1[4—Mq
Hs(z,qg)=[6if(27)45<z— q__) —2q(p)] where
k) vsS(k 3.1 d* ~
XtplysS(k)ysSk=a)]) (312 EQ(p)z—sf Al 7580 ysT7o(p— k)= ~Tlo(p)

% (3.16

d“q q-

HN<y,q%;p>=—fW5(y— p—_) 8(g>=dp)

5To verify these relations, it is only necessary to note that the
XS(p—q)7s(d). (3.13  relations [3dzFqyp(z,q5) =2 and [§dz zFyp(2,G3)=1 hold for
_ _ _ _ any g3 [here Fop(z,q3) is symmetric around=1/2], and there-
If we use the dispersion representation for the diquaria-  fore the second term in Eq3.11) gives a vanishing surface term
trix 75, we can perform thé&, andq, integrations analyti- when integrated ovey?. The sum rules are then obvious since the
cally and verify that the distributiof8.6) is nonzero only in integral ofTT(y,q3,p) overq3 reduces tdIy(1—y,p), and that of
the interval 0<x<1. This fact was anticipated already in our IIy(x,p) overx to ITy(p).
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@V, pk
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!

. ' £o(x) = — X SR

FIG. 2. Feynman diagrams which have to be evaluated in addi-

[oy

\V]
o
o
3
=
]

. L . k k
tion to those shown in Fig. 1 due to the presence of the pion cloud. @
Here the dashed line indicates e t matrix in the pionic channel, 9955
. . . . 1 -q A
and the other lines are as in Fig. 1. The second diagram stands + 1 |
1
p

symbolically for those two diagrams obtained by inserting the cross pY p
into both theqg andq lines in the pion. The dots indicate all remain-
ing diagrams where the pion line is attached to a quark in the

diquark. FIG. 3. Graphical representation of the quark distribution within

an on-shell parent quark. The meaning of the lines is as in Figs. 1

is the quark self-energy due to the pion cloud, and the re‘:’md 2. The quark spindfy(p) is associated with the incoming and

duced piont matrix 7,=r_+2ig.. depends also oS(p). qutgo!ng quark lines in ?II diagrams. The operator !nsertlon in the
. . first diagram stands foy™ 8(p_—p_x)(1=* 7,)/2 and in the other
This propagator should then be used to calculate the diquar " o
t matri d th | tex functi Using th iagrams fory™ 8(k_ —p_x) (1= 7,)/2 for theu(d) quark distribu-
matrix 7s an e nucleon vertex functidry, . Using these . tions. The third diagram stands symbolically for those two diagrams

modified propagators and v_ertex functions, one Sh(_)UId' Dbtained by inserting the cross into both thendq lines in the
addition to the diagrams of Fig. 1, also evaluate the dlagramaion.
of Fig. 2, where the operator insertion is made on the quark

while the pion is “in flight” or on the quark and the anti-

quark in the pion. Qzélzé.] It is also easy to check that all diagrams in
Clearly, such a calculation is very complicated, and theFigs. 1 and 2 get a factaty. S
usually employed convolution formalisfi27] involves the If one then calculates the diagrams of Fig. 2 in terms of

following two major approximations: First, pionic effects these renormalized quantities and writes the results in terms
can be renormalized into a redefinition of the constituenf @ convolution integral, one finds that due to the Dirac
quark mass and the four-fermion coupling constants if onétructure of the insertions on the “parent” quark line there

approximates the quark propagator by its pole part appear three convolution ternj29]. Only one of them in-
volves the generalization of the “bare” quark distribution in

Zg . the nucleon[Eq. (3.6)] to the off shell case[fqp(X)
S(p)=—————=Z2oS(p), (817 o p(x,k3), wherek? is the virtuality of the parent quatk
p—Mqtie convoluted with the quark distribution within the parent
with quark. Each of the other two terms involve one additional
factor of (kj—M$) in the integrand compared to the first
dllq -1 term, which has a sharp peak k=M. The second ap-
Zq= 1+W . ) 3.18 proximation commonly used is therefore to neglect these two
k=Mgq terms and to assume that due to the sharp peeﬁg,e(x,kg)

It define * lized” i anB. by G the quark distribution within the parent quark can be evalu-
we detine “renormalized coupling constantsa bY Ba  areq atk?=M2 and taken outside of the? integral[24]. In

_ pad 2 _ . .

=G,/Z5 (a=m,s9), it is easy to see that the Green func- this way one arrives at the familiar convolution form
tions and vertex functions are renormalized according,to

=7,125, T=ZoT, andI'y=VZo['y . If we then impose the L

same conditions on the parameters as commonly used in the fyrp(X)= > J dyf dz8(x—y2)fyo(2) forp(y)
case without pion cloud effectghat is, f,=93 MeV, m_ Q=uUD Jo 0

=140 MeV, o= 300—500 MeV, antM =940 MeV), the (3.19

cutoff and the coupling constan®, take the same values as
in the case without pionic cloud effectfin terms of the and a similar expression witly— ¢, where the parent quark
Lagrangian, such a renormalization procedure corresponds thstribution in the protonfyp is given by Eq.(3.6), and
- N2 (02 ; _ 5 fayo(fzo) is the quark(antiquark distribution within an on-
writing - G(4y)"=G(vy) with — y= \/Z_Qw and s%gll SaQrent quark which is obtained by evaluating the Feyn-
man diagrams shown in Fig. 3.
The quark and antiquark distributions in the parent quark
"Green functions and vertex functions which differ from those gbtained from the diagrams of Fig. 3 can be expressed as
without pionic effects by the replacemerM;Qﬂl\A/IQ, Gaﬂéa
EGQZé (a=,s) will be denoted by a caret. Since due to the 1 5
discussion following Eq(3.18 these renormalized quantities are _ _ - ~
numerically equivalgent?é the ones used previously,qthis distinction fun(X)=2qd(x~1)+ 3 Fao(x)+ 6 Fa(mio(),
will eventually be dropped. (3.20
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2 1 number current of the parent quarkAg,Q(p,p)
fan(X) = 3 Fao(®)+ g Famia(X), (321 =[allo(p)/dp+]1840.) The validity of the number and
momentum sum rules

1
fau()= g Famia). (3.22 [ Caxtq, 0= [ im0~ o)1= N,
0 v 0
5 (3.28
fau(X)= 6Fq(w)/Q(X)- (3.23

1
N . f dx X fy/p(X)+ fgp(X) + fop(X) + fyp(x)]=1
The distributions forQ=D are also determined from these 0
expressions due to isospin symmetry. The detailed formulas (3.29
for the distributionsF,6(x) and
is then a consequence of Ed8.14), (3.19, (3.26), (3.27),
1 1 and(3.19.
Fomi(X) = fo dyjo dzé(x—y2) Of particular interest also is the Gottfried sum

- 1
x f_mquFq/w(z,tﬁ)FW/Q(y,QS), (3.24 Se=73 foldx[fu,P(x)+fg,P(x)—fd,P(x)—fg,P(x)]

corresponding to the second and third diagrams of Fig. 3, 1 ifldx Foo(x)= 1 i(l—z ) (3.30
respectively, can be obtained from the previous expressions 3 9Jo aQ 3 9 QP ’
(3.7-(3.13 as follows: Fgo(X), Fgr, and F o are

given by expressions similar to Eq8.7), (3.10, and(3.1D,  \yhich shows that the deviation from the valence quark
respectively, but with the following replacementsi) The model result 6= 1) is due to the decrease of the probabil-
nucleon spinof™y is replaced by the quark spinor defined via ity of the “bare” valence quark statezg<1) [30].

the residue .Of the pro_pagatd_i(p): _FQ(p):ZQ Ug(p), We now discuss our regularization scheme. Since the
whereug(p) is a free Dirac spinor with masélo normal-  ghqye expressions for the quark distributions involve loop
ized byuqo(p)ug(p)=2Mq. From Eq.(3.18 it follows that  jntegrals with one of the LC momentum components fixed, it

this spinor satisfies the relation is clear that we need a regularization scheme which can be
formulated in terms of LC momenta. Two such schemes

if ) dllg(p) To(p)=1-Z (3.25 which have been discussed extensively in R&§] are the

2p_ © ap, © Qr ' Lepage-BrodskyLB) or invariant mass scheni@1] and the

transverse cutoffTR) schemg32]. The basic graphs which
(i) the polarizationdIy(x,p) andII\(y,q3;p) are replaced are regularized in both schemes are ¢fggandqq bubble
by Ilo(x,p) and HQ(y,qS;p). These are defined analo- graphsllg=II_, the quark-diquark bubble gradh,, and
gously to Eqs(3.8) and(3.13 by introducing thes function  the quark self energll,, either for the case that all internal
insertions to fix the minus momentum components of themomentum components are integrated out or one of the LC
quark or the pion and the virtualitgﬁ of the pion intoIl, momentum compon_ents is _fixed. Concerning_the LB scheme,
defined by Eq(3.16) instead offTy. And (i) F,., is given it has_ been shown in detail for the case_H)g in Ref. [15] _
by the right-hand sidéRHS) of Eq. (3.10, but without the  that, if a!l momentum components are integrated out, this
overall factor of 2. We note thdt,q, and therefore also the SCheme is equivalent to the covariant three-momentom

distributionf /p of Eq.(3.19, involves an overall factaf,, ~ dispersion cutoff schemé. Generally, if the intermediate
in accordance with our discussion following E§.18). state involves particles with masses andm,, the LB cut-
validity of the number and momentum sum rules the total momentum are zer@ (= 0) restricts the invariant

mass of the state according to

1

8By “covariant three-momentum cutoff scheme” we mean the
1 procedure where the three-momentum cutoff is introduced in the
f dx X fo(X) + fo(X) + fgo(X) + fgo(x)]=1 particular Lorentz frame where the total momentum of the two-
0 body (qq, qq, or quark-diquarkstate is zerofg=0), and the result
(3.27 is “boosted” to a general frame. For the grapHd, («
=s,m,N,Q) considered here, this “boosting” simply means the
can be easily checked in the same way as outlined above fegplacementp’—p?, and for [Ty and I1g also pyy°—p. It is
the parent quark distributions in the protofThe number known that this procedure is equivalent to the dispersion cutoff
sum rule is a consequence of the Ward identity for the quarkcheme33].
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2 2 2 2
+ + Xfa, 1P (x)
Ki+mp  ki+m; A2 (3.31 v i i
X 1—Xx LB ’ BL cutog—
TR cutoff — —
empirical - - - -

wherex and 1-x are the fractions of the total momentum
componenp_ carried by the two particles. The LB regulator [
A g is related to the three-momentum cutoff; by A g
=(ymi+ A3+ m3+ A3). For the case ofl =11, we have
m;=m,=Mg, and the value of\; is determined as usual i
by requiring thatf ,.=93 MeV. In the case of the graplk
(Ig), we havem; =Mgq, while m, is the mass parameter in
the dispersion representation &f (7). In order not to in- osh
crease the number of parameters, we will take the same valu
of A for all graphslI;=II, Iy, andllg.

Concerning the TR cutoff scheme, it has been discusset o o e
in Ref. [15] that the use of this scheme requires a mass °oc o1 oz o3 os o085 os o7 08 08 1
renormalization procedure, since the basic self-eneddigs
(@=s,m,N,Q) involve also logarithmically divergent longi- FIG. 4. LC momentum distributions of the valeneeguark in
tudinal momentumK_) integrals, which are not affected by the proton, using the LEsolid line and TR(dashed lingsregu-
the TR regularization prescriptionk, |[<Atg. In this larization scheme. The lines associated v@tf=0.16 Ge\? show
scheme one has therefore to impose the pion, the diquarkhe NJL model results, and the lines associated w3
and the nucleon masses as renormalization conditions rather0.16 Ge\? show the results obtained by the QCD evolution in
than to relate them to the parametgrs, g, andrg via the  next-to-leading order fronQ3=0.16 Ge\f to Q=4 Ge\?, using
pole conditions. For example, if we impose the condition 1Aqcp="0.25GeV andN¢=3. The dotted line shows the parametri-
+2g4I14(M2)=0 for some fixedM, , thet matrix 75 in Eq. ~ Zation forQ?=4 Ge\? obtained in Ref[35] by analyzing the ex-
(2.3 can be rewritten in the renormalized form,  Perimental data.
=2i/[Hs(k2)—Hs(M%)], which is formally independent of
gs and free of divergences due to the longitudinal momentunsolve the DGLAP equation in the next-to-leading ord€or
integration. In the calculation using the TR cutoff we will the Q% evolution we useN¢=3, Agocp=250MeV.) We
impose the same value MD as obtained in the calculation will compare our evolved distributions to the parametriza—

using the LB cutoff. tions of Ref.[35] for Q=4 Ge\2. Both the calculated and
empirical distribution functions refer to the modified mini-
IV. NUMERICAL RESULTS mal subtraction IS) renormalization and factorization

o scheme. The value @ is treated as a free parameter which
In both the LB and TR regularization schemes, we usgs determined so as to reproduce the overall features of the
Mo =400 MeV for the constituent quark mass and determingempirical valence quark distributions @2=4 Ge\2. In this
the cutoff so as to reprodude,=93 MeV. This givesA, way we obtain a value c(DS:O.lG GeV i.e.,Q, is equal to
=593 MeV for the equivalent three-momentum cutoff in the 5, constituent quark masd .
LB scheme and\ rg=407 MeV in the Tstcheme. Inthe LB | et us first discuss the valence quark distributions shown
scheme, we then obtaig,=6.92GeV*® and rs=gs/d»  in Figs. 4 and 5. Although we do not show the results of the
=0.727 from the requirementsn,=140MeV and My pyre valence quark modého pions, we note that the input
=940 MeV, respectively, angd the resultin_g Scalar_diql_Jarkdistributions at,uzzQ(Z) shown here are softer than in the
mass becomebl, =600 MeV.” As we explained earlier, in - case without pionic cloud effects; that is, the pionic effects
the TR scheme we use the same vallig=600MeV, and  eqyce the peak heights of the valence quark distributions
rewrite thet matricesr,, and s, which are needed to calcu- 5nq increase their support at low The integral over the
late the distributior_1 functions, in terms of, and M such input distributions shows that M2=Q§ the valence quarks
that they become independent@f andr. o carry 92%(87%) of the nucleon’s LC momentum for the
Our results for the valence and sea quark distributions argasa of the LB(TR) cutoff. The rest is carried by the sea
shown in Figs. 4—7 both for the LB and TR cutoff schemes.q arks. This reduction of the peak heights due to pionic ef-
As we have explained in Sec. I, in order to make contaCte s has a beneficial effect on the overall behavior of the
with the emplrl_cal distributions extracted from the measgre_q,mence quark distributions, although it is insufficient in par-
structure functions, we have to evolve 2our calculated distrizic 1ar for thed quark in the LB scheme. The input distribu-
butions from the low energy scaje’= Qg to the valueu®  tions are still rather stiff even when pionic effects are taken
:_Qz \z/vhere empirical parametrizations are available. Fofinto account, which necessitates the use of a low valu@Zof
this Q° evolution we use the computer code of R&#4] 0 i order to approach the empirical distributions via 0@
evolution. We can expect some improvement concerning this
point in a full Faddeev calculation, since in the present static
%The current quark mass obtained from the gap equatiom is approximation the size of the nucleon is too small, corre-
=5.96 MeV in the LB scheme. sponding to momentum distributions which are too stiff.
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xfd,1p(x) ability of the quark state without pion cloud i5y=0.84
08 . . . . . (25=0.83) for the LB(TR) cutoff scheme, the Gottfried
%gzﬁg____ sum (3.30 becomesSg=0.262 S;=0.257), compared to

o7r empirical - - - - the experimental valdé reported by the NM Collaboration

[1], Sg=0.235-0.026. Our results for the differendg;p

— fyp are shown in Fig. 8. We see that with our valuegfgf,
which has been chosen such as to reproduce the overall be-
havior of the valence quark distributions, the calculated dif-
ference is smaller than the empirical one for intermediate
values ofx, but larger for smalk. Concerning the ratio/d,

there are also data from Drell-Yan procesi&4 which give

i u/d=0.51+0.04+0.05 atx=0.18, compared to our calcu-
N /) lated value of 0.680.70 at Q>=4 Ge\? for the LB (TR)

06

05

04T

03

0.2

0.1 -~
-7 cutoff. This, too, shows that the observed flavor asymmetry
T T T e e of the Dirac sea is larger than our calculated one in this range
x of x. In this respect it must be noted that recent calculations

in the soliton approacf21] give a larger flavor asymmetry
FIG. 5. LC momentum distributions of the valendeguark in - of the Dirac sea, leading to better overall agreement with the
the proton. For an explanation of the lines, see the caption to Fig. "empirical difference fgp—f5p. One should investigate
whether the results for the asymmetry in the Faddeev ap-
proach can be improved by avoiding some of the approxima-
tions which led us to the simple convolution for(®.19.

In the LB cutoff scheme, the input distributions are zero
for large (and also very smallvalues ofx, and therefore the
output distributions(at Q?=4 Ge\V?) show a too strong
variation withx compared to the empirical ones. On the con-
trary, for the TR cutoff the input distributions are nonzero in V. SUMMARY AND OUTLOOK
the whole region ok, which leads to a smoother behavior of In this paper we used the framework of the relativistic

the output distribution&® This is the same feature as noted in R
P Faddeev equation in the NJL model to calculate the quark

Ref.[15] for the quark distribution in the pion and indicates c wum distributi — | As a first st
that for phenomenological applications the TR cutoff seem momentum distributions In the nucieon. As a first step
owards a full Faddeev calculation, we used the nucleon ver-

to be superior over the LB cutoff. On the other hand, as w . ) . : X S
ex functions obtained in the simple static approximation to

have explained earlier, the shortcoming of the TR cutoff . s ;
scheme ?s that the diquark mass mustgbe treated as a frg%e Faddeev kernel and included pionic cloud effect approxi-

parameter since in this scheme mass renormalizations argately using the familiar COﬂV0|LIJtIOI”|. formalism. We can
necessary in order to get finite results summarize our results as follows: First, we have shown a

In our calculation, the difference between the valence method based on a straightforward Feynman diagram evalu-
andd quark distributions reflects the scalar diquark correla-
tions in the proton: Since thd quark appears inside the x{,c_f';”’(x) . : : . . :
diquark and not as a spectator quéske Eq.3.6)], its dis- LB cutoff —
tribution is given by the convolution of two distributions TR cutoff — — |
[Eg. (3.9], which is more concentrated at low valuesof empirical - - -~
compared to the spectator quark distribution. This is in
agreement with the behavior shown by the empirical distri-
butions, and this observation was in fact one of the motiva-
tions to introduce diquark degrees of freedom also into the o3
bag model description of the nucleon structure functi@js .

We now turn to the antiquark distributions shown in Figs. .} ~
6 and 7. As in the case of the valence quark distributions, the
TR cutoff scheme leads to an overall better agreement witF |
the empirical distributions than the LB scheme. The en-

hancement ofl overu is clearly seen both in the input and . ;
output distributions. Since the numerical value of the prob- ¢ o1 0z 03 04 05 06 07

04T

SN

FIG. 6. LC momentum distributions of the quark in the pro-

1%0r the TR cutoff, the input distributions show a sharp increasdon. For an explanation of the lines, see the caption to Fig. 4.
whenx becomes very close to 1. Since the computer code used for
the Q2 evolution[34] requires an input distribution which vanishes
for x=1, we artificially modified it forx very close to 1 such that it
goes like (:-x)" with some powem. (n=10 was used in the Mt has been shown that the Gottfried sum is almost unchanged by
actual calculation. the Q2 evolution[5,36].
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xfare(x)
06 LB cutoff —
TR cutoff — —

LB cutoff — “ut
empirical - - - -

TR cutoff — —

05 empirical - - - - ]

o

04T

faip(x)— fap(x)

Q@*=40 GeV° Q@*=4.0 GeV®

03"

2
=016 GeV 2_ 2
Q7=0.16 GeV

o2 o5t

01

- = -

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

FIG. 8. The difference ofl andu quark momentum distribu-
FIG. 7. LC momentum distributions of the quark in the pro-  tions in the proton. For an explanation of the lines, see the caption

ton. For an explanation of the lines, see the caption to Fig. 4. to Fig. 4.

ation, which we believe to be best suited for the calculationbaSiS for at least the following three extensions:  First, one
A . : could easily use the present framework to calculate the quark
of the distribution functions in the Faddeev framework. Be-

sides being simple and straightforward, the method alsg_pm dlstrlbutlc_ms, prowded_that the axial vector diquadk (
=1) channel is also taken into account. Second, one should

guarantees the validity of the number and momentum SUMse the full Faddeev vertex functions to calculate the quark

rules from the outset. Second, we discussed two regulariza- C X
. . X momentum distributions. As we have noted in Sec. |, the
tion schemes which can be formulated in terms of LC coor-

) . most convenient way for this purpose might be first to go to
dinates, and which preserve the number and momentum su N
; e moment space and then to reconstruct the distribution
rules. Based on our numerical results we concluded that f

o C . Ofunctions. The third extension concerns the case of finite
the description of the momentum distributions in the nucleondensity_ For a finite density calculation the full Faddeev
the transverse momentum cutoff scheme is superior over t ramework seems to be intractable, and approximations like

ir)varignt mass regu[arization scheme, which ‘S.Si".‘”ar. to t.h'?he static approximation used in this paper might be unavoid-
situation found previously for the momentum distribution in : e :
able. For this purpose, however, it is necessary first to con-

the pion. Third, we have shown that the resulting distribution fruct an equation of state for nuclear matter based on the

functions reproduce the overall behaviors of the empirica dd kedi . f the sinal | -
ones if the low energy scale for ti@? evolution is taken to a ee\.(qua_r -diquark picture of the single nucleon, simi-
be about the same as the constituent quark MeV in lar to the Guichon equation of statg8], which is based on

d iy the MIT bag picture of the single nucleon. The construction

our calculation. Such a low value is required since the input of such an equation of state and its applications are now

valence quark distributions calculated in our model are ratheLrInder consideratiofB9].

stiff, although the pionic cloud effects served to soften them
compared to the pure valence quark results. In this respect, a

f_uII Faddeev cal__culation which gives Iarger and more realis- ACKNOWLEDGMENTS
tic nucleon radii, as well as the inclusion of higher mass
diquark channelgaxial vector diquark channglis expected The authors would like to thank M. Miyama and S. Ku-

to improve the situation. We have also shown that the valuenano for the computer program used for Q& evolution

for the Gottfried sum obtained in this simple calculation is in(Ref. [34]). One of the author$W.B.) is grateful to A. W.

basic agreement with the experimental one. Thomas, A. W. Schreiber, K. Suzuki, and K. Tanaka for
The formulation and results of this work can be used as aliscussions on the nucleon structure function.
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