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Quark distributions in the nucleon based on a relativistic three-body approach
to the Nambu–Jona-Lasinio model

H. Mineo, W. Bentz,* and K. Yazaki†

Department of Physics, Faculty of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113, Japan
~Received 4 June 1999; published 27 October 1999!

Quark light cone momentum distributions in the nucleon are calculated in a relativistic three-body approach
to the Nambu–Jona-Lasinio model by using a simple ‘‘static approximation’’ for the Faddeev kernel. A
method is presented which automatically satisfies the number and momentum sum rules, even in the regular-
ized theory. In order to assess the sensitivity to the regularization scheme, two schemes which can be formu-
lated in terms of light cone variables are discussed. The effects of the~composite! pion cloud are taken into
account in a convolution approach, and the violation of the Gottfried sum rule is discussed. After performing
the Q2 evolution, the resulting distributions are compared to the empirical ones.@S0556-2813~99!06011-2#
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I. INTRODUCTION

Deep inelastic lepton-nucleon scattering experiments
providing detailed information on the quark and gluon d
tributions in the nucleon@1#. By analyzing the distribution
functions derived from the measured cross sections with
help of theQ2 evolution based on perturbative QCD, one c
extract the fraction of the nucleon’s momentum and s
carried by the quarks at some renormalization scalem and
obtain valuable information on the spin-flavor structure
the nucleon@2#. For example, of great interest in this co
nection are the flavor dependences of the valence quark
tributions @3# and of the sea quark distributions@4,5#, which
reflect the roles ofqq ~diquark! and q̄q ~mesonic! correla-
tions in the nucleon. Current experiments at HERA are
ploring the region of smallx in order to get more information
on large-distance~nonperturbative! phenomena, and futur
experiments at RHIC will concentrate on the spin distrib
tions.

An essential tool to analyze the data on the nucleon st
ture functions in the Bjorken limit is the factorization the
rems@6#, which allow us to separate the long-distance pa
~parton distributions! from the short-distance parts~hard
scattering cross sections!. The latter ones are calculable fro
perturbative QCD, while the parton distributions requ
knowledge of the nucleon wave function. The central po
of the factorization theorems is that the infrared-diverg
~long-distance! contributions to the perturbative diagram
can be absorbed into the definition of ‘‘renormalized’’ part
distributions@2#. Because of this procedure, the parton d
tributions eventually depend on a factorization scale~m!,
which is usually taken to be the same as the renormaliza
scale. The requirement that the structure functions should
depend on this scale then leads to the famous Dokshit
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Gribov-Lipatov-Altarelli-Parisi~DGLAP! equations@7# for
them dependence of the distribution functions, which in tu
also determines theQ2 dependence of the structure fun
tions. One can therefore use effective quark theories to
culate the distribution functions at some ‘‘low energy scal
m5Q0 , where a description in terms of quark degrees
freedom alone is expected to be valid, and then use the
LAP equations to relate them to the distribution functio
extracted from experimental data atm5Q.

As an effective quark theory in the low energy region, t
Nambu–Jona-Lasinio~NJL! model @8# is a powerful tool to
investigate the properties of hadrons@9#. It exhibits the spon-
taneous breaking of chiral symmetry in a simple and cl
way, and allows the solution of the relativistic two- an
three-body equations in the ladder approximation due to
simplicity of the interaction@10,11,12#. Concerning the
ground state properties of baryons, the Faddeev approac
the NJL model has been quite successful@13#, and since in
this approach the translational invariance and covariance
preserved, it is natural to apply it also to the structure fu
tions of the nucleon.1 Actually, the NJL model has bee
formulated recently on the light cone~LC! and the structure
function of the pion has been calculated@15#. For the case of
the nucleon, however, there is the problem that the relati
tic Faddeev equations are usually solved by performin
Wick rotation using the Euclidean sharp cutoff@10#, and this
method cannot be applied directly to the calculation of
LC momentum distributions. A possibility is first to go to th
moment space and then reconstruct the distribution funct
by the inverse Mellin transformation. It is, however, des
able for a first orientation to use some simple approximat
which allows a direct calculation of the distributions. Th
‘‘static approximation’’ to the Faddeev kernel@16,17#, which
amounts to neglecting the momentum dependence of
propagator of the exchanged quark, allows an analytic s
tion of the Faddeev equation, and it has been shown in R
@17# that for the nucleon mass this approximation is not u
reasonable. However, the overbinding of the nucleon co
pared to the exact Faddeev result and the ‘‘pointlike’’ qua

i-
1For a calculation using the Bethe-Salpeter equation for a qu

and a structureless diquark, see Ref.@14#.
©1999 The American Physical Society01-1
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diquark interaction lead to radii which are too small@18#, and
therefore we can expect that the resulting momentum di
butions will be too stiff. However, our main purpose here
to see some general trends, to investigate the influence o
regularization scheme, and to demonstrate that in the F
deev approach the validity of the number and moment
sum rules is guaranteed from the outset, which is not the c
in the soliton or bag model approaches. The calculation
ploying the static approximation to the Faddeev kernel
sembles the quark-diquark calculations performed ea
@19#. We will go beyond these calculations by including t
structure of the diquark~and also of the pion when estima
ing the pionic cloud effects! and investigating the sensitivit
to the regularization scheme, while preserving the num
and momentum sum rules.

Besides the Faddeev approach to the NJL model, the
ton approach is also used frequently, and several inves
tions of the nucleon structure functions have been carried
in this framework@20,21#. Since in the soliton approach th
pionic effects~corresponding to correlations in theqq̄ chan-
nel! are taken into account on the mean field level from
outset, it is natural that recent works concentrated on
flavor dependence of the quark distributions@21#. The Fad-
deev approach is complementary in the sense that the c
lations in theqq channel are included from the outset, a
pionic effects are then treated by perturbation theory me
ods @22#. It is of course desirable to unify these two a
proaches, and an interesting attempt towards this direc
has been made in Ref.@11#.

The rest of this paper is organized as follows: In Sec
we explain the model for the nucleon wave function, in S
III we explain our method to calculate the quark distributi
functions, and in Sec. IV we discuss the numerical results
summary is presented in Sec. V.

II. NJL MODEL FOR THE NUCLEON WAVE FUNCTION

The NJL model is characterized by a chirally symmet
four-fermion interaction LagrangianLI . By means of Fierz
transformations, one can rewrite anyLI in a form where the
interaction strength in a particularq̄q or qq channel can be
read off directly@10#. That part which generates the constit
ent quark massMQ and the pion as a collectiveq̄q bound
state is given by

LI ,p5
1

2
gp$~c̄c!22@c̄~g5t!c#2%, ~2.1!

and that which describes theqq interaction in the scalar di
quark (Jp501, T50) channel is

LI ,s5gs@c~g5C!t2bAc̄T#@cT~C21g5!t2bAc#, ~2.2!

wherebA5A3/2lA (A52,5,7) are the color 3¯matrices and
C5 ig2g0 . The coupling constantsgp andgs are related to
the ones appearing in the originalLI by numerical factors
due to the Fierz transformation, but instead of choosin
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particular form of LI , we will treat gp and the ratior s
5gs /gp as free parameters, where the latter reflects differ
possible forms ofLI @10#.

The reducedt matrices in the pionic and scalar diqua
channels are obtained from the respective Bethe-Salp
~BS! equations as@10#

tp~k!5
22igp

112gpPp~k!
, ts~k!5

4igs

112gsPs~k!
,

~2.3!

with the bubble graph

Pp~k!5Ps~k!56i E d4q

~2p!4 trD@g5S~q!g5S~q2k!#,

~2.4!

where S(q)51/(q”2MQ1 i e) is the Feynman propagato
andMQ the constituent quark mass.

If the interacting two-body channels are restricted to
scalar diquark one, the relativistic Faddeev equation@10# can
be reduced to an effective BS equation for a composite sc
diquark and a quark, interacting via quark exchange@23#. As
we explained in the previous section, in this paper we w
restrict ourselves to the static approximation@16,17#, where
the Feynman propagator in the quark exchange kernel is
ply replaced by21/MQ . Then the effective BS equatio
reduces to a geometric series of quark-diquark bubble gra
@PN(p)#, and the solution for thet matrix in the color singlet
channel is

T~p!5
3

MQ

1

11
3

MQ
PN~p!

, ~2.5!

with

PN~p!52E d4k

~2p!4 S~k!ts~p2k!. ~2.6!

The quark-diquark vertex functionGN(p) in the covariant
normalization is then obtained from the pole behaviorT

→(sGN(ps)ḠN(ps)/(p22MN
2 1 i e), where MN is the

nucleon mass, as2

GN~p!5ZNuN~p! ~2.7!

ZN5S 1

]PN~p!/]p” up”5MN
D 1/2

5S p2 /MN

ūN~p!
]PN~p!

]p1
uN~p!D 1/2

,

~2.8!

2Our conventions for LC variables area65(1/&)(a06a3), a6

5(1/&)(a06a3), and a'
i 52a' i ( i 51,2). The Lorentz scalar

product isa•b5a1b11a2b22a'•b' . We will frequently call
p2 (p1) the ‘‘LC minus ~plus! component’’ of the four-vectorp.
1-2
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QUARK DISTRIBUTIONS IN THE NUCLEON BASED ON . . . PHYSICAL REVIEW C60 065201
whereuN(p) is a free Dirac spinor with massMN normal-
ized by ūN(p)uN(p)52MN . In this normalization, the ver
tex function satisfies the relation

1

2p2
ḠN~p!

]PN~p!

]p1
GN~p!51, ~2.9!

which leads to charge and baryon number conservatio
any treatment which preserves the Ward identity

Lq/P
1 ~p,p!5

]PN~p!

]p1
Nq/P ~2.10!

for the vertex of the quark number current of the proton
q50 (Nu/P52, Nd/P51).3

III. QUARK DISTRIBUTION FUNCTIONS

The twist-2 quark LC momentum distribution in the pr
ton ~momentump! is defined as@24,25#

f̃ q/P~x!5
1

2 E dz2

2p
eip2xz2

^puT@c̄q~0!g1cq~z2!#up&,

~3.1!

whereq denotes the quark flavor,up& is the proton state, and
x is the Bjorken variable which corresponds to the fraction
the proton’s LC momentum componentp2 carried by the
quarkq. As has been discussed in detail in Ref.@24,25#, for
connected LC correlation functions theT product is identical
to the usual product, from which it follows that the distrib
tion ~3.1! is nonzero in the interval21,x,1. The physical
quark and antiquark distributions which determine the str
ture functions F1 and F2 are obtained for 0,x,1 as
f q/P(x)5 f̃ q/P(x) and f q̄/P(x)52 f̃ q/P(2x). The valence
(v) and sea ~s! quark distributions are then given b
f qv /P(x)5 f q/P(x)2 f q̄/P(x), and f qs /P(x)5 f q̄s /P(x)

5 f q̄/P(x).
The evaluation of the distribution~3.1! can be reduced to

a straightforward Feynman diagram calculation by not
that it can be expressed as4 @24–26#

f̃ q/P~x!52
i

2p2
E d4k

~2p!4 dS x2
k2

p2
DTrD g1Mq~p,k!,

~3.2!

with the quark two-point function in the proton given by

Mq,ba~p,k!5 i E d4z eikz^puT@c̄q,a~0!cq,b~z!#up&.

~3.3!

3This vertex is defined by ^puc̄(0)g1@(16tz)/2#c(0)up&

5ḠN(p)Lq/P
1 (p,p)GN(p) for q5u(d).

4The original Lorentz-invariant expression is recovered
k2 /p2→k•q/p•q andg1/p2→q” /p•q. The expression~3.2! cor-
responds to the Bjorken limit in the frame whereq'50, qz,0, i.e.,
q1→`, q2→2p2x.
06520
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We therefore have to evaluate the Feynman diagrams for
quark propagator in the nucleon, trace it withg1, fix the LC
minus component of the quark momentum ask25p2x, and
integrate over the remaining componentsk1 andk' . Since
in our model for the nucleon discussed in the previous s
tion the quark can either appear as a spectator or as a
stituent of the scalar diquark, the Feynman diagrams to
evaluated are shown in Fig. 1.~In the full Faddeev approach
there is also a diagram where the external operator act
the exchanged quark, but in the present static approxima
this diagram does not contribute.!

To present the formulas for the diagrams Fig. 1, we n
that the second diagram~the diquark contribution! can be
expressed conveniently as a convolution integral if we ins
the identity

15E dyE dzE dq0
2dS y2

q2

p2
D dS z2

k2

q2
D d~q22q0

2!;

~3.4!

i.e., y is the fraction of the nucleon’s momentum compone
p2 carried by the diquark,z is the fraction of the diquark’s
momentum componentq2 carried by the quark inside th
diquark (x5yz), andq0

2 is the virtuality of the diquark. Us-
ing also the identity

S~k!g1S~k!52
]S~k!

]k1
, ~3.5!

and performing partial integrations in the plus components
the loop momenta, which is permissible since these integ
tions are convergent and not restricted by the regulariza
schemes to be discussed later, we obtain the follow
expression5:

5To distinguish the case without the pion cloud~valence quark
picture! from that including the pion cloud, we replaceq→Q in the
formulas corresponding to the diagrams of Fig. 1.

FIG. 1. Graphical representation of the quark LC moment
distribution in the Faddeev framework. The single~double! line
denotes the quark propagator~scalar diquarkt matrix!, the hatched
circle stands for the quark-diquark vertex function, and the oper
insertion denoted by a cross stands forg1d(k22p2x)(16tz)/2
for the U(D) quark distribution. The second diagram stands sy
bolically for those two diagrams obtained by inserting the cross i
both particle lines in the diquark. The quark-diquark vertex conta
the isospin operatort2 . The diagram where the operator insertion
made on the exchanged quark is not shown here since it does
contribute in the static approximation.
1-3
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f Q/P~x!5dQ,UFQ/P~x!1
1

2
FQ~D !/P~x!. ~3.6!

Here the first term corresponds to the first diagram in Fig
and is expressed as

FQ/P~x!5
1

2p2
ḠNS ]

]p1
PN~x,p! DGN , ~3.7!

where PN(x,p) is the quark-diquark bubble graph for th
fixed minus component of the quark momentum:

PN~x,p!52E d4k

~2p!4 dS x2
k2

p2
DS~k!ts~p2k!.

~3.8!

The second term in Eq.~3.6! corresponding to the secon
diagram in Fig. 1 is purely isoscalar and given by the co
volution integral

FQ~D !/P~x!5E
0

1

dyE
0

1

dzd~x2yz!

3E
2`

`

dq0
2FQ/D~z,q0

2!FD/P~y,q0
2!, ~3.9!

where the distributionsFQ/D(z,q0
2) andFD/P(y,q0

2) for fixed
virtuality of the diquark~D! are expressed as

FQ/D~z,q0
2!522g2~q0

2!
]Ps~z,q0

2!

]q0
2 , ~3.10!

FD/P~y,q0
2!5ḠNS 1

2p2

]

]p1
1y

]

]q0
2DPN~y,q0

2;p!GN .

~3.11!

Here Ps(z,q0
2) is the quark-quark bubble graph for fixe

minus momentum component of the quark,g2(q0
2)

521/@]Ps(q0
2)/]q0

2# is the quark-diquark coupling con
stant, andPN(y,q0

2;p) is the quark-diquark bubble graph fo
fixed virtuality and minus momentum component of the
quark:

Ps~z,q0
2!5F6i E d4k

~2p!4 dS z2
k2

q2
D

3trD@g5S~k!g5S~k2q!#G
q25q

0
2

~3.12!

PN~y,q0
2;p!52E d4q

~2p!4 dS y2
q2

p2
D d~q22q0

2!

3S~p2q!ts~q!. ~3.13!

If we use the dispersion representation for the diquarkt ma-
trix ts , we can perform thek1 andq1 integrations analyti-
cally and verify that the distribution~3.6! is nonzero only in
the interval 0,x,1. This fact was anticipated already in o
06520
1

-

-

notation@ f̃ Q/P(x)5 f Q/P(x)# and in the integration limits in
Eq. ~3.9!, and corresponds to a valence quark mo
@ f Q̄/P(x)50#.

Using the above expressions and the normalization~2.9!,
it is a simple matter to confirm the validity of the numb
and momentum sum rules6

E
0

1

dx fQ/P~x!5NQ/P , ~3.14!

E
0

1

dx x@ f U/P~x!1 f D/P~x!#51. ~3.15!

In more general terms, what we have really confirmed her
the validity of the Ward identities for quark number an
momentum conservation: Concerning the number con
vation, if we integrate the distribution function of Fig. 1 ov
x, the restrictionk25p2x is lifted, and the diagrams corre
spond toLQ/P

1 (p,p)/2p2 . The validity of the Ward identity
~2.10! follows then from Eq.~3.5! and partial integrations in
the plus components of the loop momenta. A similar arg
ment holds for the Ward identity expressing momentum c
servation. Therefore, the Ward identities and the sum ru
~3.14! and ~3.15! hold in any regularization scheme whic
does not restrict the LC plus components of the loop m
menta. The regularization schemes to be discussed at the
of this section satisfy this requirement.

As we have noted above, the model described so far g
essentially only valencelike distributions at the low ener
scale. Although sea quark distributions will be generated
the process of theQ2 evolution, those will be flavor indepen
dent (f ū/P5 f d̄/P), which contradicts the experimentall
measured violation of the Gottfried sum rule@1#. Also, it is a
general trend of valence quark models that the resulting
lence quark distributions are too stiff~too strongly pro-
nounced peak and too small support at low values ofx!. We
therefore consider here the effects of the pion dressing of
constituent quarks, as has been done also in previous w
@27#. ~For a recent investigation using the LC quantizatio
see Ref.@28#.! In order to take into account the pion clou
in principle we should solve the Schwinger-Dyson equat
for the quark Feynman propagatorS(q)51/@q”2MQ
2SQ(p)# where

SQ~p!523E d4k

~2p!4 @g5S~k!g5#t̃p~p2k![2PQ~p!

~3.16!

6To verify these relations, it is only necessary to note that
relations *0

1dzFQ/D(z,q0
2)52 and *0

1dz zFQ/D(z,q0
2)51 hold for

any q0
2 @hereFQ/D(z,q0

2) is symmetric aroundz51/2#, and there-
fore the second term in Eq.~3.11! gives a vanishing surface term
when integrated overq0

2. The sum rules are then obvious since t
integral ofPN(y,q0

2,p) overq0
2 reduces toPN(12y,p), and that of

PN(x,p) over x to PN(p).
1-4
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is the quark self-energy due to the pion cloud, and the
duced piont matrix t̃p[tp12igp depends also onS(p).
This propagator should then be used to calculate the diq
t matrix ts and the nucleon vertex functionGN . Using these
modified propagators and vertex functions, one should
addition to the diagrams of Fig. 1, also evaluate the diagra
of Fig. 2, where the operator insertion is made on the qu
while the pion is ‘‘in flight’’ or on the quark and the anti
quark in the pion.

Clearly, such a calculation is very complicated, and
usually employed convolution formalism@27# involves the
following two major approximations: First, pionic effec
can be renormalized into a redefinition of the constitu
quark mass and the four-fermion coupling constants if o
approximates the quark propagator by its pole part7

S~p!5
ZQ

p”2M̂Q1 i e
[ZQŜ~p!, ~3.17!

with

ZQ5S 11
]PQ

]k” U
k”5M̂Q

D 21

. ~3.18!

If we define ‘‘renormalized’’ coupling constantsĜa by Ga

5Ĝa /ZQ
2 (a5p,s), it is easy to see that the Green fun

tions and vertex functions are renormalized according tota

5 t̂a /ZQ
2 , T5ZQT̂, andGN5AZQĜN . If we then impose the

same conditions on the parameters as commonly used in
case without pion cloud effects~that is, f p593 MeV, mp

5140 MeV, M̂Q5300– 500 MeV, andMN5940 MeV), the
cutoff and the coupling constantsĜa take the same values a
in the case without pionic cloud effects.@In terms of the
Lagrangian, such a renormalization procedure correspond

writing G(c̄c)25Ĝ( c̄̂ ĉ)2 with c5AZQĉ and

7Green functions and vertex functions which differ from tho

without pionic effects by the replacementsMQ→M̂Q , Ga→Ĝa

[GaZQ
2 (a5p,s) will be denoted by a caret. Since due to th

discussion following Eq.~3.18! these renormalized quantities a
numerically equivalent to the ones used previously, this distinc
will eventually be dropped.

FIG. 2. Feynman diagrams which have to be evaluated in a
tion to those shown in Fig. 1 due to the presence of the pion clo
Here the dashed line indicates theq̄q t matrix in the pionic channel,
and the other lines are as in Fig. 1. The second diagram st
symbolically for those two diagrams obtained by inserting the cr
into both theq andq̄ lines in the pion. The dots indicate all remain
ing diagrams where the pion line is attached to a quark in
diquark.
06520
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G5Ĝ/ZQ
2 .# It is also easy to check that all diagrams

Figs. 1 and 2 get a factorZQ .
If one then calculates the diagrams of Fig. 2 in terms

these renormalized quantities and writes the results in te
of a convolution integral, one finds that due to the Dir
structure of the insertions on the ‘‘parent’’ quark line the
appear three convolution terms@29#. Only one of them in-
volves the generalization of the ‘‘bare’’ quark distribution
the nucleon @Eq. ~3.6!# to the off shell case@f Q/P(x)
→ f Q/P(x,k0

2), wherek0
2 is the virtuality of the parent quark#,

convoluted with the quark distribution within the pare
quark. Each of the other two terms involve one addition
factor of (k0

22MQ
2 ) in the integrand compared to the fir

term, which has a sharp peak atk0
25MQ

2 . The second ap-
proximation commonly used is therefore to neglect these
terms and to assume that due to the sharp peak off Q/P(x,k0

2)
the quark distribution within the parent quark can be eva
ated atk0

25MQ
2 and taken outside of thek0

2 integral@24#. In
this way one arrives at the familiar convolution form

f q/P~x!5 (
Q5U,D

E
0

1

dyE
0

1

dzd~x2yz! f q/Q~z! f Q/P~y!

~3.19!

and a similar expression withq→q̄, where the parent quark
distribution in the protonf Q/P is given by Eq.~3.6!, and
f q/Q( f q̄/Q) is the quark~antiquark! distribution within an on-
shell parent quark which is obtained by evaluating the Fe
man diagrams shown in Fig. 3.

The quark and antiquark distributions in the parent qu
obtained from the diagrams of Fig. 3 can be expressed a

f u/U~x!5ZQd~x21!1
1

3
Fq/Q~x!1

5

6
Fq~p!/Q~x!,

~3.20!
n

i-
d.

ds
s

e
FIG. 3. Graphical representation of the quark distribution with

an on-shell parent quark. The meaning of the lines is as in Fig
and 2. The quark spinorGQ(p) is associated with the incoming an
outgoing quark lines in all diagrams. The operator insertion in
first diagram stands forg1d(p22p2x)(16tz)/2 and in the other
diagrams forg1d(k22p2x)(16tz)/2 for theu(d) quark distribu-
tions. The third diagram stands symbolically for those two diagra
obtained by inserting the cross into both theq and q̄ lines in the
pion.
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f d/U~x!5
2

3
Fq/Q~x!1

1

6
Fq~p!/Q~x!, ~3.21!

f ū/U~x!5
1

6
Fq~p!/Q~x!, ~3.22!

f d̄/U~x!5
5

6
Fq~p!/Q~x!. ~3.23!

The distributions forQ5D are also determined from thes
expressions due to isospin symmetry. The detailed form
for the distributionsFq/Q(x) and

Fq~p!/Q~x!5E
0

1

dyE
0

1

dzd~x2yz!

3E
2`

`

dq0
2Fq/p~z,q0

2!Fp/Q~y,q0
2!, ~3.24!

corresponding to the second and third diagrams of Fig
respectively, can be obtained from the previous express
~3.7!–~3.13! as follows: Fq/Q(x), Fq/p , and Fp/Q are
given by expressions similar to Eqs.~3.7!, ~3.10!, and~3.11!,
respectively, but with the following replacements:~i! The
nucleon spinorGN is replaced by the quark spinor defined v
the residue of the propagatorS(p): GQ(p)5ZQ uQ(p),
whereuQ(p) is a free Dirac spinor with massMQ normal-
ized byūQ(p)uQ(p)52MQ . From Eq.~3.18! it follows that
this spinor satisfies the relation

1

2p2
ḠQ~p!

]PQ~p!

]p1
GQ~p!512ZQ . ~3.25!

~ii ! the polarizationsPN(x,p) andPN(y,q0
2;p) are replaced

by PQ(x,p) and PQ(y,q0
2;p). These are defined analo

gously to Eqs.~3.8! and~3.13! by introducing thed function
insertions to fix the minus momentum components of
quark or the pion and the virtualityq0

2 of the pion intoPQ

defined by Eq.~3.16! instead ofPN . And ~iii ! Fq/p is given
by the right-hand side~RHS! of Eq. ~3.10!, but without the
overall factor of 2. We note thatf q/Q , and therefore also the
distribution f q/P of Eq. ~3.19!, involves an overall factorZQ ,
in accordance with our discussion following Eq.~3.18!.

From these expressions and the normalization~3.25!, the
validity of the number and momentum sum rules

E
0

1

dx@ f q/Q~x!2 f q̄/Q~x!#5dQ,q , ~3.26!

E
0

1

dx x@ f u/Q~x!1 f ū/Q~x!1 f d/Q~x!1 f d̄/Q~x!#51

~3.27!

can be easily checked in the same way as outlined abov
the parent quark distributions in the proton.„The number
sum rule is a consequence of the Ward identity for the qu
06520
as

3,
ns

e

for

rk

number current of the parent quarkLq/Q
1 (p,p)

5@]PQ(p)/]p1#dq,Q .… The validity of the number and
momentum sum rules

E
0

1

dx fqv /P~x![E
0

1

dx@ f q/P~x!2 f q̄/P~x!#5Nq/P,

~3.28!

E
0

1

dx x@ f u/P~x!1 f ū/P~x!1 f d/P~x!1 f d̄/P~x!#51

~3.29!

is then a consequence of Eqs.~3.14!, ~3.15!, ~3.26!, ~3.27!,
and ~3.19!.

Of particular interest also is the Gottfried sum

SG5
1

3 E0

1

dx@ f u/P~x!1 f ū/P~x!2 f d/P~x!2 f d̄/P~x!#

5
1

3
2

4

9 E0

1

dx Fq/Q~x!5
1

3
2

4

9
~12ZQ!, ~3.30!

which shows that the deviation from the valence qua
model result (SG5 1

3 ) is due to the decrease of the probab
ity of the ‘‘bare’’ valence quark state (ZQ,1) @30#.

We now discuss our regularization scheme. Since
above expressions for the quark distributions involve lo
integrals with one of the LC momentum components fixed
is clear that we need a regularization scheme which can
formulated in terms of LC momenta. Two such schem
which have been discussed extensively in Ref.@15# are the
Lepage-Brodsky~LB! or invariant mass scheme@31# and the
transverse cutoff~TR! scheme@32#. The basic graphs which
are regularized in both schemes are theqq and q̄q bubble
graphsPs5Pp , the quark-diquark bubble graphPN , and
the quark self energyPQ , either for the case that all interna
momentum components are integrated out or one of the
momentum components is fixed. Concerning the LB sche
it has been shown in detail for the case ofPs in Ref. @15#
that, if all momentum components are integrated out, t
scheme is equivalent to the covariant three-momentum~or
dispersion! cutoff scheme.8 Generally, if the intermediate
state involves particles with massesm1 andm2 , the LB cut-
off applied in the frame where the transverse component
the total momentum are zero (p'50) restricts the invariant
mass of the state according to

8By ‘‘covariant three-momentum cutoff scheme’’ we mean t
procedure where the three-momentum cutoff is introduced in
particular Lorentz frame where the total momentum of the tw
body (qq, q̄q, or quark-diquark! state is zero (p50), and the result
is ‘‘boosted’’ to a general frame. For the graphsPa (a
5s,p,N,Q) considered here, this ‘‘boosting’’ simply means th
replacementp0

2→p2, and for PN and PQ also p0g0→p” . It is
known that this procedure is equivalent to the dispersion cu
scheme@33#.
1-6
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k'
2 1m1

2

x
1

k'
2 1m2

2

12x
,LLB

2 , ~3.31!

wherex and 12x are the fractions of the total momentu
componentp2 carried by the two particles. The LB regulato
LLB is related to the three-momentum cutoffL3 by LLB

5(Am1
21L3

21Am2
21L3

2). For the case ofPs5Pp we have
m15m25MQ , and the value ofL3 is determined as usua
by requiring thatf p593 MeV. In the case of the graphsPN
(PQ), we havem15MQ , while m2 is the mass parameter i
the dispersion representation ofts (tp). In order not to in-
crease the number of parameters, we will take the same v
of L3 for all graphsPs5Pp , PN , andPQ .

Concerning the TR cutoff scheme, it has been discus
in Ref. @15# that the use of this scheme requires a m
renormalization procedure, since the basic self-energiesPa
(a5s,p,N,Q) involve also logarithmically divergent longi
tudinal momentum (k2) integrals, which are not affected b
the TR regularization prescriptionuk'u,LTR. In this
scheme one has therefore to impose the pion, the diqu
and the nucleon masses as renormalization conditions ra
than to relate them to the parametersgp , gs , andr s via the
pole conditions. For example, if we impose the condition
12gsPs(MD

2 )50 for some fixedMD , thet matrix ts in Eq.
~2.3! can be rewritten in the renormalized formts

52i /@Ps(k
2)2Ps(MD

2 )#, which is formally independent o
gs and free of divergences due to the longitudinal moment
integration. In the calculation using the TR cutoff we w
impose the same value ofMD as obtained in the calculatio
using the LB cutoff.

IV. NUMERICAL RESULTS

In both the LB and TR regularization schemes, we u
MQ5400 MeV for the constituent quark mass and determ
the cutoff so as to reproducef p593 MeV. This givesL3
5593 MeV for the equivalent three-momentum cutoff in t
LB scheme andLTR5407 MeV in the TR scheme. In the LB
scheme, we then obtaingp56.92 GeV22 and r s5gs /gp

50.727 from the requirementsmp5140 MeV and MN
5940 MeV, respectively, and the resulting scalar diqu
mass becomesMD5600 MeV.9 As we explained earlier, in
the TR scheme we use the same valueMD5600 MeV, and
rewrite thet matricestp andts , which are needed to calcu
late the distribution functions, in terms ofmp andMD such
that they become independent ofgp and r s .

Our results for the valence and sea quark distributions
shown in Figs. 4–7 both for the LB and TR cutoff schem
As we have explained in Sec. I, in order to make cont
with the empirical distributions extracted from the measu
structure functions, we have to evolve our calculated dis
butions from the low energy scalem25Q0

2 to the valuem2

5Q2 where empirical parametrizations are available. F
this Q2 evolution we use the computer code of Ref.@34# to

9The current quark mass obtained from the gap equation im
55.96 MeV in the LB scheme.
06520
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solve the DGLAP equation in the next-to-leading order.~For
the Q2 evolution we useNf53, LQCD5250 MeV.) We
will compare our evolved distributions to the parametriz
tions of Ref.@35# for Q254 GeV2. Both the calculated and
empirical distribution functions refer to the modified min
mal subtraction (MS) renormalization and factorizatio
scheme. The value ofQ0

2 is treated as a free parameter whi
is determined so as to reproduce the overall features of
empirical valence quark distributions atQ254 GeV2. In this
way we obtain a value ofQ0

250.16 GeV2; i.e.,Q0 is equal to
our constituent quark massMQ .

Let us first discuss the valence quark distributions sho
in Figs. 4 and 5. Although we do not show the results of
pure valence quark model~no pions!, we note that the input
distributions atm25Q0

2 shown here are softer than in th
case without pionic cloud effects; that is, the pionic effe
reduce the peak heights of the valence quark distributi
and increase their support at lowx. The integral over the
input distributions shows that atm25Q0

2 the valence quarks
carry 92% ~87%! of the nucleon’s LC momentum for th
case of the LB~TR! cutoff. The rest is carried by the se
quarks. This reduction of the peak heights due to pionic
fects has a beneficial effect on the overall behavior of
valence quark distributions, although it is insufficient in pa
ticular for thed quark in the LB scheme. The input distribu
tions are still rather stiff even when pionic effects are tak
into account, which necessitates the use of a low value ofQ0

2

in order to approach the empirical distributions via theQ2

evolution. We can expect some improvement concerning
point in a full Faddeev calculation, since in the present sta
approximation the size of the nucleon is too small, cor
sponding to momentum distributions which are too stiff.

FIG. 4. LC momentum distributions of the valenceu quark in
the proton, using the LB~solid lines! and TR~dashed lines! regu-
larization scheme. The lines associated withQ0

250.16 GeV2 show
the NJL model results, and the lines associated withQ0

2

50.16 GeV2 show the results obtained by the QCD evolution
next-to-leading order fromQ0

250.16 GeV2 to Q254 GeV2, using
LQCD50.25 GeV andNf53. The dotted line shows the parametr
zation forQ254 GeV2 obtained in Ref.@35# by analyzing the ex-
perimental data.
1-7
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In the LB cutoff scheme, the input distributions are ze
for large~and also very small! values ofx, and therefore the
output distributions~at Q254 GeV2) show a too strong
variation withx compared to the empirical ones. On the co
trary, for the TR cutoff the input distributions are nonzero
the whole region ofx, which leads to a smoother behavior
the output distributions.10 This is the same feature as noted
Ref. @15# for the quark distribution in the pion and indicate
that for phenomenological applications the TR cutoff see
to be superior over the LB cutoff. On the other hand, as
have explained earlier, the shortcoming of the TR cut
scheme is that the diquark mass must be treated as a
parameter since in this scheme mass renormalizations
necessary in order to get finite results.

In our calculation, the difference between the valencu
andd quark distributions reflects the scalar diquark corre
tions in the proton: Since thed quark appears inside th
diquark and not as a spectator quark@see Eq.~3.6!#, its dis-
tribution is given by the convolution of two distribution
@Eq. ~3.9!#, which is more concentrated at low values ofx
compared to the spectator quark distribution. This is
agreement with the behavior shown by the empirical dis
butions, and this observation was in fact one of the moti
tions to introduce diquark degrees of freedom also into
bag model description of the nucleon structure functions@3#.

We now turn to the antiquark distributions shown in Fig
6 and 7. As in the case of the valence quark distributions,
TR cutoff scheme leads to an overall better agreement w
the empirical distributions than the LB scheme. The e
hancement ofd̄ over ū is clearly seen both in the input an
output distributions. Since the numerical value of the pro

10For the TR cutoff, the input distributions show a sharp incre
whenx becomes very close to 1. Since the computer code used
theQ2 evolution@34# requires an input distribution which vanishe
for x51, we artificially modified it forx very close to 1 such that i
goes like (12x)n with some powern. (n510 was used in the
actual calculation.!

FIG. 5. LC momentum distributions of the valenced quark in
the proton. For an explanation of the lines, see the caption to Fi
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ability of the quark state without pion cloud isZQ50.84
(ZQ50.83) for the LB ~TR! cutoff scheme, the Gottfried
sum ~3.30! becomesSG50.262 (SG50.257), compared to
the experimental value11 reported by the NM Collaboration
@1#, SG50.23560.026. Our results for the differencef d̄/P

2 f ū/P are shown in Fig. 8. We see that with our value ofQ0
2,

which has been chosen such as to reproduce the overal
havior of the valence quark distributions, the calculated d
ference is smaller than the empirical one for intermedi
values ofx, but larger for smallx. Concerning the ratioū/d̄,
there are also data from Drell-Yan processes@37# which give
ū/d̄50.5160.0460.05 atx50.18, compared to our calcu
lated value of 0.68~0.70! at Q254 GeV2 for the LB ~TR!
cutoff. This, too, shows that the observed flavor asymme
of the Dirac sea is larger than our calculated one in this ra
of x. In this respect it must be noted that recent calculatio
in the soliton approach@21# give a larger flavor asymmetry
of the Dirac sea, leading to better overall agreement with
empirical difference f d̄/P2 f ū/P . One should investigate
whether the results for the asymmetry in the Faddeev
proach can be improved by avoiding some of the approxim
tions which led us to the simple convolution form~3.19!.

V. SUMMARY AND OUTLOOK

In this paper we used the framework of the relativis
Faddeev equation in the NJL model to calculate the qu
LC momentum distributions in the nucleon. As a first st
towards a full Faddeev calculation, we used the nucleon v
tex functions obtained in the simple static approximation
the Faddeev kernel and included pionic cloud effect appro
mately using the familiar convolution formalism. We ca
summarize our results as follows: First, we have show
method based on a straightforward Feynman diagram ev

e
or

FIG. 6. LC momentum distributions of theū quark in the pro-
ton. For an explanation of the lines, see the caption to Fig. 4.

11It has been shown that the Gottfried sum is almost unchange
the Q2 evolution @5,36#.

4.
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ation, which we believe to be best suited for the calculat
of the distribution functions in the Faddeev framework. B
sides being simple and straightforward, the method a
guarantees the validity of the number and momentum s
rules from the outset. Second, we discussed two regula
tion schemes which can be formulated in terms of LC co
dinates, and which preserve the number and momentum
rules. Based on our numerical results we concluded that
the description of the momentum distributions in the nucle
the transverse momentum cutoff scheme is superior over
invariant mass regularization scheme, which is similar to
situation found previously for the momentum distribution
the pion. Third, we have shown that the resulting distribut
functions reproduce the overall behaviors of the empiri
ones if the low energy scale for theQ2 evolution is taken to
be about the same as the constituent quark mass~400 MeV in
our calculation!. Such a low value is required since the inp
valence quark distributions calculated in our model are ra
stiff, although the pionic cloud effects served to soften th
compared to the pure valence quark results. In this respe
full Faddeev calculation which gives larger and more rea
tic nucleon radii, as well as the inclusion of higher ma
diquark channels~axial vector diquark channel!, is expected
to improve the situation. We have also shown that the va
for the Gottfried sum obtained in this simple calculation is
basic agreement with the experimental one.

The formulation and results of this work can be used a

FIG. 7. LC momentum distributions of thed̄ quark in the pro-
ton. For an explanation of the lines, see the caption to Fig. 4.
n-
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basis for at least the following three extensions: First, o
could easily use the present framework to calculate the qu
spin distributions, provided that the axial vector diquarkJ
51) channel is also taken into account. Second, one sh
use the full Faddeev vertex functions to calculate the qu
momentum distributions. As we have noted in Sec. I,
most convenient way for this purpose might be first to go
the moment space and then to reconstruct the distribu
functions. The third extension concerns the case of fin
density: For a finite density calculation the full Fadde
framework seems to be intractable, and approximations
the static approximation used in this paper might be unavo
able. For this purpose, however, it is necessary first to c
struct an equation of state for nuclear matter based on
Faddeev~quark-diquark! picture of the single nucleon, simi
lar to the Guichon equation of state@38#, which is based on
the MIT bag picture of the single nucleon. The constructi
of such an equation of state and its applications are n
under consideration@39#.
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