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Aspects of statistical model for multifragmentation
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We deal with two different aspects of an exactly soluble statistical model of fragmentation. First we show,
using zero range force and finite temperature Thomas-Fermi theory, that a common link can be found between
finite temperature mean field theory and the statistical fragmentation model. We show the latter naturally arises
in the spinodal region. Next we show that although the exact statistical model is a canonical model and uses
temperature, microcanonical results which use constant energy rather than constant temperature can also be
obtained from the canonical model using saddle-point approximation. The methodology is extremely simple to
implement and at least in all the examples studied in this work is very accurate.@S0556-2813~99!06512-7#

PACS number~s!: 25.70.Pq, 24.10.Pa, 64.60.My
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I. INTRODUCTION

Recently we have presented a two-component statis
model of fragmentation to describe features of heavy
collisions. The first study@1# was a one component model
which no distinction between neutrons and protons w
made. In this model, large systems containing as many
3000 particles could be studied. A first order transition co
then be established in the thermodynamic limit. This h
been further followed in later studies@2# where equations o
state for finite number of particles were obtained, form
extensions to two kinds of particles and preliminary stud
to make contact with a microcanonical treatment were ma
More recently realistic calculations for ‘‘caloric curves’’ fo
finite nuclei were completed@3#. Calculations for popula-
tions of different isotopes seen in heavy ion reactions at
National Superconducting Cyclotron Laboratory at Michig
State University are nearly complete.

The advantage of this soluble statistical model~for brev-
ity, we will call this SSM! is that it is simple to implement
Given the assumptions of the model which we state cle
in the next section, the canonical partition function of t
system is calculated exactly~even if numerically!. The
model is extremely flexible. One can use as inputs exp
mental binding energies and excitation energies of nuc
The numerical calculations are, in fact, simpler to carry
than grand canonical calculations which were initiated
Bevalac Physics@4#. Apart from the two practical applica
tions just mentioned we foresee many uses of this mode
the future.

The purpose of the present paper is to explore some o
features of SSM. It is found that models of multifragmen
tion predict a peak in the specific heat when the disinteg
ing nuclear system has a temperature around 5 MeV@5,3#.
This can be thought to be the remnant of a first order ph
transition @1# as would be seen in a finite system. Inde
studies with a lattice gas model also suggest this@6#. How-
ever phase transition in nuclear matter in mean field theo
indicated a critical temperature around 17 MeV. Although
finite nuclei this number would come down, signature o
phase transition at about 5 MeV seems too low for com
~Experimental results do support a 5 MeV temperature@10#!.
Faced with this, it is pertinent to ask: is there any connect
0556-2813/99/60~6!/064625~8!/$15.00 60 0646
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between mean field theory calculations and the SSM? Wh
one is ‘‘better’’?

In Secs. III, IV, and V we explore this question in deta
and come up with the answer that it is indeed possible to
a link between the two. This link is most obvious if one us
the Skyrme interaction and finite temperature Thomas-Fe
theory. This link is then exploited to show that under con
tions that are deemed to be appropriate for the disintegra
system, SSM is superior to mean field calculation. Free
ergy consideration will drive the system towards fragmen
tion, leading to a model very close to the SSM. While th
does not explain why the mean field theory gives such a h
critical temperature it does show that it is better to put fa
in a SSM type of model.

Sections VI, VII, and VIII deal with another aspect o
SSM. Since the canonical partition function is known exac
in the SSM, can we not, by suitable manipulations, also
tain results of the microcanonical ensemble, at least, appr
mately? This question was raised in an earlier paper@2# and
the saddle-point approximation was suggested as a pote
tool for such problems. Here we explore this in comple
detail. We show that calculations are easy and as exam
compute inclusive cross sections for some isotopes and
total yield. The tests which we perform to check the accura
of the saddle-point approximation suggest that the appr
mation gives very reliable estimates for a microcanoni
calculation. This is extremely gratifying. We want to remin
the reader that microcanonical calculations are very long
cause of two reasons:~1! the microcanonical phase space
difficult to compute for a general partition and~2! the num-
ber of partitions is so huge that summing over all possi
partitions is impractical. Algorithms have been developed
do samplings of important parts of the phase space@8#. SSM
avoids the difficult problem of computing the phase spa
and sums over all the partitions with the correct weight. T
passage back to the microcanonical ensemble will be see
be neither long nor tortuous.

II. THE SOLUBLE STATISTICAL MODEL

In this section, for completeness and later use, we pre
the details of the SSM. Assume that at the time of disin
©1999 The American Physical Society25-1
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gration the system can be characterized by a temperatuT
and a freeze-out volumeVfr . The partition function of the
system characterized byz protons andn neutrons is given by

Zz,n5( )
i , j

v i , j
ni , j

ni , j !
. ~2.1!

Hereni , j is the number of composites with proton numbei
and neutron numberj and v i , j is the one particle partition
function of this composite. The form of Eq.~2.1! is correct if
interactions between different clusters are neglected or
be included in a mean field term. One obvious interact
between different clusters is that they cannot overlap w
each other. We hope to take account of this approxima
through an average excluded volume@see the discussion fol
lowing Eq. ~2.3!#. This would allow us to adopt the form o
Eq. ~2.1!.

The sum in Eq.~2.1! runs over a huge number of part
tions all of which must satisfy two constraints( i , j in i , j5z
and ( i , j jn i , j5n. These constraints would appear to ma
the computation ofZz,n prohibitively difficult ~this is one
reason why one works with a grand canonical ensemble!, but
a recursion relation makes the numerical computation ofZz,n
quite easy, even for largez andn. Three equivalent recursio
relations exist, any one of which could be used. For exam
one such relation@7# is

Zz,n5
1

z (
i 50

z

(
j 50

n

iv i , jZz2 i ,n2 j . ~2.2!

HereZ0,051. In present day computers the numerical va
for typical values ofz,n as would be encountered in heav
ion collisions can be computed in seconds.

All nuclear properties are contained inv i , j . It is given by

v i , j5
V

h3
~2pmT!3/2~ i 1 j !3/23qi , j int

. ~2.3!

HereV is the free volume within which the particles move;V
is related to Vfr5freeze-out volume. The relationship
throughV5Vfr2Vex whereVex is the excluded volume du
to finite sizes of the composites. In reality,Vex is not constant
and depends upon multiplicity as well as sizes of objects~see
Ref. @9# for a study of this!. In the past the value ofVex has
often been taken to beV0 whereV0 is the normal volume of
a nucleus with mass number (z1n). We will use this value
but the precise value is quite unimportant for the discussi
of what is to follow in latter sections. The quantityqi , j int

is
the internal partition function of the composite. It is given

qi , j int
5(

k
~2sk11!e2Ek /T. ~2.4!

The average number of particles of a composite is given

^ni , j&5v i , j

Zz2 i ,n2 j

Zz,n
. ~2.5!
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The versatility of the model arises from the fact that ma
choices ofv i , j in Eq. ~2.1! can be made. We designate th
simplest model as model 1.

In model 1 no distinction is made between neutrons a
protons. A composite is characterized by only the mass n
ber a. The composites have ground state energye0a
1s(T)a2/3. The first term is the volume energy withe0
5216 MeV. The second term is the surface tension te
taken~in keeping with Ref.@5#! to be temperature dependen
s(T)5s0@(Tc

22T2)/(Tc
21T2)#5/4 with s0518 MeV and

Tc518 MeV. The intrinsic partition function in this model i

qaint
5expS e0a

T
2

sa2/3

T
1

Ta

e0
D . ~2.6!

In Ref. @5# the numerical value ofe0 is taken as 16 MeV and
we use the same value here. The last term in the expone
arises from summing over excited states in a low tempera
Fermi gas limit.

The generalization of Model 1 to a more realistic mod
with two kinds of particles is straightforward. The intrins
partition function above gets modified to

qi , j int
5expF 1

T S e0~ i 1 j !2s~ i 1 j !2/32k
i 2

~ i 1 j !1/3

2s
~ j 2 i !2

~ j 1 i !
1

~ i 1 j !T2

e0
D G , ~2.7!

where we have added parametrized terms for symmetry
Coulomb energies. Of course instead of this parametri
version of binding energies, one can use experimental b
ing energies from data tables and we will have occasion
do so in Sec. VIII.

We have described SSM. In the next section we will try
find a connection between SSM and mean field theory. T
latter explores thermodynamic properties by assuming an
derlying interaction and a uniform density but no fluctuatio
and hence no clusters. The two models seem very diffe
with no obvious common ground. But a common link can
found.

III. FREE ENERGY IN DIFFERENT MODELS

In making preferences between different models we w
compute free energies in different models. If two mod
have the same underlying Hamiltonian, the one which gi
a lower free energy will be the favored one. In the statisti
model which we outlined in the beginning, the canonic
partition function is directly calculated and henceF5E
2TS52TlnZN (N being the total number of particles! is
known. But we also want to consider mean field theories a
the ones we will consider directly generate the grand pa
tion function. In such cases we are constrained to calcu
E2TS from grand canonical ensemble with a chemical p
tential so chosen as to give the prescribed number of
ticles and assume this is indeed the result from a canon
ensemble as well. In the thermodynamic limit this is rigo
ously correct but since in the nuclear case the numbe
5-2
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ASPECTS OF STATISTICAL MODEL FOR . . . PHYSICAL REVIEW C 60 064625
nucleons is usually between 100 and 300, one needs to
an estimate of the corrections to relations which are ex
only in the thermodynamic limit.

This estimate can be obtained by looking at the relat
betweenZcan and Zgr for finite number of particles. Since
Zgr(l)5(Nexp(lN)ZN , the following exact relationship
holds:

ZN5e(2l0N)
1

2pE2p

1p

e2 ilNZgr~l01 il!dl. ~3.1!

The exact evaluation of this integral is very difficult so w
attempt an approximate evaluation. The relationship imp
in Eq. ~3.1! is true for any value ofl0 but we choosel0 such
that the 2 ilN1 lnZgr(l01 il) maximizes atl50. This
means] lnZgr(l0)/]l05^N& where the system we want t
study has exactlŷ N& nucleons. Expanding up to secon
order and assuming that the kernel falls off quickly one o
tains the result

Z^N&5exp~2l0^N&!
Zgr~l0!

A2p ~]2/]2l) ln Zgr

. ~3.2!

This is of course the saddle-point approximation in one
mension. Later we will have occasion to use the saddle-p
approximation in four dimensions. The reader will recogn
that the second derivative of the log of the grand partit
function is just the fluctuation in the number of particles:

]2ln Zgr /]
2l5^N2&2^N&2. Taking the logarithm of both

the sides and multiplying by the temperature we get
equation

F52TlnZgr1m^N&1T lnA2p~^N2&2^N&2!, ~3.3!

where we have writtenmN for Tl0N to conform to the tra-
ditional way of writing the thermodynamic relation:TS2E
5pV2mN which corresponds to the above equation exc
for the last part which is an estimate of the correction due
finite number of particles.

We have looked at the correction in two models. One
the Fermi-gas model. Here for 140 particles atr
50.04 fm23 and 5 MeV temperature the estimate to t
correction to free energy per particle is only 0.105 Me
This has no consequence in the discussion that we will p
sue in the next section. Atr50.1 fm23 the correction at the
same temperature is 0.098 MeV. Let us now consider mo
1 of SSM. Here we know the exact value ofF/N, but we can
also solve the same problem in the grand canonical
semble, then use Eq.~3.3! to getF/N for 140 particles with
or without the estimate of finite number correction. At tem
perature 5 MeV the exact answer is215.08 MeV, the ther-
modynamic answer is215.22 MeV and including the finite
number correction it is215.01 MeV. We therefore know th
limits of the accuracy of our predictions when we try to g
the free energy from a grand canonical calculation.
06462
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IV. INSTABILITY TOWARDS FRAGMENTATION

Skyrme type of interaction has been used to explore thp-
V diagram and to locate the critical point of nuclear matt
The critical point was calculated to be around 17 MeV. E
perimentally, interesting features appear to emerge arou
MeV. Although precise extraction of caloric curves from e
periments is very hard, evidence is that interesting thin
happen around 5 MeV and not beyond. What is also intri
ing is that models of fragmentation, although often qu
schematic, find that the peak in specific heat should app
around 5 MeV. This, for example, is true in the lattice g
model. What we can readily show is that the Skyrme me
field theory, which predicts a high value ofTc cannot be
trusted at low temperature and low density. The system
unstable towards fragmentation in this regime.

We take the potential energy density to be of the form

W~r!5
At

2

r2

r0
1

Br

s11

rs11

r0
s

. ~4.1!

The one body potential that a particle feels is

U~r!5At

r

r0
1Br S r

r0
D s

. ~4.2!

In the abover0 is a constant taken here to be 0.16 fm23. The
constantsAt ,Br , and s can be set to give the saturatio
density, the binding energy per particle and the compress
ity. We have chosen two sets of valuesAt52356.8 MeV,
Br5303.9 MeV,s57/6 which give a saturation density o
0.16 fm23, binding energy per particle of 16 MeV and com
pressibility K5201 MeV. The other set isAt52123.03
MeV, Br570.135 MeV, ands52. The second set gives th
same saturation density and binding energy but a hig
compressibility ofK5377 MeV. The first will be referred to
as a soft equation of state and the second as a hard equ
of state. There is strong evidence that a soft but momen
dependent equation of state is more appropriate but we
not consider this complication here.

Consider now the following scenario. The relevant regi
is r,r0. We putr50.04 as a typical freeze-out density.
mean field theory a large nucleus is stretched so that den
at every point isr. But it may be easier for this large blob t
break up instead into two blobs, each with normal dens
We ought to compute free energies for the two situations
the second situation there is also the possibility of relat
motion of the two blobs but this is just three degrees
freedom compared to 3N so we neglect this.~The inclusion
anyway strengthens our argument.! Therefore what we need
to consider is free energy per particle in the two situatio
Now free energy per particle in the Skyrme interaction
easy to compute. It is given bye01e* 2Ts wheree05 3

5 eF
1(At/2)(r/r0)1@Br /(s11)#r/r0)s;e* and s are excita-
tion energy and entropy per particle respectively. The qu
tity e* 2Ts ~its approximate value at low temperature is t
well-known expression2p2T2/4eF) is easily obtained from
numerical integration of Fermi integrals.
5-3
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We find that for the soft equation of state atr50.04, the
free energy for two blobs with normal density has a low
value than the uniform low density situation until tempe
tures of about 11 MeV. Break up into two blobs of norm
density continues to be the preferred situation for the h
equation of state until an even higher temperature: ab
13.5 MeV. This is expected. For a hard equation of stat
should be harder to stretch nuclei to lower density. It the
fore follows that it is better to discard the mean field theo
at low temperature and density. This however is the ra
which is most interesting for experiments.

But then if it is more advantageous to break the syst
into two blobs with normal density why should it not brea
up also in three or more blobs? Allowing for all sizes
fragments can only lower the free energy. This of cou
directly takes us into the statistical model of fragmentati
We will see in the next section that Skyrme type interact
and Thomas-Fermi theory takes us uniquely to a spec
model of fragmentation.

V. FRAGMENTATION IN THOMAS-FERMI THEORY
WITH ZERO-RANGE FORCES

Thomas-Fermi theory with Skyrme interactions of t
above type has the following features for all nuclei, big
small. The density isr0 throughout the volume of the
nucleus. The ground state energy ise03a wheree0, with the
choices of force parameters of the previous section, is
MeV anda is the number of nucleons in the nucleus. The
is no surface tension term. Of course if we treat the Skyr
interaction in quantum mechanics, each nucleus needs t
treated separately and this universal feature will disappea
diffuse surface will appear with the accompaniment of a s
face tension like term in the energy. This is also true even
Thomas-Fermi theory if instead of zero range forces a fin
range force is used as is usually the case.

Returning however to the Thomas-Fermi approximat
for zero range forces, the intrinsic partition function of
composite ofa nucleons with Skyrme force of the abov
type is

qaint
5expS 2e0a1a~Ts2e* !

T D . ~5.1!

If we replaceTs2e* by the low temperature expansio
p2T2/4eF we see that we have recovered model 1 of SS
~see Sec. II! for fragmentation except for the surface tensi
term. Of course the surface tension term is very import
and is crucial for interesting features such as the appear
of a maximum in specific heat. We may put it in by hand,
something which is essential for getting the correct phys
but for the moment let us follow the Thomas-Fermi prescr
tion with Skyrme interaction and compare the free energ
for the two scenarios:~1! soft equation of state and un
formly low density mean field theory and~2! fragmentation
model where each fragment appears as a normal de
composite with the intrinsic partition function given b
Thomas-Fermi theory, namely, that of Eq.~5.1!. In the mean
field model at temperature 5 MeV,r50.04 fm23 the free
06462
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energy per particle is211.91 MeV. For 140 particles in the
second case at the same temperature, the free energ
particle is221.55 MeV. If we now add a temperature d
pendent surface tension as in model 1 the free energy
particle rises to215.18 MeV. If we keep the surface tensio
coefficient fixed at 18.0 MeV@s(T)5s(0)518.0 MeV# this
number becomes214.55 MeV.

Model 1 can be regarded as a low temperature expan
of Eq. ~5.1! to which a surface tension term has been add
Numerically, p2T2/4eF reduces to (T2/14.95) MeV for eF
corresponding to normal nuclear density of 0.16 fm23. The
value (T2/16) MeV is used in model 1. In model 1 fre
energy per particle atr50.04 fm23 and temperature 5 MeV
is 215.08 MeV. To summarize, in the spinodal regio
Skyrme type of interaction coupled with a finite temperatu
Thomas-Fermi theory, naturally leads to a model of fragm
tation very similar to the statistical model of fragmentatio

VI. CONTACT WITH MICROCANONICAL ENSEMBLE

We now come to the second part of our investigation
posed in the Introduction: since we can calculate the valu
the canonical partition function exactly and since the cano
cal partition function is a Laplace transform of microcano
cal phase space, can we also, by suitably manipulating
nonical results, obtain results of microcanonical calculati
at least, approximately? One might argue that a constant
energyE rather than constantT describes the heavy ion situ
ation. This need not be completely correct. There is usu
pre-equilibrium emission and presumably equilibrium sta
tical mechanics such as we described above happens
such pre-equilibrium emission. The same amount of ene
need not be carried away in pre-equilibrium emission in
ery event.

Microcanonical calculations require evaluation of pha
spaces. We will require two types of phase space integr
Let us introduce some abbreviations. A composite is cha
terized by two indices:i 5number of protons in the compos
ite andj 5number of neutrons in the composite. Let us wr
a5( i , j ). Then the basic integral of microcanonical e
semble~in which interactions between different particles a
neglected although the particles are allowed to be in intrin
excited states! is

D5(
na

S V

h3D M

Pa

~2sa11!na

na! E dFE2(
j 51

M

e j~pj !G
3dS PW 2(

j 51

M

pW j D 3dz,( ina
dn,( jna)j 51

M

d3pj . ~6.1!

Here (ana5M is the multiplicity. We will call thisD
5g(E,PW ,z,n) meaning it is related to the phase space fo
system which hasz protons,n neutrons, total energyE and
total momentumPW . For a general case it is extremely diffi
cult to calculateg(E,PW ,z,n). The reason ise j52(B•E) j

1pj
2/2mj and mj is different for each composite. Her

(B•E) j stands for the binding energy of thej th particle.
Analytic solutions when there are only two different mass
5-4
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ASPECTS OF STATISTICAL MODEL FOR . . . PHYSICAL REVIEW C 60 064625
were obtained in Ref.@11#. Without an analytic solution
where contributions from different composites factor out,
huge sum in the above equation is impractical to carry o

We do the following trick to evaluate the phase-spa
integral. We use the Laplace transform onE,PW with the
transformed variablesb,qW . This gives us the canonical pa
tition function which we know how to evaluate exactly~even
if it is numerical!. The Laplace inversion problem is the
done by the saddle-point method. Generating an approxim
microcanonical result from a grand canonical calculation w
done in Ref.@12#. There, the objective was to estimate t
error introduced by the use of the grand canonical ensem
to study systems which had finite number of particles.

Writing then

Zz,n~b,qW !5*dE*d3Pg~E,PW ,z,n!e2bE2qW •PW ,

we get

Zz,n~b,qW !5(
na

) S V

h3D na ~2sa11!na

na!

3)
j 51

M E expS 2b( e j2qW •( pW j Dd3pj .

~6.2!

The reader will recognize that except for the termqW •(pW j
the above equation defines the usual partition functi
Indeed, the relationship is very simple:Zz,n(b,qW )
5Zz,n(b)emAq2/(2b) wheremA is the mass of the whole sys
tem.

The relationship betweeng(E,PW ,z,n) and Z(b,qW ) is
given by

g~E,PW ,z,n!5exp~b0E1qW 0•PW !
1

~2p!4E eibE1 iPW •qW

3Zz,n~b01 ib,qW 01 iqW !dbd3q. ~6.3!

This is an exact relationship valid for anyb0 andqW 0 but in
order to evaluate the integral in the saddle-point approxim
tion we will choose particular values. We rewrite the kern
of the above equation as exp@ibE1iPW •qW1ln Zz,n(b01ib,qW0

1iqW)#, choose the value ofb0 andqW 0 such that the argumen
in the exponential maximizes atb50 andqW 50. This leads
to

E52
] ln Zz,n~b0 ,qW 0!

]b0
. ~6.4!

Given E this determinesb0. The other quantityqW 0 is deter-
mined by

PW 52¹W q0
ln Zz,n~b0 ,qW 0!. ~6.5!
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This last equation is particularly simple and leads toqW 0

52bPW /mA . The argument in the exponential is now e
panded to second order in a Taylor series about the sa
point. Once the Taylor expansion is truncated at second
der, the integrations can be done analytically since they
volve only Gaussians. Thus,g(E,PW ,z,n) in the saddle-point
approximation is given by

gsp~E,PW ,z,n!5
Zz,n~b0!

~A2p!4udetu1/2
eb0E2b0P2/2mA. ~6.6!

The value of the determinant is (mA /b)3(]2/]2b)ln Z. For
completeness the matrix is explicitly given in the Append

VII. INCLUSIVE CROSS SECTION

As the simplest example we will consider the inclusi
cross section of a given speciesb whereb stands for proton
and neutron labelsk,l . In the canonical description the in
clusive cross section must turn out to be Maxwellian b
nonetheless to show correspondence with microcanon
procedure we will derive this as a ratio of two partition fun
tions. Thus

d3na

d3pb

~pW b!5
Zz,n~b,pW b!

Zz,n~b!
, ~7.1!

where Zz,n(b) is the standard canonical partition functio
andZz,n(b,pW b) is given by

Zz,n~b,pW b!5( nb

1

nb! F V

h3
~2sb11!e2bpb

2/2mbqbintG
3F V

h3
~2sb11!~2pmaT!3/2qbintG nb21

)
kÞb

vk
nk

nk!
.

~7.2!

The various terms in Eq.~7.2! arise because in a partitio
which hasnb particles of typeb, any one of them could be in
the infinitesimal volumed3pb aroundpW b . With slight ma-
nipulation Eq.~7.1! can be recast to the form

d3nb

d3pb

~pW b!5^nb&
exp2bpb

2/2mb

~2pmbT!3/2
, ~7.3!

which is indeed the form one would have expecteda priori.
The corresponding inclusive cross section in the micro

nonical ensemble is also a ratio, the denominator being
quantityD of Eq. ~6.1! with PW 50. ~The calculation is done
in the c.m. frame.! The numerator is given by
5-5
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N5( nbS V

h3D M

)
~2si11!ni

ni !
E dS E2eb~pb!

2 (
j 51

M21

e j~pj !D dS pW b1 (
j 51

M21

pW j D dz,( ini
dn,( jni )j 51

M21

d3pj .

~7.4!

The numerator can be written as

N5
V

h3
~2sb11!g~E2eb ,2pW b ,z2k,n2 l !. ~7.5!

The phase-space factor indicated above can also be c
lated by saddle-point approximation as before. We can w
down by inspection of Eq.~6.6!.

gsp~E2eb ,2pW b ,z2k,n2 l !

5
Zz2k,n2 l~b08!

~A2p!4udet8u1/2
exp$b08@~E2eb!2pb

2/2m(A2b)#%.

~7.6!

Of course the corresponding changes to Eqs.~6.4! and ~6.5!
need to be implemented: for example, Eq.~6.4! leads to

E2eb52
] ln Zz2k,n2 l~b08 ,qW 08!

]b08
. ~7.7!

It is interesting to write this out in detail: putting in th
appropriate factors one obtains

E2eb52
] ln Zz2k,n2 l~b08!

]b08
1pb

2/2mA2b . ~7.8!

The left hand side of the above equation shows that the
tem with proton numberz2k and neutron numbern2 l has

TABLE I. Teff for 6Li and 20Ne calculated for different combi
nations of incident protons and neutrons.The energy was ch
such that Eq.~6.4! would give a temperature of 6 MeV.

z n 6Li 20Ne

39 46 5.50940 4.97317
54 68 5.65563 5.26758
77 100 5.76246 5.49141
06462
cu-
te

s-

energyE2eb because a particle left with energyeb . The
right hand side of this equation shows that part of this ene
is taken by the recoil of the system.

Let us consider under what circumstances the ratioN/D
can approximate Eq.~7.3!. Assume that the difference in th
values ofb0 andb08 is negligible. Remembering thateb con-
tains both the binding energy and the kinetic energypb

2/2mb

the ratio becomes the right hand side of Eq.~7.3! except for

an attenuating factore2b08pb
2/2mA2b. Unlesspb is very large,

this attenuating factor is simply unity. This attenuating fac
is very reasonable and will cut down on the inclusive cro
section at very high momentum causing a deviation fr
Maxwell-Boltzmann distribution.

As examples, we calculated inclusive spectra of6Li and
20Ne using the saddle-point approximation where the dis
tegrating systems have total proton and total neutron n
bers~39,46!, ~54,68!, and~77,100! ~Table I!. These numbers
are somewhat arbitrary but they approximate typical targe1
projectile combinations. The binding energies have be
taken from data tables. The other input is the total energE
of Eqs.~6.1! and ~7.4! which was chosen such that the tem
perature in a canonical calculation would be exactly 6 Me
We can now ask if the microcanonical calculation of incl
sive spectrum~as obtained in the saddle-point approxim
tion! gives an approximate Maxwell-Boltzmann distributio
with a temperature and if so what these values are for the
isotopes. We find that for both the isotopes, forpb

2/2m up to
about 50 MeV, the slopes are remarkably Maxwellian. B
the deduced temperatures are different for the two isoto
The difference between the two temperatures decrease
the size of the disintegrating system increases. For the
tem~39,46! the apparent temperature of Ne is about 0.5 M
lower than that of Li. This difference is not large enough
be readily recognized in experiments. For kinetic energy b
ger than 50 MeV the inclusive spectrum begins to fall o
faster than Maxwell-Boltzmann: one is exploring the edg
of the phase space. By integrating overd3nb /d3pb we can
obtain the total inclusive cross section. This can then
compared vis-a-vis the canonical predictions~Table II!. For
6Li the answers are basically indistinguishable between
two predictions for all the three systems. The differences
bigger for the case of20Ne. Once again, the differences b
tween the predictions of the two models diminish as the s
tem size grows. So we can conclude here that the canon
approximation of the yields is a reasonable one, provided
nucleus being considered is small compared to the sys
size.

en
ons
TABLE II. Yields of 6Li and 20Ne calculated for different combinations of incident protons and neutr
using both canonical and microcanonical ensembles.

6Li 20Ne
z n Microcanonical Canonical Microcanonical Canonical

39 46 0.106049 0.105507 2.9871731025 4.8911531025

54 68 0.134853 0.134352 3.7447931025 4.8727031025

77 100 0.182369 0.182158 5.0769831025 5.9393631025
5-6



o
n
r

e-
e

s
s
o

re

e
b

as

an

s-
the

the

of
a

ties
. A
as-

ge

ted
he

f
rat-

ion
he

ASPECTS OF STATISTICAL MODEL FOR . . . PHYSICAL REVIEW C 60 064625
VIII. ACCURACY OF THE SADDLE-POINT
APPROXIMATION

In this section we quantitatively estimate the accuracy
the saddle-point approximation for inclusive cross sectio
for soluble cases where the exact microcanonical answe
formally easily calculable. We require the ratio of two int
grals given by Eqs.~7.4! and~6.1!. Consider the phase spac
integral of Eq.~6.1! for PW 50. We consider two kinds of
particles with massesM andM /a ~These could be nucleon
and deuterons witha51/2.) For brevity only, we suppres
the V/h3 term, the factorials and the spin factors. Instead
summing over all possible partitions implied in Eq.~6.1! we
consider only one partition:n1 particles of mass M andn2
particles of massM /a. All binding energy factors can then
be reabsorbed intoE. The value of the integral*d@E
2( i 51

n1 pi
2/2m2( i 51

n2 api
2/2m#) j 51

n d3pj ~here n5n11n2)
can be found in the appendix of@11#. It is given by

I exact
den 5

1

@an221~n1a1n2!#3/2

~2pM !3/2~n21!

G@3/2~n21!#
E(3n25)/2.

~8.1!

The same integral in saddle-point approximation gives

I sp
den5

9

4A2p

exp@~3/2!n#n2

@~an221~n1a1n2!#3/2S 2

3nD (3/2)/n

3~2pM !(3/2)(n21) E(3n25)/2. ~8.2!

Notice that theE dependence in both the equations a
identical and Eq.~8.2! is related to Eq.~8.1! by Stirling type
approximation. For n11n25141 we found I exact/I sp
50.991. As we will see below, calculation of observabl
require ratios of two phase spaces which then is likely to
even more accurate.

To compare the inclusive spectra of the nucleus of m
M /a, we need to calculate the integral appearing in Eq.~7.4!
for this specific case. The exact result is given by~again
using the appendix of Ref.@11#!

I exact
num 5

1

@an222~n1a1n221!#3/2

~2pM !(3/2)(n22)

G@3/2~n22!#

3E8(3n/2)24S 12
1

~n1a1n221!

ap2

2ME8
D (3n/2)24

,

~8.3!

where E85E2ap2/2M . The saddle-point approximation
gives

I sp
num5

9

4A2p

exp@~3/2!~n21!#~n21!2

@an222~n1a1n221!# (3/2) S 2

3~n21! D
(3/2)(n21)

3~2pM !(3/2)(n22) E8(3n/2)24

3expS 2
3

2

n21

n1a1n221

ap2

2ME8
D . ~8.4!
06462
f
s
is

f

s
e
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The ratio of the inclusive spectra for the two cases c
then be calculated using Eqs.~8.1!, ~8.2!, ~8.3!, and ~8.4!.
The value of the same is computed assumingn15n25n/2
anda51/2. Figure 1 shows the variation in this ratio withn
for ap2/2ME851/n which is approximately the average sy
tem energy. Figure 2 shows the variation in the ratio of
two spectra with varyingap2/2ME8 for n 5 122. In both
cases the ratio is close to one thereby showing that
saddle-point approximation is a very reliable one.

IX. SUMMARY AND DISCUSSION

We investigated two aspects of the statistical model
fragmentation in this work. One was to try to establish
contact with a model where the thermodynamic proper
are investigated in a finite temperature mean field theory
contact can be established in finite temperature Thom
Fermi theory if the underlying interaction is a zero ran

FIG. 1. We plot the ratio of inclusive cross sections calcula
exactly to that calculated by the saddle-point approximation. T
particle has massM /a ~see text!. The value of the kinetic energy o
the particle is approximately the average energy of the disinteg
ing system, i.e.,ap2/(2ME8)51/n. We study the value of the ratio
as the total number of particlen5n11n2 varies. Heren15n2 and
a51/2.

FIG. 2. Here we plot the same ratio as in Fig. 1 but as a funct
of the ratio of the kinetic energy of the emitted particle to that of t
residual system. The total number of particlesn5122. n15n2 and
a51/2 ~see text!.
5-7
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force. In Skyrme force at densities and temperature thou
to be pertinent to disassembly of hot nuclei, the statist
model has a free energy lower than the mean field the
model. Hence, it is the favored model.

We then investigated another aspect. Since the canon
partition function is known exactly in the statistical mod
we tried the saddle-point approximation to calculate obse
ables in the microcanonical ensemble. Direct calculation
the microcanonical ensemble are very long. Saddle-point
proximation is simple and quick and where we could co
pare saddle-point results with exact phase space calculat
the agreements were remarkably close. It is possible tha
approximation fails at true phase transitions. However,
cause in the nuclear case the number of particles is not
large we do not think this can cause a problem. Some dif
ences between canonical and microcanonical~as seen by the
saddle-point approximation! were noticed, specially when
very energetic particles are emitted or when the emitting s
tems are small. But for most purposes the difference betw
canonical and microcanonical ensemble results are small
e

,

06462
ht
l

ry

al

-
in
p-
-
ns,
he
-

oo
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en
f-

ten too small to be detected. A very comprehensive stud
microcanonical ensembles for nuclear disassembly can
found in Ref.@13#, and references therein.
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APPENDIX

We use rectangular coordinates. The elements of th
34 determinant can be denoted byai , j . For brevity, we drop
the subscripts inb0 and qW 0. Without loss of generality we
take the direction ofqW to be the x direction. Thena1,1

5]2 ln Z(b,qW)/]2b1mAq2/b3. Other nonzero elements ar
a1,25a2,152mAqx /b2;a2,25a3,35a4,45mA /b.
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