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We deal with two different aspects of an exactly soluble statistical model of fragmentation. First we show,
using zero range force and finite temperature Thomas-Fermi theory, that a common link can be found between
finite temperature mean field theory and the statistical fragmentation model. We show the latter naturally arises
in the spinodal region. Next we show that although the exact statistical model is a canonical model and uses
temperature, microcanonical results which use constant energy rather than constant temperature can also be
obtained from the canonical model using saddle-point approximation. The methodology is extremely simple to
implement and at least in all the examples studied in this work is very acc{Ba856-28189)06512-1

PACS numbeps): 25.70.Pq, 24.10.Pa, 64.60.My

[. INTRODUCTION between mean field theory calculations and the SSM? Which

Recently we have presented a two-component statisticaine is “better”?
model of fragmentation to describe features of heavy ion In Secs. lll, IV, and V we explore this question in detail
collisions. The first study1] was a one component model in and come up with the answer that it is indeed possible to find
which no distinction between neutrons and protons wag link between the two. This link is most obvious if one uses
made. In this model, large systems containing as many a§€ Skyrme interaction and finite temperature Thomas-Fermi
3000 particles could be studied. A first order transition couldtheory. This link is then exploited to show that under condi-
then be established in the thermodynamic limit. This hagdions that are deemed to be appropriate for the disintegrating
been further followed in later studi¢&] where equations of System, SSM is superior to mean field calculation. Free en-
state for finite number of particles were obtained, formal€rgy consideration will drive the system towards fragmenta-
extensions to two kinds of particles and preliminary studiedion. leading to a model very close to the SSM. While this
to make contact with a microcanonical treatment were madedoes not explain why the mean field theory gives such a high
More recently realistic calculations for “caloric curves” for Critical temperature it does show that it is better to put faith
finite nuclei were completei3]. Calculations for popula- N @ SSM type of model.
tions of different isotopes seen in heavy ion reactions at the Sections VI, VII, and VIII deal with another aspect of
National Superconducting Cyc]otron Laboratory at M|Ch|ganSSM Since the canonical partition function is known exaCtIy
State University are nearly complete. in the SSM, can we not, by suitable manipulations, also ob-

The advantage of this soluble statistical motfet brev-  tain results of the microcanonical ensemble, at least, approxi-
ity, we will call this SSM is that it is simple to implement. Mately? This question was raised in an earlier pgpand
Given the assumptions of the model which we state clearlyhe saddle-point approximation was suggested as a potential
in the next section, the canonical partition function of thetool for such problems. Here we explore this in complete
system is calculated exactlfeven if numerically. The detail. We show that calculations are easy and as examples,
model is extremely flexible. One can use as inputs expericOmpute inclusive cross sections for some isotopes and the
mental binding energies and excitation energies of nucleftotal yield. The tests which we perform to check the accuracy
The numerical calculations are, in fact, simpler to carry outof the saddle-point approximation suggest that the approxi-
than grand canonical calculations which were initiated formation gives very reliable estimates for a microcanonical
Bevalac Physic$4]. Apart from the two practical applica- calculation. This i_s extremelly gratifying: We want to remind
tions just mentioned we foresee many uses of this model ifhe reader that microcanonical calculations are very long be-
the future. cause of two reason$l) the microcanonical phase space is

The purpose of the present paper is to explore some othélifficult to compute for a general partition art#) the num-
features of SSM. It is found that models of multifragmenta-ber of partitions is so huge that summing over all possible
tion predict a peak in the specific heat when the disintegratPartitions is impractical. Algorithms have been developed to
ing nuclear system has a temperature around 5 ¥&9]. ~ do samplings of important parts of the phase sp&8¢eSSM
This can be thought to be the remnant of a first order phas@voids the difficult problem of computing the phase space
transition[1] as would be seen in a finite system. Indeed@nd sums over all the partitions with the correct weight. The
studies with a lattice gas model also suggest fi]ls How-  Passage back to the microcanonical ensemble will be seen to
ever phase transition in nuclear matter in mean field theorieBe neither long nor tortuous.
indicated a critical temperature around 17 MeV. Although in

finite nuclei _t_hls number would come down, signature of a Il. THE SOLUBLE STATISTICAL MODEL
phase transition at about 5 MeV seems too low for comfort
(Experimental results do supp@ 5 MeV temperaturglQ]). In this section, for completeness and later use, we present

Faced with this, it is pertinent to ask: is there any connectiorthe details of the SSM. Assume that at the time of disinte-
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gration the system can be characterized by a temperature The versatility of the model arises from the fact that many
and a freeze-out volum¥; . The partition function of the choices ofw; ; in Eq. (2.1) can be made. We designate the
system characterized kaprotons anch neutrons is given by  simplest model as model 1.

In model 1 no distinction is made between neutrons and
wi”ij'i protons. A composite is characterized by only the mass num-
— (21  ber a. The composites have ground state enempa
+o(T)a?® The first term is the volume energy wit,
=—16 MeV. The second term is the surface tension term

and neutron numbeirand w; ; is the one particle partition taken(in keeping with Ref[5]) to be temperature dependent:

function of this composite. The form of E(.1) is correctif ~ 2(T) = Uo[(Tg—Tz)/(Tngz)]sﬁ with oo=18 MeV and
interactions between different clusters are neglected or cahe=18 MeV. The intrinsic partition function in this model is
be included in a mean field term. One obvious interaction ea oca?® Ta

between different clusters is that they cannot overlap with Oa =X 7 —
each other. We hope to take account of this approximately " T T €o
through an average excluded voluhsee the discussion fol-
lowing Eq.(2.3)]. This would allow us to adopt the form of
Eqg. (2.2).

The sum in Eq(2.1) runs over a huge number of parti-
tions all of which must satisfy two constraink ;in; j=z
and X; jjn; j=n. These constraints would appear to make
the computation oz, , prohibitively difficult (this is one
reason why one works with a grand canonical ensemble
a recursion relation makes the numerical computatiof,gf

qi'jint: ex;{

Zz,nZE H

N

Heren, ; is the number of composites with proton number

(2.6

In Ref.[5] the numerical value oé, is taken as 16 MeV and
we use the same value here. The last term in the exponential
arises from summing over excited states in a low temperature
Fermi gas limit.

The generalization of Model 1 to a more realistic model
with two kinds of particles is straightforward. The intrinsic
partition function above gets modified to

P2
quite easy, even for largeandn. Three equivalent recursion

eo(i+j)—o(i+j)¥P—«

relations exist, any one of which could be used. For example, T (i+))13
one such relatiof7] is o
(=D (+)T
z n —S—+ , 2.7
1 , (j+1) €o
Zzyn:EE 2 Iwi,jZZ*i,n*j' (22)
1=0 ]=0

where we have added parametrized terms for symmetry and

HereZ,o=1. In present day computers the numerical vaIueCOUlomb energies. Of course instead of this parametrized

for typical values ofz,n as would be encountered in heavy version Of, blnfdlng gntergt'eg‘l' one (éan usg"e;:perlmental_ bm;j-
ion collisions can be computed in seconds. ing energies from data tables and we will have occasion to

; ; ; PR do so in Sec. VIII.
All nuclear properties are containeddn, . Itis given by We have described SSM. In the next section we will try to
v find a connection between SSM and mean field theory. The
o =—3(277m'l')3’2(i +j)3/2><qi'jint' (2.3 latter explores thermodynamic properties by assuming an un-
h derlying interaction and a uniform density but no fluctuations
and hence no clusters. The two models seem very different
HereV is the free volume within which the particles mo¥e;  with no obvious common ground. But a common link can be
is related toVy=freeze-out volume. The relationship is found.
throughV =V, — V¢, whereV,, is the excluded volume due

to finite sizes of the composites. In realit,, is not constant IIl. FREE ENERGY IN DIFFERENT MODELS
and depends upon multiplicity as well as sizes of objésse _ ) )
Ref.[9] for a study of thi$. In the past the value df, has In making preferences between different models we will

often been taken to bé, whereV,, is the normal volume of Ccompute free energies in different models. If two models
a nucleus with mass numbez+n). We will use this value have the same underlying Hamiltonian, the one which gives
but the precise value is quite unimportant for the discussiond lower free energy will be the favored one. In the statistical
of what is to follow in latter sections. The quantiy; is ~ Model which we outlined in the beginning, the canonical

he i | ition functi fth ite. Itis qi partition function is _directly calculated and henEez!E
the internal partition function of the composite. It is given by—TS:—TInZN (N being the total number of particless

known. But we also want to consider mean field theories and
o= sc+1)e . . e ones we will consider directly generate the grand parti-
qdij,, 25+ 1)e /T 24 th Il der directl te th d part
K tion function. In such cases we are constrained to calculate
E— TS from grand canonical ensemble with a chemical po-
¥ential so chosen as to give the prescribed number of par-
ticles and assume this is indeed the result from a canonical
Zz-in-j bl II. In the th d ic limit this is ri
(nipy=w——. (2.5 ensemble as well. In t e thermodynamic limit this Is rigor-
’ vz ously correct but since in the nuclear case the number of

The average number of particles of a composite is given b
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nucleons is usually between 100 and 300, one needs to have [V. INSTABILITY TOWARDS FRAGMENTATION
an estimate of the corrections to relations which are exact
only in the thermodynamic limit.

This estimate can be obtained by looking at the relatio
betweenZ,, and Z, for finite number of particles. Since
Zg(N)=2ZnexpAN)Zy, the following exact relationship
holds:

Skyrme type of interaction has been used to explorgthe

V diagram and to locate the critical point of nuclear matter.
“rhe critical point was calculated to be around 17 MeV. Ex-
perimentally, interesting features appear to emerge around 5
MeV. Although precise extraction of caloric curves from ex-
periments is very hard, evidence is that interesting things
happen around 5 MeV and not beyond. What is also intrigu-
ing is that models of fragmentation, although often quite
schematic, find that the peak in specific heat should appear
around 5 MeV. This, for example, is true in the lattice gas

) o ) o model. What we can readily show is that the Skyrme mean
The exact evaluation of this integral is very difficult so we jg|g theory, which predicts a high value @i, cannot be
attempt an approximate evaluation. The relationship implieq,sted at low temperature and low density. The system is
in Eq.(3.1) is true for any value ok, but we choos@ such | |nstable towards fragmentation in this regime.

that the —iAN+InZg(Ao+iN) maximizes atA=0. This We take the potential energy density to be of the form
meansdlnZy(\o)/INo=(N) where the system we want to

study has exactlyN) nucleons. Expanding up to second

1 (+7
zN:e“KoN)EL e MZu(No+iN)dh. (3.1

A p_2 Br p0'+l

order and assuming that the kernel falls off quickly one ob- W(p)= _t ] (4.2)
tains the result 2 pg otl po
Zo(No) The one body potential that a particle feels is
gri/A0
Zny=exp(—No(N)) . (3.2
N2m (32192\) InZy p p\?
U(p)=AtE+Br — 4.2

This is of course the saddle-point approximation in one di-
mension. Later we will have occasion to use the saddle-poirin the abovep, is a constant taken here to be 0.16 finThe
approximation in four dimensions. The reader will recognizeconstantsA;,B,, and o can be set to give the saturation
that the second derivative of the log of the grand partitiondensity, the binding energy per particle and the compressibil-
function is just the fluctuation in the number of particles: ity. We have chosen two sets of valuds= —356.8 MeV,
9%In Zg,19*°\ = (N?)—(N)?. Taking the logarithm of both B, =303.9 MeV,s=7/6 which give a saturation density of
the sides and multiplying by the temperature we get thed.16 fm 3, binding energy per particle of 16 MeV and com-
equation pressibility K=201 MeV. The other set i#\;=—123.03
MeV, B,=70.135 MeV, andr=2. The second set gives the
_ I TN ETNIVAY same saturation density and binding energy but a higher
F==TInZgt p{N) T TINV27((ND=(N)), (3.9 compressibility ok =377 MeV. The first will be referred to
as a soft equation of state and the second as a hard equation
where we have writtemN for TAoN to conform to the tra-  of state. There is strong evidence that a soft but momentum
ditional way of writing the thermodynamic relatiomS—E  dependent equation of state is more appropriate but we will
=pV—uN which corresponds to the above equation excephot consider this complication here.
for the last part which is an estimate of the correction due to Consider now the following scenario. The relevant region
finite number of particles. is p<pg. We putp=0.04 as a typical freeze-out density. In
We have looked at the correction in two models. One ismean field theory a large nucleus is stretched so that density
the Fermi-gas model. Here for 140 particles at atevery pointis. But it may be easier for this large blob to
=0.04 fm 3 and 5 MeV temperature the estimate to thebreak up instead into two blobs, each with normal density.
correction to free energy per particle is only 0.105 MeV.We ought to compute free energies for the two situations. In
This has no consequence in the discussion that we will purthe second situation there is also the possibility of relative
sue in the next section. At=0.1 fm™ 3 the correction at the motion of the two blobs but this is just three degrees of
same temperature is 0.098 MeV. Let us now consider modéteedom compared toN8 so we neglect this(The inclusion
1 of SSM. Here we know the exact valuefofN, but we can  anyway strengthens our argumerkherefore what we need
also solve the same problem in the grand canonical erto consider is free energy per particle in the two situations.
semble, then use E¢3.3) to getF/N for 140 particles with  Now free energy per patrticle in the Skyrme interaction is
or without the estimate of finite number correction. At tem-easy to compute. It is given bgy+e* — Ts whereey,= 2 e¢
perature 5 MeV the exact answer-s15.08 MeV, the ther-  +(A/2)(p/pg) +[B,/(c+1)]p/pg)?;e* and s are excita-
modynamic answer is-15.22 MeV and including the finite tion energy and entropy per particle respectively. The quan-
number correction it is- 15.01 MeV. We therefore know the tity e* —Ts (its approximate value at low temperature is the
limits of the accuracy of our predictions when we try to getwell-known expression- w2T?/4eg) is easily obtained from
the free energy from a grand canonical calculation. numerical integration of Fermi integrals.
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We find that for the soft equation of state@t 0.04, the  energy per particle is-11.91 MeV. For 140 particles in the
free energy for two blobs with normal density has a lowersecond case at the same temperature, the free energy per
value than the uniform low density situation until tempera-particle is —21.55 MeV. If we now add a temperature de-
tures of about 11 MeV. Break up into two blobs of normal pendent surface tension as in model 1 the free energy per
density continues to be the preferred situation for the hargbarticle rises to-15.18 MeV. If we keep the surface tension
equation of state until an even higher temperature: aboutoefficient fixed at 18.0 MeYo(T)=c(0)=18.0 MeV] this
13.5 MeV. This is expected. For a hard equation of state ihumber becomes 14.55 MeV.
should be harder to stretch nuclei to lower density. It there- Model 1 can be regarded as a low temperature expansion
fore follows that it is better to discard the mean field theoryof Eq. (5.1) to which a surface tension term has been added.
at low temperature and density. This however is the rang®lumerically, 7°T?/4eg reduces to %/14.95) MeV for eg
which is most interesting for experiments. corresponding to normal nuclear density of 0.16 fmThe

But then if it is more advantageous to break the systenvalue (T?/16) MeV is used in model 1. In model 1 free
into two blobs with normal density why should it not break energy per particle gi=0.04 fm 2 and temperature 5 MeV
up also in three or more blobs? Allowing for all sizes of js —15.08 MeV. To summarize, in the spinodal region,
fragments can only lower the free energy. This of courseskyrme type of interaction coupled with a finite temperature
directly takes us into the statistical model of fragmentation.Thomas-Fermi theory, naturally leads to a model of fragmen-
We will see in the next section that Skyrme type interactiontation very similar to the statistical model of fragmentation.
and Thomas-Fermi theory takes us uniquely to a specific

model of fragmentation. VI. CONTACT WITH MICROCANONICAL ENSEMBLE
V. FRAGMENTATION IN THOMAS-FERMI THEORY We now come to the second part of our investigation as
WITH ZERO-RANGE EORCES posed in the Introduction: since we can calculate the value of

the canonical partition function exactly and since the canoni-

Thomas-Fermi theory with Skyrme interactions of thecal partition function is a Laplace transform of microcanoni-
above type has the following features for all nuclei, big orcal phase space, can we also, by suitably manipulating ca-
small. The density ispy throughout the volume of the nonical results, obtain results of microcanonical calculation,
nucleus. The ground state energgjs< a wheree,, with the  at least, approximately? One might argue that a constant total
choices of force parameters of the previous section, is -1&nergyE rather than constart describes the heavy ion situ-
MeV anda is the number of nucleons in the nucleus. Thereation. This need not be completely correct. There is usually
is no surface tension term. Of course if we treat the Skyrmepre-equilibrium emission and presumably equilibrium statis-
interaction in quantum mechanics, each nucleus needs to ltieal mechanics such as we described above happens after
treated separately and this universal feature will disappear. Auch pre-equilibrium emission. The same amount of energy
diffuse surface will appear with the accompaniment of a surneed not be carried away in pre-equilibrium emission in ev-
face tension like term in the energy. This is also true even irery event.
Thomas-Fermi theory if instead of zero range forces a finite Microcanonical calculations require evaluation of phase
range force is used as is usually the case. spaces. We will require two types of phase space integrals.

Returning however to the Thomas-Fermi approximationLet us introduce some abbreviations. A composite is charac-
for zero range forces, the intrinsic partition function of aterized by two indicesi=number of protons in the compos-
composite ofa nucleons with Skyrme force of the above ite andj=number of neutrons in the composite. Let us write

type is a=(i,j). Then the basic integral of microcanonical en-
semble(in which interactions between different particles are
—epat+a(Ts—e*) neglected although the particles are allowed to be in intrinsic
Ga —exr{ T ' (5.9 excited statesis

If we replace Ts—e* by the low temperature expansion D= 2
w?T?/4ex we see that we have recovered model 1 of SSM

(see Sec. hfor fragmentation except for the surface tension

term. Of course the surface tension term is very important Mo
and is crucial for interesting features such as the appearance - Zl Pj
of a maximum in specific heat. We may put it in by hand, as .
something which is essential for getting the corre_ct phys_ics Here =,n,=M is the multiplicity. We will call this D
but for the moment let us follow the Thomas-Fermi prescrip-_
tion with Skyrme interaction and compare the free energles - 9(E, P,z ) meaning it is related to the phase space for a
for the two scenarios(1l) soft equation of state and uni- System Wh'Ch hag protons,n neutrons, total energi and
formly low density mean field theory an@) fragmentation total momentunP. For a general case it is extremely diffi-
model where each fragment appears as a normal densmplt to calculateg(E,P,z,n). The reason iss;=—(B-E);
composite with the intrinsic partition function given by +pj /2mJ and m; is different for each composite. Here
Thomas-Fermi theory, namely, that of E§.1). In the mean (B- E) stands for the binding energy of theh particle.
field model at temperature 5 Me\,,=0.04 fm 3 the free Analytic solutions when there are only two different masses

2s,+1 V
LJ 5{E_§1 Ej(pj)}

n,!

M
X 5Z,Eina5n,2jnaj1;[1 dspj . (6-1)
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were obtained in Ref[11]. Without an analytic solution This last equation is particularly simple and leadsdg
where contributions from different composites factor out, the:—,Blf’/mA The argument in the exponential is now ex-

huge sum in the above equation is impractical to carry out.

We do the following trick t luate the ph anded to second order in a Taylor series about the saddle
€ do the foflowing trick to evaluate the p ase-spacegoint_ Once the Taylor expansion is truncated at second or-

integral. We use the Laplace transform &P with the  der, the integrations can be done analytically since they in-
transformed variableg,q. This gives us the canonical par- yolve only Gaussians. Thug(E,P,z,n) in the saddle-point
tition function which we know how to evaluate exactgven  approximation is given by
if it is numerica). The Laplace inversion problem is then
done by the saddle-point method. Generating an approximate
microcanonical result from a grand canonical calculation was 0o E B.2n)= Z;n(Bo) BoE ~ BoP22my
done in Ref.[12]. There, the objective was to estimate the spL= TS (\/ﬂ)ﬂdeﬂl’z
error introduced by the use of the grand canonical ensemble
to study systems which had finite number of particles.

Writing then The value of the determinant isn/B)3(9%/°B)In Z. For

completeness the matrix is explicitly given in the Appendix.

(6.6)

Z,n(8.0)=[dE[d*Pg(E,P,z,n)e FE-4P,
VII. INCLUSIVE CROSS SECTION

we get
As the simplest example we will consider the inclusive
. vV ”6(25a+ 1)"a cross section of a given speciesvhereb stands for proton
ZaBa=2 11 ] B and neutron labelk,|. In the canonical description the in-
a . clusive cross section must turn out to be Maxwellian but
M nonetheless to show correspondence with microcanonical
x[1 J ex;{ _» €j -q-> 5j d3p; . procedure we will derive this as a ratio of two partition func-
=1

tions. Thus
(6.2

: . - - d®na - Z,u(B.Py)
The reader will recognize that except for the tegmp; ——(Pp)= Z—
the above equation defines the usual partition function. d°py zn(B)

Indeed, the relationship is very simplezzln(ﬁ,ﬁ)
=27, (B)e™/(2B) wherem, is the mass of the whole sys- whereZ, ,(8) is the standard canonical partition function

tem. i i andZ, ,(B,py) is given by
The relationship betweem(E,P,z,n) and Z(8,q) is
given by

(7.1

- 1
Zz,n(ﬁypb) = E nbm

\Y
(25 + 1)e—/>’p§/2mbqbim]
o(E, 5,z,n) =exp( BoE+ d0~ I5)

. 4J eiﬁE-%—if’»d
(2m)

XZ,n(BotiB,do+iq)dBd3q. (6.3

Nk

X(2s +1)(2m,T)%? nb71]’[ il
h? b ™My Ub;, e

X

- (7.2)
This is an exact relationship valid for a8y andqq but in

order to evaluate the integral in the saddle-point approxima- . i ) . .
tion we will choose particular values. We rewrite the kernel-r?]‘_a r\]/arl]rlous termsl, in '?Cﬂ'g arise beca;uie In-a ﬁ’;ﬁ'“f_’”
of the above equation as dkpE+iP-g+In Zzn(,30+i,8,ﬁO which hasn,, particles of type, any one of them could be in

N - . .. . 3 > . . _
+i)], choose the value g8, anddj, such that the argument the infinitesimal volumed®p, aroundp,. With slight ma

. . o - i nipulation Eq.(7.1) can be recast to the form
in the exponential maximizes &=0 andq=0. This leads
to

d3nb . exp—ﬁp§/2mb

9InZ,0(Bo,do) | 6.4 dgpb(pb):<nb> 2T

dBo

(7.3

which is indeed the form one would have expechepkriori.

The corresponding inclusive cross section in the microca-
nonical ensemble is also a ratio, the denominator being the
s = - quantity D of Eq. (6.1) with P=0. (The calculation is done
P==Vq,InZ;n(Bo.0)- 6.5 in the c.m. frame. The numerator is given by

Given E this determineg,. The other quantityﬁo is deter-
mined by
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TABLE I. T for 5Li and 2°Ne calculated for different combi-

PHYSICAL REVIEW C60 064625

energy E— e, because a particle left with energy,. The

nations of incident protons and neutrons.The energy was chosefight hand side of this equation shows that part of this energy

such that Eq(6.4) would give a temperature of 6 MeV.

z n 6L 20Ne
39 46 5.50940 497317
54 68 5.65563 5.26758
77 100 5.76246 5.49141
M
Vv (25, +1)"
N=2 ny 3 I1 TJ 6| E—€n(Py)
!
M—1 M—1 M—1
—E €i(pj) | 8| ppt E P; 5z,zin.5n,zjn.H d3p; .
=1 =1 ! Hj=1

(7.9

The numerator can be written as

V -
N= (28 + Y(E=en, —Pp.z—kin=1). (7.5

is taken by the recoil of the system.

Let us consider under what circumstances the rafi®
can approximate Ed7.3). Assume that the difference in the
values ofBy and 3 is negligible. Remembering that, con-
tains both the binding energy and the kinetic engog2m,
the ratio becomes the right hand side of E43) except for

an attenuating factop™ AoPb/2Ma-b, Unlessp, is very large,
this attenuating factor is simply unity. This attenuating factor
is very reasonable and will cut down on the inclusive cross-
section at very high momentum causing a deviation from
Maxwell-Boltzmann distribution.

As examples, we calculated inclusive spectra®bif and
20Ne using the saddle-point approximation where the disin-
tegrating systems have total proton and total neutron num-
bers(39,49, (54,68, and(77,100 (Table l). These numbers
are somewhat arbitrary but they approximate typical tatget
projectile combinations. The binding energies have been
taken from data tables. The other input is the total en&rgy
of Egs.(6.1) and(7.4) which was chosen such that the tem-
perature in a canonical calculation would be exactly 6 MeV.

The phase-space factor indicated above can also be calci/é can now ask if the microcanonical calculation of inclu-
lated by saddle-point approximation as before. We can writ§iVe spectrum(as obtained in the saddle-point approxima-

down by inspection of Eq(6.6).
gsp(E_Eb,_ﬁb,Z—k,n—D

Z, n1(Bo) ,
= o e [T B B o) pii2ms )

(7.6

Of course the corresponding changes to Efsl) and (6.5
need to be implemented: for example, E6.4) leads to

IINZ,_yn1(B,GY)
By

(7.7

E_Eb: -

It is interesting to write this out in detail: putting in the

appropriate factors one obtains

dln Zz—k,n—l(ﬁ(,))

, +pi2my_p. (7.8
9By

E_Gb: -

tion) gives an approximate Maxwell-Boltzmann distribution
with a temperature and if so what these values are for the two
isotopes. We find that for both the isotopes, ;ﬁ@me up to
about 50 MeV, the slopes are remarkably Maxwellian. But
the deduced temperatures are different for the two isotopes.
The difference between the two temperatures decreases as
the size of the disintegrating system increases. For the sys-
tem (39,46 the apparent temperature of Ne is about 0.5 MeV
lower than that of Li. This difference is not large enough to
be readily recognized in experiments. For kinetic energy big-
ger than 50 MeV the inclusive spectrum begins to fall off
faster than Maxwell-Boltzmann: one is exploring the edges
of the phase space. By integrating owEn,/d®p, we can
obtain the total inclusive cross section. This can then be
compared vis-a-vis the canonical predictigiable I). For

8Li the answers are basically indistinguishable between the
two predictions for all the three systems. The differences are
bigger for the case of°Ne. Once again, the differences be-
tween the predictions of the two models diminish as the sys-
tem size grows. So we can conclude here that the canonical
approximation of the yields is a reasonable one, provided the

The left hand side of the above equation shows that the syswcleus being considered is small compared to the system

tem with proton numbez—k and neutron numbear—1 has

size.

TABLE Il. Yields of 6Li and ?°Ne calculated for different combinations of incident protons and neutrons
using both canonical and microcanonical ensembles.

6L 2ONe
z n Microcanonical Canonical Microcanonical Canonical
39 46 0.106049 0.105507 2.98710°° 4.89115¢10°°
54 68 0.134853 0.134352 3.744790°° 4.87270<10°°
77 100 0.182369 0.182158 5.076980 ° 5.93936<10°°
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VIll. ACCURACY OF THE SADDLE-POINT 1 T T T
APPROXIMATION «=1/2
o " =
In this section we quantitatively estimate the accuracy ofg os L o° 42:' E=_n}£n |
the saddle-point approximation for inclusive cross sections§ v
for soluble cases where the exact microcanonical answer i:,“%’
formally easily calculable. We require the ratio of two inte- 2
grals given by Egs(7.4) and(6.1). Consider the phase space £ 28T T
integral of Eq.(6.1) for P=0. We consider two kinds of ;
particles with masselsl andM/« (These could be nucleons 2
and deuterons witlw=1/2.) For brevity only, we suppress o4r ]
the V/h® term, the factorials and the spin factors. Instead of L L L L
0 10 20 30 40 50

summing over all possible partitions implied in E§.1) we

consider only one partitiom, particles of mass M and, n

Eartlclez of SIZSM {CCIYE A_\Il_lhblndlrIIg en(fargt;%/ fapt:)rs C?n tlgen FIG. 1. We plot the ratio of inclusive cross sections calculated
€ r:?a 250r e n'zn 5 e \:1a ue3 0 e integralf o exactly to that calculated by the saddle-point approximation. The

=21, p{2m=32 ap{/2m]Ilj_,d°p; (here n=n;+n,) particle has massl/« (see text The value of the kinetic energy of

can be found in the appendix pf1]. It is given by the particle is approximately the average energy of the disintegrat-
ing system, i.e.@p?/(2ME’) = 1/n. We study the value of the ratio
don _ 1 (277M)3/2(n_ 1) EGn-5)12 as_ttlwle;total number of particle=n,+n, varies. Heren;=n, and
e a2 Y(nya+n,) ¥ TI32An-1)] a=He
(8.1

The ratio of the inclusive spectra for the two cases can
The same integral in saddle-point approximation gives then be calculated using Eg&.1), (8.2), (8.3), and (8.4).
The value of the same is computed assuming n,=n/2
don 9 exd (3/2)n]n? ( 2 )(3’2)’” andaj 1/2. Figure 1 shows the variation in this ratio with
sp no—1 a2l 2n for ap“/2ME’ = 1/n which is approximately the average sys-
2w [(a"2™ (nya+np) 32130 tem energy. Figure 2 shows the variation in the ratio of the
X (27M)(FD0-1) E@n=5)/2 (8.2 two spectra with varyingrp?/2ME’ for n = 122. In both
cases the ratio is close to one thereby showing that the
Notice that theE dependence in both the equations aresaddle-point approximation is a very reliable one.
identical and Eq(8.2) is related to Eq(8.1) by Stirling type
approximation. For n;+n,=141 we found |gyacflg
=0.991. As we will see below, calculation of observ;bles IX. SUMMARY AND DISCUSSION
require ratios of two phase spaces which then is likely to be We investigated two aspects of the statistical model of
even more accurate. fragmentation in this work. One was to try to establish a
To compare the inclusive spectra of the nucleus of massontact with a model where the thermodynamic properties
M/a, we need to calculate the integral appearing in([Zg)  are investigated in a finite temperature mean field theory. A
for this specific case. The exact result is given (again  contact can be established in finite temperature Thomas-

using the appendix of Ref11]) Fermi theory if the underlying interaction is a zero range
1 (2mM)E20-2) . . . .
|num _ =
exact [a”2’2(n1a+n2—1)]3/2 [‘[3/2(n—2)] o :’]‘ ; :é;
1 ap? (3n/2)— 4 *g, 0.995 ny =n, = n/2
XE!(3H/2)*4 1— , g
(nja+ny—1) 2ME’ 2z
(8.9 g o9l .
)
where E'=E— ap?/2M. The saddle-point approximation 2
gives &
0.985 | .
wm 9 exd(32)(n—-D)(n-1?/ 2 |E2E-D . . . .
o= — @3\ 3(n=1 0 0.2 0.4 0.6 0.8 1
427 [a"2"“(nja+ny,—1)] (n—1) o p2/2ME*
(312)(n—2) Er(3n/2)—4
X (2mM) E FIG. 2. Here we plot the same ratio as in Fig. 1 but as a function

of the ratio of the kinetic energy of the emitted particle to that of the
(8.9 residual system. The total number of partioles122. n,;=n, and
a=1/2 (see text

" 3 n-1 ap?
ex §n1a+n2—1 2ME’
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force. In Skyrme force at densities and temperature thoughtn too small to be detected. A very comprehensive study of
to be pertinent to disassembly of hot nuclei, the statisticamicrocanonical ensembles for nuclear disassembly can be
model has a free energy lower than the mean field theorjound in Ref.[13], and references therein.
model. Hence, it is the favored model.

We then investigated another aspect. Since the canonical ACKNOWLEDGMENTS
partition function is known exactly in the statistical model .
we tried the saddle-point approximation to calculate obsery- S- Das Gupta thanks the Nuclear Physics Group at Rut-

ables in the microcanonical ensemble. Direct calculations i§€rs for warm hospitality. This work was supported in part
the microcanonical ensemble are very long. Saddle-point ag?y U-S. Department of Energy Grant No. DE FG02-96ER

proximation is simple and quick and where we could com-#0987 and, in part bye Fonds pour la Formation de Cher-
pare saddle-point results with exact phase space calculatiorfd)eurs et I'aide da Recherche du Quebe

the agreements were remarkably close. It is possible that the

approximation fails at true phase transitions. However, be- APPENDIX

cause in the nuclear case the number of particles is not too \ya yse rectangular coordinates. The elements of the 4

large we do not think t_his can cause a problem. Some differs, 4 determinant can be denoteddy; . For brevity, we drop
ences between canonical and microcanoniaalseen by the S - . .
saddle-point approximatignwere noticed, specially when the subscripts in3 an£j Go- Without loss of generality we
very energetic particles are emitted or when the emitting systake the direction ofg to be thex direction. Thena, ;
tems are small. But for most purposes the difference betwees 42 In Z(,B,&)/azm— mag¥/ 3. Other nonzero elements are
canonical and microcanonical ensemble results are small, o&; ,=a, ;= — mAqX/,BZ;aZ,2= agz=ay =Myl B.
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