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Polarization transfer observables for quasielastic proton-nucleus scattering in terms
of a complete Lorentz invariant representation of theNN scattering matrix
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For the calculation of polarization transfer observables for quasielastic scattering of protons on nuclei, a
formalism in the context of the relativistic plane wave impulse approximation is developed, in which the
interaction matrix is expanded in terms of a complete set of 44 independent invariant amplitudes. A boson-
exchange model is used to predict the 39 amplitudes that were omitted in the formerly used five-term param-
eterization, the SPVATscalar, pseudoscalar, vector, axial-vector, tengmm of the nucleon-nucleon scat-
tering matrix. Use of the complete set of amplitudes eliminates the arbitrariness of the five-term representation.
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PACS numbd(s): 24.10.Jv, 24.70:s, 25.40-h

[. INTRODUCTION invariant amplitudes, instead of the previously used five,

which are consistent with parity and time-reversal invari-
Quasielastic scattering of protons on nuclei is an attractivance, as well as charge symmetry, together with the on-mass-
phenomenon for the study of the basic nucleon-nucleon inshell condition for the external nucleons. Comparisons to the
teraction in the nuclear medium because it exhibits the aplimited data available, with subsequent and more refined cal-

proximate behavior of the scattering of a nucleon on onlyculations [2,8—10, have also revealed that quasielastic

one nucleon of the target nucleus. Quasielastic scattering hag p’) and (p,n) scattering prefer different five-term repre-

been modeled by the relativistic plane wave impulse aP5antations of, the (5,5) data favor a pseudovectorNN

roximation (RPWIA) [1], which considers it a single-ste . - . .
P ( ) [1] g P coupling, whereas thg(p') data are consistent with a pseu-

process, whereby the projectile interacts with only one | tor therNN Theref h basi
nucleon of the target nucleus, while the rest of the nucleongOsca ar term for therNN vertex. Therefore, the most basic

remain inert. The well-known and outstanding success of th(guestion that has to be addressed is the representation of the

- : e ; NN scattering matrix.
original RPWIA was its prediction of the analyzing power — . :
g P yzing p In the current application of the RPWIA to quasielastic

for the reactions“Ca(p,p’) and ***Pb(p,p’) at 500 MeV; a scattering, the following components play a key role:
case in which all nonrelativistic models fail¢d]. (1) The amplitudes in the basic two-nucleon interaction,
In the RPWIA approach, the description of the initial andyhich are partly determined from freN scattering data
final free particle in the medium is based on a mean-fieldyng partly from a solution of the Bethe-Salpeter equation
theory, as described by Serot and Walecka in mﬂfln the emp|oying a meson_exchange model for il force.
RPWIA model the associated Dirac plane waves have their (2) The Lorentz covariant set constructed from the Dirac
free nucleon mass decreased by the real part of the averagerices, which serves as a representatiorffor
nuclear scalar field to yield an effective nucleon mass. The (3) The effective nucleon mass for both projectile and
values of the effective masses serve as an indicator of thﬁlrget nucleons interacting in the nuclear medium.
nuclear medium effects on tHeN interaction. In this paper a theoretical formalism is presented for the
In former theoretical studies of scatteririg,4,9 the  calculation of polarization transfer observables for quasielas-
nucleon-nucleon scattering matrik was parameterized in tic proton-nucleus scattering using a general Lorentz invari-
terms of the five Fermi covariants, which is commonly re-ant representation of thdN scattering matri{11]; a sys-
ferred to as the SPVATscalar, pseudoscalar, vector, axial- tematic survey of the predictive power of the model
vector, tensor form of F or the 1A1 model. It should be compared to data will be presented in a future paper. By
stressed, however, that even though the SPVAT form gavadhering to the simplifying features of the RPWIA, one can
reasonable results for elastic and quasielastic scattering ofcus on the basi8IN interaction without introducing addi-
servables, it is, in principle, not correct, since as was firstional complications. A complete expansionfoallows for a
pointed out in Ref[6], a five-term representation of the rela- correct incorporation of effective-mass-type medium effects
tivistic NN scattering matrix is necessarily ambiguous. In(within the RPWIA framework and within the context of the
addition, Tjon and Wallac¢7] have shown that a general Walecka modgl In Sec. Il we briefly review the RPWIA

Lorentz invariant representation Bf (referred to as the IA2 and also discuss the ambiguities of the SPVAT forni ofn
mode) contains additional terms that cannot be neglectedgec. |1l the general Lorentz invariant representatior dé
The 1A2 representation df contains, in fact, 44 independent discussed. Section IV presents the transformation from in-
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variant amplitudes to effective amplitudes while, in Sec. V, (s ) (F,.s',, M)
expressions for the spin observables are derived in terms of a e
the effective amplitudes. A calculation of complete sets of
spin observables, based on the IA2 model, for quasielastic

“0Ca(p,p’) scattering at 500 MeV is presented in Sec. VI.
Section VII summarizes the main aspects of this paper.

II. RELATIVISTIC PLANE WAVE IMPULSE
APPROXIMATION

Complete sets of spin observali¢®, Ay, Dy, Dgrs,
Dy, Dyis, Dy for quasielastic g,p’) and (p,n) scatter- (B.>s,. M) (5, M,)
ing are calculated within a relativistic framework using the , )
relativistic plane wave impulse approximati€RPWIA) [1]. FIG. 1. Two-body scattering process with momentum, mass,
The RPWIA models quasielastic scattering as a single- steﬁ”d spin labels for the external nucleofsis the 16< 16 nucleon-
process, whereby the projectile knocks out a single bound@ucleon scattering matrix in the two-nucleon spin spagandk;
nucleon from the nucleus. The rest of the nucleons are adi=1.2) represent the three-momenta of the particles, respectively.
sumed to remain inert, but their effect is taken into accounM1 @andM; denote the effective masses of the projectile and target
in that the free mass of the projectile and target nucleons areucleons, respectivelys;, s,, s;, ands, are the spin four vectors
shifted toeffective massed/; andM,, respectively. In the for each particle.
context of the Walecka mod¢B] the effective masses can
both be calculated microscopically as follows. For the pro-where E* —p1+M1 and the spinor is normalized to

jectile, U(pl,Ml,s)U(pl,Ml,s )= bsg . Similar expressions exist
for the other three spinors labeled by, k;, andk,. The

M;=M+(S), following four-momenta are also defined:
whereM is the free nucleon mass af8) is the average of PX=(E*.py), Pi=(E%.py)
the real part of the scalar potentiS(F) over the whole
nucleus weighted by the probability distribution of the scat- K* =(E*’ |21) K =(E*’ Rz)

1 ’ ’

tering reactior{8]. The effective mass of the target nucleon

's determined from where p* “=M2 and k* =M?2 (i=1,2). For handling the

olarization, one requires the spin projection operator,
M2=M—gq(¢), P q P Prol P

| =

wheregs is the scalar meson coupling constant i is P(n)==(l,+ o-n), (2.2
the average of the scalar fiel(r) for the specific nucleus
with the averaging done as described above. Valued! pf
and M, for specific nuclei and incident laboratory energies
can be found in Table Il of Ref8]. Experimental data seem
to suggest that the spin observables are target independent P(ﬁ)=¢>(ﬁ)¢*(ﬁ)
[12,13, and therefore we assume, as a first step, a Fermi-gas '
approximation for the target nucleus. The RPWIA thereforeDefInlng
reduces quasielastic proton-nucleus scattering to a two-body
scattering process with Dirac spinofsontaining effective U(py,My,8)=U"(p;,M;,5)7°,
nucleon masséslescribing the external nucleons. A graphi-
cal representation of the scattering process is depicted in Figyhere the convention of Ref14] is used for the gamma
1. matrices, the Lorentz invariant matrix element for the scat-
Referring to Fig. 1, the projectile Dirac spinor is given by tering process depicted in Fig. 1 is given by

2

for the directionn wherel, is the 2<2 unit matrix. In the
basis of Pauli spinorsp(n) for spin directionn, we have

2.3

) exem $(s) M=[U(K;,My,5)@U(Kp,M3,5) IF[U(p1,M1,5)
UlpeMus)=| 5= | 2P o) | ®U(P2,My,8)], (2.4
ET+M; A
(2.1 where F is the 16<x16 nucleon-nucleon scattering matrix.
The question arises as to what formfofs to be used in Eq.
(2.4), assuming parity and time-reversal invariance as well as
The spin observables are defined in Sec. V. charge symmetry. Once a choice fofhas been made, ana-
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lytical expressions for all spin observables, namely the unrefer to this as the IA2 representationfofind discuss, in the

polarized double differential cross section, the analyzinthext section, its application tquasielasticproton-nucleus
power and the polarization transfer observables can be oRgattering.

tained from Eq.(2.4). All previous calculation$1,8—10,1%

of spin observables for quasielastic proton-nucleus scattering Il IA2 REPRESENTATION OF E APPLIED TO

have parameterizeﬁ in terms of only the five Fermi cova- QUASIELASTIC PROTON-NUCLEUS SCATTERING
riants:
From Egs(3.1) and(3.18 in Ref.[19] the IA2 represen-
F=Fg(1,019)+Fp(¥°®y°) +Fy(7*©7,) tation of F is given by
+FA(Y*Y*©9%y,) +Fi(0*'®0,,), (2.5 i L
F= 2 2 FPP¥22A (KM@ A (K M) K,
where the latter is commonly called the SPVAT form or IA1 p1p}papy "= 1 ! 2
representation df. The amplitude$, (L=S,P,V,A,T) are [Apl(ﬁl;M)@@Apz(ﬁz;M)], 3.1)

obtained by fitting to free&N N scattering dat@l5]. This pro-

cedure, however, does not uniquely fix the form of the Mawhere M refers to the free nucleon mass. Henceforth, the

trix F. To see this we note that the pseudoscalar covariankotation
PS=y°®y°, has exactly the same matrix elements between
positive energy free mass Dirac spinoid {(=M,=M) as {p}=pip1ip2ps
the pseudovector covariar®V=qy°/2M @ 4y°/2M, i.e.,
will be used. In Eq(3.1), Fif} (n=1-13) are the invariant
[U(M)®U,(M)][PV—PS][Uy(M)®U,(M)]=0. amplitudes for each rho-spin seci@vhich is defined by the
o _ rho-spin labels,pip1;pops, Where p==); Ap(ﬁ,M) are
This is called the equivalence theorg6]. We can there-  covariant projection operators given by
fore replacePS with PV in Eg. (2.5 without altering the
amplitudes,F . Even though these two representations are . pp+M p(Eyo_ﬁ. 37)+M
equivalent on shellf?=M?), they will give different results Apy(pM)=—F4—= oM . (B2
when sandwiched betweegpositive energy Dirac spinors
containing an effective nucleon masince then, matrix el- . 2 52+ M2, andK , (n=1-13) are kinematic cova-
ements between negative energy states now also enter. T %nts constructed from the Dirac matrices:
is because the effective mass spinor can always be expande

in a free mass basis: Ki=S=1,®l,,
U(ﬁlleisi):aUU(ﬁlvM1si)+aVV(5linsi)v K2: P= ’)/5® ’)/5,
whereV is the negative energy Dirac spindr4]. There also Ks=V=1y @y
/_LI

exists the relation8],
Ks=A=7"y"0y%y,,

MM,

MPV_ M2 MPS! (26) K5:T:O"U“V® O-,U,V’
where Mpg and Mp,, are the contribution of the pseudo- Ke=Qu1,(14® "),
scalar covariant and pseudovector covariant, respectively, to
the invariant matrix element given by E@.4). Note that in K7= Qo2 (¥*®14),
Eq. (2.6), the pseudovector covariant i®V=¢y°/2M
®4y°I12M, but whereq=p} —k% =k} —p} , i.e., the mo- Kg=Q11,.(7’®y°y"),
menta are on mass shell with respect to the effective masses, 5 5
M, andM,. In the equivalence theorem, the momenta must Ke=Qz2,(7v7*®77),
be on mass shell with respect to the free mass. The above _
equality has been used in Ref8-10 to investigate the K10=Q12,(14®¥*)S,
sensitivity of the spin observables to the difference between
using a pseudoscalar covariant or a pseudovector covariant. K11= Qa1 ,(y*® 2)S,
The ambiguity, which is inherent in any five-term or incom-
plete _repres_entation (ﬁ (such as 'Fhe IA1 representatjon K12= Q12,( v°® v2 S,
was first pointed out in Ref[6]. Tjon and Wallace have
developed a general Lorentz invariant representatiofr .of K 13= Q21,( Y2y @ y®)S,
The formalism can be found in Refs/,11] and is applied to
elastic proton-nucleus scattering in Refd7-19. We will where
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!

(< ) ) , are contained in the subclasge¥ to F4%. This is in con-
Qij,,u:T with  p;=k; and p;=k,. trast to IA1 where medium effects are included only in sub-

classF%. One can now substitute E.1) into Eq.(2.4) and
proceed from there to calculate the spin observables in terms
of | M|?, which is directly related to the invariant amplitudes
FiP}. We will, however, not follow this direct approach due
to the following reasons.

(1) Following the standard procedufeee Ref[14] for
variance, together with charge symmetry and the on—masse—.xample one finds. thaj M| contains traces over atlleast.

eight gamma matrices. The number of gamma matrices in-

shell CO”“"“‘?F‘ for externz_il nucleons, Ie_ad I-'tqbelng COM- " crease as the covariants become more complicated. Since the
pletely specified by 44 mdepeAndent invariant amplitudes,, mber of terms generated by such a trace is given by
[11]. Five amplitudes in subclags™ are completely speci- [N1/(N/2)12N2] (where N refers to the number of gamma
fied by fitting to physical freeNN scattering data and are matrices, and since there is a double sum over the rho-spin
therefore identical to the SPVAT amplitudes in the IA1 rep-sectors, a very large number of terms will occur.

resentation ofF. The remaining 39 off-shell amplitudes (2) Since we are applying a relativistic formalism to a
(contained in subclassés'? to F*4) are obtained by solving nuplear physics prqblem, it'm.ight be more .instructive to re-
the Bethe-Salpeter equation in a three-dimensional quasipd!rite theNN scattering matrix in a form that is more familiar
tential reduction[20,21], with pure pseudovector pion- tO traditional nuclear physics. We will therefore follow a
nucleon coupling, to determine a complete set of helicitySimilar approach as in Ref22] where areffective tmatrix is
amplitudes. The invariant amplitudes are related via matriderived, which is a %4 matrix, but which still contains all
equations to the helicity amplitud¢$1]. The I1A2 represen- the information coming from the relativistic analysis. From

tation is a complete and unambiguous expansioR afince Eq. (2.2) we can write
covariants cannot be added or changed arbitrarily without

violating the above-mentioned symmetries. Amplitudes 12

which are solely determined by physical scattering data are U(ﬁl,Ml,si)z(M—l) ut(p1, M) é(s)
isolated in subclasg%, while the remaining amplitudes are .

determined by solving a dynamical equation, the Bethe-

Salpeter equation using a meson-exchange model fddbte \here, as a & 2 matrix,

With each combination of rho-spin labdlg,p1pop5} is as-
sociated a pairif) to index a specific rho-spin sectéor
subclasy see Table | of[19]. For example{+ ++ +}
=(11) and{+ -+ —}= (22). Parity and time-reversal in-

*

force.
From Eq.(3.1) four cases concerning the combination of
projectile and target nucleon masses can be distinguished: U2 I2
. . *
(1) No medium effect 1;=M,=M): In this case only (P My = El+M, By 33
subclas$-'* will contribute to the invariant scattering ampli- v 2E} — | '

*
tude. It is important to note that in this special case the 1A2 El+M,y
representation of is equivalent to the SPVAT parameter-
ization of F. This fact can be used to perform numerical Similarly,
checks on the formalism presented in this paper as is dis-
cussed in Sec. VI.

(2) Projectile relativity M 1# M;M,=M): Contributions
to the invariant scattering amplitude arise frérht, F2%, F32,
and F*! where the latter three subclasses requiteleast
projectile relativity for a contribution.

(3) Target relativity M,=M;M,+# M): Contributions to
the invariant scattering amplitude arise frérh, F'2 F*% and B .
F14 where the latter three subclasses reqairdeasttarget ut(p,M)=u" (p;,M)7°
relativity for a contribution.

(4) Target and projectile relativity M, # M;M,#M): . . _ .
Now all subclasses will contribute to the invariant scatteringt’(p) (wherep= %) contains no reference to the spin and is
amplitude buf22, F23, F24 32 £33 E34 [42 43 gndFes normalized to
requireat leastprojectileandtarget relativity for a contribu-
tion. p'f AP AR — S
From Eq.(3.1) we see that medium effects can never u” (p'PIUP(pP) =51, -
occur in subclas§ ™! due to the accompanying positive en-

ergy projection operators. Medium effects in the I1A2 repre-in terms ofu™ the invariant matrix elemerfEq. (2.4)] is
sentation ofF arise only due to off-shell amplitudéw/hich  given by

*\ 1/2
U(ﬁl,Ml,si>=(M—1l) ¢(s)ut(pyr,My)

where, as a X4 matrix,
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_(EresErEs )Y

MiM% [¢T(sf)u kli l)

® pT(spu” (Ko, M) IF[é(s)u™ (py,My)

® (U™ (P2, M)].

Use of the identiyAC® BD=(A®B)(C®D), where® re-
fers to the usual Kronecker product, leads to the expression

12 X7 =90, X7 =Pa o0,

[¢T(sp® ¢ (sp)I[u" (ky,My)

!

RECEL:

2npn2 PO
MiM3 P=pa-o, xP=q-0
©u” (kz,Mp)JF[u* (p1,M1)®UT (P2, Mp)] In the next section the invariant amplitudé4 (n=1-13)
are transformed to a set of eight effective amplitudggn
[#(s)® P(s2)]. (34  =1-8), and expressions for the spin observables are derived

- ) ) in terms of the effective amplitudes.
Defining theeffective tmatrix as

- - IV. TRANSFORMATION FROM THE INVARIANT
t=[u”(k;,Mp@u(kp,Mp)JF[u*(ps,My) AMPLITUDES TO THE EFFECTIVE AMPLITUDES

(3.5 Expressions for the effective amplitudestodre now de-

i
M
BUT(P2,Mo)] rived. Taking the trace of Eq3.7) yields

andg,=[[EXE3E} 'E} 1/M2M2]"2 Eq. (3.4 becomes bf%Tr[f]- .1

_ T tra/\17 I
M=gi[d'(sP@d ()L d(s)@ d(s7)]. (3.6 Multiply Eq. (3.7) with (N- 0'®N o) and take the trace of
A the resulting equation. Sindé-q=N-p,=0, there will be
Sincet is a 4x4 matrix it can be expanded in terms of a no contribution from the last four terms of E(B.7) and,

basis constructed from the Pauli matrices and the momentherefore,
of the scattering process. Define the three-momentum trans-

fer g=p,—k,=k,—p,, the average momentum,=%(p, b,— 4.2
+k;) , and a vector orthogonal to both and p,, N=q
X pa=p;,X k. Note that
Pa=P17fa where
+ > 1 . o - e e aa
9-Pa=7(P1—Kp). Yz(a,b)=Tr{(a-oc®b-o)t].
Similar arguments lead to
For quasielastic scattering,| ¢|k1| and thereforeq andp,
are not orthogonal, howevel - q pa 0. Assuming
. , by= 4.3
only parity invariance t can be written in terms of a set of
eight linearly independent matrices the spin of the two
interacting nucleons: and
° 1
= E ba(xPex?), 3.7 ba=——Tr[(1,&N-o)i]. (4.4)
n=1 4N?
where Following the same reasoning as above, one can also derive
" - a set of four coupled equations relating the amplitudes
Xi'=la, xi’=la, bg, b;, andbg. A set of coupled equations arise since the
O - > o - vectorsq andp, are not orthogonal for quasielastic scatter-
x2'=N-o, x;’=N-o, ing, (i.e.,q-p,#0). The solutions are
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_T2°Ya(Pa Pa) ~F2f3Y2(Pa, @) ~T2r3Y2(d,Pa) +15°Y2(d,4) s
M2(r1rg=r,7%)? ’ '

5

_ 1Yo Pa. 6a) —r1r5Y5(Pa ,4)—r1r,Yo(q, Pa)+ rzzYz(ﬁ,ﬁ)

, 4.6
° M2(rr3—r2,°)? 49
_ ar2Y2(Pa Pa) +15°Ya(Pa, @)+ FarsY2(d,Pa) Far 3Y2(d,) w7
! M2(rrz—r,%)? , .
- [175Y2(Pa.Pa) + F1r3Y2(Pa,0) + r,°Y (0, Pa) — rar3Y5(0.,q) 4.8
° M2(rr3—r,%)? ’ .
|
where Equation(4.12) reduces to Eq(3.3) if we set
202 - 12
- > E*(p)+M
i ' _ 1 1
M d(P1M)=| —— =
2E*(py)
r2=2p|\j|.q, and whereE* (py) = \pi+M3 and
X(P1:M1)= (1, MD[E* (p1)+My)] %
r :%_ We can obtain an explicit expression fiof as follows. From
Y Eqg. (4.11) we can write
The next step is to derive an expression for thenatrix - l,(p,M*) 0
S . . . + xy_| 2
which is convenient for use in the calculation of the traces ur(p,M*)= 0 + o px(p.M*)
which determine the effective amplitudes. Substitution of Eq. AL
(3.1) into Eq. (3.5 leads to
and, therefore
13
t=2 2 R, (kM My) U (BM*)= $(P,M*)(81012) + X(B,M*)(&8 0 ),
{o} n=1 (4.12
®T 1 (Ko,M, M) K[ T, (P1,M,My) where
3 R 1 . 0
@, (B2, M,My)], (4.9 elz(o) and 62:(1»

where we have introduced thex2 I' matrices defined as L
with e?ejzéij . To write the p-spin projection operator in

> > > 2X2)®(2X%2) form, we recall that
I, (p,M,M*)=A (p,M)u”(p,M*). (4.10 ( )&( )

In Eq.(4.10 M* denotes an effective mass and E8}3) has 0= ( l2 0 ) —os®l, and (4.13
been generalized to 0 -1
] l2¢(P1.M*) .. [ 0 po .-
ut(p,M*)= fe 19 . (4.11 p-y= .o =io,®p-o (4.149
a-px(p,M*) —p-o 0
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Substitution of Eqs(4.13 and (4.14) into Eq.(3.2) leads to

1
(Uz®p o)+ = (|2®|2)
(4.15

PE,
AP, M)— (03®|2)

Substitution of Eqs(4.12 and (4.15 into Eq. (4.10, and

PHYSICAL REVIEW C 60 064618

trace must be taken. We wrote a program in the
MATHEMATICA computer language to do the required trace
algebra. The eight effective amplitudes are linear functions
of ¥ ie.,

bi=bi({F{"}). (4.18

using the properties of the Pauli matrices, allows one to writ . . . . . .
g prop eI'he isospin zerdisospin ong effective amplitudes are ob-

2
rp<5,M,M*>=i§l hO(p,M,M*)[&®A(P)],
(4.19

where

with

pp

- pE - -
h{D(p.M,M*) =2 (P, M*) = 5w x (P M)

1 .
+§¢(p,M*) and

(2) _E
h, (pMM)— ¢( ,M*) 2Mx(lol\/l)

1 . M*
+§X(p7 ).

Similar steps lead to

2
T,(p,M,M*)= 2 iO(p.M,M*)[efeAi(p)],
(4.1

where
jPp,M M*)=h(p,M,M*)  and

P (pM,M*)=—hG(p,M,M*).

tained by substituting the isospin zgiisospin onginvariant
amplitudes into Eq(4.18.

V. EXPRESSIONS FOR SPIN OBSERVABLES IN TERMS
OF THE EFFECTIVE AMPLITUDES

In this section expressions are derived for the unpolarized
double differential cross section, the analyzing power, and
the polarization transfer observables in terms of the effective

amplitudes,, for both (5,[5’) and (5,5) scattering. Working
in the nucleon-nucleon laboratory frame, the spin in the in-
cident beam direction is described in terms of three orthogo-

nal unit vectors {,s,n), wherel is along the beam direction,
s lies perpendicular and to the side bfin the scattering
plane, and the normal unit vector ms=1xs. Similarly, the
spin of the final beam is described in terms bf,§’,n).

A. Unpolarized double differential cross section

For the scattering process in Fig. 1 one can write down
the following expression for the differential cross section,
do [14]:

dom b [MaMz) (M1 My
lvi—v,| \E¥ E5J\EX B}’
d3k, d%k,
X (2m)*8(pt +p3 —Ki —k3) | M2

(2m)® (2m)®

As we consider the quasielastic scattering at energies much
higher than the interaction energies amongst the target nucle-
ons, we assume the latter to be practically noninteracting.
Therefore, the momentum distribution of these nucleons can
be obtained in a Fermi-gas model. Following the same argu-
ments as in Ref.1] allows one to write down the following
expression for thelouble differential cross section:

To calculate the effective amplitudes, the contribution of

each covariant to the trace relations must be determinisd.
calculated from Eq.(4.90 using the explicit forms of

I, (p,M,M*) andI’, (p,M,M*) in Egs.(4.16 and(4.17).

Use is then made of Eq&4.1)—(4.8) to determine the effec-
tive amplitudesp, to bg. This procedure requires the calcu-

lation of traces of a set of matricés wherei=1-46. With

do [KyEj
dQjdE;] |q|E*

4 f
f ABdIBalf (P 5 koM,
(5.1

each covariant is associated a set afatrices of which the where
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M2M3 do ") IRyE]
f(p1.p5 k)= (5.2 1 f d q ¢ |
1.P2 163K [(p* - pi — M2M2)2]12 d0dE] . 4| |p2ldé|pa| f(PT P35 ke)
e X ZgiiT"(P1,- - Koo {bi(1=1)})
271/2 _ R
Rl 3 NG (B R (0P,
Pmin 2 2 (5.3
q.9*
where

In Eg. (5.3, g* is the four-momentum transfeg*
=(w*,q) where 1
b*®=5[bi(1=0)+bi(1=1)].
w*=EI—E’1‘,=E’2*,—E2 and q=p;—k=K,—p,.
For the charge-exchange reactiq;]ri),
Equation(5.1) is defined to be zero whelk;|<kg or |k,

<kg. This effect is called Pauli blocking. To obtain the do \P"  |KJE] (k- R
Fermi momentunk; , the required effective density is calcu- — =— *,f d|poldé|p,|f(pT P35 ki)
lated in an eikonal approximation as shown in R&f. More dQ;dE; unpol 4|q|ET Jpmin
refined values ok; for specific target nuclei can be found in
Table Il of Ref.[8]. We define the function we > -
8] XNet"(P1, - . . Ko {bF"*),
I"(p1.p2.Ki k)= 2, > M2 where the charge-exchange amplitudes are defined as
Sj ,Sf Szysé
ch—eX_ “rh(l=1)\—h.(] —
Substitution of Eq(3.7) into Eq. (3.6) leads to bj _2[b'(| D=bi(1=0)].
8 . . .
The quantitieZ.¢; andNg;¢ are defined in Ref.1] and val-
M= 912 bal T (s XV b(s) 1L (sH)x P b(s2)] ues for specific targets are given in Table Il of R].

. B. Analyzing power
and, therefore, one can write

The definition of the analyzing power is given in terms of

8 polarized double differential cross sections as

TR J TR PN LNl

do (A +,\) do (A A)
Si=+n)— S;=—n
dQ.dE] dQdE]
An explicit expression foﬂ“”(ﬁl,ﬁz,lzl,lzz) is given in the Y~ do . A A A (5.9
Appendix. To obtain the unpolarized double differential ~(sg=+n)+ -(sf=—n)
cross section, one sums over the initial spin and average over d();dE; dQ;dE;
the final spin which leads to
where, for example,
( do ) - |ky|ES fkf
dO1dE; | g 4lalEL omn do . [KlEG (kL
pol S)=_> 7 d d f *.*.k)
indEi( f GIEE oo |p2lde|pal f(PT .3 ks
xd|p|d¢| | f(pT 3 ki) 1.
XEF,(Sf)
XT"(py,- - ko). (5.4
. is averaged over incident spin directioss and the target
For (p,p’) scattering, particles’ initial and final spin as contained in the factor

064618-8
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1’:,(51 _____ Ez,gf)= 2 , | M| and using Eq(5.7) in Eq. (5.8), yields
Si ,S2,Sy
=T PPy DT x @y, I (sr)=2[f2(p1, ... ko)N-5
(5.9

+f3(P1, - - . K2)Par (XS]
where use was made of Eq2.2) and(2.3). A calculation of
the traces in Eq(5.6) shows thatl"(py, ... .Sf) has the  The explicit forms of the functions, andf can be inferred

following structure: from Eq.(A2) in the Appendix. Ifs;=n, then

T’”(ﬁlr"'!gf):fl(ﬁlr"'!|22)+f2(51!"'ilZZ)N'gf >~ .
N-n=p,k;sind,

+f3(P1, - - - Ko)Par (GXS). (5.7) o

Defining the combination function
Pa- (QXN)=—pak;sing, .
I'(P1, ... K280 =T"(P1, ... Kp,S)
The analyzing poweftwhich is equal to the polarization in
~T'(py,... K»,—5), (5.8  the RPWIA model for the (p,p’) reaction is given by

k N N ~ -
J' fl d|p,|de|palf(pT ....p3 ki) (Zesl' (N, {b;(1=1)})+ NggfI'' (n,{b3VE}))

Pmin

Ks - -
fp _ d|poldé|palf (ki) (Zer " ({bi(1=1)})+ Nes " ({b{4}))
and the analyzing power for theﬁ,(ﬁ) reaction is given by

koL .
fpfv d|p2|d¢|p2|f(kf)r/(nv{bi6h_ex})

AP = . (5.9

[ dpddatpaltckorcins™)

Pmin

Since a 6,5) reaction implies that the incident proton could only have scattered off a neutron, Wg;se0 and, therefore,
Nett @ppears as a common factor in the numerator and denominator and cancels out, which méns dioas not appear
in Eq. (5.9.

C. Polarization transfer observables

The polarization transfer observables are defined in terms of linear combinations of polarized double differential cross
sections as follows:

0§ 8- (-5 8- (38—~ -
S;,S¢) — —Si,Sf)— S;,—S -S;,—S
dode, 7 doldE] 7 doldE] 7 doide,
Dy = . (5.10
S WAL S P A UL LA
S;,S -5;,S Si,—S —S;j,—S
dolde;, TV T dalde] Y dajde] Y dojdE]
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In Eq. (5.10 a typical polarized differential cross section is fine again, now dictated by the form of E.10, a func-

8 s0- I i aalpaltnt o ko)
d0.dE, |vf ||E1 o pz pz p1.P3 Ky
1. . .
XEF(si ,St), (5.11)
where
T(py, ... k».Si,5)

=2 M2

8
=g3 E bbb [Tr(P(s) X PP (50 x ()]

X[Tr xS 1=11(Py, - - - ko)
+AL S+ Ay S+ (S Ag) (St Ay)
+(5-5) (Ag A7)+ (S X As)

with A; functions of only the three-momentg, to k, of
which the explicit form can be inferred from EGAL). De-

tion:

F(ﬁl! e 1l221§i 1§f):f‘(§i 1§f)_’1:(_§i véf)_f(éi 1_§f)

+T(—5,-5)
=4[(S- A3)(S-Ay) + 5+ (51X As)

+(51-51)(Ag-A7)]. (5.12

The explicit expression fol’ contains various kinematical
parameters which are presented in the first column of Table
I. The other columns contain the values of these quantities in
the laboratory frame, for each polarization transfer observ-
able; 4 refers to the laboratory scattering ange=|p,| and

k,=|K,|. Use of Eqs(5.11), (5.12), and(5.4) leads to

ke . - ~a
[ dlpaldolBalript b3 4T 30

Di’j: K .
f - - - -
f d[p2|de[pa|f(pT P35 KOT (P, - .. k2)
min (513)

The polarization transfer observables for ttp?ef(’) reaction
are given by

k N o a A a A
f d|p,|de|po| f (ki) (AZet(Si .St {bi(1=1)})+ 4N (s, 5 ,{b7"}))

Pmin

Dii[(p,p")]=

Pmin

and the corresponding observables for tﬁeﬁo reaction are
given by

Ky R - A A _
d|palde|po|f(k)AT (S ,S¢,{bT" %)

Pmin

" dlpaddaliatckor o)
min (514)

Di/i[(p,n)]=

Once again, as in E@5.9), the effective number of neutrons

does not appear in E@5.14).

k - -
[ OBl 1Bal (ko Zerd "G = D)+ N (081

nucleus polarization transfer observables, in the next section
we give a brief glimpse of the predictive power of the for-
malism by applying it to quasielastit®Ca(p,p’) scattering

at 500 MeV. A systematic study of the predictive power of
the model, as well as a comparison to |IAl-based predictions,
will be presented in a future paper.

VI. RESULTS

Before presenting the results we mention the numerical
checks that were performed to verify that the transformation
from invariant amplitudesFﬁ{’} to effective amplituded,
was carried out correctly and that the expressions for the spin

Although the primary aim of this paper is to present theobservables in terms of the effective amplitudes are indeed
theoretical formalism for calculating quasielastic proton-correct. ForM;=M,=M only subclass=*! contributes to

064618-10
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10 10 representation of. The solid line represents the calculation
07t 1 %7 using an effective mass for the projectile and target nucleons
SO TTe T e T 0 with M;/M=0.892 andM,/M =0.817 taken from Table I
= oy 1= orp ] in Ref. [8] for “°Ca atT,,,=500 MeV. The dashed line is
—0.2r 1 92y ] the free mass calculation. The data are from R28]. We
=050 740 60 80 100 120 00 20 40 80 80 100 120 note that the quenching effect Ay, is very small compared
10 e 10 e e to Fig. 6 of Ref.[1] over the entire energy range. The result
07} 1 o7¢f ] is that the IA2 calculation does not descrifg, as well as
~04l T RS -1 Boar ] the 1A1 calculation of Ref[1]. For the other observables, the
Q ol ] QI otk ] effective mass and the free mass calculation do equally well.
—oz2| 1 ool This is in contrast to the result in Rdfl] where theD;;'s
) ) PO only preferred a free mass calculation.
0 20 40 60 80 100 120 0 20 40 60 80 100 120
1.0 T T T T T 1.0 AARRAARSEARERRRNERN
077 1 o7 ’ ] VIIl. SUMMARY
804 0.4
q"’ 01l ] Q: ol ] We have presented a theoretical formalism to calculate
ool 1 ool ] polarization transfer observables for quasielastic proton-
05 e ol nucleus scattering using a general Lorentz invariant repre-
ST Mery T T T ey sentation of the nucleon-nucleon scattering matrix. In this

way we avoid the ambiguities that are inherent in the previ-

FIG. 2. Spin observables for a range of transferred energy OUSly used five-term representatitthe SPVAT form) of F.
over the quasielastic peak for inclusive proton scattering ffé@a  In the process we have derived an effectiveatrix, which is
at 500 MeV and,,=19°. The centroid of the quasielastic peak is & 4X 4 matrix and, therefore, more familiar to nuclear phys-
at w~63 MeV. Data are from Ref23]. The solid line represents ics, but which still contains all the information coming from
the I1A2 calculation and the dashed line represents the free madbe relativistic analysis. This necessitates the transformation
calculation. from the 44 invariant amplitudes, to a set of eight effective
amplitudes as well as the derivation of new expressions for
the spin observables in terms of the effective amplitudes.
SStaying within the framework of the relativistic plane wave

the invariant matrix element and the IA2 representation i L . o
. ~ impulse approximatiorwith its many simplifying featured
therefore equivalent to the SPVAT form Bf We therefore . . . . a
and using a general Lorentz invariant representatior of

verified that our expressions for the spin observables in term 1 o d ) tiqation &% -t di fect
of the effective amplitudes give exactly the same numericaft!'0WS US 0 do an investgation “type medium etiects
result as the corresponding expressions in IREE. which via quasielastic proton-nucleus scattering. The first applica-

contain only the five SPVAT amplitudes. This confirms thattion of the formalism to the reactioi®Ca(p,p’) at Tiap

the transformation to effective amplitudes has been carried® 500 MeV and6,,,=19° shows that the IA2 representa-
out correctly for only the SPVAT covariants. To verify the tion of F does not lead to such strong medium effects in any
transformation for covariant€ to K3, we derived expres- of the spin observables, in contrast to the results in Réf.
sions for the spin observables directly for each individualwhere the medium effect was most noticeablé&jn There it
covariantKg to K43. This involves traces over Dirac matri- was also found that the use of an effective mass for the
ces(as opposed to the trace algebra involving Pauli matriceprojectile and target nucleons lead to the theoretical calcula-
presented in this papeand provides a nontrivial check for tion being closer to the data than the free mass calculation.
the transformation involving covarianks; to K;5. The fact  The IA2 representation is consistent with data, however, in
that two independent ways give numerically the same resulhat it predicts little medium effect in any of the spin observ-
for all spin observables confirms the correctness of the transbles, even though the predictionAf is now a little poorer
formation to effective amplitudes and the expressions for thehan before. In a subsequent paper, a systematic study of spin
spin observables derived in this paper. ~ observables, using the 1A2 representatiorFofwill be pre-

The formahsmem*the previous sections is now applied 0ganted for both quasielastiﬁ,(ﬁ’) and (5,5) data.
quasielastic*®Ca(p,p’) scattering at an incident laboratory
kinetic energy of 500 MeV and a laboratory scattering angle
of 19°. In the original calculation of Horowitz and Murdock ACKNOWLEDGMENTS
in Ref.[1], it was found that the use of an effective mass for
both the projectile and target nucleons moved the theoretical One us(B.I.S.v.d.V) wishes to thank Professor J.A. Tjon
calculation closer to the daf@3] and below the free mass (University of Utrecht, The Netherlandgor very helpful
calculation forA, . This was referred to as the quenching
effect in the analyzing power and claimed to be a “relativ-

istic signature.” In Ref[1] the SPVAT parametrization ¢t 2All of which are motivated by experimental data on the spin
was used. Figure 2 shows the results employing the 1Abservables.
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TABLE I. Expressions for kinematical quantities containi%lgand/oréf for each nonzero polarization

transfer observable.

Kinematical
quantity DI’I Ds’s Dnn Ds’l Dl’s
q-s p;—k;coso —kysiné 0 p;—k;cosd —kysiné
a.gf p1cosf—k; —p;Sinéd 0 —p;Siné p1c0osf—k;
Pa-S, 2(p1+kycos6) 1k,sing 0 2(p;+k;cos6) k,sing
Pa- S 2(p,cosb+k)  —3p;sing 0 —Zp;sing 2(p1c0SH+ky)
N- ;I 0 0 p.kising 0 0
N- s 0 0 p1kiSin e 0 0
S-S cosé cosf 1 —siné sing
N- (5% 8) p1k,Sinte p1k,sinfg 0 p.k,cosfsind  —p;k, cosdsin g
discussions. The financ_ial assistance to 'B.I.S.v.d.V. by the a,
Harry Crossley Foundation, 'ghe South African FRD, and the b=—,
National Accelerator Center is gratefully acknowledged. m

APPENDIX: EXPLICIT EXPRESSIONS FOR SPIN
OBSERVABLES IN TERMS OF EFFECTIVE AMPLITUDES
g

In this appendix we present explicit expressions for the
quantitiesI™, T'", andI" in terms of the effective amplitudes
a;, which are related as follows to the effective amplitudes
bi .

1
b; =—a for i1=5,6,7,8,
m

b,=a, wherem denotes the free nucleon mass.

41m(a,)?

4R€(az)2

1 e e s o .
?F”(pl,pz,kl,k2)=4|m(a1)2+4Re(a1)2+(N~N)2 me
1

2 2 2
4Ilm(az) +4Re(a3) Jr4Im(a4)

4R€(a4)2
+

m8

- -

+N-N
( m* m* m*

7 2 7 (pa'pa)2

m m

2 2
+<4Im(a6) +4Re(a@)

m

- - > -

+(8|m(ae)|m(a7) N 8Rgag)Re(ay) n 8Im(ag)Im(asg) n 8Regag)Re(as)

m* m*

P 4 a’ MalMa“

m m

- -

+(8|m(as)|m(ae) +8Re(a5)Re(a6) +8Im(a7)lm(a8) +8Re(a7)Re(a8)

m* m*

- (Pa-a)?

7

m m

- - >

+ +
m* m*

+(8|m(35)|m(a7) 8Rgas)Re(ay) 8|m(as)|m(as)+8R€(as)Re(as)

4 4

m m a

4lm(ag)® 4Rdgasg)?
mtm

m

P

a'Pad-qd,

4Reag)*
T
m
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—4Rda,)im(a))N-N  4Im(a,)Re(a,)N-N  4Rea;)im(as) 4Im(a;)Reag) ) - -
5 + 5 - 2 + V) N- s
m m m m

1 . L.
_ZF (pl,...,kz,Sf):
1

. 4Rgag)IM(a;)pa-Pa 4lm(ag)Re(a;)pa-Pa 4Reas)IM(ag)pa-q
+Pa- (0Xsf) - -

m* m* m*

4im(as)Re(ag)p,a-q  4Rea;)im(ag)p,-q
+ m? - m?

+4|m(a7>Re<a8>5a'a_4Re(a5>lm<a8>&'a+4lm<a5>Re(a8>a'a)

e e e (A2)

. 2Im(a2)2N-N+ZRG(aZ)ZI\TN+2Im(a3)2+2Re(a3)2) .

1 - -
4_g§F(P1’ koS 1Sf)_< me me me o N-siN-s;

2Im(a,)im(a,)N-N 2Rega,)Rea,)N-N  2Im(a;)im(az) 2Rea;)Reas)
* m® * m® B m? B m?

f 2lm(a6>25a-5a+2Re<a6>25a-5a+4lm<a6>|m<a8>5a~&

XN- (8, XS)+ Pa-SiPa- S o o e
4Reas)Re(ag)P,-q 2Im(ag)?q-q 2Reag)?q-q| - . [2Im(ag)im(as)pa-Pa
+ e + e + e a'Si e

2Reag)Re(a7)pa-Pa 2IM(as)im(ag)pa-q 2REas)Re(@g)pa-q  2Im(a;)Iim(ag)pa-q

2Rea;)Re(ag)p,-q  2Im(as)im(ag)q-q 2Reas)Re(@g)q-q) - «
+ m? + e + e q-St

N A(2|m<a6>lm<a7>6a-6a 2Regag)RE(a;)P,-Pa 2IM(as)IM(ag)pa-q
+Pa- St v} + 7 + v}
m m m

2Reas)Re(ag)pa-q  2Im(az)im(ag)pa-q 2Re@;)Re(ag)pa-q  2Im(as)im(ag)q-q
+ 7 + 7 + 7 + 7

m m m m
2Reas)REag)q-q| - ~ [2Im(a;)p,-pa 2Re@7)%P,: Pa
+ ma q-si+ e + e

4im(as)im(a;)p,-q 4Reas)Re@r)pa-q  2Im(as)?q-q 2Reas)?q-q| - ~ - -
+ e + m? + me + e q-s:q9-s;

2(N-N)? 2(N-N)? 2N-N 2N . N
Im(a1)2+Re(al)2—|m(aZ) (N-N)" _ Re(a,) (8'\' N) _'m(a3)4N N_Re(a3)4N N

+ g
m m m m

Im(a4)>N-N  Re(az)?N-N  Im(as)%(Pa-Pa)? Re(@g)%(Pa: Pa)?
+ e + e - ma - me

2Im(ag)IMm(a7)Pa- PaPa-d  2REas)RE(@7)Pa: PaPad  2IM(ag)IM(ag)Pa- PaPa-d
- 4 - 4 - 4

m m m
2Re(ag)Re(ag)Pa- PaPa-q  2IM(as)Im(ag)(Pa-a)? 2R as)Re(ag)(pa- )2
- m? B m? B m*

2Im(a;)Im(ag)(Pa- )2 2Rga;)Re(ag)(Pa-d)? IM(a)?pa-Pad-d  Re@r)?pa-pad-q
- m4 - m4 - m4 - m4
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Im(8g)pa-pad-d Re(8g)%pa-Pad-q 2Im(as)im(a;)p,-qd-q
- m* B m? B m?

2Reas)Re(a;)p,-qq-q  2Im(as)im(ag)pa-qd-q 2Reas)Re(ag)pa-qd-q
B m* B m? B m?

Im(a5)%(q-9)° Re(@s)’(q- )%} .

m4

m

7 S;- St . (A3)
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