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Trapping effect and high-lying single-particle modes
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The phenomenon of trapping of states is studied in the case of high-lying states with large angular momen-
tum in the oddA nucleus?®®Pb. The interaction of the single-particle mode with more complex states is
calculated in the framework of the quasiparticle-phonon model while the coupling to the continuum is included
by means of the projection operator method. The results obtained show a reduction of the spreading of the
single-particle strength under the influence of the coupling to the continuum: the strength is concentrated on a
few collective states while the remaining states are decoupled from the contiitiaped. The results are
compared with the case where continuum coupling is switched off. The influence of the continuum on the
nuclear structure should be visible in nucleon transfer reactj@@556-28139)01812-9

PACS numbsd(s): 21.10.Pc, 21.10.Jx, 21.60n, 25.55.Hp

I. INTRODUCTION play between the two parts &,

In the last years, the microscopic structure of nuclear ex- In Ref. [9], the collectivity of the short-lived states origi-
citations embedded in the continuum has received great irp_atlng from their alignment with the decay channels is called

X ; external collectivity. It occurs additionally to the well-known
terest. As an example, nucleon transfer reactions at interme- o L2 ; . .
. Collectivity of intrinsic nature considered in the damping

;j|ate tﬁnerglgts t'r evea:cl hr_eionanc:ahke structtures ;N:"Chl aNSfiocess of single-particle modes. At high level density, the
rom the excitation of high angular momentum states lyiNgg, tarng| and internal collectivity interfere and influence sig-

above the particle emission threshpld-5]. These structures nificantly the distribution of the simple modes as well as
originate from the coupling ofasmgle—parﬂgle mode to Moreiheir widths and positions in enerdg]. This study is per-
complex stateg1,6,7. The coupling can directly be mea- formed in the framework of a schematical model.
sured through the width of the single-particle state. The goal of the present paper is to study the influence of
The highly excited resonancelike structures arise fromhe coupling to the continuum on the properties of the single-
states which are embedded in the continuum of decay chafparticle states in a realistic case. For this purpose, calcula-
nels. The properties of such states were recently discussed fians are performed for thigg,, neutron state irf®Pb using
different fields of physics: in nuclear physi@-11], atomic  the method proposed in Ref$,15]. The interaction of the
physics[12], quantum chemistry13], as well as in more single-particle mode with more complex states, i.e., the
formal systems such as quantum billiafdg]. Common to  spreading effect, is calculated in the framework of the
all these studies is the phenomenon of trapping of stateguasiparticle-phonon modélRQPM) [7,16] while the cou-
appearing at high level density. It consists in the following. pling to the continuum is included by means of the projec-
Generally, the states embedded in the continuum of decaijon operator method17].
channels can interact not only directly but also via the con- The paper is organized as follows. In Sec. Il we sketch the
tinuum. The interaction between these states is described Beoretical approach to treat the direct nucleon decay of high
VEﬁ:VQQ+WQPQ where Vo is the direct(interna) inter- angular moment.um states of single-particle typ%. In Sec. Il
action andWqpq the (externa) interaction of the states via the results obtained for thig,, neutron state i"**Pb are
the continuum. The matrix elements Wop, are complex presented and analyzed from the point of view of the trap-

(8,13, When the stat art t | ) BrD ping phenomenon. Finally, in Sec. IV the results are dis-
1ol When (he states start o overlap, 1.e., w » cussed and some conclusions are drawn.

wherel is the average width anD is the average distance

of the states, a redistribution takes place in the system: some Il. THEORY
states become trapped, i.e., long lived, while others align
with the decay channels and become short lived. As a result,
the width's distribution is broadendd0] as compared to the A convenient approach for dealing with problems involv-

x? distribution characteristic of the random matrix theory.ing single-particle continua is the projection operator
The alignment of some states with the decay channels angiethod. The general formalism, introduced for heavy nuclei
the trapping of the remaining states is achieved by the inteby Yoshida and AdacHil7], has been applied to studies of

A. Formalism

0556-2813/99/6(®)/0643218)/$15.00 60 064321-1 ©1999 The American Physical Society



CH. STOYANOQV, I. ROTTER, AND N. VAN GIAI

particle decays of giant resonandd$,19,2] as well as of
high-lying states in odd nucldi6,15,20. We recall briefly
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including continuum effects are determined by the following
effective Hamiltonian, which is complex and energy-

the main steps of the method used in the present work. Fugependent:

ther details can be found in Rdfl5].
The Hamiltonian of theA+ 1 system can be written as

A A
i=0

0 Vi

1)

N -

M >

Voi - (1)

=h+Hgoret.
I

=

In the first line, h; describes the motion of a particle in an
average potentidl created by the other particles akf is

the residual interaction between particles. In the second line,

we have separated out the Hamiltoniath,,,. of the
A-particle core.

1
H(E)ZQHQ+QHPmPHQEHQQ+W(E),
6)

wherekE is the energy of the system. For each valu&ahe
has to find the set of complex eigenfunctions and eigenener-
gies of H:
[D)=D{10)=| 2 Cla,+ 2 Dflaz©0.1[0),

(6)
satisfying

A set of discrete orthonormal single-particle states

{¢d..€,} is constructed by diagonalizing on a harmonic
oscillator basis. Hereq stands for the quantum numbers
(nljm) defining a single-particle state. We denotediy,aa
the creation and annihilation operators of stateThe space
spanned by the s¢tp,} is called theg space and the corre-
sponding projection operator ig. The complementanp
space with projection operatpe=1—q and creation and an-
nihilation operatorsal,ae for particles in the scattering
statese can be built by solving the Schdinger equation
with the projected Hamiltoniaphp [17].

In the framework of QPM the HamiltoniaH .4, [7] is
treated in the random-phase approximati&PA) in a dis-

[H(E),D{1=Q,D], @)

again within the approximation of commutator linearization.
The Q;=w;—iT'| /2 are the complex eigenvalues &t

B. Model for the structure of the states

We have used the QPM of Soloviev and co-workers
[7,16] to study the trapping effect on the high-lying single-
particle mode. This model has often been used in spectro-
scopic studies of medium and heavy nuclei where it gives
distributions of spectroscopic strengths in satisfactory agree-

crete space, i.e., the particle-hole configurations of RPA arent with experimental data extracted from transfer reac-

built only with g-space states. We denote By and OI the
energies and creation operators of these RPA states whi
describe core excitations. |0) represents the RPA ground
state of the core, the properties of the 1) nucleus can be
described in terms of the one-particle staﬁéﬁ)) and one-
particle-plus-phonon stat¢s;® O'1/0). We can write

dpy=dfjo)=| X c£i>a£+ﬁ2 DY [al®0!]/|0). (2)

The space spanned by ttrea) state vector$d;) is calledQ
space with projection operat®. The ampIitudeS:f;) and
DY), and the energies; of |d;) are determined by diago-
nalizingH in the RPA, i.e., one solves

[QHQ,d 1= w;d] 3

within the approximation of commutator linearization. The
distribution of |C|? represents the strength function from
which one can deduce the spectroscopic fadtbfs

The P space complementary to tligspace consists of all

states which are linear combinations of the following one-

particle and one-particle-plus-phonon configurations:

ley=al|0), |e,v)=[al®0]]|0). (4)

tions [1]. The neutron decay of high angular momentum

Sates in the nuclef®Pb and®'Zr has been studied in the

framework of QPM in Refs[15] and[20]. It is therefore
interesting to test the predictions of the model in the context
of a more detailed description of the influence of the con-
tinuum on the properties of highly excited states.

The advantage of the QPM is that its two-body residual
interaction is chosen to be of multipole-multipole separable
form. Therefore the task of determining the eigenvalues and
eigenvectors of the Hamiltonian is simplified. This enables
one to work with configuration spaces of large dimensions
without facing the cumbersome problem of diagonalizing
large matrices.

The mean potentials entering the single-particle Hamilto-
nians h; are chosen to be Woods-Saxon potentials. The
guidelines for determining their parameters are the values
given in Refs.[22] and [23]. The corresponding single-
particle spectra can be found in R¢L]. These parameters
are readjusted in such a way that, once the coupling to
phonons is included, the ground state of an odd nucleus is
located at the experimental position with respect to the neu-
tron separation threshold.

The residual particle-hole interaction of E@) is taken of
separable form in coordinate space with effective interaction
strengths considered as adjustable parameters. For the radial

This definition of P space neglects continuum effects on theinteraction form factor we have usddr)=dU/dr where
phononsO,. This is a reasonable assumption since onlyU(r) is the central part of the Woods-Saxon potential. For
low-lying phonons turn out to be important. Denoting the each excitation mode of the even-even core corresponding to

projector onP space byP, the properties of th&+1 system

given angular momentum, parity, and isospin, the interaction
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sl between 12 and 15 MeV. There is, however, a high energy

tail between 17 and 18 MeV where 11% of the strength
1oL | appear. The calculated characteristics of the strength function
in the domain of the main pead1-15.5 MeV are as fol-
—or 1 lows: centroid E=13.3 MeV, variancec=0.82 MeV,
208l single-particle strengtl|C(V|?=74%.
o To study the influence of the continuum on the distribu-
50 06 1 tion of the single-particle strength, the tekV(E) in Eq. (5)
- is replaced by the term
04r
W'(E) = aW(E), 8
0.2r A 1
0.0,3 11 15 13 14 15 6 17 18 where« is a parameter. This allows us to study the proper-
E MeV] ties of the system as a function of the coupling strength of

the single-particle state to the continuum. The valuel
corresponds to the realistic coupling strength of the single-
particle state to the continuum and to the realistic interaction

strength is found by requiring that the energy of the |Owespetwe_en part_icle and phonon_ as used in F{et}]. T‘? be
more illustrative we have varied only for the imaginary

collective state calculated in RPA coincides with the experi- ) X

mental energy. These interaction strengths are also used fBR" of W(E) and fixed it toa=1 for the real part of Eq(8).

the quasiparticle-phonon coupling. These low-lying phonond N€ variation of the real part &V(E) with « will be dis-

of the core are the physical channels into which the initialCuSSed below. _

state in the excited od-nucleus can decay by semi-direct Ve first examine the simple case where the decay chan-

particle emission. nels related to exglted states of the core are negle(;ted. This
The quasiparticle-phonon interaction introduced in theBMounts to keep in the space the components)=a.|0)

model can mix states which differ by one phonon. Theonly [see Eq.(4)]. The eigenvalues of the effective Hamil-

simple wave functior(2) describes in detail the distribution tonian(5) calculated at the excitation enery=13.3 MeV

of the single-particle component while the distribution of Of the system for different values of the parameierare

particle-plus-phonon components could be more affected b§hown in Fig. 2. The contribution of the single-particle am-

FIG. 1. Strength function of thg g, neutron state irf®Pb as a
function of the excitation energy.

inc|uding partic'e_p|us_two_phonons Componem$ Fl!”:ude in the norm Of the wave functimﬁ) iS denoted by
|CO|2. Its distribution is given in Fig. 3.
IIl. RESULTS Figure Za) corresponds tax=1. Because of the strong

interaction of particle and particle-plus-phonon states in the
discrete space, the particle strength is distributed in a large
Using the method presented in the foregoing section, wenergy domain and many eigenvalues have a large imaginary
have calculated the influence of the continuum onlthg  part. Its distribution is correlated with that of thé&"|? [Fig.
neutron state i"°Pb. The chosen state is quasibound in3(a)]. The maximum of the imaginary part of the eigenvalue
Woods-Saxon potential and its energl,y{l190)=8.46 is at the same energy as the maximum of the amplitude. In
MeV, is several MeV higher than those of tke;, andji3,  comparison with Fig. 1, there is a downward stiffom 13
states of?°Pb studied in Ref[15] (E\y K17 =4.88 MeV  to 12.70 MeV} of the maximum which is caused by the in-
and Eydj132)=5.50 MeV). Therefore it should be more teraction with the continuum.
sensitive to the influence of the continuum than the other two  The distribution of the eigenvalues and of tfi"|? for

states. In the present calculations we have used a slightly=3 is shown in Figs. @) and 3b), respectively. It can be
larger radius for the neutron potential than in Ref5] in seen that enlarging of leads to a concentration of the
order to enhance the effect of thgy, continuum. imaginary part of the eigenvalues predominantly on a few
Let us first discuss the distribution of the Single'particlestates_ This result is caused by the trapping eﬁ’ect, i_e_' by the
strength in the discret@ subspace. This space correspondsinterference of the states in the complex energy plane which
to the so-called internal space, where the interaction betweegyses a redistribution of the imaginary parts of the eigen-
the single-particle state and particle-plus-phonon onegg|ues. As a result there are, at large many narrow states
spreads the single-particle strength over the eigenvectors of '\ 0o state. The distribution|&|2 shows a simi-

QHQ. According to Eq.(3) the HamiltonianH is diagonal- ) ) 012
ized in the Q space and the energies, and amplitudes lar behavior. The corresponding values/@f|? are 55% on

c) DO of the states are found. one state atv=3 [Fig. 3(b)], while the maximum value in

At high excitation energy, the level density is large and itF19- 3@ is only 19%. Further increasing of results in still
is convenient to calculate the strength function of the singlemore concentration E(|2. For example, the value = 10
particle statg1,16] using an averaging Lorentzian function leads to a concentration of 85% [@"|? on one state.
of width A=0.1 MeV. The strength function of tHey,, state Let us now consider the more complex system having
is shown in Fig. 1. It is concentrated at an excitation energyeveral open decay channels. The physical channels of the

A. Demonstration of the trapping effect
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FIG. 2. Eigenvalues of the effective Hamiltoniés) calculated FIG. 3. Distribution of the single-particle strengi"|? calcu-

at the excitation energy of the systef=13.3 MeV. Only the lated at the excitation energy of the syst&m 13.3 MeV. Only the
ground state channel is included. The imaginary part is normalizedround state channel is included. The calculation is performed for
to the sum of all imaginary parts. The calculation is performed for(a) a=1, (b) a=3.

(@ a=1, (b) a=3.

system correspond to the ground state and the low-lying phcpartlcle component is reduced. Ihe same effect can be seen
non excitations of the even-even core. In the present calcun Fig. 5 where the distribution gE|2 is shown. There is a
lations these are the first=2",37,47,57,67,7", and 8 strong shift in energy due to continuum coupling. Comparing
excited states if°Ph. TheP space now consists of all con- Figs. 4a) and %a) we can see that the correlation between
figurations shown in Eq(4) built with these low-lying the distributions of widthgobtained from the eigenvalues
phonons. The rest of the phonons of course contributes to thend of [C?|2 do no longer exist. This is contrarily to the
Q space. The eigenvalues of the effective Hamiltonian in thespecial case when only the ground state channel is included,
case when the excited channels are taken into account asee Figs. @) and 3a).
presented in Fig. 4. The calculation is performed at the same The components connected with the open excited chan-
excitation energy of the system as in Figs. 2 andB3 ( nels have, as a function of, the same behavior as the
=13.3 MeV). The large difference between the imaginary single-particle componeriground state channelTheir con-
parts of the eigenvalues plotted in Figs. 2 and 4 arises frongentration in a few eigenvectors increases with increasing
the influence of the new open channels. kGt 1 there are  The reason for the redistribution of the strength is, in any
many eigenvalues with a large imaginary g&ig. 4a]. For  case, the coupling of the states via the continuum. If the
larger value ofe the number of such eigenvalues is reducedcoupling strength increases, the interferences in the complex
[Fig. 4(b)]. energy plane lead to the coexistence of a few short-lived
The structure of the eigenvectors is complex and dependstates with a large amount of long-lived ones.
on the value ofa. The contribution of the single-particle It should be noted, however, that the fragmentation of
component in the norm of the wave functi®®) is given in  particle-plus-phonon components is limited in our calcula-
Table I. Fora=1 large fractions of the single-particle com- tions because of the simplicity of the wave functi@. The
ponent are shared between several states. The contribution @ftension of the configuration space by including particle-
the excited channels in the structure is large. ker3 the  plus-two-phonons components will influence the distribution
number of eigenvectors containing a large part of the singleef particle-plus-phonon componerits|.
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FIG. 4. Eigenvalues of the effective Hamiltoniéh) calculated FIG. 5. Distribution of the single-particle strengiff”|? calcu-

at the excitation energy of the systdfs=13.3 MeV. The ground |ated at the excitation energy of the systd&w 13.3 MeV. The

state and excited state channels are included. The imaginary partdgound state and excited state channels are included. The calcula-

normalized to the sum of all imaginary parts. The calculation istion is performed fora) a=1, (b) a=3.

performed for(a) a=1, (b) «=3. The corresponding sum of the

widths is £1";=23.46 MeV ate=1, and=I';=70.40 MeV ata )

=3. of single-particle amplitudef’)|? for =3 is as follows.

The shape of the distribution is similar to that shown in Fig.

In the calculations shown in Figs. 2—5, we did not take5(b) but the position of the main peak is somewhat shifted:

into account the variation of the real part Wf(E) with «  The main state contains 59% of the single-particle amplitude

[Eq. (5)] and its influence on the spectrum. Its main effect isand its energy is 11.80 MeV what is to compare with 49%

an energy shift of those eigenstates whose widths are largend 12.89 MeMFig. 5b)]. These results allow to conclude

[8]. The influence of the real part ¥/(E) on the distribution that the variation of the real part &¥(E) does not change

TABLE |. Selected eigenvalue€( I'/2), and structure of the corresponding eigenvectors showing the
percentage of ground state and excited state channels. Only the states having largest spectroscopic factors are

shown.
E (MeV) I'/2 (MeV) Structure
a=1
12.48 0.06 9.3% 19/
12.63 0.17 22% | 19/ 29% [3] @ i3]
13.24 0.26 12% | 16/+ 43% [3] @i 13+ 14% [57 @iqgp]
13.57 0.26 10% | 195+ 64% [5; ® i3]
a=3
12.35 0.29 10% | 195+ 65% [3; ®iqgp]
12.89 0.75 49% | 16/+ 16% [3] ®iqz5]
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FIG. 6. Distribution of the high-energy tail of the single-particle ~ FIG. 7. Distribution of the high-energy tail of the single-particle
strength|C)|? in the discreteQ space. strength|C?|2 including continuum coupling. The calculation is
performed at the excitation energy of the system17 MeV.

the conclusions about the trapping effect illustrated in Figs.

4(a), 4(b), 5(a), and 8b). the continuum coupling is included. The maximum value of
|C™|2 becomes about two times larger.
B. Trapping effect and nucleon transfer The redistribution of the single-particle strength could be

The knowledge of the single-particle strength distributionteSted via one-nucleon transfer reactions. The direct nucleon
transfer followed by a semidirect neutron emission from a

is important for the correct description of the nucleon trans-

fer process. In the foregoing section we have shown that i'ﬂig.hly excitgd state is stud_ied in_ R@‘SJ' Usually, the scat-
may be influenced strongly by the coupling to the con-terng amplitude is described in distorted wave Born ap-

tinuum. At low excitation energy, the single-particle state isProXimation(DWBA) and therefore the most important in-

only weakly affected by the continuum. In the case of thegredient is the nucleon-transfer matrix element. Th~isl matrix
0, NEUtron state at excitation energy 13 MeV, we usecélementis proportional to the single-particle amplitidé|
therefore a largénonrealisti¢ value of the parameter in  ©Of the excited stat¢D;) [Eq. (6)].

order to demonstrate the trapping effect. At higher excitation Comparing Fig. 6 with Fig. 7, one can further see a first
energy the influence of the continuum on the single-particldndication that neutron emission at high excitation energy
state is larger. In this case, a large redistribution of thewill acquire a well-structured shape due to continuum cou-
single-particle strength could be expected even at the valugling whereas in the absence of such coupling the neutron
of the parameterr=1. For thel,q, Neutron state, the do- €mission spectrum would have a flatter shape. This behavior
main strongly affected by the continuum at realistic couplingcan be illustrated by means of the partial escape wjgtfor
strength is expected therefore to be the high-energy tail ofhe decay to the ground state of the residual nud&gk In

the strength functioFig. 1). To study this domain in detail, Fig. 8, the partial escape width(l1q,) for thel,q;, neutron

we have diagonalized the effective Hamiltoniés) at the  sState in ?*Pb to the ground state oi”®Pb is shown. It is
excitation energf =17 MeV of the system. The calculation calculated using an averaging Lorentzian function with

is performed fore=1, i.e., for the realistic coupling strength =0.1 MeV as in Fig. 1. Comparing Figs. 1 and 8 one can see
of the single-particle state to the continuum. TRespace that the structure in the 17-18 MeV region is more pro-

includes the states of E4). nounced when the continuum coupling is taken into account.
First, we examine the single-particle strength distributions
calculated inQ space only(no continuum coupling The IV. DISCUSSION

results are shown in Fig. 6. For several states the value of . . .
|c)|2 is around 1%. The characteristics of the distribution in__All the results presented in the foregoing section show

the energy interval 16.5-18.5 MeV are as follows: centroigil'at the influence of the coupling of the states to the con-
- . . tinuum can, generally, not be neglected. It becomes larger
E=17.54 MeV, Va{!;”‘g‘ce":(’-fo MeV and Fotal smg_le- with increasing excitation energy. By varying the intensity of

particle strengtt®|C?|"=10.48%. Next, the single-particle e continuum coupling, we have shown how the trapping
strength distribution calculated in the fulP{Q) space

> S s mechanism takes place in the high-lying part of the spectrum
(continuum coupling includeds shown in Fig. 7. The char- _of a nucleus like?®Pb. We have also seen that the single-

acteristics of the d'St”bUt'onS_'n the same energy domalrbarticle strength distribution is more concentrated when the

16.5-18.5 MeV are: centroi=17.42 MeV, varianceo  continuum coupling is included.

=0.26 MeV, total single-particle strengt|C()|?=8.06%. The results obtained in the present paper forlfgg neu-
The comparison of Figs. 6 and 7 shows above all that théron state in?**Pb with realistic wavefunctions coincide with

strength is shared between a smaller number of states whehnose of more schematic calculations, see, e.g., Rdil.
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0.30 ' ' ' ' ' ' ' ' the calculations for thé, g, state in2%%Pb the alignment is
demonstrated by means of the spreading of the single-
025y particle strength which is reduced under the influence of the
coupling to the continuum. The formation of the aligned
0201 states is accompanied by trapping of other states, i.e., by
-~ their decoupling from the continuum.
:f 015} The spreading of the single-particle strength occurs, gen-
[t

erally, over a large energy domain. Since the continuum ef-
fects depend sensitively on the raliéD (I" average width

andD average distance of the statethey may be different
at the higher-energy part of the spectrum from those at the
lower-energy part. Thus the distribution as a whole will dif-
0.00,-——4 12 13 14 15 18 17 18 fer from that obtained theoretically without taking the cou-
E [MeV] pling via the continuum into account.
) . In the case studied here, the energy domain ranges from
FIG. 8. Partial escape width(l 1) for the decay of théis, 10 to 19 MeV. The trapping effect is shown to be more
neutron state irf°Pb to the2®b ground state. The partial escape important in the energy range around 17.5 MeV than at the
width is calculated .u§inlg an averaging Lorentzian function with energy around 13 MeV. It would be interesting to investigate
=0.1 MeV. The unit is iMeV/MeV] the influence of the continuum on the structure of high-lying
states by performing nucleon-transfer reactions with a par-
ticular emphasis on the high energy part of the spectrum.

0.10

0.05

The interaction is a sum of two parts, the diréictterna)
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