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Many-body correlations in a multistep variational approach
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We discuss a multistep variational approach for the study of many-body correlations. The approach is
developed in a boson formalism~bosons representing particle-hole excitations! and based on an iterative
sequence of diagonalizations in subspaces of the full boson space. The purpose of these diagonalizations is that
of searching for the best approximation of the ground state of the system. The procedure also leads us to define
a set of excited states and, at the same time, of operators which generate these states as a result of their action
on the ground state. We examine the cases in which these operators carry one-particle one-hole and up to
two-particle two-hole excitations. We also explore the possibility of associating bosons to Tamm-Dancoff
excitations and of describing the spectrum in terms of only a selected group of these. Tests within an exactly
solvable three-level model are provided.@S0556-2813~99!00512-9#

PACS number~s!: 21.60.Jz, 21.10.Re, 21.60.Fw
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I. INTRODUCTION

Developing reliable microscopic approaches for the
scription of correlations in quantum many-body systems
field of active research in various branches of physics
preeminent role in this field has been traditionally played
the random-phase approximation~RPA! @1#. Over the years,
however, several attempts@2–16# have also been made t
overcome the natural limitations of this theory related,
particular, to its lack of an internal consistency.

In a recent publication@16#, with reference to theb-decay
physics and working in a quasiparticle formalism, we ha
discussed an approach aimed at improving the quality of
standard quasiparticle RPA calculations usually made in
field. The basic point of this approach has been that
searching first for the best approximation of the ground st
In order to do this we have started with an initialansatzfor
this state and we have tried to improve this approximat
through a series of minimizations which modified the stru
ture of the state at each step. Excited states have, then,
constructed by acting with an RPA-like phonon on t
ground state and fixing the variables of this phonon via
minimization of the energy. Tests of the procedure ha
proved to be quite encouraging. In the present work, ho
ever, we present an evolution of this method which we
lieve to be more effective and simpler to apply in realis
cases.

The approach is developed in a boson formalism. A
preliminary step, then, a boson space will be defined wh
bosons identify particle-hole excitations and a mapping p
cedure will allow the transformation of fermion operato
onto their images in this boson space. Similar to the previ
work @16#, the basic point of the approach will consist
searching first for the best approximation of the ground st
Differently from the mentioned case, however, this will
achieved by means of an iterative sequence of diagona
tions in subspaces of the full boson space. As a further
important difference from the case of Ref.@16#, as a result of
this sequence of diagonalizations, a set of operators will a
be generated which by acting on the ground state of
system will define a set of excited states. We will consid
0556-2813/99/60~6!/064320~8!/$15.00 60 0643
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two cases: the case in which these operators carry only
particle one-hole~1p-1h! excitations and the case in whic
they include up to two-particle two-hole~2p-2h! excitations.
In both cases the comparison with exact calculations with
schematic model will allow us to judge the quality of th
approximations. As a schematic model we have chosen
SU~3! model @17–19#.

In the second part of the work, we will reformulate th
fermion-boson correspondence and identify bosons w
properly chosencollective particle-hole excitations. Then
what is more interesting, we will explore the possibility
describing at least partially the spectrum of the system
terms of only a selected group of these bosons. Once a
we will first search for the best approximation of the grou
state and we will then construct excited states carrying up
1p-1h and 2p-2h excitations. Tests within the schemat
model will be provided also in this case.

The paper is organized as follows. In Sec. II, we w
describe the basic points of the procedure limiting oursel
to the case of 1p-1h excitations. In Sec. III, we will provide
some applications within the SU~3! model. In Sec. IV, we
will consider an extension of the procedure to include 2p-2h
excitations. In Sec. V, we will examine the case of bosons
collective particle-hole excitations. Finally, in Sec. VI, w
will summarize the results and give some conclusions. T
Appendix will be reserved to describe some details of
mapping procedure.

II. THE PROCEDURE: 1 p-1h EXCITATIONS

To simplify the notation, we will illustrate the procedur
directly within the exactly solvable model which has be
used for our tests. This model, the so-called SU~3! model,
was first discussed by Liet al. @17# and has been used mor
recently by Matsuo and Matsuyanagi@18# and Takadaet al.
@19# to test some approximation schemes. The model c
sists of three 2V-fold degenerate single-particle shells whic
are occupied by 2V particles. In the absence of interactio
then, the lowest level is completely filled while the others a
empty. This state, the ‘‘Hartree-Fock’’~HF! state of the sys-
tem, is denoted byu0&. A single-particle state is specified b
©1999 The American Physical Society20-1
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a set of quantum numbers (j ,m), wherej stands for the shel
( j 50,1,2) andm specifies the 2V substates within the shel
The creation and annihilation operators of a fermion in
state (j ,m) are defined byajm

† andajm , respectively.
Let us consider the operators

Ki j 5 (
m51

2V

aim
† ajm ~ i , j 50,1,2!. ~1!

These operators satisfy the Lie algebra of the group SU~3!:

@Ki j ,Kkl#5d jkKil 2d i l Kk j . ~2!

It is assumed that the Hamiltonian of the model is written
terms of the generatorsKi j only and contains up to two-bod
interactions. Its form is@19#

HF5 (
i 51,2

e~ i !Kii 1 (
i , j 51,2

Vx~ i , j !Ki0K0 j

1
1

2 (
i , j 51,2

Vv~ i , j !~Ki0K j 01K0 jK0i !

1 (
i , j ,k51,2

Vy~ i , j ,k!~Ki0K jk1Kk jK0i !, ~3!

where the coefficients are real and obey the symmetry c
ditions Vx( i , j )5Vx( j ,i ) and Vv( i , j )5Vv( j ,i ). The eigen-
states ofHF are constructed by diagonalizing it in the spa

F5H un1n2&5
1

ANn1n2

~K10!
n1~K20!

n2u0&J
0<n11n2<2V

,

~4!
o
a

er

e
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i
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whereNn1n2
are normalization factors.

As in Ref. @16#, we will work in a boson formalism. To
begin, then, we define the boson space

B5H un1n2)5
1

An1!n2!
~b1

†!n1~b2
†!n2u0)J

0<n11n2<2V

,

~5!

where the operatorsbi
† obey the standard boson commutati

relations

@bi ,bj
†#5d i j , @bi ,bj #50, ~6!

and u0) is the boson vacuum. As evident from a glance
Eqs.~4! and~5!, a one-to-one correspondence exists betw
the states ofF andB, the boson operatorsbi

† playing the role
of the excitation operatorsKi0, and the boson vacuumu0)
replacing the HF stateu0&. As anticipated in the Introduction
however, in Sec. V we will also examine a different corr
spondence and so a different meaning to attribute to th
boson operators.

The mapping procedure to construct boson images of
mion operators is the same discussed in previous wo
@12,16# and it is based on the requirement that correspond
matrix elements inF andB be equal. The procedure is, ther
fore, of the Marumori-type. We will give further details i
the Appendix. Here, we simply say that, in corresponde
with the HamiltonianHF ~3!, we introduce a Hermitian bo
son HamiltonianHB which contains up to five-boson term
This has therefore the general form
HB5a1(
i

b i~bi
†1H.c.!1(

i j
g i j bi

†bj1(
i< j

f i j ~bi
†bj

†1H.c.!1(
i< j

(
k

e i jk~bi
†bj

†bk1H.c.!1(
i< j

(
k< l

d i jkl bi
†bj

†bkbl

1 (
i< j <k

(
l

r i jkl ~bi
†bj

†bk
†bl1H.c.!1 (

i< j <k
(
l<m

t i jklm~bi
†bj

†bk
†blbm1H.c.!. ~7!
di-

e

e

To illustrate the iterative sequence of diagonalizations
which our approach is based we start by introducing an
bitrary boson stateuC0

(0)). We consider this as a zeroth-ord
approximation of the ground state and we assumeuC0

(0))
51/A3@ u0)1b1

†u0)1b2
†u0)]. Let usthen consider the spac

B(1)[$uC0
(0)!,bi

†uC0
(0)),bi uC0

(0))% i 51,2 ~8!

and diagonalizeHB in this space.B(1) is, in general, consid-
erably smaller than the full boson spaceB. In our calcula-
tions, for instance, we have assumed 2V510 and this im-
plies that the spaceB can have up to ten-boson states, wh
B(1) contains only up to two-boson states. However,
n
r-

f

uC0
(1)) denotes the lowest eigenstate resulting from this

agonalization, one can only expect thatuC0
(1)) will provide

an approximation of the ground state better than~or, at
worst, equal to! uC0

(0)). This is due to the fact that we ar
allowing the new state to have more components thanuC0

(0))
and that the coefficients ofuC0

(1)) are fixed to guarantee th
lowest energy of the state. We defineuC0

(1)) as the first-order
approximation of the ground state.

As a next step, we consider the space

B(2)[$uC0
(1)!,bi

†uC0
(1)),bi uC0

(1))% i 51,2 ~9!

and diagonalizeHB in this space. IfuC0
(2)) is the lowest
0-2
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eigenstate resulting from this diagonalization, the above
guments lead us to expect that alsouC0

(2)) will be better than
uC0

(1)). We defineuC0
(2)) as the second-order approximatio

of the ground state. The procedure can go on as many ti
as one wishes. By performing a sequence of diagonalizat
in spaces whose dimensionality remains unchanged~and
much smaller than that of the full boson space!, one can
construct approximations of the ground state which impro
step by step.

It turns out to be interesting to reformulate the proced
just described as follows. We define the operator

~Q0
†!(n)5(

i
Xi

(n)bi
†1(

i
Yi

(n)bi1Z(n). ~10!

It is, then,

uC0
(0))5~Q0

†!(0)u0), ~11!

with Xi
(0)5Z(0)51/A3 ~the coefficientsYi

(0) remain undeter-
mined in this case!. Similarly, one can define an operat
(Q0

†)(1) such that

uC0
(1))5~Q0

†!(1)uC0
(0)), ~12!

and so on for all other approximations. In general, ifuC0
(k))

denotes thekth approximation of the ground state, one c
write

uC0
(k))5~Q0

†!(k)uC0
(k21))5~Q0

†!(k)~Q0
†!(k21)

•••~Q0
†!(0)u0).

~13!

Therefore,uC0
(k)) is a product ofk11 operatorsQ† of the

type ~10!, k corresponding to thek diagonalizations in the
B(k) subspaces plus the operator (Q0

†)(0) corresponding to the
starting ansatzuC0

(0)). Concerning this state, some commen
are necessary to justify its use. In principle, one could h
started with a diagonalization similar to all the other on
namely in a space of the type~8! whereuC0

(0))[u0). How-
ever, the coefficientsb i of the boson Hamiltonian~7! are
nothing but the matrix elements ofHF between the HF state
u0& and the 1p-1h statesKi0u0& ~see the Appendix!. These
coefficients turn out to be zero in our model and the sa
would happen in a realistic case. In consequence of tha
mixing is possible between the statesu0) andbj

†u0) and so a
diagonalization in the space$u0),bj

†u0)% could generate
~what indeed happens in our model! the boson vacuumu0) as
the lowest eigenstate. This would lead to a crash of the it
tive mechanism.

Once a sufficient number of iterations has been perform
the procedure is expected to reach convergence. If this is
case, any diagonalization beyond a given one, say thekth
one, will have to leave the results unmodified. This neces
ily implies that the operator (Q0

†)(k11) which will emerge
from the (k11)th diagonalization will have coefficients

Xi
(k11)5Yi

(k11)50, Z(k11)561. ~14!

Convergence of the procedure therefore means converg
towards these values of the coefficientsX, Y, andZ.
06432
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As a result of the same (k11)th diagonalization, beside
the operator (Q0

†)(k11), one will also obtain the operator
(Qi

†)(k11) associated to the remaining eigenstates. The n
ber of these eigenstates is~up to! 2N, whereN is the number
of the 1p-1h excitations (N52 in our model!. If we call ug.s.!
our best approximation for the ground state, i.
ug.s.![uC0

~k!!, these further eigenstates can be written as

uC i
(k11))[~Qi

†!(k11)ug.s.) ~ i 51, . . . ,2N!. ~15!

Keeping in mind that (Q0
†)(k11)561, one has that

~g.s.u~Qi
†!(k11)ug.s.!50 ~ i 51, . . . ,2N!. ~16!

Moreover, the operators (Qi
†)(k11) satisfy the orthogonality

conditions

~g.s.u~Qi !
(k11)~Qj

†!(k11)ug.s.!5d i j ~ i , j 51, . . . ,2N!.
~17!

This procedure, therefore, leads us to define a set of op
tors (Qi

†)(k11) whose action on the ground state gives rise
a set of excited states which, considering the nature of
operators~10!, all carry excitations of the type 1p-1h.

This way of representing the excited states shows evid
similarities to that of the RPA. The operatorsQ† ~10! indeed
remind us~although in a boson formalism! of the phonon
operators of the RPA. However, important differences
appear between the two approaches. While in the RPA
ground state is defined as the vacuum of the operatorsQ, this
is not true in this approach. Here, a sequence of the op
tions of the variational type leads us to construct both
ground state and the set of operatorsQ† which define the
excited states. In the RPA, instead, the operatorsQ† are first
constructed by solving some equations~not of variational
type! and an explicit expression for the ground state can
subsequently derived. We also notice that theQ†’s ~10!, al-
though constructed in terms of bosons, are not real bos
themselves since they do not obey standard commuta
relations of the type~6!. This is not the case in the RPA
where, at least in the standard quasiboson approximation
operatorsQ† are treated as bosons.

Before concluding this section, some comments are n
essary about the violation of the Pauli principle, which
always a risk whenever dealing with boson transformatio
Although the sequence of diagonalizations described ab
can be extended as long as one wishes and so one ca
principle, form states of the type~13! which involve any
number of operatorsQ†, not all the components of thes
states may be ‘‘physical.’’ In other words, there could
components, the so-called ‘‘spurious’’ components, wh
have not a counterpart in the fermion spaceF. In our model,
for instance, whenever acting with more than 2V operators
Q† on the boson vacuumu0) one would form states having
among the others, components with more than 2V operators
bj

† and these are all spurious components.
In order to properly take into account these compone

one should, in principle, perform the diagonalizations
spaces of the type
0-3



er
th
in
ed
nt

th

-

n
o

ie
di
F

lt
e
a
w
c

a-
f its

he

the

non
as
ntly
e
d
at
tes
th

ex-
xi-
d in

ing
to

n-
se-

e e

c. II
-
-
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B(k)5$uC0
(k21)!, Î Bbi

†uC0
(k21)),bi uC0

(k21))% i 51,2, ~18!

where we have introduced the identity operatorÎ B of the
boson spaceB. This is rather simple to do in the model und
discussion. However, as we will see in the next sections,
rate of convergence of the procedure in the cases exam
has always been such as to make the problem associat
the occurrence of these spurious components unimporta
these calculations.

III. RESULTS

The calculations we are going to describe refer to
following choice of the parameters: 2V510, e(1)5e,
e(2)51.5e, Vx( i , j )522x, Vv( i , j )5 1

2 x, and Vy( i , j ,k)
52 3

4 x ( i , j ,k,51,2). Both e and x are parameters ex
pressed in units of energy.

In Fig. 1, the solid lines show the ground-state energy~A!
and the excitation energies of the lowest five states~B!, in
units ofe, as functions of the strengthx/e. These results are
obtained by diagonalizingHF in F. Dot-dashed lines show
the equivalent results forHB in B. The agreement betwee
the fermion and boson spectra guarantees the very g
quality of the boson imageHB .

In Fig. 2, lower part, we show the ground-state energ
corresponding to different orders of approximation as in
cated by the numbers which label the dot-dashed lines.
comparison, we plot~solid line! the energies which resu
from the diagonalization ofHB in B since this represents th
best one can hope to reproduce in this approach. The s
will be done in all the next figures. As seen in Fig. 1, ho
ever, fermion and boson energies differ very little from ea

FIG. 1. Ground-state energy~A! and excitation energies of th
lowest five states~B! as functions of the strengthx/e. The solid
lines are obtained by diagonalizingHF ~3! in F ~4!, while dot-
dashed lines refer toHB ~7! in B ~5!.
06432
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other. A clear improvement of the quality of the approxim
tion is observed in correspondence with the increasing o
order.

Still in Fig. 2, the upper part, dot-dashed lines show t
spectrum obtained within this approach~the spectrum is
found in correspondence with the best approximation of
ground state shown in the lower part of the figure!. For com-
parison we also show the energies of the two one-pho
RPA states~dashed lines!. The RPA undergoes a collapse
soon as the ground-state energy starts deviating significa
from zero (x/e'0.024). The same states, but within th
whole range ofx/e, are obtained within our approach an
they reproduce well the exact ones. It is worth noting th
our approximated spectrum is formed by four excited sta
~with the only exception of very small values of the streng
x/e where they can become two! as opposed to the two
states of RPA. Already for a strengthx/e*0.014 the second
one-phonon RPA state actually corresponds to the third
cited state within the present approach. The fourth appro
mate state lies higher in energy and has not been reporte
the figure.

IV. 2p-2h EXCITATIONS

The same procedure discussed in Sec. II and involv
only 1p-1h excitations can be extended in a natural way
include 2p-2h excitations as well. The basic difference co
sists in performing each diagonalization of the iterative
quence in spaces of the type

FIG. 2. Ground-state energy~A! and excitation energies of th
lowest five states~B! as functions of the strengthx/e. The solid
lines are obtained by diagonalizingHB ~3! in B ~4! while dot-
dashed lines are obtained with the procedure described in Se
~only 1p-1h excitations!. The numbers label different orders of ap
proximation. The dashed lines~B! show the RPA one-phonon en
ergies.
0-4
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B(k)5$uC0
(k21)!,bi

†uC0
(k21)),bi

†bj
†uC0

(k21)),

bi uC0
(k21)),bibj uC0

(k21))% i< j 51,2. ~19!

Moreover, differently from the case of Sec. II, there is
more need for an initial ansatz for the ground state. T
iterative procedure simply begins by performing a diagon
ization in a spaceB(1) of the form ~19! whereuC0

(0))[u0).
To evaluate the role of these additional excitations in

structure of the spectrum, we have performed calculati
similar to those shown in Fig. 2. The new results are repo
in Fig. 3. For what concerns the ground-state energy
observes a very good agreement and a faster converg
with respect to the 1p-1h case. Concerning the spectra of t
lowest five excited states, besides the two ‘‘one-phono
states discussed in the previous section, also the rema
states are now well reproduced~as for Fig. 2, this spectrum
refers to the best approximation of the ground state as i
cated in the lower part of the figure!. As expected, then, the
inclusion of 2p-2h excitations considerably improves th
quality of the approximate spectrum.

V. BOSONS AS COLLECTIVE PARTICLE-HOLE
EXCITATIONS

When performing the boson mapping we have establis
a one-to-one correspondence between the statesun1n2& and
un1n2) defined in the Eqs.~4! and~5!, respectively. In such a
correspondence, bosonsbj

† are images of the 1p-1h operators
K j 0. However, as already anticipated, this is not the o
possibility of correspondence. To show an alternative cho
we proceed as in Takadaet al. @19# and first define the
Tamm-Dancoff~TD! phonon operator

FIG. 3. The same as in Fig. 2 but dot-dashed lines refer now
calculations involving up to 2p-2h excitations.
06432
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†5

1

A2V
(

i
v i

(l)Ki0 . ~20!

The amplitudesv i
(l) satisfy the orthogonality condition

(
i

v i
(l)v i

(l8)5dll8 ~21!

and are obtained by diagonalizingHF in the basis
$(1/A2V)Ki0u0&% i 51,2. In terms of these TD operators w
construct the space

H un1n2&5
1

AN n1n2
8

~V1
†!n1~V2

†!n2u0&J
0<n11n2<2V

.

~22!

This space is the same as Eq.~4! but just a different repre-
sentation. Therefore, if we establish a one-to-one corresp
dence between states~22! and ~5! and we reconstruct the
boson image ofHF , the new boson Hamiltonian will have
different coefficients@for instance, the matrixg i j of Eq. ~7!
will now be forced to be diagonal# but its spectrum will
remain unchanged. In this new representation, bosons co
spond tocollective particle-hole excitations and so play
role very similar to that of the standards,d, . . . bosons in
the interacting boson model picture@20# ~where they are
meant to represent collective particle-particle excitation!.
As in this case, then, it is natural to expect that the struct
of the low-lying part of the spectrum may be described
terms of only a selected group of collective bosons.

Our model appears particularly suited to illustrate th
point. One can form two TD excitations~20! and their ener-
gies are shown in Fig. 4. As one sees, while increasing
strengthx/e, one of the energies remains almost const
while the other one shows a regular and sizable decre
This behavior leads us to believe that the lowest boson m
play a preeminent role in the structure of the low-lying spe
trum. We have made some calculations involving only t
boson and~to start! only 1p-1h excitations. By denoting
b†(b) the creation~annihilation! boson operator associate

to

FIG. 4. Tamm-Dancoff energies as functions of the stren
x/e.
0-5
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M. SAMBATARO PHYSICAL REVIEW C 60 064320
to the lowest TD excitation, the procedure consists now in
iterated sequence of diagonalizations in spaces of the ty

B(k)5$uC0
(k21)!,b†uC0

(k21)),buC0
(k21))%. ~23!

As the initial ansatz we have assumed the stateuC0
(0))

51/A2@ u0)1b†u0)]. The newresults are shown in Fig. 5
The agreement for the ground state and the first excited s
is very good. It is worth stressing that this result has be
obtained by working in spaces whose dimensionality is
markably smaller than that of the full boson spaceB ~3 ver-
sus 66 in our model!.

In Fig. 6, we show similar calculations which involve u
to 2p-2h excitations. The quality of the agreement for t
ground state and the first excited state~already good! re-
mains basically unchanged while also the lowest ‘‘tw
phonon’’ state~to use an RPA language! is now well de-
scribed. These calculations therefore confirm the expecta
that only the boson associated to the lowest TD excita
plays an active role in the structure of these states.

VI. SUMMARY AND CONCLUSIONS

In this paper we have presented a multistep variatio
approach for the study of many-body correlations. The
proach has been developed in a boson formalism~bosons
representing particle-hole excitations! and based on an itera
tive sequence of diagonalizations in subspaces of the
boson space. The purpose of these diagonalizations has
that of searching for the best approximation of the grou

FIG. 5. Ground-state energy~A! and excitation energies of th
lowest five states~B! as functions of the strengthx/e. The solid
lines are obtained by diagonalizingHB ~3! in B ~4!, while dot-
dashed lines refer to calculations involving only the lowest Tam
Dancoff boson and 1p-1h excitations. The numbers label differen
orders of approximation. Further details in Sec. V.
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state of the system. The procedure has also led us to defi
set of excited states and, at the same time, of operators
erating these states as a result of their action on the gro
state. We have considered two cases:~a! the case in which
these operators carried only 1p-1h excitations and,~b! the
case in which also 2p-2h excitations were included.

The approach has been tested within an exactly solva
three-level model. The comparison between exact and
proximate ground-state energies has allowed us to appre
the convergence of the procedure in both cases~a! and~b!. In
the first case, a comparison also with standard RPA calc
tions has shown that the ‘‘one-phonon’’ states that t
theory could reproduce up to its crash point were now w
reproduced in the whole range of variation of the streng
With the inclusion of 2p-2h excitations also the remainin
low-lying states of the spectrum have been well reproduc

In the second part of the paper, we have reformulated
fermion-boson correspondence and identified bosons w
Tamm-Dancoff phonons. We have then explored the po
bility of describing at least partially the spectrum of the sy
tem in terms of only a selected group of these bosons. In
model this has implied restricting the set of two possib
bosons to the one corresponding to the lowest excitation
ergy. We have verified that the ground state was still w
reproduced and so was the first excited state already a
level of 1p-1h excitations.

The possibility of selecting a restricted set of collecti
particle-hole excitations and, therefore, of constructing
boson space only in terms of the corresponding bosons
pears to be quite appealing. It may represent, in fact,
effective way to reduce the dimensionalities of the syst
and so to lead to a much simplified application of the pro
dure to realistic cases.

-

FIG. 6. The same as in Fig. 5 but dot-dashed lines now refe
calculations involving up to 2p-2h excitations.
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APPENDIX

In Sec. II, we established a one-to-one corresponde
between a set of fermion statesF[$un1n2&%, Eq. ~4!, and a
set of boson statesB[$un1n2)%, Eq. ~5!, both sets being
orthonormal. In correspondence with a given fermion ope
tor ÔF , the mapping procedure which we adopt searches
a boson operatorÔB such that matrix elements betwee
06432
ce

-
or

corresponding states be equal. The operatorÔB defines the
image ofÔF in B.

The construction ofÔB proceeds step-by-step involving a
each step matrix elements between states which belon
increasingly larger subspaces ofF and B @12#. Having in
mind to construct boson images with no more than five
son terms, it is sufficient to involve at most the two su
spaces
n

F85H u0&,
1

AN i
F

Ki0u0&,
1

AN i j
F

Ki0K j 0u0&,
1

AN i jk
F

Ki0K j 0Kk0u0&J
and

B85H u0),bi
†u0),

1

AN i j
B

bi
†bj

†u0),
1

AN i jk
B

bi
†bj

†bk
†u0)J ,

whereN i
F , N i j

F , N i jk
F , N i j

B , andN i jk
B are normalization factors. The boson imageÔB , which one derives, is a Hermitia

operator which has the form~7! and coefficients

a5^0uÔFu0&,

b i5
^0uÔFKi0u&

AN i
F

,

g i j 5
^0uK0i ÔFK j 0u&

AN i
FN j

F
2ad i j ,

f i j 5
^0uÔFKi0K j 0u&

AN i j
FN i j

B
,

e i jk5
^0uK0kÔFKi0K j 0u0&

AN k
FN i j

FN i j
B

2
b idk j1b jdki

N i j
B

,

d i jkl 5
^0uK0iK0 j ÔFKk0Kl0u0&

AN i j
FN kl

F N i j
BN kl

B
2

aD i j ,kl
(2) 1(

i 8
~g i 8kD i j ,i 8 l

(2)
1g i 8 lD i j ,i 8k

(2)
!

N kl
B

,

r i jkl 5
^0uK0iK0 jK0kÔFKl0u0&

AN i jk
F N l

FN i jk
B

2 (
i 8< j 8

f i 8 j 8D i jk ,i 8 j 8 l
(3) ,

t i jklm5
^0uK0iK0 jK0kÔFKl0Km0u0&

AN i jk
F N lm

F N i jk
B N lm

B
2

(
i 8

b i 8D i jk ,i 8 lm
(3)

1 (
i 8< j 8

e i 8 j 8 lD i jk ,i 8 j 8m
(3)

1 (
i 8< j 8

e i 8 j 8mD i jk ,i 8 j 8 l
(3)

N lm
B

,

where

D i j ,i 8 j 8
(2)

5~d i i 8d j j 81d i j 8d j i 8!/N i j
B

and

D i jk ,i 8 j 8k8
(3)

5~d i i 8d j j 8dkk81d i i 8d jk8dk j81d i j 8d jk8dki81d i j 8d j i 8dkk81d ik8d j i 8dk j81d ik8d j j 8dki8!/N i jk
B .
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