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Many-body correlations in a multistep variational approach
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We discuss a multistep variational approach for the study of many-body correlations. The approach is
developed in a boson formalisiibosons representing particle-hole excitatioaad based on an iterative
sequence of diagonalizations in subspaces of the full boson space. The purpose of these diagonalizations is that
of searching for the best approximation of the ground state of the system. The procedure also leads us to define
a set of excited states and, at the same time, of operators which generate these states as a result of their action
on the ground state. We examine the cases in which these operators carry one-particle one-hole and up to
two-particle two-hole excitations. We also explore the possibility of associating bosons to Tamm-Dancoff
excitations and of describing the spectrum in terms of only a selected group of these. Tests within an exactly
solvable three-level model are provid¢®80556-28139)00512-9

PACS numbds): 21.60.Jz, 21.10.Re, 21.60.Fw

[. INTRODUCTION two cases: the case in which these operators carry only one-
particle one-holg1p-1h) excitations and the case in which

Developing reliable microscopic approaches for the dethey include up to two-particle two-hol@p-2h) excitations.
scription of correlations in quantum many-body systems is dn both cases the comparison with exact calculations within a
field of active research in various branches of physics. Aschematic model will allow us to judge the quality of the
preeminent role in this field has been traditionally played byapproximations. As a schematic model we have chosen the
the random-phase approximatiRPA) [1]. Over the years, SU(3) model[17-19.
however, several attempf8—16] have also been made to In the second part of the work, we will reformulate the
overcome the natural limitations of this theory related, infermion-boson correspondence and identify bosons with
particular, to its lack of an internal consistency. properly chosencollective particle-hole excitations. Then,

In a recent publicatiofil 6], with reference to th@-decay ~ What is more interesting, we will explore the possibility of
physics and working in a quasiparticle formalism, we havedescribing at least partially the spectrum of the system in
discussed an approach aimed at improving the quality of théerms of only a selected group of these bosons. Once again
standard quasiparticle RPA calculations usually made in thig/e will first search for the best approximation of the ground
field. The basic point of this approach has been that oftate and we will then construct excited states carrying up to
searching first for the best approximation of the ground statelP-1h and 2-2h excitations. Tests within the schematic
In order to do this we have started with an init@isatzfor ~ model will be provided also in this case.
this state and we have tried to improve this approximation The paper is organized as follows. In Sec. II, we will
through a series of minimizations which modified the struc-describe the basic points of the procedure limiting ourselves
ture of the state at each step. Excited states have, then, beéhthe case of -1h excitations. In Sec. IlI, we will provide
constructed by acting with an RPA-like phonon on thesome applications within the $B) model. In Sec. IV, we
ground state and fixing the variables of this phonon via thevill consider an extension of the procedure to incluge2?
minimization of the energy. Tests of the procedure hav@XCitationS. In Sec. V, we will examine the case of bosons as
pro\/ed to be quite encouraging_ In the present work, howCO”eCtive particle-hole excitations. Finally, in Sec. VI, we
ever, we present an evolution of this method which we beWill summarize the results and give some conclusions. The
lieve to be more effective and simpler to apply in realisticAppendix will be reserved to describe some details of the

cases. mapping procedure.
The approach is developed in a boson formalism. As a
preliminary step, then, a boson space will be defined where Il. THE PROCEDURE: 1 p-1h EXCITATIONS

bosons identify particle-hole excitations and a mapping pro-

cedure will allow the transformation of fermion operators To simplify the notation, we will illustrate the procedure
onto their images in this boson space. Similar to the previousdirectly within the exactly solvable model which has been
work [16], the basic point of the approach will consist in used for our tests. This model, the so-called(®Unodel,
searching first for the best approximation of the ground statewas first discussed by lét al.[17] and has been used more
Differently from the mentioned case, however, this will be recently by Matsuo and Matsuyanddi8] and Takadaet al.
achieved by means of an iterative sequence of diagonaliz419] to test some approximation schemes. The model con-
tions in subspaces of the full boson space. As a further andists of three 2-fold degenerate single-particle shells which
important difference from the case of REE6], as a result of are occupied by @ particles. In the absence of interaction,
this sequence of diagonalizations, a set of operators will alsthen, the lowest level is completely filled while the others are
be generated which by acting on the ground state of thempty. This state, the “Hartree-Fock’HF) state of the sys-
system will define a set of excited states. We will considertem, is denoted bj0). A single-particle state is specified by
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a set of quantum numberg, (), wherej stands for the shell where\, , are normalization factors.
(j=0,1,2) andn specifies the  substates within the shell. As in Ref.[16], we will work in a boson formalism. To
The creation and annihilation operators of a fermion in abegin, then, we define the boson space
state {,m) are defined bya}‘m anda;j,, respectively.
Let us consider the operators 1
< N 8= Inunz) = =er (b})"(b3)"2(0) ,
Kij= 2 aimam (1,j=0.1,2. 1) ak oennan

These operators satisfy the Lie algebra of the grou83gU

where the operatortir obey the standard boson commutation
[Kij » Ki]= 6jKip = 6i Ky - (2 relations

It is assumed that the Hamiltonian of the model is written in
terms of the generatots;; only and contains up to two-body [b

: _ | bj1=8;, [bi.bj]=0, (6)
interactions. Its form i$19]

i Mj

) . and|0) is the boson vacuum. As evident from a glance at
HF:igz e(i)Ki +i,j21,2 Vx(1,1)KioKoj Egs.(4) and(5), a one-to-one correspondence exists between
the states oF andB, the boson operatob§r playing the role
1 . of the excitation operatork;,, and the boson vacuum®)

*t7 ”212 Vu(1:) (KioK o+ KojKai) replacing the HF stat®). As anticipated in the Introduction,
however, in Sec. V we will also examine a different corre-
spondence and so a different meaning to attribute to these
boson operators.

The mapping procedure to construct boson images of fer-
where the coefficients are real and obey the symmetry commion operators is the same discussed in previous works
ditions V,(i,j)=Vy(j,i) and V,(i,j)=V,(j,i). The eigen- [12,16 and it is based on the requirement that corresponding
states ofHg are constructed by diagonalizing it in the spacematrix elements i andB be equal. The procedure is, there-

fore, of the Marumori-type. We will give further details in

+ij;lzvya.j,k>(KioK,-k+Kk,~Km>, &)

1 N N the Appendix. Here, we simply say that, in correspondence
F=1lniny)= \/J\/— (K10)"(K20)™[0) , with the HamiltonianHg (3), we introduce a Hermitian bo-
Maf2 0=n,+n,=<20 son HamiltoniarHg which contains up to five-boson terms.

(4) This has therefore the general form

HB=01+2i ﬁi(bJ+H.c.)+iEj yijbrbj+gj ¢ij(bﬁb;+H.c.)+2‘,j Ek‘, eijk(brb}bk+H.c.)+i2j kZ. Sijbibloyby

+ Ek 2| piji (bfblblb +H.c)+ X Tikim(b7 b/ bbby +H.c). 7)

isj= i<jsk I=sm

To illustrate the iterative sequence of diagonalizations oY) denotes the lowest eigenstate resulting from this di-
which our approach is based we start by introducing an aragonalization, one can only expect that{") will provide
bitrary boson statg¥{")). We consider this as a zeroth-order an approximation of the ground state better than, at
approximation of the ground state and we assyii§”)  worst, equal t |¥(?)). This is due to the fact that we are
=1/{/3[|0)+b1|0)+Db}|0)]. Let usthen consider the space allowing the new state to have more components tH&§?)

and that the coefficients ¢f{")) are fixed to guarantee the

BO={|w®) bl|wD) b | W)}, (8)  lowest energy of the state. We definis{") as the first-order
approximation of the ground state.
and diagonalized in this spaceB™ is, in general, consid- ~ As a next step, we consider the space
erably smaller than the full boson spaBelIn our calcula-
tions, for instance, we have assume@210 and this im- B@={|w{"), b [ W), b W)} io 1, 9

plies that the spacB can have up to ten-boson states, while
B™ contains only up to two-boson states. However, ifand diagonalizeHg in this space. Ifl\Ifgz)) is the lowest
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eigenstate resulting from this diagonalization, the above ar- As a result of the samek(t+ 1)th diagonalization, besides
guments lead us to expect that aJ§4;>)) will be better than  the operator Q})**%), one will also obtain the operators

| W), We defing ¥ () as the second-order approximation (Q)* %) associated to the remaining eigenstates. The num-
of the ground state. The procedure can go on as many timdser of these eigenstates(igp to) 2N, whereN is the number

as one wishes. By performing a sequence of diagonalizationsf the Jp-1h excitations N=2 in our model. If we call |g.s)

in spaces whose dimensionality remains unchan@edi our best approximation for the ground state, i.e.,
much smaller than that of the full boson spacene can |g.s)=|WY¥), these further eigenstates can be written as
construct approximations of the ground state which improve

step by step. |[wkFy=Qh&Vgs) (i=1,...,N). (15

It turns out to be interesting to reformulate the procedure
just described as follows. We define the operator Keeping in mind that @})**Y=+1, one has that

(Qg)(v)zz Xi(y)biT"‘Z Y+, (10) (g:sj(QH**Yg.s)=0 (i=1,....N). (16)
1 |

_ Moreover, the operatorsQ()*1) satisfy the orthogonality

It is, then, conditions
0y = (0l ..
Vo) =(Q0™I0), D (gl (@) QN Vgs)=5; (,i=1,....N).

with X(©=7©=1/,/3 (the coefficientsr(?) remain undeter- (7

mlr;e(z in this case Similarly, one can define an operator Thjs procedure, therefore, leads us to define a set of opera-
(Qo)™ such that tors (Q1) ") whose action on the ground state gives rise to
W) = Q1D w P, (12) a set of excited states which, considering the nature of the
operatorg10), all carry excitations of the typepilh.

This way of representing the excited states shows evident
similarities to that of the RPA. The operatd® (10) indeed
remind us(although in a boson formalisnof the phonon
operators of the RPA. However, important differences do
W) =(QH) M| w kD)= (QH®(QLHK-D...(Q})©)]0). appear between the two approaches. While in the RPA the

(13)  ground state is defined as the vacuum of the oper&ptisis

is not true in this approach. Here, a sequence of the opera-

Therefore,| W) is a product ofk+ 1 operatorsQ" of the  tions of the variational type leads us to construct both the
type (10), k corresponding to thé diagonalizations in the ground state and the set of operat@$ which define the
B subspaces plus the operat@y®) corresponding to the excited states. In the RPA, instead, the opera@rsre first
starting ansat¥ (). Concerning this state, some commentsconstructed by solving some equatiofrot of variational
are necessary to justify its use. In principle, one could havéype) and an explicit expression for the ground state can be
started with a diagonalization similar to all the other onessubsequently derived. We also notice that @iés (10), al-
namely in a space of the typ8) Where|\lfgo))z|0)_ How-  though constructed in terms of bosons, are not real bosons
ever, the coefficients, of the boson Hamiltoniar7) are  themselves since they do not obey standard commutation
nothing but the matrix elements bf: between the HF state relations of the type6). This is not the case in the RPA
|0) and the p-1h statesK;o|0) (see the Appendix These where, at least in the standard quasiboson approximation, the
coefficients turn out to be zero in our model and the sam@peratorsQ" are treated as bosons.
would happen in a realistic case. In consequence of that no Before concluding this section, some comments are nec-

diagonalization in the spacé|0) bfr|0)} could generate always a risk whenever dealing with boson transformations.

(what indeed happens in our mo)jmé boson vacuun©) as Although the sequence of diagonalizations described above
an be extended as long as one wishes and so one can, in

the lowest eigenstate. This would lead to a crash of the iteracan * s
tive mechanism. principle, form states Tof the typ€l3) which involve any
Once a sufficient number of iterations has been performegumber of Obper(f"‘tg@ ' lr!,Otl all Lhe comdpon(;nts of twgsg
the procedure is expected to reach convergence. If this is tgates may be “physical. n other vv”or S, there could be
case, any diagonalization beyond a given one, saykthe components, the so-called “spurious” components, which

one, will have to leave the results unmodified. This necessarltl"’“/_e ntot a couEterpart n tthe fer_rtnr:on spﬁtcﬁgﬁo;r mo?el,
ily implies that the operator@})**) which will emerge ~|of '"Stance, WNENEVEr acting with more perators

+ .
from the (k+ 1)th diagonalization will have coefficients Q' on the boson vacuuri0) one W.OUId form states having,
among the others, components with more th&h @erators

Xi(k“’:Yi(k“’:O, zk+D— + 1 (14) bjT and these are all spurious components.
In order to properly take into account these components,
Convergence of the procedure therefore means convergenoae should, in principle, perform the diagonalizations in
towards these values of the coefficientsY, andZ. spaces of the type

and so on for all other approximations. In generald)
denotes the&th approximation of the ground state, one can
write
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FIG. 1. Ground-state energyA) and excitation energies of the FIG. 2. Ground-state enerdy) and excitation energies of the
lowest five stategB) as functions of the strengtf/e. The solid  lowest five state§B) as functions of the strength/e. The solid
lines are obtained by diagonalizind: (3) in F (4), while dot- lines are obtained by diagonalizingg (3) in B (4) while dot-
dashed lines refer thlg (7) in B (5). dashed lines are obtained with the procedure described in Sec. Il

(only 1p-1h excitation$. The numbers label different orders of ap-
B(k):{lq,gk—l))”l‘Bb”\I,gk—l))’bilq,gk—l))}i:m, (19 2:gi>grsnation. The dashed ling8) show the RPA one-phonon en-

where we have introduced the identity operaigrof the ) . .
boson spac®. This is rather simple to do in the model under Other- A clear improvement of the quality of the approxima-
discussion. However, as we will see in the next sections, thlOn iS observed in correspondence with the increasing of its
rate of convergence of the procedure in the cases examinéfd€’- .

has always been such as to make the problem associated to>tll In Fig. 2, the upper part, dot-dashed lines show the

the occurrence of these spurious components unimportant FPeCctrum obtained within this approadthe spectrum is
these calculations. ound in correspondence with the best approximation of the

ground state shown in the lower part of the figuigor com-
parison we also show the energies of the two one-phonon
RPA stategdashed lings The RPA undergoes a collapse as
The calculations we are going to describe refer to thesoon as the ground-state energy starts deviating significantly
following choice of the parameters: (=10, e(1)=¢, from zero (y/e~0.024). The same states, but within the
€(2)=1.5¢, V,(i,j)=—2x, V,(i,j)=3%x, and Vy(i,j,k) whole range ofy/e, are obtained within our approach and
=—2y (i,j,k,=1,2). Both e and y are parameters ex- they reproduce well the exact ones. It is worth noting that
pressed in units of energy. our approximated spectrum is formed by four excited states
In Fig. 1, the solid lines show the ground-state endrgy  (with the only exception of very small values of the strength
and the excitation energies of the lowest five std®)s in  x/€ Where they can become twas opposed to the two
units of e, as functions of the strengtyye. These results are states of RPA. Already for a strengfte=0.014 the second
obtained by diagonalizingi¢ in F. Dot-dashed lines show one-phonon RPA state actually corresponds to the third ex-
the equivalent results farg in B. The agreement between Ccited state within the present approach. The fourth approxi-
the fermion and boson spectra guarantees the very god#ate state lies higher in energy and has not been reported in
quality of the boson imagelg . the figure.
In Fig. 2, lower part, we show the ground-state energies
corresponding to different orders of approximation as indi-
cated by the numbers which label the dot-dashed lines. For
comparison, we plotsolid line) the energies which result The same procedure discussed in Sec. Il and involving
from the diagonalization dfiz in B since this represents the only 1p-1h excitations can be extended in a natural way to
best one can hope to reproduce in this approach. The sanmclude 2-2h excitations as well. The basic difference con-
will be done in all the next figures. As seen in Fig. 1, how-sists in performing each diagonalization of the iterative se-
ever, fermion and boson energies differ very little from eachquence in spaces of the type

Ill. RESULTS

IV. 2p-2h EXCITATIONS
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1.5
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0.04
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FIG. 4. Tamm-Dancoff energies as functions of the strength

1

V20

The amplitudessM) satisfy the orthogonality condition

A Z viVKjo. (20)

FIG. 3. The same as in Fig. 2 but dot-dashed lines refer now to

calculations involving up to [22h excitations.

BO={|w{),bf[wi 1), blbl[wi ),

bil W&, biby [ W) <. (19)

Moreover, differently from the case of Sec. Il, there is no
more need for an initial ansatz for the ground state. The
iterative procedure simply begins by performing a diagonal-

ization in a spac®&) of the form (19) where|¥{"))=|0).

To evaluate the role of these additional excitations in the

2 Vi()\)vi()\ )= O

(21)

and are obtained by diagonalizingde in the basis
{(12Q)K;0|0)}i—1. In terms of these TD operators we
construct the space

R 1
Ining)=——— (VDM(VI)"2|0)
annz 0=<n;+n,<20

(22

structure of the spectrum, we have performed calculationgy,;g space is the same as E4) but just a different repre-
similar to those shown in Fig. 2. The new results are reportedenation. Therefore, if we establish a one-to-one correspon-
in Fig. 3. For what concerns the ground-state energy ONBence between statd&2) and (5) and we reconstruct the

observes a very good agreement and a faster convergenggq,, image oH
with respect to the @-1h case. Concerning the spectra of the ’

lowest five excited states, besides the two ‘“one-phonon

the new boson Hamiltonian will have
different coefficientgfor instance, the matrix;; of Eq. (7)
will now be forced to be diagonhlbut its spectrum will

states discussed in the previous section, also the remainingy,ain unchanged. In this new representation, bosons corre-

states are now well reproducéas for Fig. 2, this spectrum

refers to the best approximation of the ground state as indi

cated in the lower part of the figureAs expected, then, the
inclusion of 2-2h excitations considerably improves the
quality of the approximate spectrum.

V. BOSONS AS COLLECTIVE PARTICLE-HOLE
EXCITATIONS

spond tocollective particle-hole excitations and so play a
role very similar to that of the standagld, ... bosons in
the interacting boson model pictuf@0] (where they are
meant to represent collective particle-particle excitations
As in this case, then, it is natural to expect that the structure
of the low-lying part of the spectrum may be described in
terms of only a selected group of collective bosons.

Our model appears particularly suited to illustrate this
point. One can form two TD excitatior0) and their ener-

When performing the boson mapping we have establishedies are shown in Fig. 4. As one sees, while increasing the

a one-to-one correspondence between the staies) and
[nyin,) defined in the Eq94) and(5), respectively. In such a
correspondence, bosohgs are images of thept1h operators

J

strengthy/e, one of the energies remains almost constant
while the other one shows a regular and sizable decrease.
This behavior leads us to believe that the lowest boson may

Kio. However, as already anticipated, this is not the onlyplay a preeminent role in the structure of the low-lying spec-

possibility of correspondence. To show an alternative choiceffum. We have made some calculations involving only this

we proceed as in Takadat al. [19] and first define the
Tamm-Dancoff(TD) phonon operator

boson and(to star} only 1p-1h excitations. By denoting
b'(b) the creation(annihilation boson operator associated
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(A)

boson

i-th approx.

0.02 0.04 0.06
x/e

FIG. 5. Ground-state energyA) and excitation energies of the
lowest five stategB) as functions of the strengtg/e. The solid
lines are obtained by diagonalizindg (3) in B (4), while dot-

dashed lines refer to calculations involving only the lowest Tamm—state of the svstem. The procedure has also led us to define a
Dancoff boson and@t1h excitations. The numbers label different y ) P

orders of approximation. Further details in Sec. V. set of excited states and, at the same time, of operators gen-
erating these states as a result of their action on the ground

to the lowest TD excitation, the procedure consists now in aiftate. We have considered two cas@s:the case in which

iterated sequence of diagonalizations in spaces of the typeth@se operators carried onlyp-1h excitations and(b) the
case in which also®22h excitations were included.

The approach has been tested within an exactly solvable
three-level model. The comparison between exact and ap-

As the initial ansatz we have assumed the sﬂalftéo)) proximate ground-state energies has allowed us to appreciate
—1/2[|0)+b'|0)]. The newresults are shown in Fig. 5. the convergence of the procedure in both cdageand(b). In

The agreement for the ground state and the first excited stat@e first case, a comparison also with standard RPA calcula-
is very good. It is worth stressing that this result has beefions has shown that the “one-phonon” states that this
obtained by working in spaces whose dimensionality is retheory could reproduce up to its crash point were now well
markably smaller than that of the full boson sp&€3 ver-  reproduced in the whole range of variation of the strength.
sus 66 in our model With the inclusion of p-2h excitations also the remaining

In Fig. 6, we show similar calculations which involve up low-lying states of the spectrum have been well reproduced.
to 2p-2h excitations. The quality of the agreement for the In the second part of the paper, we have reformulated the
ground state and the first excited stésdready good re-  fermion-boson correspondence and identified bosons with
mains basically unchanged while also the lowest “two-Tamm-Dancoff phonons. We have then explored the possi-
phonon” state(to use an RPA languagés now well de- bility of describing at least partially the spectrum of the sys-
scribed. These calculations therefore confirm the expectatiotem in terms of only a selected group of these bosons. In our
that only the boson associated to the lowest TD excitatioormodel this has implied restricting the set of two possible
plays an active role in the structure of these states. bosons to the one corresponding to the lowest excitation en-
ergy. We have verified that the ground state was still well
reproduced and so was the first excited state already at the
level of Ip-1h excitations.

In this paper we have presented a multistep variational The possibility of selecting a restricted set of collective
approach for the study of many-body correlations. The apparticle-hole excitations and, therefore, of constructing the
proach has been developed in a boson formalibosons boson space only in terms of the corresponding bosons ap-
representing particle-hole excitatioreand based on an itera- pears to be quite appealing. It may represent, in fact, an
tive sequence of diagonalizations in subspaces of the fukffective way to reduce the dimensionalities of the system
boson space. The purpose of these diagonalizations has besmd so to lead to a much simplified application of the proce-
that of searching for the best approximation of the groundiure to realistic cases.

FIG. 6. The same as in Fig. 5 but dot-dashed lines now refer to
calculations involving up to [22h excitations.

B(k):{|\l,gk—1))'bT|\I,gk—1)),blqrgk—l))}_ (23

VI. SUMMARY AND CONCLUSIONS
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APPENDIX corresponding states be equal. The oper@tgrdefines the

In Sec. Il, we established a one-to-one correspondenc'erzn"jlge OfOF in B_‘ A _ .

between a set of fermion stats={|n;n,)}, Eq.(4), and a The construction 0Dy proceeds step-by-step |_nvolvmg at
each step matrix elements between states which belong to

set of boson stateB={|n;n,)}, Eq. (5), both sets being : . e
orthonormal. In correspondence with a given fermion Operalng:reasmgly larger subspaces Efa_nd B [12]. Having in
mind to construct boson images with no more than five bo-

tor O, the mapping procedure which we adopt searches fogon terms, it is sufficient to involve at most the two sub-
a boson operatoOg such that matrix elements between spaces

1 1 1
F’:[ |0>,W Kio|0>:\/ﬁ Kiono|0>,\/TF_k KiOKjOKkO|O>]
i ] 1

and

B'=||0),b?|0), bib]10), brb;bm)],

1 1
g PO

where N, NVf,, N, N7, and NV}, are normalization factors. The boson imaQg, which one derives, is a Hermitian
operator which has the forif¥) and coefficients

“:<0|©F|0>,

1 \/./\T'IF y
y___<o|K0i©FKj0|> s
IJ_—_ |j y
NiF/\/J-F
_<0|©FKiOK|‘0|>
. _(0[KoOeKioKjol0) it B;
ijk \LA/E/\fﬁj\fﬁ j\fﬁ

2 2
<0|K K (") KoK |O> CYAI(JZ,)M—’_E, (’yi’kAi(jy)iq"' ’yi/IAi(j‘)i/k)
_ 0i"™0j~MFINkO™I0 . i

M INENNENE N

) (0K iKjK o OpK||0) S 4A0
ikl = ol ATANSTIIE
(3) (3) (3)
A E lBi’Aijki’Im+ 2 Ei’J’IAijki'j'm+ 2 Ei’j’mAijki’j’l
. _ (0[KiKojKokOpK oK mol0) " i<y’ i<y’
ijkim= -
\AA[ﬁkj\fﬁn/\rﬁkj\fﬁn J\fﬁn

where

A®

i

:(5II’5JJ/+5IJ'5JI')/NE

and

3
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