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Continuum level density in a microscopic cluster model: Parameters of resonances
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The positions and widths of nuclear resonance states of the rfiB#ei®He, and®Li have been calculated
in the microscopic cluster model using a real square integrable basis. The imposition of Gamow or scattering
asymptotic boundary conditions onto the wave function is avoided. The approach is based on the notion of the
continuum level density. This density is smoothed by the Strutinsky averaging procedure and it is calculated by
making use of the eigenvalues of the full and the free Hamiltonian matrices. The continuum level density is
connected to th& matrix and has a Breit-Wigner peak around the resonance energy. This approach is com-
pared with the complex scaling method and with the exact calculation of the scattering phase shift.
[S0556-28189)03112-X

PACS numbgs): 21.10.Ma, 21.60.Gx, 27.18h, 27.20+n

I. INTRODUCTION basis. The CLD is connected to the scatterimatrix and
gives a Breit-Wigner-type peak around the resonance energy
The study of resonance properties is one of the most imand so the resonance parameters can be determined.
portant subjects in nuclear physigs]. This topic has re- In this paper we present how to apply the CLD method in
cently become even more significant since drip line nuclethe framework of the microscopic cluster model and we
can be experimentally investigatél]l. The ground states of demonstrate that our approach works also in the presence of
these nuclei have a small binding energy and most of théhe long-range Coulomb interaction. We have applied the
excited states lie above the particle threshold. A possibl&€LD method to the well-known two-cluster states of the
theoretical tool to describe the particle unstable states dight nuclei ®Be, °He, and®Li. These nuclei are described
resonance bumps in cross sections is the notion of resonanb¥ the microscopic two-cluster modeist-a, a+n, anda+
state. p, respectively. The smoothed approximate CLD is calcu-
Few methods have been developed for the description déited by expanding the relative motion wave function of the
resonance states using bound-state-type technique, for eslusters on a finite number of shifted Gaussians. We have
ample, the different versions of the*-stabilization method found that the approximate smoothed CLD is consistent with
[3—13 and the complex scaling meth¢#l4—27. The main  the exact density derived from the scattering phase shift. The
merit of these approaches is that the sophisticated modeparameters of the low-lying resonance states predicted by the
and computer codes which deal with the bound state problereLD method are compared with two other methods, namely,
may be applied to resonance state calculations. the complex scaling approach and scattering phase shift cal-
The L2-stabilization method is widely used in atomic culation.
physics. This approach is based on box quantization and on In Sec. Il the microscopic cluster model is presented; in
the repeated diagonalization of the Hamiltonian using aSec. Ill we outline the calculation of the approximate CLD.
larger and larger box size, at such a region where the resd-he results f078|_3€, 5|_-|e, and®Li are shown in Sec. IV and
nance wave function is localized. The stabilization diagran® summary is given in Sec. V.
(the energy versus the box sjzhows flat behavior around
the resonance energy. Recently Mandelshétral. [5] have
developed a new version of the stabilization method. The
density of states is calculated which has a peak around the The models considered here are the microscopic cluster
resonance energy. The resonance parameters, the pdsition models of the type of the resonating group mettiBGM)
and the widthl", , can be derived from the density of states.[24,25. The main characteristics of this nuclear model are
Recently we have generalizef23] the stabilization the following. The nucleons are assumed to be arranged in
method of Mandelshtam, Ravuri, and Taylor employing theclusters and all nucleons are treated explicitly. The wave
notion of the continuum level densifLD). The basic defi- function is constructed so as to satisfy the Pauli principle
nition of the CLD utilizes the Green operators of the inter-exactly. The model is free from spurious center-of-mass mo-
acting and the free systems. We showed that an approximat®n, and has good total angular momentum and parity. The
CLD, smoothed by the Strutinsky averaging procedure, camucleons are assumed to interact via an effective nucleon-
be determined without box quantization or without the im-nucleon interaction. The cluster intrinsic wave functions are
position of the scattering asymptotic boundary conditiontaken to be simple shell-model wave functions built up from
onto the wave function. The smoothed CLD can be calcu0s harmonic-oscillator states. The relative wave function be-
lated by making use of an arbitrary real square integrabléween the clusters is expanded over some basis functions. All

Il. MICROSCOPIC CLUSTER MODEL
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symmetries e_lre,kept by the trial function itsélprojection A=A iEt n ﬂigt +Are (5)
before variation’).
For the trial wave function we take the following ansatz: Wherel:'i:t andf_‘ligt are the internal Hamiltonian of the clus-

ters A and B, respectively.A™ is the intercluster Hamil-
Wou= 2 Cuh=2 CMIPsI1(s,p)aml, (1) tonian, given by
2

N fi -
where the symbaM is the intercluster antisymmetrizer aid Hel= — 5,80 > > Vi, (6)
andM are the total angular momentum andztsomponent, H 1A TeB
respectively. The functio®s is the product of the cluster \herey is the reduced mass.
intrinsic wave functions:

IIl. CONTINUUM LEVEL DENSITY
d)SMS:[CDQCI)a]SMS for the a+a system,

If a HamiltonianH contains only one dynamical coordi-
nate and has continuous spectrum, then the continuum level
densityA(E) is defined[27,28 with the help of Green op-
erators,

=[®,Pnlsm for the a+n system,

=[P,Pplsm, for the a+p system. (2

The total spinSis O for the systenw+a and 1/2 for the 1 - ) ~0 )
systema+n or thea+p. @, is the a-cluster intrinsic wave A(B)=-_IM{TIG(E+i0)~GYE+i0)];, (7)
function which is described by thesCharmonic-oscillator

shell model with a single size parametgy. ®, and®, are  \yhere G(2)=(z—A)~! is the full Green operator®(2)

:ir:/eelflpmqsospm function of the neutron and proton, reSPec,. \4s for the free Green operaté®(z) = (z— F) %, and

The wave function of the intercluster motion is approxi- Ho is the free Hamiltonian(this is defined more precisely

mated by a liner combination of the shifted Gaussian basislate?- In Eq. (7), THG(E+i0)] means the trace of the op-
eratorG(E+i0) and Injz] is the imaginary part of. The

r 4 m |\ 2y s notationG(E+i0) means the limit lim ., ,G(E+iz).
Lm(Si,p) =4 4yps, e It is known that the CLD, in the case of a spherically
2 . symmetric Hamiltonian, is proportional to the derivative of
X e Y TS) | L1 (2ypS)Yim(p) the scattering phase shif(E) [27,28:
- 27)3’4 2 . 1 d&(E)
= | ds| —| e P~y , 3 _ - 2A=
f SK( - Lm(S0) 3 AB)=——E ®)

wherep is the relative coordinate between the two clustersSince the behavior of the phase shift around a resonance
andL, M are the cluster-relative orbital angular momentumenergy is knowri29], A(E) can be turned into the following
and its z component, respectivelyl, , 1,(x) denotes the form in the vicinity of a resonance:

modified Bessel function. In the conventional generator co- . b

ordinate methodGCM) for computational convenience the A(EE, ,I')=A"(EE, ,I'}) +A"(E). 9
parametery in Eq. (3) is set to bey=A;A,v,/(A+A), b . . .
whereA; andA, are the mass numbers of the clusters. In ouer?hbackground tzrrﬁ; AE) is a slov':/Iy Chﬁng'”gé‘“f?tcg‘v?”
ansatz thigy parameter is chosen to be independent of In of the energy, an € resonance term has a breit-wigner

this way our model becomes Tohsaki-Suzuki's new GCMShape:
[26]. 1 r./2

The coefficient<Cy in Eq. (1) are obtained by application A"(E,E,,I'})=— r—z (10)
of the Rayleigh-Ritz variational principle. The model wave T (E—E,)?+TZ/4

function in Eq.(1) can be considered as an approximate so- - _
lution of the eigenvalue problem of th&-nucleon Hamil- whereE, and[I', are the resonance position and width, re-

tonian spectively. This term produces a sharp peak ardenith the
CLD.
A A The CLD can be calculated using E®); it is expressed
H=Zl Ti—Tem+ 2 Vij, (4) by the scattering phase shift. The direct application of this
I= i1<j

equation should mean that the Safirmer equation with a
. . scattering boundary condition has to be solved. We have
whereT; is the kinetic energy of thith nucleon T, is the  shown in Ref[23] that the CLD, smoothed by the Strutinsky
kinetic energy of the center of mass, avid is the effective  averaging procedure, can be approximated accurately by an
nucleon-nucleon interaction. In a microscopic two-clusterarbitrary real square integrable basis without imposing ex-
model this Hamiltonian can be rewritten as plicitly the scattering asymptotic boundary condition onto
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the wave function. 1IN basis functions are used to solve the In order to compare the approximate CLD with the exact
eigenvalue problem of the Hamiltonian, then the approxi-CLD we have to carry out the Strutinsky smoothing of the
mate CLD AN(E) can be turned into the following form exact density, too. The exact CLD around the resonance en-

[23]: ergy has the form of Eq9); the smoothed exact CLD has
also a similar form
ANE)= 2, S(E-e) -2, S(E-e]), (12) A(E,E, .T,)=A/(E,E, ,T,)+APYE). (19)

The advantage of the Lorentzian shape for the weight func-
tion is that the smoothing of the Breit-Wigner shape can be
calculated analytically,

mn:<l//mlﬂ|lr/fn> (12 . r r2—r2
rﬁil(E— E)?— %J

where 5(E—¢;) is the Diracé function. The eigenvalues of
the full Hamiltonian matrix

- A'(E,E, ) T'))=
are denoted byg;. In the above equation,, and H are
defined by Eqgs(1) and(4), respectively.

The quantities? are the eigenvalues of the free Hamil- <17 ftan? E)
tonian matrix 2 r
~ 2_1"2
HO, = (wRIFiol ¥2), (13 NS P %}
2
where the free Hamiltoniahl, reads
T +tan 2E,
ﬂozﬂint+H|nt+Hrel (14) 2 an Fr

andHY' is given by

+FF,(E E)81 4E°+T7? 20
- 09—
2 B log 4E%+T7?

. h? ZpZg€? roor
H(r)el:—ﬂAp'f'T. (15) and
The second term in the above equation is the Coulomb inter8={[(E—E,)?+(I' =T )%/4][(E—E)*+ (I +T';)%/4]} 1.
action andZ, andZg are the charge numbers of the clusters (21)
A andB. In the microscopic cluster model the wave function ] o —
i can be divided into the terms It should be noted t_hat in the limit df—0, A" tends to the
nonsmoothed densiti".
Y= ¢m+ ¢m, (16) The smoothed CLD has also a peak around a resonance

energy. The resonance parametérandI’, are determined
wherey® and & are the direct and exchange termsygf. by minimizing the quantity
In Eqg. (13) only the direct term should be used.

Since Diracé functions appear in Eq11), this expres-
sion is not convenient to be considered. The approximate
CLD is smoothed by the Strutinsky procedufd0]. A
smoothed CLD can be introduced by the folding integral wheren pointse; (i=1,...n) are taken equidistantly at the
region ofEea— d <€ <Epeactd. HereE ¢, is the peak po-
sition of the smoothed approximate CLD and B the size

of the interval of the fitting. The background teth¥(E) is
described by a second order polynomialEn
wherel" is the range parameter of the smoothing. Here we T check the validity of the approximate calculation of
take the Lorentzian shape for the weight function(X)  the CLD in the microscopic cluster model, we have also
=1[2m(x*+1/4)]. After the Strutinsky smoothing proce- calculated the scattering phase shift solving the Stihger
dure the smoothed approximate CLD is expressed as the digquation exactly with scattering asymptotic boundary condi-
ference of the two densities tion. We derived the smoothed exact CLD by means of Eq.
N N 0 (8). The Rmatrix method[31] is chosen for the scattering
AN(E) = 2 1 (E el) 2 E ( — & ) (19) calculation. The internal region of wave function is approxi-
i=N=Ng I = N mated by a superposition of centered Gaussian basis.

The resonance parameters can be determined from the
whereNg (Ng=N) denotes the number of the bound statescattering phase shift. Two different methods are considered.
eigenvalues of the full Hamiltonian matrix. Here we assumedn the first method it is assumed that the derivative of the
that the eigenvalues are arranged in increasing order of thecattering phase shift, around the resonance energy, has the
energy. form of the sum of a Breit-Wigner term and a background

2, [AM(e)—Ae B T (22

!

E
)AN(E’)dE’, (17

KN(E):Ewa E_
I'o r
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term (second order polynomial i&); see Eqs(8) and (9). —_
The resonance parameters are determined from a fitting pro- 0.0 T T T T
cedure. The first method is denoted “phase sf@ft in this >
paper. In the second approach the resonance poditian é’ 01
defined as the inflection point of the phase sBfE) (the . oo
peak position ofd5/dE) and the resonance width is calcu- A
lated asl’, = 2/(do/dE)g-g, [32]. The second method is de- g -o3
noted by “phase shifth).” We mention that the second w‘: oak
method(b) is similar to the first onda) but the background kS
term is neglecteda pure Breit-Wigner form is assumed for < -05
dsIdE). 8
We have also used the complex scaling mett@8M) to © 08
determine the resonance parameters. This method is widely 8 07 I I I I
used to deal with resonance states in atomic and nuclear g "o 1 2 3 4 5
physics[14—23. In the complex scaling method, the Hamil-
A E [ MeV |
tonianH is transformed as
H,=U0(0)HU(6) 1, (23 —
i S I L L A
where 0(0) is the unbounded nonunitary scaling operator >
which acts on a functiori(r) as é)
U(6)f(r)=exp3i6/2)f(r exp(i ). (24) i
S
The Schidinger equatiorH|¥)=E| V) is rewritten as E)
- g
Hol W ) =Eq|¥). (25 o -
8 1 1 1 | 1 1 1 | 1
The ABC theorem statg83] that the bound state eigenval- g 0 2 4 6 8 10

ues of the HamiltoniarH are also eigenvalues ¢f,. A E[ MeV ]
resonance state is obtained as a complex eigenvaje

=E,—iI'\/2 of the non-self-adjoint Hamiltoniaf ,. The
resonance eigenvalue does not depend @n if

itan YT',/2E,]< 6<m/2. The wave functions of the reso-
nance and bound states are square integrable in the CSM.
When the complex scaling method is applied to the micro-
scopic cluster model, the new GCM method of Tohsaki-
Suzuki[26] is used.

0.08

0.06
IV. RESULTS AND DISCUSSION

In this section we show our results for the nucfide, 0.04

°Li, and °He using the microscopic cluster modets- «,
a+p, and a+n. First we have checked the approximate
calculation of the CLD without the presence of the Coulomb
force. AT T T
For ®Be the effective nucleon-nucleon interaction and 0'000 5 10 15 20 25
other parameters of the cluster model are taken from Ref. E[MeV ]
[16]. The effective nucleon-nucleon interaction is Volkov
No. 1 with Majorana exchange paramete0.6[34]. The

. bit f b | db it d . FIG. 1. The smoothed continuum level densities of thé «
Spin-or It force can be neg ecte ecause It does not contnt%-{stem for the state¥ =0+ (@), 2+ (b), and 4 (c). The effective

ute to the energy in our model space. The size _p2arameter Alcleon-nucleon interaction is Volkov No.riE 0.6) without Cou-
the a-particle is set to bev,(=p,/2)=0.235 fm . The  |omp force. The twos-particles energy is—54.90 MeV (v,
binding energy of the particle isE,= —27.450 MeV. The 0235 fm 2). The solid, dotted, and solid-dotted lines denote the
parametery in the new GCM basigsee Eq(3)], is taken to  results for smoothing witl =0.4, 0.8, and 1.2 MeV, respectively.

0.02

smoo. cont. lev. dens. [ MeV_1 ]
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1.75 T T T T and widthI", for the state]™=2". This figure shows that the
resonance parameters converge as the giakthe interval
for the fitting decreases. Thiedependence of the resonance

174 1= (a) o o parameters become weak for smaller smoothing parameter
— o o a I'. We adopted the d4” converged valuegfor the smallest
% CEEP I') as the parameters of the resonance.
> 173 e " Figure 3 displays the convergence behavior of the
— s e Lo . smoothed approximate CLD for the staté as the function
] o ° L Yoa . of the dimension of the basls. The smoothing parameter is
g terE o ° : ° i s " 7] fixed atI’=0.4 MeV. The energy spacing between the near-
o D est neighbor eigenvalues becomes larger as the basis dimen-
E = 5 e ¢ sionN decreases or the enerfyincreases. In these cases the

1.71 | S ; .
! individual eigenvalues appear as peaks in the smoothed

CLD. If we choose a sufficiently larg€ parameter, then
these peaks washed out. However, the accuracy for the reso-

o8 I Soe nance parameters deterioraf@8]. Therefore the smoothing
oo AL m e . parameterl” should be picked out as small as possible in
— 155 - e ot . _ order to determine the resonance parameters accurately with
> T, o . ™ a finite number of basis functions. Once the dimension of the
[} a o , u °* basis becomes large enough to wash out the peaks of the
= 154 LI i individual eigenvalues, the form of the approximate CLD
= o : " . hardly depends on the basis dimensikinThe basis dimen-
1) . sions used for the state§=0", 2%, and 4" are N=500,
;_:" 153 (b) o = | 500, and 800, respectively. These dimensions are obviously
° . much larger ones than what we used in the complex scaling
] method or in the variational method for the scattering calcu-
1.52 IV PR S NN R lation. Our approximate way of the calculation of the CLD,
0.6 0.8 1.0 1.2 1.4 1.8 for the purpose of the determination of resonance param-
d[MeV ] eters, has slow convergence.
In order to check the validity of our approach for the
FIG. 2. The resonance enerds, [MeV] and the widthT, calculation of the CLD we have also calculated the scattering

[MeV] in the CLD method by the fitting procedure with various phase shifté(E) using an exact scattering asymptotic bound-
values ford [MeV] for the stateJ™=2"* without Coulomb force. ary condition. Figure 4 shows the energy derivative of scat-
Other parameters of the calculation are given in Fig. 1. The solidering phase shift for the staté§=0", 2", and 4". These
circle, solid square, solid triangle, open circle, and open squarexact densities give the peak position almost at the same
denote the results for smoothing with=0.4, 0.6, 0.8, 1.0, and 1.2 energy as the smoothed approximate CLD. We did not plot
MeV, respectively. the smoothed exact and the smoothed approximate densities
on the very same figure, because the two densities are indis-
be 0.4 fm #and the generator coordinatgsare distributed  tinguishable from each other on the scale of the figure. This
equidistantly with step sizds,=1.0 fm from 1.0 fm up to  statement is true if the Strutinsky smoothing procedure is
1.0+As(N—1) fm. done with the same weight function for both the exact and
Figure 1 shows the approximate smoothed CLD withthe approximate calculations. Of course the exact and ap-
smoothing parameteis=0.4 MeV, 0.8 MeV, and 1.2 MeV. proximate smoothed densities are in good agreement with
The densities of the 2 and the 4 states have an apparent each other ifi" is sufficiently large to wash out the peaks of
peak around 1.7 MeV and 10 MeV, respectively. The depenindividual eigenvalues in the smoothed approximate CLD. It
dence of the peak position on the smoothing paramiétisr  should be stressed that the good agreement that we have
weak, but the peak becomes more pronoun@@rper as  found holds not only around the resonance peak but also at
the I' parameter decreases. The calculated smoothed CLRonresonant energies. For the partial wave tbere is no
hardly depends on the choice of the GCM paramefesig  resonance peak in the densities, but the curves of the exact
and vy if they are chosen in reasonable ranges. Without theand approximate densities show a good overall agreement.
Coulomb force thed™=0" ground state of théBe is bound  These observations confirm that our approximate method can
(Eg=—0.45 Me\). The smoothed CLD has no resonancedescribe well not only the resonance densities but also the

peak in this partial wave. nonresonant continuum densities of the microscopic cluster
It should be noted that the peak position of the densitymodel.
Epeacdoes not agree with the resonance posifion because Table | shows the resonance parameters determined by

the background termA9 in Eq. (9) influences it. The reso- the smoothed approximate CLD together with the other three
nance parameters can be determined by employindZ%.  methods mentioned earlier, the scattering phase shift meth-
We have done this fitting procedure with various intengals ods(a) and(b) and the CSM. The CSM treats the asymptotic
Figure 2 shows thd dependence of the resonance endfgy boundary condition rigorously and it is able to find these
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77— [T T

FIG. 3. The smoothed approxi-
mate continuum level density for
basis dimensionsN=200, 300,
400, 500 with smoothind"=0.4
MeV. Other parameters of the cal-
culation are given in Fig. 1.

smoo. cont. lev. dens. [ MeV -1 ]

o v v oo by
o 2 4 8 8 100 2 4 & 8 10

E[MeV ] E[MeV ]

nuclear resonance states accurafdl§]. For the states 2  interaction. The addition of Coulomb force changes the bind-
and 4 the resonance parameters calculated with the aping energy of thex particle toE = —26.663 MeV. Because
proximate CLD give identical results with the CSM. The the nucleon-nucleon force has a short range, previously the
scattering phase shift methoa) and(b) give slightly differ-  free HamiltoniarH§' contained only the kinetic energy term.
ent results. The results of methda) which takes into ac- However in the presence the Coulomb force, which has a

count the effect of the background term fd6/dE agrees |ong range, a corresponding Coulomb term is also added to
with the methods of the approximate CLD and the CSM.H(r)eI see Eq(15).

However the phase shift methdd)) gives rather different
values especially for the resonance widths.

In generall’, depends on the enerdy[32] but we take
I', to be independent dE. The failure of methodb) prob-
ably comes from the fact that both the background term an
the energy dependence Bf are neglected. We did not take Nave & resonance peak around 0.6 MeV, 3.1 MeV, and 12
into account the energy dependencelpfbecause this de- MeV, respgctlvely. The .smoothed.exact CLDs derlved_from
pendence makes the Strutinsky smoothing of the exact CLI1€ Scattering phase shift calculation are compared with the
more complicated and for a fair comparison we used th@PProximate ones. The two densities agree with each other
same parametrization of the phase shift both in the CLD/€ry well. We mention once more that the smoothed exact
method and in the scattering calculation. and the smoothed approximate densities are indistinguish-

The resonance width of the complex scaling method igable from each other in Figs. 1, 5, 7, and 8. These findings
independent of the parametrization of the phase shift sincehow that our method is a good approximation for the calcu-
this method gives the pole of tH&@matrix. The very good lation of the CLD even if the long-range Coulomb force is
agreement of the CLD and complex scaling methods justifiepresent. Table Il shows the resonance parameters for these
the neglect of the energy dependencd pin the parametri- states with our method and the results of the CSM. The scat-
zation of the phase shift. We conclude that the backgrountering phase shift calculations are also displayed. The reso-
term must be taken into account in the determination of thenance parameters determined by each method, except phase
resonance parameters. The results of scattering phase stgftift method(b), are in good agreement with each other. This
method(a) is more reliable than methaob). is true not only for the sharp resonance statebit also for

The good agreements found between methods CLDthe broad resonance state$ and 4. Phase shift method
CSM, and phase shift methdd) show that our approximate (b) give fairly good results for the resonance enelgy but
way of the calculation of the CLD is a good tool to deter- it overestimates the resonance widtp.
mine nuclear resonance states. We have found this in spite of We have also done calculations for the nuctéle and
the fact that these states have large widths:1.6 MeV and  °Li using the microscopic cluster modets+n and a+p.
I',~6.0 MeV for states 2 and 4", respectively. Here the effective nucleon-nucleon interaction is replaced by

Next the Coulomb force is added to the nucleon-nucleorthe Minnesota potential of Thompson, LeMere, and Tang

Figure 5 shows the smoothed approximate CLD for the
states 0, 2%, and 4. The dimension of the basis in the
calculation for the state§”=0"%, 2*, and 4" is N=500,

00, and 800, respectively. The"p2", and 4" densities
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FIG. 4. The energy derivative of the scattering phase shift fortheir results.

the states)™=0" (a), 2* (b), and 4" (c) without Coulomb force.
Other parameters of the calculation are given in Fig. 1.

[35] with the spin-orbit force of Reichstein and Tafp].
The exchange mixture parametein the Minnesota poten-
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TABLE I. The resonance enerdy; [MeV] and widthI', [MeV]
of ®Be derived from the smoothed continuum level dené@tyD),
the complex scaling methodCSM), and scattering phase shift
methodg@) and(b). The effective nucleon-nucleon force is Volkov
No. 1 (m=0.6) without Coulomb force. The twa-particle energy
is —54.90 MeV (v,=0.235 fm2). The 0" ground state is bound
at —0.45 MeV.

NG 2+ 4+

E, T, E, r,
CLD 1.71 1.56 9.93 6.04
CSM 171 1.56 9.93 6.04
Phase shifta) 1.71 1.56 9.93 6.04
Phase shifth) 1.72 1.87 9.98 6.50

changed tov;=0.303 fm 2 which minimizes thex-particle
binding energy in the (§)* shell model configuration. The
binding energy of thex particle isE,= —24.687 MeV. This
force and parameter set reproduces well the low-ensrgy
andp-wave a+n and a+p phase shift§see Fig. 6.

In Figs. 7 and 8 we show the smoothed approximate CLD
of the stateg , 3, and} " for the systems+n anda +p.
The parametery andAs, of the GCM basis are the same as
for the nuclei®Be. The basis dimension =800, 1000,

and 800 for the state¥' =2, 1, and} ", respectively. It is

51 1t
known that the nuclePHe and°Li have no} resonance
states in the low-energy region. In accordance with this the

calculated smoothed CLD has no peak. The densities of the

3 state have a resonance peak around 0.8 Me\?Ife and

1.6 MeV for °Li. It is known that the resonance statgs of

SHe and®Li are broad resonances. The calculated smoothed
approximate CLDs has a distinct broad peak around 2 MeV
for °He and 3 MeV for°Li, respectively. The smoothed
exact CLDs derived from the phase shift calculations are in
good agreement with the approximate densities for all the

states considered’, ¢, andi . Table Ill shows the de-

rived resonance parameters for the statesand 3 . The
results of the approximate smoothed CLD agree with phase
shift method(a), but phase shift methoth) gives slightly
different results; especially the widths of the broad resonance

states; are overestimated. In Table Il our results are com-
pared with the results of the analytically continugdnatrix

at complex energy by Csmand Hale[37]. In their RGM of
a+N the a-particle wave function is described by superpo-
sition of (0s)* shell model functions with different size pa-
rameters. However, the+ N scattering phase shifts hardly
differ from ours. Our resonance parameters calculated by the
CLD method and phase shift methdd) agree well with

The present approximate method, based on the continuum
level density, works nicely to calculate two-cluster resonance
states. However, as mentioned before, the basis dimension of
the present method is much larger than the basis size of the
variational scattering calculation. This is a defect of the

tial is set to beu=0.98 and force set number IV is used for present method. The reason for the large basis size is the

spin-orbit force. The size parameter of theparticle is also

following. We can calculate only the smoothed CLD, and as
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TABLE Il. The resonance energi, [MeV] and width T,
[MeV] of ®Be derived from the smoothed continuum level densities
(CLD), the complex scaling metho@CSM), and scattering phase
shift methods(a) and (b). The effective nucleon-nucleon force is
Volkov No. 1 (m=0.6) with Coulomb force. The twa-particle

1.4 T T T T

_1]

o o = o
(o]
LI LI LI L BN N

> 3
© .
= ]
g 7 energy is—53.33 MeV (v,=0.235 fni ?).
2 o6 -
o 1 J7 o* 2+ 4*
5 0 B EE I, E T, E, T,
;02 =
g A . CLD 060 0.25 3.07 238 1160 6.99
S 0o N - CSM 059 024 3.06 238 11.60 6.99
8' 02 | - | | - Phase shiffa) 0.60 0.25 3.07 238 1160 7.00
g o | > 3 5 Phase shiftb) 059 028 3.08 298 11.67 7.52
w
E[ MeV |
small a smoothing parameter as possible has to be used in
order to get the resonance parameters accurately. It can be
— 0.20 seen in Fig. 3, that the lack of a large basis causes oscilla-
: . — 1T T T 1 . . .
> tions in the smoothed density and these prevent an accurate
) calculation of the resonance parameters. Although we need a
= 0.5 large basis but after the calculation of the matrix elements
]
S 0.10 180 T T T 1T T 1T 11 7T ]
© 160 —
> 5 .
2 0.05 140 -t
= I i
g — 120 —
0.00 - -
° & 100} -
g S ol
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FIG. 6. The scattering phase shift of the stajes 2, and%”

FIG. 5. The smoothed approximate continuum level density offor the nuclei®He (a) and 5Li (b). The effective nucleon-nucleon

the systemu+ « for the stated”™=0" (a), 2" (b), and 4" (c). The interaction is the Minnesota potentiali£€0.98) with Reichstein-
effective nucleon-nucleon interaction is Volkov No. in€ 0.6) Tang spin-orbit forcéset No. I\V) and the Coulomb force is taken
with Coulomb force. The twae-particles energy is-53.33 MeV  into account. Thea-particle energy is—24.69 MeV (v,=0.303
(v,=0.235 fm 2). The dashed, solid, dotted, and solid-dotted linesfm~2). The experimental data are taken from R&B8] for the «
denote the result witlh'=0.2, 0.4, 0.8, and 1.2 MeV, respectively. +n and from Ref[39] for the o+ p scattering.
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FIG. 7. The smoothed approximate continuum level density of FIG. 8. The smoothed approximate continuum level density of

the systemu+n for the states™=3 " (a), 3 (b), and:” (c). The  systema+p for the states)”™=3 (a), & (b), and %" (¢). The

solid, dotted, and solid-dotted lines give the results for smoothingsolid, dotted and solid-dotted lines give the results for smoothing
with I'=0.4, 0.8, and 1.2 MeV, respectively. Other parameters ofwith I'=0.4, 0.8, and 1.2 MeV, respectively. Other parameters of
the calculation are given in Fig. 6. the calculation are given in Fig. 6.
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TABLE lll. The resonance energf, [MeV] and widthI',  relative motion wave function of the clusters. The continuum
[MeV] of °He and°Li derived from the smoothed continuum level level density is calculated by generalizing the the box-
density (CLD) and phase shift methods) and (b). The effective  quantized_?-stabilization method. The continuum level den-
nucleon-nucleon forces is the Minnesota potentiak0.98) with  sjty, smoothed by the Strutinsky averaging procedure, can be
Reichstein-Tang spin-orbit forceset No. IV) and the Coulomb  cajcylated approximately by making use of the eigenvalues
force is included. Thea-particle energy is—24.69 MeV (. of the full and free Hamiltonian matrices. These eigenvalues

- -2 : . - )
=0.303 fm ). are determined using a finite number of real square inte-
s 5 grable basis functions. The smoothed approximate con-

He L ti level density is found in good ith

. . . .- inuum level density is found to be in good agreement wit
2 2 2 2 the smoothed exact density which is derived from the scat-

E It E I, E It B T tering phase shift.

CLD 078 064 201 542 163 1.24 283 6.30 The continuum level density is connected to the scattering

S matrix and has a Breit-Wigner peak around a resonance
energy. The smoothed approximate continuum level density
has also a resonance peak and then the resonance parameters
can be determined with a parameter fitting procedure. The
calculated resonance parameters are compared with results of
the complex scaling method and scattering phase shift calcu-

and two matrix diagonalizations, there is no need for mordation. Very good agreement is found not only for sharp reso-
complicated calculations to get the smoothed CLD. nances but also for rather broad resonances. We numerically

The present bound-state-type technique avoids imposingemonstrated that the continuum level density method works

scattering or Gamow asymptotic boundary conditions. Thigt!SO in the presence of the Coulomb force.

is a great advantage of the CLD method since such a bound- !t should be emphasized that the present method uses only
state-type technique can be easily extended to more compf Square integrable basis to locate resonances but it avoids
cated systems. For example, recently three-body resonan€@Mmplex particle coordinates which leads to a non-self-
states have been discussed in a neutron halo nile27.  adjoint Hamiltonian in the complex scaling method. In our
Since the asymptotic form of a three-body resonance state &PProach we do not impose a scattering or Gamow
not well known, bound-state-type techniques are easy toof8Symptotic form for the wave function which makes the cal-
to discuss three-body resonance states. We have encouragffgation more difficult. The box quantization of the standard
results for the extension of the CLD method to the threel"-Stabilization technique is also released and in our ap-

body problem and this will be treated in a separate paper. Proach any real square integrable basis can be used to calcu-
late the continuum level density.

Phase shifta) 0.78 0.64 1.98 545 1.63 1.24 2.82 6.32
Phase shifto) 0.78 0.68 2.20 7.58 1.63 1.35 3.05 9.07
S-matrix, 0.76 0.63 1.89 520 1.67 1.33 2.70 6.25
RGM [37]
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