
PHYSICAL REVIEW C, VOLUME 60, 064315
Continuum level density in a microscopic cluster model: Parameters of resonances
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The positions and widths of nuclear resonance states of the nuclei8Be, 5He, and5Li have been calculated
in the microscopic cluster model using a real square integrable basis. The imposition of Gamow or scattering
asymptotic boundary conditions onto the wave function is avoided. The approach is based on the notion of the
continuum level density. This density is smoothed by the Strutinsky averaging procedure and it is calculated by
making use of the eigenvalues of the full and the free Hamiltonian matrices. The continuum level density is
connected to theS matrix and has a Breit-Wigner peak around the resonance energy. This approach is com-
pared with the complex scaling method and with the exact calculation of the scattering phase shift.
@S0556-2813~99!03112-X#

PACS number~s!: 21.10.Ma, 21.60.Gx, 27.10.1h, 27.20.1n
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I. INTRODUCTION

The study of resonance properties is one of the most
portant subjects in nuclear physics@1#. This topic has re-
cently become even more significant since drip line nuc
can be experimentally investigated@2#. The ground states o
these nuclei have a small binding energy and most of
excited states lie above the particle threshold. A poss
theoretical tool to describe the particle unstable states
resonance bumps in cross sections is the notion of reson
state.

Few methods have been developed for the descriptio
resonance states using bound-state-type technique, fo
ample, the different versions of theL2-stabilization method
@3–13# and the complex scaling method@14–22#. The main
merit of these approaches is that the sophisticated mo
and computer codes which deal with the bound state prob
may be applied to resonance state calculations.

The L2-stabilization method is widely used in atom
physics. This approach is based on box quantization and
the repeated diagonalization of the Hamiltonian using
larger and larger box size, at such a region where the r
nance wave function is localized. The stabilization diagr
~the energy versus the box size! shows flat behavior aroun
the resonance energy. Recently Mandelshtamet al. @5# have
developed a new version of the stabilization method. T
density of states is calculated which has a peak around
resonance energy. The resonance parameters, the positiEr
and the widthG r , can be derived from the density of state

Recently we have generalized@23# the stabilization
method of Mandelshtam, Ravuri, and Taylor employing
notion of the continuum level density~CLD!. The basic defi-
nition of the CLD utilizes the Green operators of the inte
acting and the free systems. We showed that an approxim
CLD, smoothed by the Strutinsky averaging procedure,
be determined without box quantization or without the i
position of the scattering asymptotic boundary condit
onto the wave function. The smoothed CLD can be cal
lated by making use of an arbitrary real square integra
0556-2813/99/60~6!/064315~11!/$15.00 60 0643
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basis. The CLD is connected to the scatteringS matrix and
gives a Breit-Wigner-type peak around the resonance en
and so the resonance parameters can be determined.

In this paper we present how to apply the CLD method
the framework of the microscopic cluster model and
demonstrate that our approach works also in the presenc
the long-range Coulomb interaction. We have applied
CLD method to the well-known two-cluster states of t
light nuclei 8Be, 5He, and 5Li. These nuclei are describe
by the microscopic two-cluster modelsa1a, a1n, anda1
p, respectively. The smoothed approximate CLD is cal
lated by expanding the relative motion wave function of t
clusters on a finite number of shifted Gaussians. We h
found that the approximate smoothed CLD is consistent w
the exact density derived from the scattering phase shift.
parameters of the low-lying resonance states predicted by
CLD method are compared with two other methods, nam
the complex scaling approach and scattering phase shift
culation.

In Sec. II the microscopic cluster model is presented;
Sec. III we outline the calculation of the approximate CL
The results for8Be, 5He, and5Li are shown in Sec. IV and
a summary is given in Sec. V.

II. MICROSCOPIC CLUSTER MODEL

The models considered here are the microscopic clu
models of the type of the resonating group method~RGM!
@24,25#. The main characteristics of this nuclear model a
the following. The nucleons are assumed to be arrange
clusters and all nucleons are treated explicitly. The wa
function is constructed so as to satisfy the Pauli princi
exactly. The model is free from spurious center-of-mass m
tion, and has good total angular momentum and parity. T
nucleons are assumed to interact via an effective nucle
nucleon interaction. The cluster intrinsic wave functions a
taken to be simple shell-model wave functions built up fro
0s harmonic-oscillator states. The relative wave function b
tween the clusters is expanded over some basis functions
©1999 The American Physical Society15-1



tz

r

e

xi-
sis

er
m

co
e

u

M

ve
so

te

-

i-
evel

y
-

lly
of

nce

ner

e-

his

ave
y
y an
ex-
to

K. ARAI AND A. T. KRUPPA PHYSICAL REVIEW C 60 064315
symmetries are kept by the trial function itself~‘‘projection
before variation’’!.

For the trial wave function we take the following ansa

CJM5(
k

Ckck5(
k

CkA$@FSGL~sk ,r!#JM%, ~1!

where the symbolA is the intercluster antisymmetrizer andJ
andM are the total angular momentum and itsz component,
respectively. The functionFS is the product of the cluste
intrinsic wave functions:

FSMS
5@FaFa#SMS

for the a1a system,

5@FaFn#SMS
for the a1n system,

5@FaFp#SMS
for the a1p system. ~2!

The total spinS is 0 for the systema1a and 1/2 for the
systema1n or thea1p. Fa is thea-cluster intrinsic wave
function which is described by the 0s harmonic-oscillator
shell model with a single size parameterna . Fn andFp are
the spin-isospin function of the neutron and proton, resp
tively.

The wave function of the intercluster motion is appro
mated by a liner combination of the shifted Gaussian ba

GLM~sk ,r!54pS p

4grsk
D 1/2S 2g

p D 3/4

3e2g(r21sk
2) I L11/2~2grsk!YLM~ r̂!

5E dŝkS 2g

p D 3/4

e2g(r2sk)2
YLM~ ŝk!, ~3!

wherer is the relative coordinate between the two clust
and L, M are the cluster-relative orbital angular momentu
and its z component, respectively.I L11/2(x) denotes the
modified Bessel function. In the conventional generator
ordinate method~GCM! for computational convenience th
parameterg in Eq. ~3! is set to beg5A1A2na /(A11A2),
whereA1 andA2 are the mass numbers of the clusters. In o
ansatz thisg parameter is chosen to be independent ofna . In
this way our model becomes Tohsaki-Suzuki’s new GC
@26#.

The coefficientsCk in Eq. ~1! are obtained by application
of the Rayleigh-Ritz variational principle. The model wa
function in Eq.~1! can be considered as an approximate
lution of the eigenvalue problem of theA-nucleon Hamil-
tonian

Ĥ5(
i 51

A

T̂i2T̂c.m.1(
i , j

A

V̂i , j , ~4!

whereT̂i is the kinetic energy of thei th nucleon,T̂c.m. is the
kinetic energy of the center of mass, andV̂i , j is the effective
nucleon-nucleon interaction. In a microscopic two-clus
model this Hamiltonian can be rewritten as
06431
:
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Ĥ5ĤA
int1ĤB

int1Ĥ rel, ~5!

whereĤA
int andĤB

int are the internal Hamiltonian of the clus

ters A and B, respectively.Ĥ rel is the intercluster Hamil-
tonian, given by

Ĥ rel52
\2

2m
Dr1(

i PA
(
j PB

V̂i , j , ~6!

wherem is the reduced mass.

III. CONTINUUM LEVEL DENSITY

If a HamiltonianĤ contains only one dynamical coord
nate and has continuous spectrum, then the continuum l
densityD(E) is defined@27,28# with the help of Green op-
erators,

D~E!52
1

p
Im$Tr@Ĝ~E1 i0!2Ĝ0~E1 i0!#%, ~7!

where Ĝ(z)5(z2Ĥ)21 is the full Green operator,Ĝ0(z)
stands for the free Green operator,Ĝ0(z)5(z2Ĥ0)21, and
H0 is the free Hamiltonian~this is defined more precisel
later!. In Eq. ~7!, Tr@Ĝ(E1 i0)# means the trace of the op
eratorĜ(E1 i0) and Im@z# is the imaginary part ofz. The
notationĜ(E1 i0) means the limit lim«→10Ĝ(E1 i«).

It is known that the CLD, in the case of a spherica
symmetric Hamiltonian, is proportional to the derivative
the scattering phase shiftd(E) @27,28#:

D~E!5
1

p

dd~E!

dE
. ~8!

Since the behavior of the phase shift around a resona
energy is known@29#, D(E) can be turned into the following
form in the vicinity of a resonance:

D~E,Er ,G r !5D r~E,Er ,G r !1Dbg~E!. ~9!

The background termDbg(E) is a slowly changing function
of the energy, and the resonance term has a Breit-Wig
shape:

D r~E,Er ,G r !5
1

p

G r /2

~E2Er !
21G r

2/4
, ~10!

whereEr and G r are the resonance position and width, r
spectively. This term produces a sharp peak aroundEr in the
CLD.

The CLD can be calculated using Eq.~8!; it is expressed
by the scattering phase shift. The direct application of t
equation should mean that the Schro¨dinger equation with a
scattering boundary condition has to be solved. We h
shown in Ref.@23# that the CLD, smoothed by the Strutinsk
averaging procedure, can be approximated accurately b
arbitrary real square integrable basis without imposing
plicitly the scattering asymptotic boundary condition on
5-2
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CONTINUUM LEVEL DENSITY IN A MICROSCOPIC . . . PHYSICAL REVIEW C 60 064315
the wave function. IfN basis functions are used to solve t
eigenvalue problem of the Hamiltonian, then the appro
mate CLD DN(E) can be turned into the following form
@23#:

DN~E!5(
i 51

N

d~E2ei !2(
i 51

N

d~E2ei
0!, ~11!

whered(E2ei) is the Diracd function. The eigenvalues o
the full Hamiltonian matrix

Hm,n5^cmuĤucn& ~12!

are denoted byei . In the above equationcm and Ĥ are
defined by Eqs.~1! and ~4!, respectively.

The quantitiesei
0 are the eigenvalues of the free Ham

tonian matrix

Hm,n
0 5^cm

DuĤ0ucn
D&, ~13!

where the free HamiltonianĤ0 reads

Ĥ05ĤA
int1ĤB

int1Ĥ0
rel , ~14!

and Ĥ0
rel is given by

Ĥ0
rel52

\2

2m
Dr1

ZAZBe2

r
. ~15!

The second term in the above equation is the Coulomb in
action andZA andZB are the charge numbers of the cluste
A andB. In the microscopic cluster model the wave functi
cm can be divided into the terms

cm5cm
D1cm

E , ~16!

wherecm
D andcm

E are the direct and exchange terms ofcm .
In Eq. ~13! only the direct term should be used.

Since Diracd functions appear in Eq.~11!, this expres-
sion is not convenient to be considered. The approxim
CLD is smoothed by the Strutinsky procedure@30#. A
smoothed CLD can be introduced by the folding integral

D̄N~E!5
1

GE0

`

wS E82E

G DDN~E8!dE8, ~17!

whereG is the range parameter of the smoothing. Here
take the Lorentzian shape for the weight function,w(x)
51/@2p(x211/4)#. After the Strutinsky smoothing proce
dure the smoothed approximate CLD is expressed as the
ference of the two densities

D̄N~E!5 (
i 5N2NB

N
1

G
wS E2ei

G D2(
i 51

N
1

G
wS E2ei

0

G D , ~18!

whereNB (NB<N) denotes the number of the bound sta
eigenvalues of the full Hamiltonian matrix. Here we assum
that the eigenvalues are arranged in increasing order of
energy.
06431
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In order to compare the approximate CLD with the exa
CLD we have to carry out the Strutinsky smoothing of t
exact density, too. The exact CLD around the resonance
ergy has the form of Eq.~9!; the smoothed exact CLD ha
also a similar form

D̄~E,Er ,G r !5D̄ r~E,Er ,G r !1D̄bg~E!. ~19!

The advantage of the Lorentzian shape for the weight fu
tion is that the smoothing of the Breit-Wigner shape can
calculated analytically,

D̄ r~E,Er ,G r !5
G rb

2p2 H ~E2Er !
22

~G22G r
2!

4 J
3H p

2
1tan21S 2E

G D J
1

Gb

2p2 H ~E2Er !
21

~G22G r
2!

4 J
3H p

2
1tan21S 2Er

G r
D J

1
GG r

4p2
~E2Er !b logF4E21G2

4Er
21G r

2G ~20!

and

b[$@~E2Er !
21~G2G r !

2/4#@~E2Er !
21~G1G r !

2/4#%21.
~21!

It should be noted that in the limit ofG→0, D̄ r tends to the
nonsmoothed densityD r .

The smoothed CLD has also a peak around a resona
energy. The resonance parametersEr andG r are determined
by minimizing the quantity

(
i 51

n

@D̄N~e i !2D̄~e i ,Er ,G r !#
2, ~22!

wheren pointse i ( i 51, . . . ,n) are taken equidistantly at th
region ofEpeak2d,e i,Epeak1d. HereEpeakis the peak po-
sition of the smoothed approximate CLD and 2d is the size
of the interval of the fitting. The background termD̄bg(E) is
described by a second order polynomial inE.

To check the validity of the approximate calculation
the CLD in the microscopic cluster model, we have a
calculated the scattering phase shift solving the Schro¨dinger
equation exactly with scattering asymptotic boundary con
tion. We derived the smoothed exact CLD by means of
~8!. The R-matrix method@31# is chosen for the scatterin
calculation. The internal region of wave function is appro
mated by a superposition of centered Gaussian basis.

The resonance parameters can be determined from
scattering phase shift. Two different methods are conside
In the first method it is assumed that the derivative of
scattering phase shift, around the resonance energy, ha
form of the sum of a Breit-Wigner term and a backgrou
5-3
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K. ARAI AND A. T. KRUPPA PHYSICAL REVIEW C 60 064315
term ~second order polynomial inE); see Eqs.~8! and ~9!.
The resonance parameters are determined from a fitting
cedure. The first method is denoted ‘‘phase shift~a!’’ in this
paper. In the second approach the resonance positionEr is
defined as the inflection point of the phase shiftd(E) ~the
peak position ofdd/dE) and the resonance width is calc
lated asG r52/(dd/dE)E5Er

@32#. The second method is de
noted by ‘‘phase shift~b!.’’ We mention that the second
method~b! is similar to the first one~a! but the background
term is neglected~a pure Breit-Wigner form is assumed fo
dd/dE).

We have also used the complex scaling method~CSM! to
determine the resonance parameters. This method is wi
used to deal with resonance states in atomic and nuc
physics@14–22#. In the complex scaling method, the Ham
tonianĤ is transformed as

Ĥu5Û~u!ĤÛ~u!21, ~23!

where Û(u) is the unbounded nonunitary scaling opera
which acts on a functionf (r ) as

Û~u! f ~r !5exp~3iu/2! f „r exp~ iu!…. ~24!

The Schro¨dinger equationĤuC&5EuC& is rewritten as

ĤuuCu&5EuuCu&. ~25!

The ABC theorem states@33# that the bound state eigenva
ues of the HamiltonianĤ are also eigenvalues ofĤu . A
resonance state is obtained as a complex eigenvalueEu

5Er2 iG r /2 of the non-self-adjoint HamiltonianĤu . The
resonance eigenvalue does not depend onu if
1
2 tan21@G r /2Er #,u,p/2. The wave functions of the reso
nance and bound states are square integrable in the C
When the complex scaling method is applied to the mic
scopic cluster model, the new GCM method of Tohsa
Suzuki @26# is used.

IV. RESULTS AND DISCUSSION

In this section we show our results for the nuclei8Be,
5Li, and 5He using the microscopic cluster modelsa1a,
a1p, and a1n. First we have checked the approxima
calculation of the CLD without the presence of the Coulom
force.

For 8Be the effective nucleon-nucleon interaction a
other parameters of the cluster model are taken from R
@16#. The effective nucleon-nucleon interaction is Volko
No. 1 with Majorana exchange parameterm50.6 @34#. The
spin-orbit force can be neglected because it does not con
ute to the energy in our model space. The size paramete
the a-particle is set to bena(5ba/2)50.235 fm22. The
binding energy of thea particle isEa5227.450 MeV. The
parameterg in the new GCM basis@see Eq.~3!#, is taken to
06431
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FIG. 1. The smoothed continuum level densities of thea1a
system for the statesJp501 ~a!, 21 ~b!, and 41 ~c!. The effective
nucleon-nucleon interaction is Volkov No. 1(m50.6) without Cou-
lomb force. The two-a-particles energy is254.90 MeV (na

50.235 fm22). The solid, dotted, and solid-dotted lines denote t
results for smoothing withG50.4, 0.8, and 1.2 MeV, respectively
5-4
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CONTINUUM LEVEL DENSITY IN A MICROSCOPIC . . . PHYSICAL REVIEW C 60 064315
be 0.4 fm22 and the generator coordinatessk are distributed
equidistantly with step sizeDsk51.0 fm from 1.0 fm up to
1.01Dsk(N21) fm.

Figure 1 shows the approximate smoothed CLD w
smoothing parametersG50.4 MeV, 0.8 MeV, and 1.2 MeV.
The densities of the 21 and the 41 states have an appare
peak around 1.7 MeV and 10 MeV, respectively. The dep
dence of the peak position on the smoothing parameterG is
weak, but the peak becomes more pronounced~sharper! as
the G parameter decreases. The calculated smoothed C
hardly depends on the choice of the GCM parametersDsk
and g if they are chosen in reasonable ranges. Without
Coulomb force theJp501 ground state of the8Be is bound
(EB520.45 MeV!. The smoothed CLD has no resonan
peak in this partial wave.

It should be noted that the peak position of the dens
Epeakdoes not agree with the resonance positionEr , because
the background termDbg in Eq. ~9! influences it. The reso
nance parameters can be determined by employing Eq.~22!.
We have done this fitting procedure with various intervalsd.
Figure 2 shows thed dependence of the resonance energyEr

FIG. 2. The resonance energyEr @MeV# and the widthG r

@MeV# in the CLD method by the fitting procedure with variou
values ford @MeV# for the stateJp521 without Coulomb force.
Other parameters of the calculation are given in Fig. 1. The s
circle, solid square, solid triangle, open circle, and open squ
denote the results for smoothing withG50.4, 0.6, 0.8, 1.0, and 1.2
MeV, respectively.
06431
-

D

e

,

and widthG r for the stateJp521. This figure shows that the
resonance parameters converge as the sized of the interval
for the fitting decreases. Thed dependence of the resonan
parameters become weak for smaller smoothing param
G. We adopted the ‘‘d’’ converged values~for the smallest
G) as the parameters of the resonance.

Figure 3 displays the convergence behavior of
smoothed approximate CLD for the state 21 as the function
of the dimension of the basisN. The smoothing parameter i
fixed atG50.4 MeV. The energy spacing between the ne
est neighbor eigenvalues becomes larger as the basis di
sionN decreases or the energyE increases. In these cases t
individual eigenvalues appear as peaks in the smoot
CLD. If we choose a sufficiently largeG parameter, then
these peaks washed out. However, the accuracy for the r
nance parameters deteriorates@23#. Therefore the smoothing
parameterG should be picked out as small as possible
order to determine the resonance parameters accurately
a finite number of basis functions. Once the dimension of
basis becomes large enough to wash out the peaks o
individual eigenvalues, the form of the approximate CL
hardly depends on the basis dimensionN. The basis dimen-
sions used for the statesJp501, 21, and 41 are N5500,
500, and 800, respectively. These dimensions are obvio
much larger ones than what we used in the complex sca
method or in the variational method for the scattering cal
lation. Our approximate way of the calculation of the CL
for the purpose of the determination of resonance par
eters, has slow convergence.

In order to check the validity of our approach for th
calculation of the CLD we have also calculated the scatter
phase shiftd(E) using an exact scattering asymptotic boun
ary condition. Figure 4 shows the energy derivative of sc
tering phase shift for the statesJp501, 21, and 41. These
exact densities give the peak position almost at the sa
energy as the smoothed approximate CLD. We did not p
the smoothed exact and the smoothed approximate dens
on the very same figure, because the two densities are in
tinguishable from each other on the scale of the figure. T
statement is true if the Strutinsky smoothing procedure
done with the same weight function for both the exact a
the approximate calculations. Of course the exact and
proximate smoothed densities are in good agreement
each other ifG is sufficiently large to wash out the peaks
individual eigenvalues in the smoothed approximate CLD
should be stressed that the good agreement that we
found holds not only around the resonance peak but als
nonresonant energies. For the partial wave 01 there is no
resonance peak in the densities, but the curves of the e
and approximate densities show a good overall agreem
These observations confirm that our approximate method
describe well not only the resonance densities but also
nonresonant continuum densities of the microscopic clu
model.

Table I shows the resonance parameters determined
the smoothed approximate CLD together with the other th
methods mentioned earlier, the scattering phase shift m
ods~a! and~b! and the CSM. The CSM treats the asympto
boundary condition rigorously and it is able to find the

id
re
5-5



-
r

l-

K. ARAI AND A. T. KRUPPA PHYSICAL REVIEW C 60 064315
FIG. 3. The smoothed approxi
mate continuum level density fo
basis dimensionsN5200, 300,
400, 500 with smoothingG50.4
MeV. Other parameters of the ca
culation are given in Fig. 1.
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nuclear resonance states accurately@16#. For the states 21

and 41 the resonance parameters calculated with the
proximate CLD give identical results with the CSM. Th
scattering phase shift method~a! and~b! give slightly differ-
ent results. The results of method~a! which takes into ac-
count the effect of the background term fordd/dE agrees
with the methods of the approximate CLD and the CS
However the phase shift method~b! gives rather different
values especially for the resonance widths.

In generalG r depends on the energyE @32# but we take
G r to be independent ofE. The failure of method~b! prob-
ably comes from the fact that both the background term
the energy dependence ofG r are neglected. We did not tak
into account the energy dependence ofG r because this de
pendence makes the Strutinsky smoothing of the exact C
more complicated and for a fair comparison we used
same parametrization of the phase shift both in the C
method and in the scattering calculation.

The resonance width of the complex scaling method
independent of the parametrization of the phase shift s
this method gives the pole of theS matrix. The very good
agreement of the CLD and complex scaling methods justi
the neglect of the energy dependence ofG r in the parametri-
zation of the phase shift. We conclude that the backgro
term must be taken into account in the determination of
resonance parameters. The results of scattering phase
method~a! is more reliable than method~b!.

The good agreements found between methods C
CSM, and phase shift method~a! show that our approximate
way of the calculation of the CLD is a good tool to dete
mine nuclear resonance states. We have found this in spi
the fact that these states have large widthsG r'1.6 MeV and
G r'6.0 MeV for states 21 and 41, respectively.

Next the Coulomb force is added to the nucleon-nucle
06431
p-
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d

D
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e

s
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of

n

interaction. The addition of Coulomb force changes the bi
ing energy of thea particle toEa5226.663 MeV. Because
the nucleon-nucleon force has a short range, previously
free HamiltonianH0

rel contained only the kinetic energy term
However in the presence the Coulomb force, which ha
long range, a corresponding Coulomb term is also adde
H0

rel , see Eq.~15!.
Figure 5 shows the smoothed approximate CLD for

states 01, 21, and 41. The dimension of the basis in th
calculation for the statesJp501, 21, and 41 is N5500,
800, and 800, respectively. The 01, 21, and 41 densities
have a resonance peak around 0.6 MeV, 3.1 MeV, and
MeV, respectively. The smoothed exact CLDs derived fro
the scattering phase shift calculation are compared with
approximate ones. The two densities agree with each o
very well. We mention once more that the smoothed ex
and the smoothed approximate densities are indistingu
able from each other in Figs. 1, 5, 7, and 8. These findi
show that our method is a good approximation for the cal
lation of the CLD even if the long-range Coulomb force
present. Table II shows the resonance parameters for t
states with our method and the results of the CSM. The s
tering phase shift calculations are also displayed. The re
nance parameters determined by each method, except p
shift method~b!, are in good agreement with each other. Th
is true not only for the sharp resonance state 01 but also for
the broad resonance states 21 and 41. Phase shift method
~b! give fairly good results for the resonance energyEr , but
it overestimates the resonance widthG r .

We have also done calculations for the nuclei5He and
5Li using the microscopic cluster modelsa1n and a1p.
Here the effective nucleon-nucleon interaction is replaced
the Minnesota potential of Thompson, LeMere, and Ta
5-6
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CONTINUUM LEVEL DENSITY IN A MICROSCOPIC . . . PHYSICAL REVIEW C 60 064315
@35# with the spin-orbit force of Reichstein and Tang@36#.
The exchange mixture parameteru in the Minnesota poten
tial is set to beu50.98 and force set number IV is used f
spin-orbit force. The size parameter of thea particle is also

FIG. 4. The energy derivative of the scattering phase shift
the statesJp501 ~a!, 21 ~b!, and 41 ~c! without Coulomb force.
Other parameters of the calculation are given in Fig. 1.
06431
changed tonb50.303 fm22 which minimizes thea-particle
binding energy in the (0s)4 shell model configuration. The
binding energy of thea particle isEa5224.687 MeV. This
force and parameter set reproduces well the low-energs-
andp-wavea1n anda1p phase shifts~see Fig. 6!.

In Figs. 7 and 8 we show the smoothed approximate C
of the states32

2
, 1

2

2
, and 1

2

1
for the systemsa1n anda1p.

The parametersg andDsk of the GCM basis are the same a
for the nuclei 8Be. The basis dimension isN5800, 1000,
and 800 for the statesJp53

2

2
, 1

2

2
, and 1

2

1
, respectively. It is

known that the nuclei5He and 5Li have no 1
2

1
resonance

states in the low-energy region. In accordance with this
calculated smoothed CLD has no peak. The densities of
3
2

2
state have a resonance peak around 0.8 MeV for5He and

1.6 MeV for 5Li. It is known that the resonance states1
2

2
of

5He and5Li are broad resonances. The calculated smoot
approximate CLDs has a distinct broad peak around 2 M
for 5He and 3 MeV for 5Li, respectively. The smoothed
exact CLDs derived from the phase shift calculations are
good agreement with the approximate densities for all
states considered12

1
, 3

2

2
, and 1

2

2
. Table III shows the de-

rived resonance parameters for the states3
2

2
and 1

2

2
. The

results of the approximate smoothed CLD agree with ph
shift method~a!, but phase shift method~b! gives slightly
different results; especially the widths of the broad resona
states1

2

2
are overestimated. In Table III our results are co

pared with the results of the analytically continuedS matrix
at complex energy by Cso´tó and Hale@37#. In their RGM of
a1N the a-particle wave function is described by superp
sition of (0s)4 shell model functions with different size pa
rameters. However, thea1N scattering phase shifts hardl
differ from ours. Our resonance parameters calculated by
CLD method and phase shift method~a! agree well with
their results.

The present approximate method, based on the contin
level density, works nicely to calculate two-cluster resonan
states. However, as mentioned before, the basis dimensio
the present method is much larger than the basis size o
variational scattering calculation. This is a defect of t
present method. The reason for the large basis size is
following. We can calculate only the smoothed CLD, and

r

TABLE I. The resonance energyEr @MeV# and widthG r @MeV#
of 8Be derived from the smoothed continuum level density~CLD!,
the complex scaling method~CSM!, and scattering phase shi
methods~a! and~b!. The effective nucleon-nucleon force is Volko
No. 1 (m50.6) without Coulomb force. The two-a-particle energy
is 254.90 MeV (na50.235 fm22). The 01 ground state is bound
at 20.45 MeV.

Jp 21 41

Er G r Er G r

CLD 1.71 1.56 9.93 6.04
CSM 1.71 1.56 9.93 6.04
Phase shift~a! 1.71 1.56 9.93 6.04
Phase shift~b! 1.72 1.87 9.98 6.50
5-7
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FIG. 5. The smoothed approximate continuum level density
the systema1a for the statesJp501 ~a!, 21 ~b!, and 41 ~c!. The
effective nucleon-nucleon interaction is Volkov No. 1 (m50.6)
with Coulomb force. The two-a-particles energy is253.33 MeV
(na50.235 fm22). The dashed, solid, dotted, and solid-dotted lin
denote the result withG50.2, 0.4, 0.8, and 1.2 MeV, respectivel
06431
small a smoothing parameter as possible has to be use
order to get the resonance parameters accurately. It ca
seen in Fig. 3, that the lack of a large basis causes osc
tions in the smoothed density and these prevent an accu
calculation of the resonance parameters. Although we ne
large basis but after the calculation of the matrix eleme

f

s

TABLE II. The resonance energyEr @MeV# and width G r

@MeV# of 8Be derived from the smoothed continuum level densit
~CLD!, the complex scaling method~CSM!, and scattering phase
shift methods~a! and ~b!. The effective nucleon-nucleon force i
Volkov No. 1 (m50.6) with Coulomb force. The two-a-particle
energy is253.33 MeV (na50.235 fm22).

Jp 01 21 41

Er G r Er G r Er G r

CLD 0.60 0.25 3.07 2.38 11.60 6.99
CSM 0.59 0.24 3.06 2.38 11.60 6.99
Phase shift~a! 0.60 0.25 3.07 2.38 11.60 7.00
Phase shift~b! 0.59 0.28 3.08 2.98 11.67 7.52

FIG. 6. The scattering phase shift of the states3
2

2
, 1

2
2
, and 1

2
1

for the nuclei 5He ~a! and 5Li ~b!. The effective nucleon-nucleon
interaction is the Minnesota potential (u50.98) with Reichstein-
Tang spin-orbit force~set No. IV! and the Coulomb force is take
into account. Thea-particle energy is224.69 MeV (na50.303
fm22). The experimental data are taken from Ref.@38# for the a
1n and from Ref.@39# for the a1p scattering.
5-8
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FIG. 7. The smoothed approximate continuum level density

the systema1n for the statesJp5
3
2

2
~a!, 1

2
2

~b!, and 1
2

1
~c!. The

solid, dotted, and solid-dotted lines give the results for smooth
with G50.4, 0.8, and 1.2 MeV, respectively. Other parameters
the calculation are given in Fig. 6.
06431
f

g
f

FIG. 8. The smoothed approximate continuum level density

systema1p for the statesJp5
3
2

2
~a!, 1

2
2

~b!, and 1
2

1
~c!. The

solid, dotted and solid-dotted lines give the results for smooth
with G50.4, 0.8, and 1.2 MeV, respectively. Other parameters
the calculation are given in Fig. 6.
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and two matrix diagonalizations, there is no need for m
complicated calculations to get the smoothed CLD.

The present bound-state-type technique avoids impo
scattering or Gamow asymptotic boundary conditions. T
is a great advantage of the CLD method since such a bo
state-type technique can be easily extended to more com
cated systems. For example, recently three-body reson
states have been discussed in a neutron halo nuclei@21,22#.
Since the asymptotic form of a three-body resonance sta
not well known, bound-state-type techniques are easy t
to discuss three-body resonance states. We have encour
results for the extension of the CLD method to the thr
body problem and this will be treated in a separate pape

V. SUMMARY

We have applied the continuum level density method
determine the resonance states of the nuclei8Be, 5He, and
5Li. The nuclei 8Be, 5He, and 5Li are described with the
microscopic two-cluster modela1a, a1n, anda1p, re-
spectively. Shifted Gaussian bases are used to describ

TABLE III. The resonance energyEr @MeV# and width G r

@MeV# of 5He and5Li derived from the smoothed continuum lev
density ~CLD! and phase shift methods~a! and ~b!. The effective
nucleon-nucleon forces is the Minnesota potential (u50.98) with
Reichstein-Tang spin-orbit force~set No. IV! and the Coulomb
force is included. Thea-particle energy is224.69 MeV (na

50.303 fm22).

5He 5Li
3
2

2 1
2

2 3
2

2 1
2

2

Er G r Er G r Er G r Er G r

CLD 0.78 0.64 2.01 5.42 1.63 1.24 2.83 6.3
Phase shift~a! 0.78 0.64 1.98 5.45 1.63 1.24 2.82 6.3
Phase shift~b! 0.78 0.68 2.20 7.58 1.63 1.35 3.05 9.0
S-matrix,
RGM @37#

0.76 0.63 1.89 5.20 1.67 1.33 2.70 6.2
v

v

i-
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relative motion wave function of the clusters. The continuu
level density is calculated by generalizing the the bo
quantizedL2-stabilization method. The continuum level de
sity, smoothed by the Strutinsky averaging procedure, can
calculated approximately by making use of the eigenval
of the full and free Hamiltonian matrices. These eigenvalu
are determined using a finite number of real square in
grable basis functions. The smoothed approximate c
tinuum level density is found to be in good agreement w
the smoothed exact density which is derived from the sc
tering phase shift.

The continuum level density is connected to the scatter
S matrix and has a Breit-Wigner peak around a resona
energy. The smoothed approximate continuum level den
has also a resonance peak and then the resonance param
can be determined with a parameter fitting procedure. T
calculated resonance parameters are compared with resu
the complex scaling method and scattering phase shift ca
lation. Very good agreement is found not only for sharp re
nances but also for rather broad resonances. We numeri
demonstrated that the continuum level density method wo
also in the presence of the Coulomb force.

It should be emphasized that the present method uses
a square integrable basis to locate resonances but it av
complex particle coordinates which leads to a non-s
adjoint Hamiltonian in the complex scaling method. In o
approach we do not impose a scattering or Gam
asymptotic form for the wave function which makes the c
culation more difficult. The box quantization of the standa
L2-stabilization technique is also released and in our
proach any real square integrable basis can be used to c
late the continuum level density.
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@21# A. Csótó, Phys. Rev. C49, 3035~1994!.
@22# S. Aoyama, S. Mukai, K. Kato,̄ and K. Ikeda, Prog. Theor

Phys.93, 99 ~1995!.
@23# A. T. Kruppa and K. Arai, Phys. Rev. A59, 3556~1999!.
@24# K. Wildermuth and Y. C. Tang,A Unified Theory of Nucleus

~Vieweg, Braunschweig, 1977!.
@25# K. Langanke, inAdvances in Nuclear Physics, edited by J. W.

Negele and E. Vogt~Plenum, New York, 1994!, Vol. 21, p. 85.
@26# A. Tohsaki-Suzuki, Prog. Theor. Phys.59, 1261~1978!; Prog.

Theor. Phys. Suppl.62, 191 ~1977!.
@27# R. D. Levine, Quantum Meachnics of Molecular Rate Pro

cesses~Clarendon Press, Oxford, 1969!.
@28# S. Shlomo, Nucl. Phys.A539, 17 ~1992!.
@29# A. U. Hazi, Phys. Rev. A19, 920 ~1979!.
06431
@30# V. M. Strutinsky, Nucl. Phys.A95, 420 ~1967!.
@31# H. Kanada, T. Kaneko, S. Saito, and Y. C. Tang, Nucl. Ph

A444, 209 ~1985!.
@32# A. Arima and S. Yoshida, Nucl. Phys.A219, 475 ~1974!.
@33# J. Aguilar and J. M. Combes, Commun. Math. Phys.22, 269

~1971!; E. Balslev and J. M. Combes,ibid. 22, 280 ~1971!; B.
Simon, ibid. 27, 1 ~1972!.

@34# A. B. Volkov, Nucl. Phys.74, 33 ~1965!.
@35# D. R. Thompson, M. LeMere, and Y. C. Tang, Nucl. Phy

A286, 53 ~1977!.
@36# I. Reichstein and Y. C. Tang, Nucl. Phys.A158, 529 ~1970!.
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