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Particle-rotor model calculations of superdeformed bands inA=150 and 190 regions
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Quite a few superdeformed bands in the mass regions of 150 as well as 190, having different trends in the
dynamic moments of inertia with increasing angular momentum, are studied in a simple version of the particle-
rotor model. Transition energies, dynamic, and kinematic moments of inertia have been calculated. A reason-
ably good agreement with the experimental data justifies the application of this version of the model in the new
regime of nuclear structure. Electromagnetic moments calculated within the same model also agree with the
experimental results. The role of highintruder orbitals in the structure of the superdeformed bands in both the
regions has been reinvestigat€80556-28189)01412-0

PACS numbes): 21.10.Re, 23.20.Lv, 21.60.Ev, 27.69.

I. INTRODUCTION a particular feature in a wide mass region.
So with this in view, the superdeformed band structures in
Recently, the study of superdeformatiph-9] is one of  several odd-proton and odd-neutron nuclei in the mass 150
the most exciting areas in nuclear physics. Numerous supe@nd 190 regions are calculated in a version of PRM
deformed(SD) bands have been observed in various masjal(:,l[zl,]lii_ afgg comparetd Witlf(] tgelavlaitl'able expec;iment.al
regions, e.g.A=80, 130, 150, and 190. They are associatec?ata In the present work. Lalculations are aone In
with extremely large quadrupole deformatiog)( Typical el [1], **-'*%g0Hg [1,16], 5Dy [1,17), 35T [1],
B's observed in these bands in the above-mentioned massd ‘4,Gd [18]. The role of highj intruder orbitals in the
regions are 0.50, 0.40, 0.60, and 0.47, respectively. Study aftructure of the superdeformed bands in both the regions has
these bands are interesting both theoretically and experimefeen reinvestigated to explain the difference in the variation
tally. of 3@ with spin.
It is essential that the existing standard models which are
quite successful in explaining the normally deformed nuclei Il. MODEL
should also be applied in this new domain of nuclear struc-
ture. Numerous attempf4] have been undertaken in the last
decade since the experimental observation of superdeforma- The model is based on the assumption that the nucleus
tion in Dy [3]. Many interesting and new conclusions under consideration is axially symmetric. In this model, the
have been drawn based on these studies. But there are stilotion of an unpaired quasiparticle in a Nilsson deformed
many questions that need to be answered. orbit is coupled to the rotational motion of the core through
The SD bands Observed in Various mass regions havgoriolis interaction. We haVe used a Vers[(lﬂ] Of the PRM
their own characteristic features. The differences between tH8 Which the experimental core energies can be fed directly
SD bands in various mass regions are manifested through t iNPut parameters. The advantage of using this particular
behavior of the dynamical moment of iner&?. For ex- version will pe dllscussed in detail in the next sec.tlon.
ample, most SD bands in the= 190 region exhibit the same The Hamiltonian of the oddx system can be written as
smooth increasing trend iB(?) with increasing angular fre-
quency[7,8], while the 3 patterns neaA= 150 show dif-
ferent variations which have been shown to be a character-
istic fingerprint of active intruder orbital under consideration.
The rise inJ® in A=190 has been suggested to rise mainly
from the gradual alignment of the quasiparticles in high-
intruder orbitals and from the gradual disappearance of pair-
ing correlation with the collective rotation.
It is, therefore, interesting and challengi HE= > Exakax, 2
, , g and challenging to try to study a4 K
and explain the different trends 6f2) in SD bands in the
two mass regions using the same formalism. ith
The particle-rotor modeglPRM) is one of the most useful
[4—-6,9—14 methods for studying the SD banids-6,9. This
model is conceptually simple, computationally easy to Ex=(ex—\)2+A2, 3
handle and thus extremely suitable for a systematic study of
whereey is the energy of a single particle moving in a stan-
dard axially symmetric Nilsson potential. The pairing gap
*Electronic address: mss@anp.saha.ernet.in and the Fermi level are representeddbwand\, respectively.

A. Formalism

H=HJ +CcR-j+E«(R). (1)

The first term is the Hamiltonian of a single quasiparticle and
is given by
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The last termE.(R), represents the collective part of the  So to calculate a state with total angular momentym
Hamiltonian, whereas the middle term, originally introducedwhere the single-particle angular momentum involveg is
by Neergad [19], describes the rotational dependence of the(say), the experimental core energies required will be given
interaction between the core and the quasiparticle. The coeby the following range oR values:
ficient ¢ is defined[10] in terms of the core moment of in-
ertia corresponding to the lowest Xtate in the rotational Ria= 1+,
band and another parameter For a constant moment of
inertia, « is identical to the usual Coriolis attenuation factor.

Moreover, it can be shown that introduction of iR term Rmin=1=J- (10

in the Hamiltonian effectively reduces the recoil energy if _

there is attenuation of the Coriolis matrix elements. In the B. Parameter choice

limit of very small attenuation¢=1), this interaction term There are several parameters involved in the PRM calcu-

loses its significance. It can be shoj®] that, in the present |ations. To reduce arbitrariness in calculations due to the
formalism, the Coriolis attenuation factor will, in general, be involvement of these parameters, we have tried to fix as
a function of the angular momentu of the excited state. many of them as possible either from experimental observ-

The basis states are usually taken in the form able or from previous calculations. The single-particle Nils-
son parameterg. and «, in each individual nucleus have
[IMK)=[ (21 +1)/87?]*? been deduced from the prescription of Nilsseinal. [21].

The deformation parametér (=0.953) has been kept fixed
X[Dkxx+ (=) YDy _«x—k)/\2. (4  for a particular mass regionS& 0.475 forA=190 and 0.57
for A=150). These values have been adopted from system-
Here xx represents the Nilsson single-particle states whichatics and estimations of the previous authdis The Fermi
can be expanded into eigenstateg f levels have been chosen according to the suggestions of pre-
vious particle rotor model(PRM)—cranked shell model
(CSM) calculations in theA=190 region[4,16]. In the A
xk=2> CixliK). (5 =150 region, the SD bands atd =2 bands. So considering
! them as “decoupled” bands, we have fixed the Fermi level

However, we have to transform the basis into a represent@roundK=1/2 for all these nuclei. N

tion with sharpR andj to calculate th&R-dependent terms in 1€ main problem lies in the choices of pairing gap pa-

the Hamiltonian[10]. It can be shown that in this represen- rameter, attenuation factor, and the low spin members of the
tation, the diagonal terms of the Hamiltonian for a rotationalSP band of the core. Their choices will be now discussed

band built on a Nilsson orbita}, are given by one by one. -
First, we consider the pairing gap parameter and attenua-

tion coefficient. Normally, this gap is calculated from odd-
even mass differenced_.) [22] for the low spin states in
normally deformed nuclei. In the present case, the nuclei are
superdeformed and for the= 150 region, the spins involved
for a (Coriolis attenuation factor= 1.0. are quite high(around 20-50%). Moreover, it is already
The total HamiltoniarfEqg. (1)] is then diagonalized, giv- well established8] that for the SD bands, pairing gaps have
ing the energy eigenvalues and the wave functions of theompletely different values, appreciably reduced with re-
final state§IM) in terms of the Coriolis mixing amplitudes spect to odd-even mass differences.
fik and the basis statébMK ): Now, our earlier investigationgl1,12 show that in the
PRM calculations choices of pairing gap and attenuation fac-
tor are inter-related, due to the following reasons. In calcu-
[IM)Y=, fik|IMK). (7)  lation of Coriolis mixed wave functions, two factors are im-
K portant:(i) the strength of the interaction arfid) the energy
spacings among the quasiparticle states which are used as
asis states. Both these factors depend on the pairing gap.
he strength of the interaction depends inversely on the mo-
ment of inertia which in turn is a function of strength of the
pairing interaction. The energy spacings between the quasi-
) particle states are also very sensitive to the change in the
||M>:jzR ; flKaJ(g)“MJm' (®) pairing gap. The larger the gap, the smaller the spacing, and
the quasiparticle states are more bunched. The moment of
where inertia is usually taken from the experimental data. So any
inaccuracy in the spacings among the quasiparticle states due
to improper choice of pairing gap parameter is effectively
(_1)1—KCJK _ (9) taken into account through adjustment of attenuation factor.
In this sense PRM fails to throw any light on the change of

R 2
} |E«(R)| (6)

j
= + 12
Ei=Ex 2$;|C,KI{K K 0

In order to identify the rotational composition of the final
state|IM), these states are expanded in terms of states wit
sharpR andj [20]:

(I
9=\

K —K o}
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pairing gap with increasing spin and/or increasing deforma- TABLE |. Representative values ofl (=#%%/23) for each of
tion. It has been showfil1,17 that the effect of a reduced the lowest few transitionsH, in keV) of superdeformed bands of
pairing gap can be generated by using a normal pairing gaf°™e even-even isotopes. R.m.s. deviatiarsif A calculated are

and a large attenuation of the Coriolis term or vice versa irf\S© Shown.
the PRM calculation. P
So we have adopted two different approaches to accouﬁ?OIOpe =l Ey A {4) 7
for the reduction in pairing in SD bands. We have either used934qg 10-8 214 5.63
fixed pairing gap from odd-even mass differeredich cor- 12510 258 561 5.60 0.03
responds to the full strength of pairingnd adjusted the 1412 300 5.56
attenuation coefficient to an appropriate value so that the
pairing reduction is simulated, or have varied both the at-o,,a 8.6 214 713
tenuation coefficient and the pairing gap to reproduce experi- 108 258 6.79 6.81 0.25

mental spectra. In the second situation it has been seen that
for A=0.2-0.4, the experimental spectra is reproduced for a
“normal” (as seen from previous calculations in normally o
deformed nuclei in the rare-earth regiphl]) value of at-

tenuation. For our convenience and to reduce arbitrariness in
our calculations, we preferred to fix the pairing gapAtp

in most of the cases and adjusted the attenuation coefﬁciqu

12—10 300 6.52

“Hg 10-8 212 5.58
12—10 254 5.52 5.53 0.04
1412 296 5.48

only to reproduce the experimental spectra. 9 14-12 317 5.87
Finally, E.(R), the collective part of the Hamiltonian, i.e., 16—14 360 5.80 5.77 0.07
the rotating core excitation spectrum has to be supplied. SD 1816 402 5.74
nuclei are extremely good rotors with a nearly constant mo- 2018 443 5.68
ment of inertia(m.i.), so a constant m.i. for the core may be
a good approximation. Therefore, we tried a version of PRM®?Dy 2624 602 5.90
[11], where the rotational core is assumed to have a constant 2826 648 5.89
moment of inertialCMI). We used this version to calculate 30—28 693 5.87
the lowest SD band of®3Tl. The core m.i. has been esti- 32,30 738 5.86 587 0.02
mated from the three lowest transitions of the superdeformed 3432 784 5.85
band of the even-even nucleudS4g) (Table |). The results 3634 830 5.85
are shown in Table Il, column 8CMI). The calculated ex-
citation energies deviate to a great extent from the experitaggqb 35,33 826 5.99

mental values as one goes to higher spin states. Next we
opted for a VMI(variable moment of inertjacore (Table Il,
column 4 [14], and the agreement worsened as expected.
Usually this particular version of PRM with VMI incorpo-
rated in it, works best in the transitional regipi¥,15. An- 146~ 1c

other way to generate the core would have been to use a6Gd 32-30 826 6.56
two-parameter formula, where the parameters are estimated 3432 878 6.55

37—35 878 6.01
39-37 931 6.04 6.03 0.03
41-39 983 6.07

by fitting the y-transition energies of the cofé]. As an 36—34 931 6.56 6.55 0.005
easier alternative, we adopted the present version of PRM, 48— 36 983 6.55
where the experimental core energies can be directly used as
input parameters. 150Gd"P 34-32 815 6.08
The choice of the core needs a special mention unlike in 36— 34 849 5.98
the usual cases of such calculati¢ig,13. We have fed in 38— 36 888 5.92 5.92 0.09
the experimental excitation energies of the underlying core 4038 929 5.88
as input parameters. But the core energies are not taken from 4240 971 5.85
the yrast bands of the neighboring even-even nucleus, they 4442 1013 5.82
are taken from the lowegtinless mentioned otherwissu-
perdeformed band existing in the neighboring even-evensogqyc 4846 815 4.29
nucleus. Now the problem arises at this point. The superde- 50—48 849 4.29
formed bands usually start &0 in the A=150 region. 52,50 888 431 4.33 0.04
They originate at spir= 20. In the Hg region, the minimum 54,52 929 4.34

spin in a superdeformed band is 8—10. Now as already men-
tioned, the coefficient of theR-j term in Eq.(1) is defined

in terms of the core moment of inertia corresponding to the
lowest 2" state in the core spectrum. Moreover, according tdLowest spin changed by 2 as discussed in Sec. I B.
Eq. (10 the minimum core state required to generate theSpin mentioned in Nuclear Data Sheft$ [NDS].
minimum angular momentun(l) state of the neighboring °Spin predicted by Eq(11).

56—54 971 4.37
58—56 1013 4.40

064309-3



M. SAHA SARKAR PHYSICAL REVIEW C 60 064309

TABLE Il. Comparison of calculated gamma transition energies  TABLE Ill. Table of minimum core angular momentuRR,,

[E,()=E()—E(I-2) in keV] of 19971] using different versions  [Ryin=Imin—i» EQ. (10)] needed to generate the lowest spi
NDS

of PRM as discussed in the text. (Imin) state in superdeformed bands in various @éddsotopes.
Spin value of the lowest SD core state as mentioned in the Nuclear

I ES®() ES) Data SheetsNDS) [1] (RNPS) is also shown in the tabl¢indicates

CMI [11] VMI [14] Present versiofl2] the single-particle intruder angular momentum, which couples with

the core.

10.5 206.6 206.7 205.1 206.7

115 227.2 227.6 224.0 226.8 |Sot0pe |r,\r‘1|i:r)1$ J Rmin RNDS Core

12.5 247.4 248.4 239.9 247.3 1087 65 ) ) o Iy

135  267.4 269.4 256.2 267.8 %Eﬂ o 11372 . : 194H9

145  287.6 290.2 270.0 287.8 %314 : 11372 lngg

155 3086 3115 284.3 308.6 gngg 95 s 2 8 19ng

165 3274 3322 296.4 328.1 g0 HO 155 Jiz 8 12 e

175 3480 3537 3093 348.2 s DY 315 i, 24 24 Dy

185 3663  374.4 320.0 367.3 gngy 405 iy, 34 28 4?3’

195  387.1 396.1 331.7 387.1 64 Gd 2715 s 20 30 SD-1*%Gd

205 4051  416.7 341.4 405.8 - e 21 32 SD-2"%Gd

215 4253 438.7 352.1 425.3 65 1D (SD-D) 285  jisp 22 24 Dy

225 4429 459.2 360.9 4435 (SD-2 245 iy 18

235 4637 4815 370.8 462.9 8o Hg 115 i 5 8 19%Hg

245  479.7 501.8 378.9 480.5 jisp 4

25.5 501.1 524.4 388.2 499.6

265  516.1 544.6 395.7 516.8 o

275 5375 567.6 404.4 535.3 mation is able to generate the 04dSD spectrum.

285 5517 5875 411.4 5521 er have used the simple, fam!llar formuIaE,_

295 573.4 610.8 4196 570.5 =(h4/123)I1(1+1) to e>.<trapolate the experlmgntally obtalned

305 586 5 6305 426.2 586 8 supe_rdeformed band in an even-even nuclei to lower spins as

315 608.8 654.3 434.0 604.8 r_equwed by the present formalism. The Iowe_:st 4 or 5 transi-
tions of a superdeformed band have been fitted and the cor-

325 620.3 673.6 440.2 620.7 . Ty .

335 643.8 697.6 447.6 638.5 responding values ofl(=% _/ZTJ) are determlr}e_cQTab_Ie D).

e 653 6 116.8 4535 654.0 From the values.of the deviation calculated, it is evident that
the moments of inertia are nearly constant. An average value

355 678.7 ral4 460.6 6714 of A is chosen and used for extrapolating the energies of the

36.5 686.1 760.1 466.2 686.5 lower spin states. The spin assignments of SD bands are

37.5 713.2 785.2 473.0 703.6 usually accurate to a few [2,23]. So we have tested the

385 7187 803.5 478.3 7184 effect of such uncertainties on the value of moment of inertia

395 7475 829.0 484.8 735.5 determined. The spin value of the lowest member of a SD

band has been changed b#,2and then the values o4 are

19 i —
odd-A nucleus is given in Table lll. This table clearly shows calculated(e.g., for *Hg in Table I, I yy=8 [1] has been

that in most of the cases the spin of the superdeformed co@?ng:dtt]o B It 'St seen_frct)r:n thel tab; thzt .SUCh a ch;nge
state required is lower than the spin of the lowest superde?!StUrPs the constancy in the vajué &rand increases the

formed core state obtained experimentdfg quoted in Ref. value of deviatipn t_)y an order of magnitude. Thergfore, we
[1]). So as a first approximation, we have made a very Sim'ghought that this simple method may be convenient for a

plistic assumption and generated the lower states using ﬂ{gst-har!d estimate of the minimum Spify,) of a SD band.
information of the existing states. As is well known, the |N€ ratio between two consecutive gamma ré,(1min
superdeformed bands possess extremely large deformatiofr4—Imin+2) andE,, (I yin+2—1mis), connecting the lowest
For such a well-deformed band, the moment of inertia isspin state (,;,) and two immediate upper spin states,
nearly equal to the rigid-body value and it is nearly constant+2 andl,,+4) is given by

We assumed the SD bands of the core to have an exactly

constant moment of inertia in the extrapolation region. This

is the simplest way of generating the core energies below the E, 41,,+14
experimentally obtained states. We have already seen that E " 4l..+6"
the constant moment of inertia for the core is not a good 72 min

assumption for SD bands. We, therefore, now want to test
whether the constant moment of inertia for the lowest part of

the core SD band and experimental energies for the rest of 8XE,,
the band can reproduce the SD states of the nearesAodd- | min= ﬁ_‘S /4. (11
nucleus. We want to see how far this uninteresting approxi- Y2 n
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TABLE IV. Comparison of minimum spinsI {29 of different ‘
130 193Tl 1r =130

SD bands in various isotopes calculated by El) and corre- ) - ) -
sponding value I02%) as quoted in[1]. The two consecutive gl CEnAure= 12 // ][ sonawre-n2 // 1120
gamma energie@n keV) used a€, andE72 in the above equation @ & . pras .
are also mentioned. nor el 1T L : e
= 1 % .
Isotope |NDS | cale E,, E,, > e 1 = 1
OddA Isotopes: E 1‘0 2‘0 3‘0 4‘0 1‘0 2I0 :;0 4‘0
1997 8.5 8.8 207 247 = Mol 1F ' e
il 55 54 146 188 wo| sgnare-ste o] [ ST P
1914g (SD-1) 15.5 13.7 311 352 =l 195T1 | @ /{ S
¥Hg (SD-2) 10.5 10.3 252 293 i -
193g 9.5 9.9 233 274 o - 1t 5 J110
19%Hg 14,5 15.7 334 373 ol 1 -7 L 100
>py 315 305 721 766 ‘ ‘ ‘ ‘ , , oo
155Dy 40.9 910 952 10 20 30 40 10 20 30 40
Gd 275 27.4 697 745 ool ]
15Th(SD-1) 245 25.7 602 646 _
Nf 0.85
EvenA Isotopes: E
190Hg 12 13.2 317 360 s 0%
92Hg (SD-1) 10 10.3 241 282 & 055
192Hg (SD-2) 8 8.2 214 258 '
199 8 8.6 212 254
5py 24 24.7 602 648
5Dy 28.4 749 702 FIG. 1. (a), (b), (c), and(d) Comparison between theoretical and
148Gd (SD-1) 33 30.3 826 878 experimental kinematic and dynamic moments of ineffid and
18Gd (SD-2) 32 30.1 806 857 3@ for (a) and(c) +1/2 signature stateé) and(d) — 1/2 signature
150, 24 22.4 597 647 states of1%%T| and °°TI, respectively. The experimental data are
150G 32 46.4 815 849 marked by symbols. The corresponding theoretical points are joined

by lines, continuous fo™® and dashed fot®. (e) Calculated
B(M1;l—1—1) values of the SD states #°TI.
We used the above equation and estimated the minimum spin
values for a number of SD bands in different nuclei. They arenoments of odd-proton nucleu¥*T! are calculated with
tabulated in Table IV. It can be easily seen that except fog;,=1, (9s)er=0.79s=3.91, gg=2/A=0.40, and €)es
159Gd, the minimum spin predicted by this simple procedure=0.05[6]. The intrinsic quadrupole momenQ(=19 eb)
is very close to that quoted in the published compilafibh ~ used in the calculation is from Ref24]. The experimental
This result has encouraged us to asdigp value to the SD  transition energies are used in the calculation of transition
bands in'**1Dy. These values have been used later in ouiprobabilities. The detailed structures of the wave functions of
PRM calculations fort>Dy. the superdeformed states in these two mass regions are com-
The dynamical and kinematic moments of inertia of thepared with wave functions of normally deformed states. This
bands have been calculated using the following relatidhs ~comparison is useful for understanding the difference in
structure between a normal deformed and a superdeformed
43 state, as well as the difference between superdeformed states

(D) 7)= 2 -1 in two different mass regions.
T EIGT2 S E -2 MV g

Ill. RESULTS AND DISCUSSIONS

33)(3)= 4 2 MeV 1L, A. Comparison of the structure of SD bands inA=150

E,[(J+2)—=J]-E,[J—(J-2)] and 190 mass regions

(12 The SD bands observed in mass regi$rs150 and 190,

The lowest quasiparticle states originating primarily fromhave their own characteristic features. The differences be-
the intruder orbital in the relevant shell are usually includedtween the SD bands in these two mass regions are manifested
in the calculation. through the behavior of dynamical moments of inefti&.

We have calculated the energy spectra and electromaddost SD bands irA= 190 region exhibit an increasing trend
netic properties of superdeformed bandsiin 150 and 190 in 3 with increasing angular frequendfigs. 1-3. This
regions in both odd neutron and proton nuclei using thebehavior has been explained in terms of hjghlignment
above model. Transition probabilities and electromagnetiand Coriolis antipairing effectf23], while the 3(?) for the
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193y 075 . — T - A " T 7125
T T T T T T T T (a) 191Hg
192 050 1 e
Expt. core 'sd-2 of ' 7“Hg , = ryiSal 1105
140 1 _ 4 F / - 140 ofe. >
signature = +1/2 ' ()
/ 025 - Signature =-1/2 4 —~
(@ Ll W /. —t———t 1%
e /—’ . 1.00 © 1+ 1125
120 F /'/ 1 F o 4 120 orsk '"'Hg i
e L // ' 0.50 |- 1F 4105
I's e * . "xJ oy
4 o’ & S oz - 3
- ,’/ . * 4 L ———/0 . d 4100 @ 1 1 1 1 1 1 ""E‘o
100 LS. o* s 15 25 35
fonl oo’ §
X 1 1 1 1 1 1 1 1 Fﬂ“ j j ; <'
% 0.65 |- 4 rF 4130 =
E T T T T T T T T
Y 04s | | 11
= 140 - signature = -1/2 1 r /o 140 (e}
. @ . / 025} ) ) L
© * . i * ./ 10 20 30 40 10
120 . n./.:_. '//-..o 120 ,’:110 ' ' I
// / E s} ®Hg 4
. / . (&
. L] / '/./ . ev 100 " (g) 7
y = Lot =
100 | _// 1. e 100 o5l . . .
o 10 20 30 40
1 1 1 1 1 1 1 1 I
10 20 30 40 10 20 30 40
I FIG. 3. (a), (b), (c), and(d) Comparison between theoretical and

FIG. 2. (a), (b), (c), and(d) Comparison between theoretical and experimental transition energies and dynamic moments of inertia
experimentaly kin;amétic and dynamic moments of inedtid and (lEv and3®) for (@ and_(b) SD-1 _s_tates(c) and(d) SD-2 states of
3 for (a) and(b) +1/2 signature state€s) and(d) — 1/2 signature 9 _Thg corresponding quantities for barids and (b) [16] to-
states of'**g for two different choices of cores. The experimental 98ther in *Hg are shown ir(e) and (f). (9) Comparison between

data are marked by symbols. The corresponding theoretical poini§€oretical and experimental kinematic moment of inertia farg. ,
are joined by lines, continuous f6f and dashed fop(?). The experimental data are marked by symbols. The corresponding

theoretical points are joined by linéthe detailed description of the
lines are in Table VL

A=150 region is almost constaffig. 4). The detailed de- ) ) )
composition of the wave functions obtained from the presenfNdds2 (18%). Part Il of this table gives thif«|* [Eq. (7)],
calculation of the superdeformed states in these two mads-» the percentage Coriolis mixing amplitude of different
regions is shown in Table V. In this table, results for two Pands(denoted by the Nilsson quantum numbers of the band
representative nuclei in the two regions are chosen. They afeeads in the eigenfunction of the lowest energy final state of
5Dy and ***Hg. The two columns in the table correspond | =40.5. As expected, the state with smaller deformation
to two different values o6=0.30 (normal deformation, cor- shows a stronger Coriolis mixing, whereas the SD state with
responding to a hypothetical normal deformed staed a larger value of the moment of inertiamaller strength of
0.570 or 0.475corresponding to the superdeformed state Coriolis interaction, see also discussion on pairing gap in
Table VI shows other relevant parameters used for this calSec. Il B and larger energy spacings among the quasiparticle
culation. states, has an 85% contribution from the band based on
s 1/2[660]. It is well known that, for a nucleus with Fermi
1. Dy level (\) near the lowK states of a high-orbital, the rota-
Table V A shows the results foPDy, a representative of tional band built on this orbital shows a “decoupled” struc-

the A=150 region. Part | of the table shows the decompositure. Instead of havingas vectorial sum oR andj, the total
tion of the wave function of the Nilsson 1&60] orbital,  angular momenturhis just an algebraic sum & andj, i.e.,
which is the Fermi level for this nucleus. The percentagethe rotational compositions of the final states are sharp com-
amplitude of differenj states KCJ-KIZ) [Eq.(5)] are shown in  pared to the states of a normal rotational band of an Add-
this part for two different values of deformation. Fér nucleus. So it is seen that the “decoupled structure” is more
=0.30, thisyk -1, states shows a 76% contribution from the prominent for the normally deformed state as it has a sharper
high-j =i,4,, State. As a result,J?) (=42.40 and(J) (=5.9 R composition, 71% fronR=34 (as | =40.5=34.0+6.5).
also show a deviation from the value 48.75 and 6.5 expecteHor the SD state, the decoupled structure is disturbed and
for a purei 13, composition. But for the superdeformed state R=34,36,38,40 are strongly mixed with 28%, 34%, 23%,
6=0.57, this Nilsson state loses its higfi=13/2) composi- and 10%, respectively, similar to the strong mixing between
tion. It is now a strong mixture offy3/, (36%), 9o (36%),  thej states 13/2, 9/2, and 5/2 in the intrinsic structure.
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=2,6,8,12 with 31%, 33%, 12%, 13% contribut)p@s ex-
pected from the proximity of th&K=7/2 near the Fermi
level. As for 1Dy, the SD state here also shows a stronger
mixture of differentR states R=2,6,8,12,14,16, with 17%,
16%, 19%, 15%, 17%, and 10% contributjion

30

40

L

50

3. Cause of variation ofJ® in two mass regions

o The above decomposition of the wave functions of the

final states in the SD bands ¢f°Dy and **Hg in terms of
single-particle good states and goo® (core states has
given some information about the differences in the behavior
of the dynamical moment of inertia in these two regions. In
15y, the intrinsic state involved has a very strong admix-
ture of differentj values, with the high-(=13/2) state hav-
ing only a 36% contribution. Therefore, for this nuclgos
similar ones inA= 150, where deformation values are simi-
lar, 6=0.57, and Fermi levels are near IdWstate$ high-j
alignment is not favorable. The dynamical moment of inertia
is also nearly constant with a small variation due to the Co-
riolis antipairing effec CAP), where the observed change is
due to the weakening of pairing correlation between many
orbitals (not necessarily the high-ones due to the Coriolis
force. But for 1%Hg (A=190 region, deformation is com-
paratively smaller §=0.475) and, therefore, the intrinsic
structure has a higher contributid82%) from the highj
state(which is also larger in this mass regigrs 15/2). Al-
though the Fermi level lies near the highéstates, involve-
ment of the hight orbitals favors alignment effect better and
CAP effect also contributes. This results in a much stronger
variation in the dynamical moment of inertia with spin.
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FIG. 4. Comparison between theoretical and experimental tran
sition energies and dynamic moments of inerﬂ} @nd 3®) for
the SD bands ofa) and(b) *’Gd, SD-1(c) and(d) ***Tb, SD-2(e)
and(f) 5y, SD-1, and(g) and(h) *Dy, SD-1.

B. Results of calculation of specific SD bands
in A=150 and 190

The band structures in a few odd-proton and odd-neutron

2. 19%g

For theA=190 region, the representative nucleus chosen

is %Hg. Table V B shows the results fé?3|ﬂg. Partlofthe  gyperdeformed nuclei in tha=150 and 190 regions have
table shows the decomposition of the Nilsson[748] or-  peen calculated in the present work. Usually, only SD-1
bital, which is nearest to the Fermi level for this nucleus. Theyands have been calculated using SD-1 band of the corre-
percentage amplitude of differepstates [Ci«|?) [Eq. (5)]  sponding core, unless mentioned otherwise. Dynamical and
are shown in part for two different values of deformation. kinematic moments of inertia are also calculated for each
For 6=0.30, this yx-_7, state shows a 90% contribution phand. Electromagnetic properties have also been determined

from the highj =15, tate. As a resulgJ®) (=61.08 and i, 5 few cases. Calculations are done 319571,
(J) (=7.3) also show a small deviation from the value 63.75 191,193,198 15318, 1517 ang 147G We have plotted

and .7'5 e>§pected for a pures;; composition. But for the .SD the experimental quantities as discrete symbols and joined
configuration, =0.475, this Nilsson state has a relatively yhe yarious theoretical result&orresponding to different
(w.rt 6=0.30 state reduced(82% contribution from the  pgices of parametersy different types of lines. Table VI
highj (=15/2) orbital. This is in direct contrast with the - contains a detailed list of such combinations. The compari-
structure for the™*Dy 1/4660] state, which is strongly son hetween calculated and experimental transition energies
mixed. In Part Il of this table, the final state=9.5 is ex-  and moments of inertia are presented through a series of
pressed in terms of the percentage Coriolis mixing amplip|ots (Figs. 1—4. Instead of discussing results of individual
tudes[Eq. (7)]. As expected, the state with smaller deforma-p,,cleys; the gross features of total results have been dis-
tion shows a stronger Coriolis mixing, whereas thecssed in the following paragraphs.

superdeformed state has 98% contribution from the band (i) For 193T1, Chen and Xind 4] quoted that energy r.m.s.
based on 7f43]. In comparison with thé>®Dy SD state & geviation. defined as

nearK=0.5), the Coriolis mixing is weaker here due to the '
proximity of a higherK (=7/2) Nilsson orbital to the Fermi

level. Finally, in Part Ill of the table, the normally deformed
state shows a good admixture of differeRt values R

o= \/% Z |E,(calc))—E,(exp))|2 (13)
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TABLE V. Composition of thel=(A) 40.5 state of'*Dy, (B) 9.5 state of'®Hg. See text for detail.

State |Cik|%(%) State |Cik|%(%)
K[NAX] j 6=0.30 =057 K[NAZ] j 5=0.30 6=0.475
7.50 90.19 81.70
0.9660] 6.50 75.87 35.64 3343 6.50 0.72 1.82
5.50 0.08 0.93 5.50 8.84 15.60
4.50 20.58 36.32 4.50 0.11 0.43
A.l. %Dy 3.50 0.10 2.39 B.11%Hg 3.50 0.14 0.44
2.50 3.04 17.99
1.50 0.09 2.89
.50 0.24 3.82
(32 42.40 28.79 61.05 58.73
(J) 5.94 4.60 7.31 7.14
State [f1k|2(%) State |f1k]%(%)
m K[NAX] 6=0.30 6=0.57 ) K[NAZ] 6=0.30 6=0.475
40.5 0.5660] 59.56 85.45 9.5 0[570] 0.0 0.0
1.9651] 31.87 13.77 1561 0.01 0.0
2.9642] 7.70 0.76 2.p752] 1.16 0.61
All. Dy 3.9633] 0.82 0.02 B..¥%Hg  3.9743 49.68 98.46
4.9624] 0.04 0.0 4.5734] 48.75 0.93
5.9615| 0.0 0.0 5.5725] 0.39 0.0
6.59606] 0.0 0.0 6.5716] 0.0 0.0
7.9707] 0.0 0.0
State |Crl?(%) State |Crl?(%)
) R 6=0.30 6=0.57 ) R 5=0.30 6=0.475
40.5 34 70.72 28.07 9.5 2 31.07 16.80
36 24.32 34.41 4 5.84 3.46
38 4.39 22.60 6 32.78 16.04
40 0.51 10.35 8 12.01 19.26
Allll. Dy 42 0.04 3.55 B.111.1%%Hg 10 3.98 1.92
44 0.01 0.89 12 13.18 14.69
46 0.0 0.13 14 0.26 17.34
16 0.86 10.49
(R) 34.70 36.60 5.94 9.04

is 1.2 keV for 26 states for both signatures together, with alynamic moment of inertia is a better quantity to identify the
small value ofy=4.5°. For y=0.0,0=0.5 keV for +1/2  best set of parameters. It is seen that different sets of param-
signature andr=>5.9 keV for —1/2 signature. In our calcu- eters may not show much difference in the corresponding
lation, with an experimental core the modifiedvalues are values ofE,’s, but the dynamic moments of inertia when
(with y=0.0), 0=0.56 keV for +1/2 signature ando  plotted clearly differentiate between the different choices,
=2.96 keV for —1/2 signature. For both the signatures to-e.g., as shown in Fig. 4, if*’Gd and °'Tb.
gether the deviation is 2.13 kelFigs. 1a@) and Xb)]. So in (iii ) The single-particle states included in the calculations
our calculation, with an experimental core the need of inclu-originate from the intruder orbitals of the relevant shells in
sion of the triaxiality parameter is much less compared to thehe corresponding mass regions. But the spins and parities of
previous calculations. This is obvious from the difference inthese superdeformed bands are not unambiguously assigned.
deviations for the two signature sets. The signature depernt can be seen that the states originating from any one of the
dence of the deviation is an indicator of thedeformation. two intruder states from the two consecutive opposite parity
So still there exists an indication of a small triaxiality, shells can give nearly similar agreement to the experimental
whereas, for'%Hg, both the signature shows equal good fitsspectrum. These two states generate favored states of two
[Figs. 3e)—3(g)], indicating y=0.0. opposite signatures and different parities which can be ac-
(i) As a general observation it must be noted that thecommodated within the error in the spin determination of the
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TABLE VI. Different parameter value@airing gapA is in MeV) used for calculations of different SD bands in various isotopes. The
symbols have their usual meanings, as discussed in Sec. Il. A indicates mormealucedwy; B indicates reduced, normal«; C indicates
normal A, normal«; D indicates reduced, reduceda.

Isotope " K ) A Nn/Np State a Core Figure Comment

1937) 0.6183 0.0616 0.475 0.985 46.20 [B22| 0.58 ¥2Hg 1(a),1(b) A
0.250 0.76 B

1957) 0.6196 0.0614 0.475 0.957 46.30 >5/7642] 0.50 ¥%4g 1(c)-1(e) A
181Hg 0.3883 0.0636 0.475 1.1 5200 (32 0.94 19%Hg 3(a),3(b) (solid) C
(SD-1) 0.3  48.96 1/p770] 0.84 190Hg (long dash B
191Hg 0.3883 0.0636 0.475 1.1 52.00 5732] 0.42 929 3(c),3(d) (solid) A
SD-2 47.20 5/p542] 0.55 9249 (long dash A
19%g 0.3858 0.0636 0.475 0.9 55.00 >7/2743] 0.475 %Hg (SD-1) 2(a)—2(d) A
¥%Hg 0.96 54.00 <7/2743] 0.40 g (SD-2 A
9%Hg 0.3834 0.0636 0.475 1.05 525 @24 0.69 49 3(e)-3(g) (solid) A
55y 0.4327 0.0637 057 126 46.67 fiBB0]  0.975 4py 4(g),4(h) (solid) C
5Py 0.4352 0.0637 057 050 46.90 1680] 0.45 52Dy 4(e),4(f) (long dash D
1.10 53.00 /70 0.55 (solid) A

1511 0.5910 0.0648 057 150 52.62  [720] 0.29 52Dy 4(c),4(d) (short dash A
(SD-2 47.07 1/2660] 0.15 1S0rpa (solid) A
0.57 1501 b (long dash A

52.62 1/2770]  0.615 1507 b (med. dash A

¥Gd 0.4426 0.0637 057 120 47.52  [B@&0| 0.96 14%Gd° (SD-1) 4(a),4(b) (solid) C
53.40 1/2770] 0.56 (long dash A

53.40  1/2770] 0.06 4%Gd?(SD-2 (med dash B

4752  1/2660] 0.80 %GdP(SD-2 (short dash C

53.40  1/2770] 0.44 GdP(SD-2 (dot) A

3NDS (Nuclear Data Sheetspin[1].
bSpin predicted by Eq(11).

SD bandgTable VI, ***Hg in Figs. 3a8)—3(d) and *'Tb and  incorporated in the experimental core spectrum. So in some
147Gd in Fig. 4. cases, e.g., it%Hg additional reduction may not be neces-
(iv) The effect of the choice of different SD core is evi- sary(attenuationa=0.94, usual value
dent from Fig. 2. It can be clearly seen that the final results (vi) The B(M1) values calculated fot°*TI show an ap-
are extremely sensitive to the core chosen. The even-evepreciable signature dependen€g. 1). But it is not so
core may possess more than one SD band, it is always vestrong as observed in the calculations of Xgtaal.[6]. The
important to choose the proper SD band of the core corresignature averaged value B{M 1) from the present calcu-
sponding to that particular SD band of the ofldiwcleus, to  lation comes out to be 0.65% consistent with the calculated
have a good agreement. For example,f&Hg, the dynami-  B(M1) value in[25].
cal moments of inertia clearly show a big difference for two  (vii) The calculations in‘*Hg need special mention. In a
choices of the*%Hg core. Similar strong core dependence isrecent experimentl6] four new SD bands have been iden-
manifested in the calculations fdP*Th and **’Gd also. For tified in this isotope of Hg. The minimum spins have also
154Th, SD-2, the 1®Dy SD-1 core is definitely a better been assigned by the previous workers tentatively. We have
choice than the®Th, SD-1. Similarly for'#’Gd, the'*Gd,  used those values of spins and calculaggd 3, 3 for
SD-1 band is the proper cof@able VI, Figs. 2 and # Itis  the lowest two SD bands. We have plotted both the signa-
found that for most odd\ lowest SD bands, the lowest SD tures together and the results show that the two signatures are
band in the core is the most appropriate exceptf6fb and  in excellent agreement with the two SD bands as reported
19%g. This contradicts the expectation that due to a generiearlier. It is, therefore, very obvious that these two bands are
simplicity of the SD bands, the input of any SD core almostsignature partners.
guarantees a correct result in odd neighbors without any cou- (viii) Finally, the underlying assumption in this model is
pling or calculations. that, even in the presence of an unpaired nucleon, the exci-
(v) The reduction in pairing in the superdeformed bandgation energies of the core remain the sgif@, the possible
as observed in the earlier studies is also evident from theolarizing effects of the last unpaired nucleon is neglected.
present calculation. This is manifested through a compara-lowever, even if the core remains unperturbed in the pres-
tively larger attenuation of the Coriolis matrix elements asence of an unpaired valence nucleon, the experimental bands
discussed before. Moreover, as superdeformed cores are usedhe odd- and evei- neighbors, in general, will not show
in this calculation, the effect of reduced pairing is alreadyidentical moments of inertia because of band mixing due to
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the Coriolis interaction. The success of the application of thisnodel can be very easily applied to the other regimes of
model in the superdeformed region shows that the inclusiosuperdeformation in other mass regions. The present calcu-
of an odd particle to the superdeformed core does not disturlation also shows that different trends®f) in the two mass
its structure. regions manifest the difference in the extent of involvement
of the highj orbitals in their intrinsic structure.
IV. CONCLUSION

The present calcul_ation shows that th_e simple ve_rsion Qf ACKNOWLEDGMENTS
PRM with the experimental core energies as the input is
quite capable of explaining the superdeformed bands in the The author would like to thank Professor S. Sen and Pro-
odd-A nuclei in theA=150 and 190 regions. This simple fessor S. Bhattacharya for discussions and encouragement.
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