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Boson expansion techniques, the Pauli principle, and the quasiparticle random phase
approximation phase transition

Jorge G. Hirsch,1,* Peter O. Hess,1,† and Osvaldo Civitarese2,‡

1Instituto de Ciencias Nucleares, Universidad Nacional Auto´noma de Me´xico, Apartado Postal 70-543,
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The onset of instabilities, in the standard proton-neutron quasiparticle random phase approximation~QRPA!,
is investigated by using different boson mappings and trial states belonging to a representation of coherent
states. The model describes pairing and proton-neutron interactions. It is shown that an exact mapping of the
Hamiltonian is needed to describe correctly the QRPA phase transition, i.e., that the algebra of all operators
participant in the Hamiltonian should be preserved by the boson mapping. Spurious components of the wave
functions, which appear if the Pauli principle is violated, are isolated by construction.
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I. INTRODUCTION

The quasiparticle random phase approximation~QRPA!
method has been intensively used in the past to desc
collective properties in terms of two-quasi-particle corre
tions. The method is an acceptable alternative to the ot
wise nonaffordable exact diagonalization in a large basis
proved to be suitable for the microscopic description of lik
particle ~proton-proton and neutron-neutron! two-quasi-
particle excitations in a highly correlated vacuum. T
QRPA method was also extended to describe proton-neu
excitations and it was used at large to calculate cha
dependent excitations and exotic nuclear decays@1–4#. It is
well known that, in general, the validity of the QRP
method is restricted to small amplitude motion around
BCS vacuum. It was shown that the renormalization of so
components of the two-body interactions can introduce v
large ground state correlations and breakdown the QR
symmetries. The use of the random phase approxima
~RPA! and the QRPA methods near ‘‘critical points’’@5,6#
was reviewed in the search of new approximations bey
mean field@7#.

The main assumption of the QRPA~RPA! approximation
is the smallness of the number of bosonsnb in the correlated
vacuum, compared with the total numberV of fermionic
pairs which is allowed by the Pauli principle. Depending
the adopted Hamiltonian the quantitynb can be rather large
and the harmonic approximation fails. It was shown long a
@8# that the RPA is unable to compensate for the breakdo
of the symmetry (nb5^b†b&50) because it is limited to
generate rearrangements of the mean field. Therefore it
be argued that extensions of the QRPA method beyond m
field approaches are severely limited due to the nonpertu
tive nature of the large amplitude motion induced by abn
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mally large ground state correlations.
The obvious way of showing the validity of the RP

~QRPA! type of approaches near breakdown is to comp
their results with exact shell model results@9#. Unfortu-
nately, large scale shell model calculations are not availa
yet for the cases of interest, e.g., for heavy nuclei. The us
boson expansion techniques to handle this problem was
gested in a series of papers, which deal with the collaps
the QRPA@10,11#. In the present work we focus our atten
tion on the Dyson boson expansion method@5,12,13# and use
it to illustrate the RPA phase transition associated to an sc
matic model Hamiltonian@14,15#. Effects due to the viola-
tion of the Pauli principle, in the context of the boson expa
sion of the wave functions, are explored by usi
exponential and polynomial expansion. Following t
method of Refs.@10,16# we shall introduce a complex orde
parameter to determine the dependence of the ph
transition point upon the coupling constants of the Ham
tonian and to compute expectation values in the QRPA,
renormalized QRPA@7# and in the Dyson boson expansio
method@5,12,13#.

The analysis is based on the comparison between e
results, the results of the conventional QRPA and the o
obtained with the renormalized RPA~or renormalized
QRPA! with the results obtained by using a boson mapp
~Dyson boson mapping! which preserves the algebra of th
operators appearing in the Hamiltonian. It is shown that
renormalized versions of the QRPA fail to describe t
QRPA phase transition, while the complete Dyson mapp
exhibits the features of the exact solution over all the ran
of parameters. It is also found that the adopted boson m
ping, which is exact for the Hamiltonian and approximate
the wave functions, leads to a good description of the ph
transition. Clearly, the combined way, namely, the compl
boson mapping of the Hamiltonian and the approximate
of the wave functions, is a nonperturbative approach an
goes well beyond mean field, as the exact solution does

The formalism is presented in Sec. II, where we define
Hamiltonian, the QRPA and renormalized QRPA expre
sions, and the Dyson boson mapping. In Sec. III we int
©1999 The American Physical Society03-1
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duce the different approximations for the wave functions a
in Sec. IV we present the results corresponding to the ma
elements calculated by using the approximations describe
Sec. III. In Sec. V we present the results and the discuss
Conclusions are drawn in Sec. VI.

II. THE HAMILTONIAN

The Hamiltonian adopted for the present calculations
cludes a single particle term, both for protons and neutron
pairing interaction between like nucleons, and a prot
neutron two body interaction parametrized in terms
particle-hole and particle-particle channels@1,2#. This form
of H has been used previously both in realistic and in sc
matic calculations@10,14–16#.

The schematic Hamiltonian reads

H5Hp1Hn1H res, ~1!

where

Hp5(
p

epap
†ap2GpSp

†Sp , Hn5(
n

enan
†an2GnSn

†Sn ,

~2!

H res52xbJ
2
•bJ

122kPJ
2
•PJ

1 . ~3!

In the above expression the following definitions we
introduced:

Sp
†5(

p
ap

†ap̄
†/2, Sn

†5(
n

an
†an̄

†/2, ~4!

bJ
2
•bJ

15 (
M52J

J

~21!M:bJM
2 ~bJ2M

2 !†:, ~5!

PJ
2
•PJ

15 (
M52J

J

~21!M:PJM
2 ~PJ2M

2 !†:, ~6!

bJM
2 5(

i , j
^ i uOJMu j &ai

†aj , PJM
2 5(

i , j
^ i uO JMu j &ai

†aj̄
† ,

~7!

O1M5sMt2, O005t2, ~8!

ap
†5aj pmp

† being the particle creation operator andap̄
†

5(21) j p2mpaj p2mp

† its time reversal.

We shall consider the one-shell limit of this Hamiltonia
Pairing effects will be accounted for by a quasiparticle me
field, for protons and neutrons separately, represented by
BCS solutions of a separable monopole-pairing interac
@17#.

This Hamiltonian has been used both for the descript
of Fermi (DJ50,DT561) and Gamow-Teller (DJ51,DT
561) excitations and the corresponding transitions@10,11#.
The solutions forDJ50 have been studied in@10# while the
case of Gamow-Teller excitations has been presented in
@11#. For the sake of simplicity and without loss of gener
06430
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ity, we proceed with the case ofDJ50 transitions. In the
BCS representation the quasiparticle proton-neutron pair
erator has the form

A†5@ap
†

^ an
†#M50

J50 . ~9!

Thus, at the QRPA order of approximation and keeping
the Hamiltonian bilinear products ofA† andA, we arrive at
the expression@10#

H5eC1l1A†A1l2~A†A†1AA!, ~10!

where the proton and neutron quasiparticle energies h
been replaced by a common valuee. The operatorC and the
coupling constantsl1 andl2 of Eq. ~10! are defined by

C5(
mp

apmp

† apmp
1(

mn

anmn

† anmn
, ~11!

l154V@x~up
2vn

21vp
2un

2!2k~up
2un

21vp
2vn

2!# , ~12!

l254V~x1k!upvpunvn , ~13!

where 2V5(2 j 11) is the degeneracy of the shell in a sta
dard notation@17#.

The QRPA treatment of this Hamiltonian@10# yields the
eigenvalue

EQRPA5@~2e1l1!22~2l2!2#1/2,

which vanishes for 2l252e1l1. This result, which is also
found in the exact solution of the model, does not appea
the renormalized QRPA treatment of Refs.@7,18#. The col-
lapse of the QRPA excitation energy has also been foun
the extension of the present model to a larger group re
sentation@11#. In the following we describe this feature i
terms of a phase transition mechanism of the sort discus
long ago by Laneet al. @8#.

Along this line, we introduce a boson mapping of Eq.~10!
which preserves the Pauli principle. The link with the pha
transition mechanism is established by introducing, in t
boson basis, coherent states@12,13# and an order paramete
@16#.

To achieve this goal we have performed the Dyson m
ping @12,13# of the Hamiltonian ~10! by replacing the
quasiparticle-pair operators by

~A†!D5b†S 12
b†b

2V D , ~A!D5b, ~C!D52b†b,

~14!

where the indexD refers to the Dyson mapping and proto
neutron bosons are denoted byb† or b. The operatorsb† and
b are boson creation and annihilation operators, which o
exact boson commutation relations. The number of prot
neutron bosons,nb5^b†b&, is restricted by the condition
nb<2V, which guarantees that spurious nonphysical sta
@12,13# are excluded.

The transformed Hamiltonian corresponding to Eq.~10! is
given by
3-2
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H5~2e1l1!b†b2
l1

2V
b†2b21l2S 12

1

2V Db†2,

~15!

2
l2

V S 12
1

2V Db†3b1
l2

4V2
b†4b21l2b2.

While the above form of the Hamiltonian is not Hermitia
due to the use of the non-Hermitian Dyson mapping, it h
the advantage of having a finite number of terms allowing
exact diagonalization as well as a simple comparison w
the other approximate expressions forH.

Notice that in the limit 2V→` we obtain the simples
quasiboson image@12# of the QRPA Hamiltonian

HQRPA5~2e1l1!b†b2l2~b†21b2!. ~16!

The QRPA approximation relies upon the assumption tha
the commutator

@A,A†#5S 12
b†b

V D , ~17!

terms of the order of 1/V are neglected. This is the so-calle
quasiboson approximation. The renormalized QRPA
proach aims to include these terms by substituting the n
ber operator (n̂b5b†b) by nb at the level of the QRPA equa
tions of motion. The boson mapping of the Hamiltonia
keeping terms as done in the renormalized QRPA, is gi
by

HRQRPA5F2e1l1S 12
n̂b

V
D Gb†b1l2S 12

n̂b

V
D ~b†21b2!.

~18!

Replacingn̂b→nb and holding the relation~17!, at the ex-
pectation value level, terms of the typenb /V will appear in
the Hamiltonian~18! which are twice larger than the corre
sponding ones of Eq.~15!.

III. APPROXIMATIONS FOR THE TRIAL STATES

After performing the boson mapping we shall introdu
trial states, which are related to coherent states@12,13#. For
convenience we shall call them, in general, coherent sta
As a first approximation we chose

ua&5N0(
l 50

2V
a l

l !
b†l u0&5N0(

l 50

2V
a l

Al !
u l &, ~19!

wherea is a complex variable,N0 is a normalization factor,

and u l &5
b†l

Al !
u0&, with bu0&50 and^ l u l 8&5d l l 8 . The upper

valuel 52V in the sum of Eq.~19! guarantees that the Pau
principle is observed in the boson expansion of the sta
ua&.
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We will also use an approximation simpler than the p
vious one which allows for any number of bosons, thus
does not take into account the Pauli principle. This trial st
is defined as

ua`&5N`(
l 50

`
a l

l !
b†l u0.5N`(

l 50

`
a l

Al !
u l &. ~20!

Since the Dyson boson mapping is non-Hermitian
have to deal with bra (^au) and ket (uã&) states, namely,

^au5^0uN0(
l 50

2V
a* l

l !
~A!D

l 5^0uN0(
l 50

2V
a* l

l !
bl ,

uã&5Ñ0(
l 50

2V
a l

l !
~A†!D

l u0&

5Ñ0~2V! !(
l 50

2V F a

2VG l ~b†! l

l ! ~2V2 l !!
u0&. ~21!

The Hamiltonian~15! can connect states with even~odd!
number of pairs, only. Therefore, we can split the sums
Eq. ~21! into even and odd parts. The corresponding con
butions will be denoted by subscriptse ~for even! ando ~for
odd!, respectively.

IV. MATRIX ELEMENTS

The expectation value of the transformed Hamiltonia
Eq. ~15!, gives the potential energy surfaceE(a)5Er
1 iEi , which depends both on the real and imaginary pa
of the order parametera5reiu as well as on the actual valu
of the coupling constants of the model@16#. The minima of
this potential energy surface can be identified by perform
a variation of the order parameter for different values ofx
and k. Different regimes of the solution will therefore b
determined by nontrivial values of the order parameter.

In the following we have summarized the expressio
needed to calculate expectation values in the different
proximations, namely,

^a i u~b†!n1bn2uã i&5NiÑi~2V!!ei (n22n1)u
rn11n2

~2V!n2
gn1n2

( i ) ~r!,

~22!

whereua i& reads forua&, uae&, anduao& and

gn1n2

( i ) ~r!5 (
l 5 l min

l max S r2

2V D l 1

l ! ~2V2 l 2n2!!
, ~23!

where l max5min(2V2n1 ,2V2n2), and in Eqs.~22! and
~23! we have included for brevity three different case
gn1n2

(r), without superscript, corresponds to the trial state
which all number of bosons are allowed and the indexl takes
all integer values starting atl min50; gn1n2

(e) (r) is associated

with the trial state with even number of bosons, thel can
have only even values larger than l min
3-3
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5mod(n1,2); gn1n2

(o) (r) is related with the trial state with

odd number of bosons, withl having only odd values large
than l min5mod(n1,2)11.

The following quantities are also needed@16#:

^au~b†!n1bn2ua&5N0
2ei (n22n1)urn11n2hn~r!, ~24!

with

hn[hMin(n1 ,n2)~r!5 (
l 50

2V2n
r2l

l !
. ~25!

For the exponential approximation we have obtained

^a`u~b†!n1bn2ua`&5ei (n22n1)urn11n2. ~26!

Notice that the factorsgn1n2

( i ) of Eq. ~23! have a rather

involved dependence onn1 and n2 while Eq. ~26! has a
simpler structure. In this way we have a complete family
trial states of different complexity, which are available
compute the expectation value of the Hamiltonian.

We use a variational procedure to obtain the minimum
the real part of the expectation value of the Hamiltonian
has the form

^auHuã&

^auã&
5F ~2e1l1!

g11

g00
1

l2

2V
cos~2u!

g02

g00

1~2V21!
g20

g00
G r2

2V
2F l1

2V

g22

g00

1l2 cos~2u!S 12
1

2V Dg31

g00
G r4

~2V!2

1l2 cos~2u!
g42

g00

r6

~2V!4
. ~27!

Similar results are obtained for the trial state with only ev
or odd values ofl by replacinggi j →gi j

(e(o)) .
If the same trial state~19! is used both for the bra and th

ket, paying no attention to the fact theH is not Hermitian in
the bosonic basis as it was done in@16#, the following ex-
pectation value ofH is obtained:

^auHua&5F ~2e1l1!
h1

h0
1l2 cos~2u!S 22

1

2V Dh2

h0
Gr2

2F l1

2V

h2

h0
1

l2 cos~2u!

V S 12
1

2V Dh3

h0
Gr4

1
l2 cos~2u!

~2V!2

h4

h0
r6. ~28!

For the exponential trial state we obtain
06430
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^a`uHua`&5F ~2e1l1!1l2 cos~2u!S 22
1

2V D Gr2

2F l1

2V
1

l2 cos~2u!

V S 12
1

2V D Gr4

1
l2 cos~2u!

~2V!2
r6. ~29!

The expectation value of the HamiltonianHQRPA ~16! be-
tween purely exponential coherent states is given by

^a`uHQRPAua`&5@~2e1l1!12l2 cos~2u!#r2. ~30!

This quadratic dependence onr shows thatHQRPA is the
harmonic approximation of Hamiltonian~15!. As it is well
known, this approximation is valid as long as the minimu
of the effective potential is located atr50 but it fails in the
presence of a phase transition. This expectation value ca
seen as the result of the trivial substitution of the operat
A†,A in Eq. ~2! by the complex numbersreiu,re2 iu.

In a similar way the expectation value of the Hamiltoni
of the renormalized QRPA of Eq.~18! in the state~19! is
given by

^auHRQRPAua&5F ~2e1l1!
h1

h0
12l2 cos~2u!

h2

h0
Gr2

2Fl1

V S h1

h0
D 2

1
2l2 cos~2u!

V

h1h2

h0
2 Gr4.

~31!

The comparison between Eqs.~28! and~31! shows the exact
and renormalized QRPA results deviate, due to difference
the coefficient ofr4. In order to complete this section, an
for later use, we show the expressions corresponding
Fermi transitions@10# between coherent states.

As an example we show the results obtained with Dys
trial states. The mapping of the operatorb2 reads

b25upvn~A†!D1vpun~A!D5upvnb†S 12
b†b

2V D1vpunb,

~32!

and the matrix elements are written

^aub2uã&5AN0Ñ0~2V21!!re2 iug01~r!~upvn

1e2iuvpnn! ~33!

and

^aoub2uãe&5ANoÑe~2V21!!re2 iu@upvng21
(e)~r!

1e2iuvpnng11
(e)~r!#. ~34!

In Eq. ~34! the operatorb2 connects states with even an
odd number of bosons, while in Eq.~33! the trial state con-
tains both even and odd powers ofb†.
3-4
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V. RESULTS AND DISCUSSION

In the following we will present numerical results whic
correspond to the choice of the model parameters@Eqs.~10!
and ~13!#:

V55, Np54, Nn56, e51.0 MeV, x50.
~35!

The quantitiesNp and Nn are the number of active proton
and neutrons, respectively, considered in the BCS equati
The particle-particle~proton-neutron! strengthk is varied in
the range 0<k<0.2 MeV. Inserting these numerical value
in Eq. ~13! the parameters in the Hamiltonian~10! take the
simple forml1529.6k,l254.8k.

The potential-energy surfacêH& was minimized as a
function of the complex order parametera5reiu. In all the
cases presented in the previous section the dependen
^H& on u is given by

^H&5A~r!1B~r!cos~2u! ~36!

and the extremum is determined by

]

]u
^H&522B~r!sin~2u!50, ~37!

which implies that at the minimum

cos~2u!561. ~38!

The value which provides a minimum inr is cos(2u)
521, which is the one we will use in the rest of this artic

The critical behavior of the potential-energy surfaces
shown in Fig. 1. We denote the expectation va
^a`uHQRPAua`& as ‘‘QRPA,’’ ^a`uHua`& as ‘‘exponential,’’

^auHua& as ‘‘Ref. @16#,’’ and ^auHuã& as ‘‘Dyson.’’ Figure
1 @insets~a!, ~b!, and~c!# shows the results fork50, 0.1 and
0.2 MeV, respectively. In inset~a! of Fig. 1 we havel1
5l250, for which the Hamiltonian is quadratic inb† andb.
Due to this fact the expectation values ofHQRPA andH co-
incide exactly when the exponential approximation is us
However, the other two approximations take into account
Pauli principle at the level of the wave function and exhibi
saturation atnb52V, with the asymptotic value (r→`)
^auHua&52enb . For k50.1 MeV, Inset~b! of Fig. 1, the
QRPA curve is still a parabola, but with nearly vanishi
curvature. The other three curves are very similar up tor
;2.0. Beyond that point the exponential curve has a ma
mum and then goes steeply to minus infinity. This is a c
sequence of the violation of the Pauli principle. In inset~c!
of Fig. 1 we present the curves of the energy fork
50.2 MeV. This value lies beyond the phase transitio
which is clearly seen in all the expectation values of
Dyson boson mapped Hamiltonian of Eq.~15!. The three
curves show a minimum at approximatelyr51.7 and are
very close up to this point. After that, the exponential cur
rises again and then decreases. The QRPA approximatio
unable to go beyond the phase transition point. It j
changes the sign of curvature, and the extremal point ar
50 is a maximum. This feature is the so-called collapse
06430
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the QRPA@19#: if the eigenvalue goes to zero so does t
coefficient of r2 in ^a`uHQRPAua`&. When this coefficient
becomes negative the energy becomes purely imagin
Saturation properties due to the Pauli principle are shown
the curves quoted as ‘‘Ref.@16#’’ and ‘‘Dyson’’ of Fig. 1, for
large values ofr. In the limit r→` the expectation value
^H&→4Ve1l1.

Figure 2 shows details around the minimum, in a larg
scale. It includes the results for̂auHRQRPAua&, denoted
‘‘RQRPA.’’ It is thus clear that any approximation for th
trial states, even the simplest exponential one, is able to
tect the phase transition when applied to the exact Ham
tonian. While the exponential approximation fails for larg
values ofr it works fine in the region around the deforme
minimum. The differences between the Dyson approxim
tion and the other curves beyond the minimum are noti
able. On the other side, the expectation value of the ren
malized QRPA Hamiltonian describes a minimum with h
the energy and atr'1.1 which is far from the exact value

FIG. 1. Expectation value of the Hamiltonian as a function
the order parameterr. The expectation valuêa`uHQRPAua`& is
denoted by ‘‘QRPA,’’^a`uHua`& by ‘‘exponential,’’ ^auHua& by

‘‘Ref. @16#,’’ and ^auHuã& by ‘‘Dyson.’’ Insets ~a!, ~b!, and ~c!
show the results fork50, 0.1, and 0.2, respectively.
3-5
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The modulus of the order parameter (r) at the minimum
of ^H& is shown in Fig. 3, as a function of the residu
interaction parameterk. In this plot the appearance of
phase transition is clearly observed. Up tok;0.11 MeV the
minimum occurs for a coherent state withr50, i.e., the
boson vacuum. From that point on instabilities domina
The use of only an even number of bosons in the cohe
state washes out the phase transition. For this case it is b
to analyze the results shown in Fig. 4, where the value
^H& at the minimum is shown as a function ink. While for
the approximations which include all powers ofb† the mini-
mum lies at zero energy, up to the point where the ph
transition occurs, using only even powers ofb† produces an
energy which is nearly constant up to the phase transi
point. Afterwards it becomes a fast decreasing function.

The dependence of the expectation value of the numbe
proton-neutron pairs as a function ofr is shown in Fig. 5.
The saturation properties discussed in relation with the
ergy, Fig. 1, are also seen here. As the order parametr
increases, the number of bosons approaches its max
value 2V, which is a consequence of Pauli principle. T
exponential approximation has no truncation in the sum, t
it does not lead to a saturation but rather behaves quad
cally as a function ofr. Notice that for practical purposes a
the approximations yield similar results up tor<2, which
implies that for these values the violation of the Pauli pr

FIG. 3. The order parameterr5uau at the minimum of̂ H&, as
a function of the residual interaction parameterk. The meaning of
the different approximations used is explained in the text.

FIG. 2. Amplified version of Fig. 1, inset~c!. Results for
^auHRQRPAua&, denoted by ‘‘RQRPA’’ are also included.
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ciple do not influence the results significantly. Howev
Pauli principle violation effects dominate for larger values
r. Please also note that the position of the deformed m
mum is located atr,2 ~see Fig. 1!. Thus, the Pauli principle
can be ignored for situations where the minimum occurs
values ofr corresponding to an average occupation num
smaller than half the filled shell.

Finally, Fig. 6 shows results for transitions induced by t
Fermi b2 operator@see Eq.~32!#. The results are presente
as a function ofr @inset ~a!# andk @inset ~b!#. The approxi-
mations used are the Dyson boson mapping with all pow
included@see Eq.~21!# and the expansions corresponding
even and odd powers@see Eqs.~22! and ~23!#. While the
normalization factorsN0 , Ñ0 , Ne→1 when r→0, the
normalization factorNo→r21. It explains the difference ob
served at the right-hand side of inset~a! of Fig. 6, where

^aub2uã&→0 whenr→0 while ^aoub2uãe&→ const. As a
consequence of the different behavior ofuaminu, displayed in
Fig. 3 for the different approximations considered, we ha
very distinct beta amplitudes. Having only odd or even po
ers of b† in the coherent state produces a large beta am
tude for all nonzero values ofk, as displayed in inset~b! of
Fig. 6. The inclusion of all powers shows more clearly t
presence of a phase transition. Since the matrix elemen
the b2 operator@see Eqs.~33! and ~34!# are directly related
to the order parameterr, they acquire nonzero values on
after the onset of the phase transition.

FIG. 4. The value of̂ H& at the minimum vsk.

FIG. 5. The expectation value of the number of proton-neut
pairs as a function ofr.
3-6
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BOSON EXPANSION TECHNIQUES, THE PAULI . . . PHYSICAL REVIEW C 60 064303
Before closing this section we would like to comment
the comparison between exact results and the results o
above discussed approximations. The equivalence betwe
purely fermionic calculation and the one corresponding
Dyson boson mapping is fairly obvious, owing to the fa
that the mapping preserves the commutation relations am
the operators entering in the Hamiltonian and in the basis
we have shown with the examples given in the previo
subsections, the use of a variational approach and a non
turbative expansion in the space of parameters yields s
tions which are functions of the order parameter. The qu
tion which we are addressing now concerns the accurac
the procedure. Table I shows the results of the different
proximations discussed in the text, for the expectation va
of the Hamiltonian. At first glance the results correspond
to the exponential trial state and to different terms of
Dyson boson mapping compare favorably with the exact
sults. However, the exponential set, as well as the set of
@16#, gives results which are below the exact ones. This
physical behavior~i.e., the exact results should always be t
lower bound of any approximation! is clearly seen for large
k values. On the other side the results of the Dyson bo
mapping, particularly for the case of the expansion with ev
powers of the boson operator, yield very good results
compared with the exact ones. In this sense this approxi
tion is equivalent to Hartree-Fock. The results shown
Table I are a good answer to the question of the accurac

FIG. 6. The Fermi beta transition amplitude, both as a funct
of r @inset ~a!# and k @inset ~b!#. The curves represent results o
tained with the Dyson approximation with all boson powers
cluded~solid line! and only even-odd powers~dotted lines!.
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the procedure, concerning the convergence to results w
are a very good representation of the exact ones. The po
of the expansion to detect phase transitions is also evid
from the previously discussed results. Both features ena
us to conclude about the suitability of the method to han
some specific features of many body Hamiltonians, like
one related to phase transitions in the space of paramete
the Hamiltonian.

VI. CONCLUSIONS

In the present work we have described the combined
plication of the Dyson boson mapping technique and the
of a coherent state representation to characterize phase
sitions associated to a schematic Hamiltonian. We have
troduced a complex order parameter and shown that the
currence of phase transitions is linked to sudden change
the value of the order parameter. The sensitivity of the
ergy, with respect to changes in the order parameterr was
used to determine the validity of the harmonic approximat
~QRPA! and of its renormalized version~renormalized
QRPA!. In the present example, the number of proto
neutron pairs in vacuum was represented in terms of a c
plex order parameter. The spontaneous breaking of
proton-neutron-pair symmetry was induced by partic
particle interactions (kÞ0) and it manifests itself in the ap
pearance of a zero-energy state. At this point, the anal
with the situation found in systems with permanent intrin
deformations can be established@20#. We have shown tha
the renormalized QRPA is unable to describe correctly
energy and that the inclusion of the Pauli principle at t

n

-

TABLE I. Expectation value of the Hamiltonian̂H&, as a func-
tion of the residual interaction parameterk.

k ^auHua& ^a`uHua`& ^auHuã& ^aeuHuãe& Exact

0.000 0.0000 0.0000 0.0000 0.0000 0.0000
0.010 0.0000 0.0000 0.0000 -0.0011 -0.0010
0.020 0.0000 0.0000 0.0000 -0.0045 -0.0045
0.030 0.0000 0.0000 0.0000 -0.0107 -0.0107
0.040 0.0000 0.0000 0.0000 -0.0201 -0.0201
0.050 0.0000 0.0000 0.0000 -0.0331 -0.0333
0.060 0.0000 0.0000 0.0000 -0.0504 -0.0510
0.070 0.0000 0.0000 0.0000 -0.0729 -0.0741
0.080 0.0000 0.0000 0.0000 -0.1014 -0.1040
0.090 0.0000 0.0000 0.0000 -0.1375 -0.1422
0.100 0.0000 0.0000 0.0000 -0.1827 -0.1911
0.110 -0.0044 -0.0001 -0.0001 -0.2392 -0.2535
0.120 -0.0704 -0.0435 -0.0430 -0.3102 -0.3333
0.130 -0.2033 -0.1567 -0.1533 -0.3996 -0.4351
0.140 -0.3903 -0.3264 -0.3167 -0.5133 -0.5640
0.150 -0.6220 -0.5427 -0.5225 -0.6592 -0.7248
0.160 -0.8908 -0.7977 -0.7627 -0.8466 -0.9202
0.170 -1.1910 -1.0855 -1.0312 -1.0797 -1.1500
0.180 -1.5178 -1.4011 -1.3235 -1.3515 -1.4117
0.190 -1.8675 -1.7407 -1.6356 -1.6523 -1.7010
0.200 -2.2368 -2.1010 -1.9646 -1.9748 -2.0134
3-7
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Hamiltonian level is crucial to describe the phase transiti
It was shown that very crude representations based o
coherent state are able to describe the phase trans
provided that the boson mapping of the Hamiltonian is p
formed to all orders. This results are relevant in the cont
of the coherent state description of systems based on
SO~5! and SO~8! algebras@10,11#. Work is in progress
concerning the use of the present method in realistic si
tions.
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