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Boson expansion techniques, the Pauli principle, and the quasiparticle random phase
approximation phase transition
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The onset of instabilities, in the standard proton-neutron quasiparticle random phase approxXi@RE&)
is investigated by using different boson mappings and trial states belonging to a representation of coherent
states. The model describes pairing and proton-neutron interactions. It is shown that an exact mapping of the
Hamiltonian is needed to describe correctly the QRPA phase transition, i.e., that the algebra of all operators
participant in the Hamiltonian should be preserved by the boson mapping. Spurious components of the wave
functions, which appear if the Pauli principle is violated, are isolated by construction.
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PACS numbgs): 21.60.Jz, 21.60.Fw, 23.40.Hc

[. INTRODUCTION mally large ground state correlations.
The obvious way of showing the validity of the RPA
The quasiparticle random phase approximati@RPA  (QRPA) type of approaches near breakdown is to compare
method has been intensively used in the past to describ&eir results with exact shell model resuli8]. Unfortu-
collective properties in terms of two-quasi-particle correla-nately, large scale shell model calculations are not available
tions. The method is an acceptable alternative to the otheyet for the cases of interest, e.g., for heavy nuclei. The use of
wise nonaffordable exact diagonalization in a large basis anB0SON expansion techniques to handle this problem was sug-
proved to be suitable for the microscopic description of like-9€Sted in a series of papers, which deal with the collapse of
particle (proton-proton and neutron-neutjortwo-quasi- the QRPA[10,11]. In the present work we focus our atten-
particle excitations in a highly correlated vacuum. Thelion on the Dyson boson expansion metfibd 2,13 and use

- ) it to illustrate the RPA phase transition associated to an sche-
QRPA method was also extended to describe proton neutrdlb]atic model Hamiltoniari14.15. Effects due to the viola-

excitations and it was used at large to calculate Charget_ion of the Pauli principle, in the context of the boson expan-
dependent excitations and exotic nuclear dedaysd|. It is P p'e, P

) L sion of the wave functions, are explored by using
well known that, in general, the validity of the QRPA exponential and polynomial expansion. Following the

method is restricted to small amplitude moti'on 'around themethod of Refs[10,16 we shall introduce a complex order
BCS vacuum. It was shown that the r_enormallz_atlon of SOM&arameter to determine the dependence of the phase-
components of the two-body interactions can introduce Very ansition point upon the coupling constants of the Hamil-
large ground state correlations and breakdown the QRPApnian and to compute expectation values in the QRPA, the
symmetries. The use of the random phase approximatiopenormalized QRPA7] and in the Dyson boson expansion
(RPA) and the QRPA methods near “critical point$5,6] method[5,12,13.
was reviewed in the search of new approximations beyond The analysis is based on the comparison between exact
mean field[7]. results, the results of the conventional QRPA and the ones
The main assumption of the QRFRPA) approximation  obtained with the renormalized RPAor renormalized
is the smallness of the number of bosopsn the correlated QRPA) with the results obtained by using a boson mapping
vacuum, compared with the total numb@r of fermionic  (Dyson boson mappingwhich preserves the algebra of the
pairs which is allowed by the Pauli principle. Depending onoperators appearing in the Hamiltonian. It is shown that the
the adopted Hamiltonian the quantity, can be rather large renormalized versions of the QRPA fail to describe the
and the harmonic approximation fails. It was shown long agaQRPA phase transition, while the complete Dyson mapping
[8] that the RPA is unable to compensate for the breakdowexhibits the features of the exact solution over all the range
of the symmetry 1,=(b'b)=0) because it is limited to of parameters. It is also found that the adopted boson map-
generate rearrangements of the mean field. Therefore it cgsing, which is exact for the Hamiltonian and approximate for
be argued that extensions of the QRPA method beyond meahe wave functions, leads to a good description of the phase
field approaches are severely limited due to the nonperturbaransition. Clearly, the combined way, namely, the complete
tive nature of the large amplitude motion induced by abnorboson mapping of the Hamiltonian and the approximate one
of the wave functions, is a nonperturbative approach and it
goes well beyond mean field, as the exact solution does.

*Electronic address: hirsch@nuclecu.unam.mx The formalism is presented in Sec. Il, where we define the
"Electronic address: hess@nuclecu.unam.mx Hamiltonian, the QRPA and renormalized QRPA expres-
*Electronic address: civitare@venus.fisica.unlp.edu.ar sions, and the Dyson boson mapping. In Sec. Il we intro-
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duce the different approximations for the wave functions andty, we proceed with the case &J=0 transitions. In the
in Sec. IV we present the results corresponding to the matriBCS representation the quasiparticle proton-neutron pair op-
elements calculated by using the approximations described iarator has the form

Sec. lll. In Sec. V we present the results and the discussion. f 4o
Conclusions are drawn in Sec. VI. AT=[ap@ a4 9
Il THE HAMILTONIAN Thus, at the QRPA order of approximation and keeping in

the Hamiltonian bilinear products &' and A, we arrive at
The Hamiltonian adopted for the present calculations inthe expressiofl0]

cludes a single particle term, both for protons and neutrons, a
pairing interaction between like nucleons, and a proton- H=eC+NATA+ N, (ATAT+HAA), (10
neutron two body interaction parametrized in terms of o .
particle-hole and particle-particle channgls2]. This form where the proton and neutron quasiparticle energies have
of H has been used previously both in realistic and in scheben replaced by a common vala€eThe operatoC and the
matic calculationg10,14—186. coupling constanta; and\, of Eq. (10) are defined by

The schematic Hamiltonian reads

— t t
H:HD+HH+Hres: (1) C_;p apmpapmp"';n Enm, Enm s (12)
where N =4[ x(Uivi+viud) — k(udui+vavd)], (12
szg epaja,—GpSlSy,  Ho=2 enalan—Gis)Sy, No= 40+ K)UgyplinVi, 13

(2 where A)=(2j+1) is the degeneracy of the shell in a stan-
dard notatio{17].

Hies=2xBy - By —2xPy-Py . ©) The QRPA treatment of this Hamiltonida0] yields the
. . _— i |
In the above expression the following definitions Wereelgenva ue
introduced: EQRPA=[(26+?\1)2—(27\2)2]1/2,
s'= afal/2, s= ataliz, 4 which vanishes for R,=2e+ \,. This result, which is also
P zp: PP " En: N @ found in the exact solution of the model, does not appear in
the renormalized QRPA treatment of Reffg,18]. The col-
J lapse of the QRPA excitation energy has also been found in
By-By= 2 (—DM:Biu(Brw, (5)  the extension of the present model to a larger group repre-
M=-J sentation[11]. In the following we describe this feature in
3 terms of a phase transition mechanism of the sort discussed
- pt_ _A\WM.p— (p— At long ago by Laneet al. [8].
Py-P; M:E_J (= D™ Pon(Pa—m) © Along this line, we introduce a boson mapping of Etp)

which preserves the Pauli principle. The link with the phase-
B _ Ly B _ N transition mechanism is established by introducing, in this
BJM:ZJ_ (iI|Osuli)alqy, PJM:Z]_ (iOsuli)aiay, boson basis, coherent stafd®,13 and an order parameter
' ’ 16].
@ |

To achieve this goal we have performed the Dyson map-

Om=om7, Ow=7" (8) ping [12,13 of the Hamiltonian (10) by replacing the
' ' quasiparticle-pair operators by
a;r,za;fpr'np being the particle creation operator am% b'b
=(—1)»"™a _ its time reversal. (Ahp=b" 1-5q/) (Ao=b, (C)p=2bb,
We shall consider the one-shell limit of this Hamiltonian. (14)

Pairing effects will be accounted for by a quasiparticle mean

field, for protons and neutrons separately, represented by thehere the indexD refers to the Dyson mapping and proton-

BCS solutions of a separable monopole-pairing interactiomeutron bosons are denotedtbyor b. The operatoré' and

[17]. b are boson creation and annihilation operators, which obey
This Hamiltonian has been used both for the descriptiorexact boson commutation relations. The number of proton-

of Fermi AJ=0AT==*1) and Gamow-TellerAJ=1AT neutron bosonsnb=(bfb>, is restricted by the condition

= =*1) excitations and the corresponding transitifh®,11]. ny<2(), which guarantees that spurious nonphysical states

The solutions fodJ=0 have been studied [10] while the  [12,13 are excluded.

case of Gamow-Teller excitations has been presented in Ref. The transformed Hamiltonian corresponding to Bd) is

[11]. For the sake of simplicity and without loss of general-given by
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- 1) o, We will also use an approximation simpler than the pre-
H=(2e+ M)bTb— bJr b=+ N, 1- m)b : vious one which allows for any number of bosons, thus it
15 does not take into account the Pauli principle. This trial state
(15 is defined as
A 1
1- — b*3b+ b”b2+)\2b2 o
Q 2Q "
|ay=N E b 0>=N., 2 (20

While the above form of the Hamiltonian is not Hermitian,
due to the use of the non-Hermitian Dyson mapping, it has Since the Dyson boson mapping is non-Hermitian we
the advantage of having a finite number of terms allowing itshave to deal with bra{@|) and ket (a)) states, namely,
exact diagonalization as well as a simple comparison with
the other approximate expressions Fbr a* |

Notice that in the limit 22— we obtain the simplest <a|:<0|No|ZO |_|(A)D:<O|NO|ZO T
quasiboson imagEL2] of the QRPA Hamiltonian o N

I 20l

Horpa= (26+X1)bTb—N,(b"2+b?). (16) |a)= NOZ (AT 5|0)
The QRPA approximation relies upon the assumption that in 20 (b
the commutator N I R I e
No(2€2 )Zo 20| 11(2Q-1)! 0)- (21)
. b'b
[AAT={1-—| 17 The Hamiltonian(15) can connect states with evéndd)

number of pairs, only. Therefore, we can split the sums of
Eqg. (21) into even and odd parts. The corresponding contri-

terms of the order of 11 are neglected. This is the so-called ,_ : .
guasiboson approximation. The renormalized QRPA a pbgg)or:seglgg Ct:s/edlga/noted by subscripafor even) ando (for

proach aims to include these terms by substituting the num-
ber operatorff,=b'b) by n, at the level of the QRPA equa-
tions of motion. The boson mapping of the Hamiltonian,
keeping terms as done in the renormalized QRPA, is given The expectation value of the transformed Hamiltonian,
by Eq. (15, gives the potential energy surfadeé(a)=E,
+iE;, which depends both on the real and imaginary parts
Ny
LB

Np of the order parameter=pe'? as well as on the actual value
-9 (b"2+b?). of the coupling constants of the modd6]. The minima of

Replacingﬁb—mb and holding the relatioril7), at the ex-

pectation value level, terms of the typg/Q will appear in

(18) this potential energy surface can be identified by performing
a variation of the order parameter for different valuesyof

the Hamiltonian(18) which are twice larger than the corre-

sponding ones of Eq15).

IV. MATRIX ELEMENTS

HRQRPA: 2E+)\1 bTb+)\2

and «. Different regimes of the solution will therefore be
determined by nontrivial values of the order parameter.

In the following we have summarized the expressions
needed to calculate expectation values in the different ap-
proximations, namely,

11l. APPROXIMATIONS FOR THE TRIAL STATES - - I pn1+n2
(e (bH)Mb"[a;) = NiN;(20)t el (e~ 9, (P),
After performing the boson mapping we shall introduce (2Q)"2 """
trial states, which are related to coherent st@1513. For (22
convenience we shall call them, in general, coherent states.
As a first approximation we chose where|a;) reads forla), |ae), and|a,) and
I max 2\
o g® L D
la)y= NOE b“|0> NOE (19 Onyn,(P) = —% (29) 2O—-1-ny)!"’ (23)

\/_
where | = min(2Q0—n4,20—n,), and in Egs.(22) and
wherea is acomplex variabld\, is a normalization factor, (23) we have included for brevity three different cases:
gnlnz(p), without superscript, corresponds to the trial state in
-

|0), with b[0)=0 and(I[I")= &y, . The upper which all number of bosons are allowed and the inbekes

valuel =20 in the sum of Eq(19) guarantees that the Pauli @ll integer values starting a,,=0; 9, (p) is associated
principle is observed in the boson expansion of the statewith the trial state with even number of bosons, thean
|a). have only  even values larger  than |,

and|l
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=mod(n;,2); g,(%z(p) is related with the trial state with

odd number of bosons, withhaving only odd values larger
thanl ;= mod(n,,2)+1.
The following quantities are also needgb]:

(@|(b")"b"| @) =NGe' ("2~ M)pMmtah (p),  (24)

with

2Q
h,= hMin(nl,nz)(P) = 2

n g
p
<o I'°

(25)
For the exponential approximation we have obtained
<aw|(bT)n1bn2| ax> — ei(”z_nl) Hpnl+ ng.

(26)

Notice that the factor:xgﬁ,‘l)n2 of Eq. (23) have a rather
involved dependence on; and n, while Eq. (26) has a

simpler structure. In this way we have a complete family of
trial states of different complexity, which are available to

compute the expectation value of the Hamiltonian.

PHYSICAL REVIEW GO0 064303

(ax|H|az)=

(2e+ )\1)+)\2005(20)(2— %sz

N1 Np,c0926) 1 4
‘[E+T 20

N N, C0926) 3

29

(202 (29
The expectation value of the Hamiltonigtyrpa (16) be-

tween purely exponential coherent states is given by

(a|HorpA ) =[(2€+ 1)+ 2\, c0426)]1p?.  (30)

This quadratic dependence @nshows thatHgpa is the
harmonic approximation of Hamiltoniafi5). As it is well
known, this approximation is valid as long as the minimum
of the effective potential is located at=0 but it fails in the
presence of a phase transition. This expectation value can be
seen as the result of the trivial substitution of the operators
AT A in Eq. (2) by the complex numberse'?,pe "¢

In a similar way the expectation value of the Hamiltonian
of the renormalized QRPA of Eq18) in the state(19) is

We use a variational procedure to obtain the minimum fordiven by

the real part of the expectation value of the Hamiltonian. It

has the form

Jo2

(alH@)_ 900
Joo

g1 A2
<a|.&> [(264’)\1)9—00+EC0320)

+(20—-1)2

920}
Joo

p? [ﬂ 022

20 |20 ggo

1 931} p?
+Nc0820)| 1— —|—|——
2004 )( 29)900 (2Q)2

pe
(20)*

+>\2cos(20)g—42 (27)
Yoo

Similar results are obtained for the trial state with only even

or odd values of by replacingg;; —g{®’ .

If the same trial stat€l9) is used both for the bra and the

ket, paying no attention to the fact theis not Hermitian in
the bosonic basis as it was done[it6], the following ex-
pectation value of is obtained:

Hla)=| (2e+ xpt+ 20| 2— || 2

(alH|a)y=|(2¢ 1)h—0 A, C0g206) ~ 20/, |P
N1 hy N\,c0920) 1 \hs .
20 hy Q 20/ hg

Apco826) hy

20)2 ho'~ 8

For the exponential trial state we obtain

<a|HRQRPPJa>:

hy h
(2€+\y)i— + 2\, CO% 20)— | p?
ho ho

A1(hi)? 2\;c0926) hihy| ,
Qlh, Q h P
(31

The comparison between Eq28) and(31) shows the exact
and renormalized QRPA results deviate, due to differences in
the coefficient ofp®. In order to complete this section, and
for later use, we show the expressions corresponding to
Fermi transitiong10] between coherent states.

As an example we show the results obtained with Dyson
trial states. The mapping of the opera®r reads

+

,8‘=upvn(AT)D+vpun(A)D=upvan(1—m +Vpunb,
(32
and the matrix elements are written
(@] B~ |a)=NgNo(2Q —1)! pe™"’ggy(p) (Upv,
+e?% n,) (33
and
<ao|:87|a’e> =V NoNe(Z(2 - 1)!Peii a[upvng(zei)(l))
+e?%;pn,g{P(p)]. (34)

In Eq. (34) the operato3~ connects states with even and
odd number of bosons, while in E(J) the trial state con-
tains both even and odd powers of.
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V. RESULTS AND DISCUSSION
30

In the following we will present numerical results which

correspond to the choice of the model parameteos. (10) 25
and (13)]:
20
Q=5 N,=4, N,=6, €=1.0 MeV, x=0. <alHla>
P 15
(35

The quantitiesN, andN,, are the number of active protons 10

and neutrons, respectively, considered in the BCS equations
The particle-particléproton-neutrop strengthk is varied in

the range 6 k<0.2 MeV. Inserting these numerical values 0
in Eq. (13) the parameters in the HamiltonidhO) take the 40F .
simple form\;=—9.6xk,\,=4.8«. (b)
The potential-energy surfacéH) was minimized as a 30f PR
function of the complex order parameter pe'’. In all the <olHla> QRPA — 4 L
cases presented in the previous section the dependence ¢ 207 exp(;tiin[t;:}:. ]
(H) on 6 is given by o Dyson- -
(H)=A(p)+B(p)cog20) (36) 0
and the extremum is determined by w
-10 : : : : i
d ) 40} .
—g(H)=—2B(p)sin(26)=0, (37) © Y
. 30F 4
which implies that at the minimum <alHla > 3
201 v 4
cog26)=*1. (39 : ;
10F
The value which provides a minimum ip is cos(2) .
= —1, which is the one we will use in the rest of this article. 0
The critical behavior of the potential-energy surfaces is ‘%
shown in Fig. 1. We denote the expectation value 10 : s : : : :
(av.|HorpA @) @s “QRPA,” (a..|H|a.,) as “exponential,” ’
(a|H|a) as “Ref.[16],” and (@|H|a) as “Dyson.” Figure FIG. 1. Expectation value of the Hamiltonian as a function of

1[insets(a), (b), and(c)] shows the results fot=0, 0.1 and  the order parametes. The expectation valuéa..|Horpa @..) is

0.2 MeV, respectively. In inseta) of Fig. 1 we haveN;  denoted by “QRPA,”(a..|H|a..) by “exponential,” {a|H|a) by
=\,=0, for which the Hamiltonian is quadratic bY andb.  «Ref [16],” and (a|H|@) by “Dyson.” Insets (a), (b), and (c)

Due to this fact the expectation valuestofrpa andH co-  show the results fox=0, 0.1, and 0.2, respectively.

incide exactly when the exponential approximation is used.

However, the other two approximations take into account thehe QRPA[19]: if the eigenvalue goes to zero so does the
Pauli principle at the level of the wave function and exhibit acoefficient of p? in (a..|Hqrpd @..). When this coefficient
saturation atn,=2(), with the asymptotic valuep—*)  becomes negative the energy becomes purely imaginary.
(a|H|a)=2en,. For k=0.1 MeV, Inset(b) of Fig. 1, the  Saturation properties due to the Pauli principle are shown by
QRPA curve is still a parabola, but with nearly vanishingthe curves quoted as “Rdf16]” and “Dyson” of Fig. 1, for
curvature. The other three curves are very similar up to large values ofp. In the limit p—cc the expectation value
~2.0. Beyond that point the exponential curve has a maxi{H)—4Qe+\;.

mum and then goes steeply to minus infinity. This is a con- Figure 2 shows details around the minimum, in a larger
sequence of the violation of the Pauli principle. In iné®t  scale. It includes the results faia|Hgorpd @), denoted

of Fig. 1 we present the curves of the energy fer “RQRPA.” It is thus clear that any approximation for the
=0.2 MeV. This value lies beyond the phase transitiontrial states, even the simplest exponential one, is able to de-
which is clearly seen in all the expectation values of thetect the phase transition when applied to the exact Hamil-
Dyson boson mapped Hamiltonian of E@5). The three tonian. While the exponential approximation fails for large
curves show a minimum at approximately=1.7 and are values ofp it works fine in the region around the deformed
very close up to this point. After that, the exponential curveminimum. The differences between the Dyson approxima-
rises again and then decreases. The QRPA approximation fion and the other curves beyond the minimum are notice-
unable to go beyond the phase transition point. It justable. On the other side, the expectation value of the renor-
changes the sign of curvature, and the extremal point at malized QRPA Hamiltonian describes a minimum with half
=0 is a maximum. This feature is the so-called collapse othe energy and gi~ 1.1 which is far from the exact value.
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T T
QRPA — !
exponential == !
1} Ref. [16] — ! - 0.5}
!
Dyson: - !
RQRPA -- /
< a)H|a > J |
Hla > ,’ : 1
s <alHla>min exponential —
-1F g e ’ A 150 Ref. [16]+
&, a Dyson —
2k "-'.'.'_-.-.......__h,.".- e B ab Dyson(even powers) -
- 1 1 L 1 1 _2. 1 1 1
30 0.5 1 1.5 2 2.5 3 50 0.05 0.1 0.15 0.2
4 & [MeV]
FIG. 2. Amplified version of Fig. 1, insetc). Results for FIG. 4. The value ofH) at the minimum vs.

(a|Hrorpd @), denoted by “RQRPA” are also included.

The modulus of the order parametegs) (at the minimum ciple do not influence the results significantly. However,
of (H) is shown in Fig. 3, as a function of the residual Pauli principle violation effects dominate for larger values of
interaction parametek. In this plot the appearance of a p- Please also note that the position of the deformed mini-
phase transition is clearly observed. Upde 0.11 MeV the Mumis located ap<2 (see Fig. 1. Thus, the Pauli principle
minimum occurs for a coherent state with=0, i.e., the Can be ignored for situations where the minimum occurs at
boson vacuum. From that point on instabilities dominateValues ofp corresponding to an average occupation number
The use of only an even number of bosons in the cohererigmaller than half the filled shell. -
state washes out the phase transition. For this case it is better Finally, Fig. 6 shows results for transitions induced by the
to analyze the results shown in Fig. 4, where the value of€mi 8~ operator{see Eq(32)]. The results are presented
(H) at the minimum is shown as a function in While for ~ as a function of [inset(a)] and « [inset(b)]. The approxi-
the approximations which include all powerstfthe mini- ~ Mations used are the Dyson boson mapping with all powers
mum lies at zero energy, up to the point where the phastpcluded[see Eq{(21)] and the expansions corresp_ondlng to
transition occurs, using only even powersbdfproduces an €ven and odd powergsee Eqs(22) and (23)]. While the
energy which is nearly constant up to the phase transitiomormalization factordfNy, Ny, Ng—1 whenp—0, the
point. Afterwards it becomes a fast decreasing function.  normalization factoN,— p 1. It explains the difference ob-

The dependence of the expectation value of the number aferved at the right-hand side of insed of Fig. 6, where

proton-neutron pairs as a function pfis shown in Fig. 5. <a|,3—|a>ﬁo whenp—0 While<a0|,8‘|ae)e const. As a
The saturation properties discussed in relation with the enconsequence of the different behavior af,;,, displayed in
ergy, Fig. 1, are also seen here. As the order parameter Fig. 3 for the different approximations considered, we have
increases, the number of bosons approaches its maximgéry distinct beta amplitudes. Having only odd or even pow-
value 22, which is a consequence of Pauli principle. Theers ofb' in the coherent state produces a large beta ampli-
exponential approximation has no truncation in the sum, thugude for all nonzero values of, as displayed in insgb) of

it does not lead to a saturation but rather behaves quadratsig. 6. The inclusion of all powers shows more clearly the
cally as a function op. Notice that for practical purposes all presence of a phase transition. Since the matrix elements of
the approximations yield similar results up ge<2, which  the 8~ operator{see Eqs(33) and(34)] are directly related
implies that for these values the violation of the Pauli prin-to the order parametegr, they acquire nonzero values only

s after the onset of the phase transition.

1.6 exponential —
Ref. [16]--
Dyson —

T T T T
L4f exponential —
12t Ref. [16]-- ]

Dyson —

L2r Dyson(even powers) - --

1.0

|Otmin| <th> 10 Dyson(even powers) A

0.6F
04F

02F .7

0.0 : L iea L

0 0.05 0.1 0.15 0.2
K [MeV]

FIG. 3. The order parametgr=|a| at the minimum of H), as
a function of the residual interaction parameterThe meaning of FIG. 5. The expectation value of the number of proton-neutron
the different approximations used is explained in the text. pairs as a function op.
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0.6~ : : : . . TABLE |. Expectation value of the HamiltoniafH), as a func-
- all powers — tion of the residual interaction parameter
0.5 b
. Fremodt pomers k  (elHla) (a.H|a.) (alH[a) (adH|ay Exact

<am>0 w 0.000 0.0000  0.0000  0.0000  0.0000  0.00000
03f . 0.010 0.0000  0.0000  0.0000  -0.0011 -0.00108
0.020 0.0000  0.0000  0.0000  -0.0045 -0.00454
02r 1 0.030 0.0000  0.0000  0.0000  -0.0107 -0.01075
N P ] 0.040 0.0000  0.0000  0.0000  -0.0201  -0.02015
0.050 0.0000  0.0000  0.0000  -0.0331 -0.03333
0 : . . . : 0.060 0.0000  0.0000  0.0000  -0.0504 -0.05101
0 ! 2 : 4 5 8 0.070 0.0000  0.0000  0.0000 -0.0729 -0.07416
o : 0.080 0.0000  0.0000  0.0000  -0.1014  -0.10403
IR ' ' 0.090 0.0000  0.0000  0.0000  -0.1375 -0.14228
LT even_ozg iz:::i: . 0.100 0.0000  0.0000  0.0000  -0.1827 -0.19114
e 0.110 -0.0044  -0.0001  -0.0001  -0.2392  -0.25353
g 04 ®) 1 0.120 -0.0704  -0.0435  -0.0430  -0.3102  -0.33330
0.130 -0.2033  -0.1567  -0.1533  -0.3996  -0.43510
03r ] 0.140 -0.3903  -0.3264  -0.3167 -0.5133  -0.56408
osl 0150 -0.6220  -0.5427  -0.5225  -0.6592 -0.72487
' 0.160 -0.8908  -0.7977  -0.7627  -0.8466  -0.92023
0al ] 0170 -1.1910  -1.0855  -1.0312  -1.0797  -1.15008
0.180 -1.5178  -1.4011  -1.3235 -1.3515 -1.41173
- 0.190 -1.8675  -1.7407  -1.6356  -1.6523 -1.70100

0 0.05 o1 0.15 0.2
K [MeV]

FIG. 6. The Fermi beta transition amplitude, both as a function
of p [inset(a)] and « [inset(b)]. The curves represent results ob-
tained with the Dyson approximation with all boson powers in-
cluded(solid line) and only even-odd powerslotted line$.

0.200 -2.2368 -2.1010 -1.9646 -1.9748  -2.01345

the procedure, concerning the convergence to results which
are a very good representation of the exact ones. The power
of the expansion to detect phase transitions is also evident
) ] ] . from the previously discussed results. Both features enable
Before closing this section we would like to comment onys to conclude about the suitability of the method to handle
the comparison between exact results and the results of thyme specific features of many body Hamiltonians, like the

above discussed approximations. The equivalence betweerpie related to phase transitions in the space of parameters of
purely fermionic calculation and the one corresponding tahe Hamiltonian.

Dyson boson mapping is fairly obvious, owing to the fact
that the mapping preserves the commutation relations among
the operators entering in the Hamiltonian and in the basis. As
we have shown with the examples given in the previous In the present work we have described the combined ap-
subsections, the use of a variational approach and a nonpeplication of the Dyson boson mapping technique and the use
turbative expansion in the space of parameters yields solwsf a coherent state representation to characterize phase tran-
tions which are functions of the order parameter. The quessitions associated to a schematic Hamiltonian. We have in-
tion which we are addressing now concerns the accuracy dfoduced a complex order parameter and shown that the oc-
the procedure. Table | shows the results of the different apeurrence of phase transitions is linked to sudden changes in
proximations discussed in the text, for the expectation valu¢he value of the order parameter. The sensitivity of the en-
of the Hamiltonian. At first glance the results correspondingergy, with respect to changes in the order parametems

to the exponential trial state and to different terms of theused to determine the validity of the harmonic approximation
Dyson boson mapping compare favorably with the exact re(QRPA) and of its renormalized versiorfrenormalized
sults. However, the exponential set, as well as the set of ReQRPA). In the present example, the number of proton-
[16], gives results which are below the exact ones. This unneutron pairs in vacuum was represented in terms of a com-
physical behaviofi.e., the exact results should always be theplex order parameter. The spontaneous breaking of the
lower bound of any approximatigns clearly seen for large proton-neutron-pair symmetry was induced by particle-
« values. On the other side the results of the Dyson bosoparticle interactions £+ 0) and it manifests itself in the ap-
mapping, particularly for the case of the expansion with everpearance of a zero-energy state. At this point, the analogy
powers of the boson operator, yield very good results asvith the situation found in systems with permanent intrinsic
compared with the exact ones. In this sense this approximateformations can be establishgzD]. We have shown that
tion is equivalent to Hartree-Fock. The results shown inthe renormalized QRPA is unable to describe correctly the
Table | are a good answer to the question of the accuracy @nergy and that the inclusion of the Pauli principle at the

VI. CONCLUSIONS
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