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Compressed nuclei in relativistic Thomas-Fermi approximation
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We approach the gross structure of compressed nuclei by scaling ground-state relativistic Thomas-Fermi
(RTF) densities as well as by performing RTF calculations with a density-dependent constraint as the equiva-
lent for an external pressure. For the NL1 parametrization of the nuclear effective Lagrangian thegine of
stability as well as the proton drip lines are found to be bended to neutron-richer nuclei with increasing
compression. In addition we conclude from calculated critiZ&l ). values that fission barriers are appre-
ciably reduced by the presence of an external presfBf556-28189)04311-3

PACS numbgs): 21.60—n, 21.10.Dr, 21.65:f, 24.75+i

I. INTRODUCTION simple consequence of the fact that both procedures have
still some phenomenological aspects leading to an assimila-
Direct information on nuclear compressional propertiestion of the final numerical results.
near the ground state can be gained from small-amplitude The present investigation aims at the treatment of the
monopole density vibrations of nuclei. This dynamical modeproblem of the structure of nuclei which are compressed
requires an analysis using the microscopic random-phase amore than in small-amplitude breathing modes. Nuclei in
proximation in order to extract a reliable value for the statichigh-energy heavy-ion reactions are expected to be com-
nuclear compression moduld§, (see Ref[1] and refer- pressed up to several times the saturation density. Also for
ences quoted therginOn this basis recent precision data on astrophysics the structure of compressed nuclei is of interest
the nuclear breathing mode led Youngbloeidal. [2] to an  since highly compressed nuclei might occur in supernova
estimate of the nuclear matter incompressibity of 231  explosions and in neutron stdi].
+5 MeV. The theoretical analysis of heavy-ion collisions uses ki-
From the intuitive picture of surface tension compressingnetic equationgsee, e.g., Ref§10]). The equation of state
the interior of a finite nucleus even ground-state properties ofelating nuclear pressure, density, and temperature enters im-
nuclei are influenced by the nuclear matter incompressibilityplicitly as the nuclear structure input. Large compressions
Fits of effective interactions in Hartree-FoclHF) or  can no more be represented Ky alone. Moreover, mesonic
Thomas-Ferm{TF) calculations, and of effective relativistic degrees, and eventually also quark-gluon aspects emerge in
mean-field(RMF) Lagrangians to mainly masses do, how- such a way that the standard nonrelativistic descriptions with
ever, lead to incompressibilities different by a factor of 2.nuclear potentials might not be sufficient.
This might come from the fact that energies, being station- As a basis for our approach we use the RTF approxima-
ary, are not sensitive to changes of the ground-state densitiegon of the o-w-p model [5] with meson fields explicitly
In a recent detailed study Patyk al. [3] compared the mediating nucleon-nucleon interactions. This method implies
quality of the description of masses and radii in various apa tolerable numerical amount describing, however, only
proaches, such as the HF approach, the TF plus Strutinskyross structure of nuclei. The NL1 parametrizat{dd] of
integral method[4], the RMF (see, e.g.,[5]) and the the nuclear Lagrangian with its good representation of com-
macroscopic-microscopic approach@s. What can be in- pression properties around saturation seems to be a good
ferred from Ref[3] is that—independent of whether the ap- starting point although it overestimates neutron-proton asym-
proach is nonrelativistic or relativistic—mass fits can bemetry effects.
made good on a high level, depending mostly on the expen- In a rigorous formalism the external pressure has to be
diture of the fits. However, then there remain deviations ofsimulated by a constraint depending on nuclear densities in
the charge radii from experiment. From Table V in R&]  order to reflect the experimental conditions. In Rgf2] the
they seem to be less the more the incompressibilities resurface structure of compressed semi-infinite nuclear matter
semble the value that was extracted in R&f.from breath- (SINM) was studied starting from schematic energy densities
ing mode energies. as well as from a class of constraints equivalent to external
Furthermore, it was shown in Refs7] and[8] using TF  pressures. Systematic calculations of finite nuclei on the ba-
and relativistic Hartree approaches, respectively, that specifisis of constraints might become rather tedious. Therefore, we
surface properties play a key role in order to come to arfirst point out that the standard compression by scaling the
unambiguous value oK. which was found close to the density can be represented by a special constraint, and then
value of Ref[2]. concentrate some of our subsequent exploratory consider-
Thus, a value foK,, has been reached now that follows ations using this scaling mode. For a class of bulk compres-
uniquely from different nuclear properties and methods. Insions proper mass tables are calculated. Then, for a given
particular it is independent of the theoretical analysis: nonnuclear compression, the line gfstability can be extracted
relativistic as well as relativistic mean-field approaches confrom the calculated nuclei. Also the proton and neutron drip
verge to the same value. This might to some degree be lines can be obtained. We found a tendency of the proton
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drip lines to be shifted in theN,Z) plane to neutron richer (k1) = VK2 4+ M*>
nuclei when pressure is exerted on nuclei. Thus, stable nuclei e'(kr) (). ©

are expected to become fil8t unstable under compression,  From there the RTF energy density can be written as
and beyond a critical compression a nucleus will eventually
decay under proton emission. ErTHI) =0g\Vo(r)p(r)+9g,boo(r)ps(r) +eAg(r)pyr)

In addition, the critical ratio Z%/A).; for the onset of
fission instability is calculated as a function of compression 2 z f (k. 11d%
for several representative modes including the scaling mode. + (2m)% a5pn Jieke (r)e (k.r)
One expects from the reduction of the stabilizing surface ¢
tension and the increase of the Coulomb energy with com- 1., - 1., -
pression that nuclei, stable in the ground state, might fission — 5 [Vo (N +miVo(r)]= 5[boo™(r) + mybog(r)]
under compression, which from intuition seems somewhat
paradox.

1 1 1
~ AN+ 5 Lo+ mEgg()]+ 5b(r)

IIl. THE RELATIVISTIC THOMAS-FERMI 1
APPROXIMATION (RTF) +CH8(r). %)

A. Nuclear ground state

The RTF treatment of the ground state of finite nuclei on  The specific RTF equations for a given nucleus with
the basis of ther-w-p model is well established, see, e.g., Protons,N neutrons, andA=N-+Z nucleons are obtained
[14,5]. Its basic ingredients will be discussed shortly in orderffom the minimization of the energy taking care of fixed
to introduce notations and to have a basis to be referred tBeutron and proton numbers by introducing Lagrange multi-
when the method is generalized for the description of comPli€rs i, and up as the respective chemical potentials:
pressed nuclei in the next subsection. "

We start from the standard mean-field Lagrangian for the 5(47Tf [5RTF(F)—ann(r)—,uppp(r)]rzdr =0. (8
nonlinearo-w-p model[5]: 0

) (1+73) The RTF equations are given by
‘CMFT:E{l Yud*— 9vY°Vo— gp)’Ostoo_ ETAO
d2
1 T o g M| Golr) =~ gepdr) +be(r) +cep(r),
~(M=geho) | 5[(Vo)*+ mig3]— b5 dr
2 3 9
—Ec¢4+ E[(Vv )2+ m2V3]+ E[(Vb )2+ m2b2.] d2 2d
47707 2 T Ten T g TR e (—2+———mzv Vo(N==gup(r), (10
dr2 rdr
+ l(VA )2 ()
2T ? 2d
g2 Trar ™ boo(r) = —9,ps(r), 11
Besides the meson fields,, Vy, andbgy, the photon field '
Ao and its coupling to the proton current is taken into ac- o2
count. — 4+ =
The RTF densitiep,, py, andpg are given in terms of (er r dr Aol epp(r), (12
the Fermi momenta of neutrons and protoh,sn, and ka,
respectively, by guVo(r) +dyboo(r) +eAy(r) +ex (N =pp (r=rp),
(13
1
p(D=pg) +pn(NN=_—[R(N+KE D] () GVo(1) =G, bod 1)+ € (N=py (r=ry), (14)

e;n‘p(r)z \/kﬁnyp(r) + M*z(r). (15)

This set of coupled differential and algebraic equations
has to be solved by an iterative procedure in a self-consistent

— _ _i k3 _k3 3
po(1)=p1) = o) =S IN -KEN], (3

M*(r) way. The rigorous inclusion of the Coulomb field leads to
por)= 3 f " %, (4)  specific numerical problems which we have overcome by
(2m)® a=pn Jk<ke (Ne™(k,r) computing a preliminary solution using Fourier-sine series

for the meson fields as well as for the Coulomb potential.
M*(r)=M —gsdo(r), (5)  The classical turning poin'usnu andrpu are characterized by
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TABLE I. RTF and RH values of binding energi&s, (MeV) 100
and charge radii . (fm) of finite nuclei, calculated for several ef-
fective Lagrangians. All values were obtained by calculations with- RTF - NL1 it
out center-of-mass correction and without pairing. i
RTF RH N 50 | |
NL-Z NL1 NL-SH NL-Z NL1 NL-SH

%Ca E,=332.3 3272 3244 3364 3335 3315 ’

r.=3.55 3.54 3.44 3.50 3.50 3.45 I d B/A=8.5 MeV
%zr  E,=775.8 770.0 7654 7784 7779 775.1

r=4.41 4.39 4.30 4.27 4.26 4.24 0 ! !
208pp E,=1619.5 16105 1609.6 1631.9 1634.2 1636.9 0 50 100 150

=573 568 559 556 551 549 N

FIG. 1. Chart of nuclides with line o stability and contour

lines for some values of the binding energy per nuclBsA ex-
pa(r)=0 (r=ry), py(r)=0 (r=rp). (16)  tracted from RTF ground-state calculations using the parameter set
NL1. The open squares represent stable nuclei.

The results following from this RTF approach and the
more sophisticated relativistic Hartré@H) method[5] dis-  connect nuclei with constant nucleon binding eneByA.
play characteristic differences. In Table | we compare botiThe open squares around the calculated stability line repre-
methods using several standard parametrizations of the effesent stable nuclei.
tive Lagrangiansee Table ). We recover what has already
been pointed out in earlier referendé$]. As a consequence B. Compressed nuclei
of the large RTF surface energies, the RTF binding energies . o .
are some%vhat lower than thosge obtained in RH, w%]ereas?the For uqurm infinite symmetric nuclegr mattdNM) phe-
RTF surface densities with their remarkable long Shouldernomgnologlcal thermodynamics _ defines - tghermody-
and a subsequent rapid falloff lead to surface thicknesses th[’:{fim'(j pressurey, at zero temperature by
are too large compared with the RH values. d [&p)

In a series of investigatio45] the RTF method has been Pin= pzd—<—) ,
extended(RETPF by semiclassicah expansions as well as p

by the Wigner-Kirkwood approach. In these RETF CaICUIa'wherep is the baryon density and is the energy density
tions the surface thickness comes closer to the RH valu

EEiepending on the baryon density. Also, in the case of a field-

sometimes, however, even below it. The RETF ENergieSyepretical description of nuclear matter this expression—
however, do not approximate the RH values appreciably betﬁow with meson fields depending on source densities—

ter than the RTF values. Since for our purposes we have WQefines thgthermodynamig pressure for a uniform system.
calculate several thousands of nuclei we preferred the RTF 514 theoretically, the energy densifyof a system must
me('[)hoth|Lh Its sr]crwa;]llerRr_ll_uFmerlcal_ amou;lg dth . be identified with the quantum-mechanical expectation value
_On the basis of the | equatio(®—(15) an thereal- o he Too component of the energy momentum ten&see,
istic NL1 parametrization we ca}lculated nuclei in a Iargee.g.,[S]). For a homogeneous and isotropic fluid at rest the
band around the line g6 stability in the N,Z) plane of the  g745na) elements of the expectation value of the stress ten-
chart of nuclides. The results of these extensive ground-statg, -~ . equal, and the nondiagonal elements vanish. Thus, a
calculations are plotted in Fig. 1. The solid contour ”neshydrodynamié scalar pressupg,q, can be defined by ' '
ydr

17
p

TABLE Il. RMF parameter sets. Nucleon and meson masses are 13
given in MeV.C?=g?(M/m;,)2, i=s,v,p. Prya= 3 > (Ti). (18)
=1
NL-Z [11] NL1 [11] NL-SH [17]
In the case of the RMF approximation the expectation value
M (MeV) 938.90 938.00 939.00 of the stress tensor can be specified, and for uniform systems
ms (MeV) 488.67 492.25 526.059 the hydrodynamic pressungyq, turns out to be identical
m, (MeV) 780.00 795.36 783.00 with the thermodynamic pressum, (see, e.g.[5]). One
m, (MeV) 763.00 763.00 763.00 refers to thermodynamic consistency of the two pressure
definitions in the RMF case for uniform systems.
c? 373.2479 373.1760 347.533 As first steps to finite systems we have studied in Ref.
c2 241.4392 245.4580 240.997 [16] semi-infinite isospin-symmetric nuclear mat{&NM)
ci 35.6700 37.4175 29.0954 as well as spherically symmetric nuclei treating them in the
b 0.0027922 0.0024578 0.0012747 RTF approximation. Now, docal RTF energy-momentum
C -0.0039347 -0.0034334 -0.0013308 tensorT,, and therefore écal hydrodynamic pressung,q

can be defined following a general proced[&&]. From the
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local energy density a local (thermodynamitpressurepy, — The explicit suffixC in the Lagrange multiplierg ,, andu,,,
may be obtained by generalizing the definitidr), points to the fact that they will depend on the constraint and
therefore be different from the ground-state case, Egs.
(13),(14). The CRTF equations for the fields do not differ
explicitly from the unconstrained case, Eq9)—(12), al-
though via the coupling of all equations the resulting fields
with the variational derivative denoted @y The two local  depend implicitly on the external pressure. The tilde in Egs.
RTF pressures are no more equal in the surface region, and3),(24) indicates that the classical turning points also de-
we gave argumen{sl 6] that the hydrodynamic definition of pend on the constraint.

a local pressure via the stress tensor is the adequate one inin order to find an appropriate functional ansatz for the
order to describe compressional properties. constraint, we are guided by the pocket model for com-
As the equivalent of external fields, that compress finitepressed SINM which was introduced in R¢fL2]. For a
nuclei, constraints depending on the nuclear density wergimple, but realistic energy density it was found that with the

introduced in nonrelativistic approachésee, e.g., Refs. class of polynomial constraints
[12]). Analogously one can add to the RMF energy density
external constraints constructed in such a way that they re- K, p%(2)[p(2) B
flect the specific external influence that leads to nuclear com- Cq,s(P(2)=7g — (9 *~g®)—2q~*+2q]|,
pression. Compression effects can be produced by external Pe | Pe
baryonic as well as mesonic effects. Thus, the external con- (26)
straint could depend on the baryon field as well as on the
meson fields, or even be of gravitational origin in astrophysithe compressed density can be obtained analytically as
cal problems.
In a first approach we assume the constréind depend

5 (&
pm=p2—(—) : (19
op\p

Pc

only on the total baryon densify=p,+ p,. The constrained p(z2)= PRRSETPRL (27
energy density-gr7e Of the nucleus is, therefore, 1+
Ecrtr= ErTE(X X5 PpPn) T C(p). (200  where

x denotes the set of the four fields,, Vo, b, andAq. x’ s [P B

are their derivatives with respect to the radial distanckn = aoQ” =g ool (28)

the bulk part, where thermodynamic and hydrodynamic pres-

sure are equal, the external presspig is ay is the ground-state value of the surface-diffuseness pa-
P rameter.q is the ratiop./pg of the SINM compressed bulk

Pexi= p2_((_p)>_ (21) density p. and the SINM saturation bulk densijyy. The

ap\ p parameteB controls how the variation of the bulk density is

o o _ ) coupled to the variation of the surface density. It was found
The var_latlonal prmmp_le, that the total energy including the;, raf [12] that the compression mode wifl=1 leads to
constraint part be stationary, the minimum of the surface tension. The local pressure av-
" eraged over the surface region turned out to be smallest for
5(47Tf [gRTF(r)+C(p)_Mncpn(r)_l-l«pcpp(r)]rzdr) —0, this antiscaled mode. Thus, here the surface is, compared to
0 other modes, relatively free, and tends to minimize the sur-
(220 face tension. The surface region cannot be totally without
pressure since it is coupled to the compressed bulk part of
‘SINM. The antiscaled modg=1, although lowest in sur-
face energy, is experimentally not distinguished from other
+0yVo(r)+9,boo(r) modes. In heavy-ion collisions, e.g., the surface regions of
the two colliding nuclei are not free, since compression just
_ starts in this region. The monopole nuclear breathing mode
+eA(r)+ GEP(F)IMpC, (r=ry), microscopically{1] as well as in a hydrodynamical approach
(23)  [13] is well described by a scaled density. This correspond-
ing static mode with3=—1/3 was found in Ref[12] to
aC(p) . ~ have a surface tension even larger than for the mode with
“opn 9uVo(r) —gpbodr) + €f (N=pn, (r<ry), B=0 that is described by multiplying the density with a
(24)  constant factor.
In finite nuclei there are compression effects even in the
where ground-state case&’E0) caused by the surface tension and
the Coulomb interaction. The central value of the ground-
dC(p) dC(p) dC(p) state density9S(r), therefore, differs from the SINM satu-
app  dp,  dp ration valuepy. Due to this effect the central compression

then gives the CRTF equations for the constrained system

(0C(p)
pp

(29
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FIG. 3. 90-10 % surface thicknesss function of the central
compression rati@ for someN=Z-nuclei with Coulomb interac-
tion switched off. For comparison the results from symmetric SINM
calculations are shown, too.

FIG. 2. The central compression ratias function of the com-
pression parametet and the surface modg. The results were
obtained by CRTF compression calculations for the nucf¥as
using the parameter set NL1.

ratio cannot be fixed in advance in compression calculations The influence of the compression modeon the surface

for finite nuclei. Therefore, we adjust expressi@6) in the region of finite nuclei is illustrated in Fig. 3. For sevehil
following way: =Z nuclei with Coulomb interaction switched off, the 90

—10 % surface thicknedsis displayed as a function of the
K., p2(r)[ p(r) s 2 0 central compression ratig. Experiments are _expected to
18 W m K~ P=K%) =2k F+2k]|. compress the bulk as well as the surface region. Thus, real-
istic constraints(29) seem to be those that lead to surface
(29 thicknesses decreasing with increasing
A further possible approach to compressed nuclei is ob-
The parametek now controls the magnitude of the central tained from directly distorting the ground-state density. We
compression, withk=1 corresponding to the ground state make the following two-parametric ansatz for neutron and
(C=0). The parameteB specifies the surface compression. proton densities:
For fixed values ok andp the set of CRTF equations for
compressed nuclei, i.e., Eq€®)—(12), (23),(24), and (29 ' gl T
must now be solved iteratively. In each iteration step the PodTi0:B)=0pnp e/ (31)
Lagrange multipliersu,, and w ,, have to be adjusted in a

such way that neutron and proton numbers are kept fixedThe compression ratig, assumed to be equal for neutron

CR(p(r)=

The resulting compression ratio in the nuclear bulk, and proton densities, is given by
p(0;x,B) pnp0)

a=a(k,B)="—"—, (30) a= % (32
p?°(0) Prp(0)

can be determined after self-consistency has been reached?ecalculating neutron and proton numbers,

The SINM limit of the set of CRTF equations is obtained
by neglecting the curvature terms in E4§)—(11) and by n_4 f“ - 2dr=4 (3/;+1)J'o° 9S(r 1 2dr
replacingp(0) by the SINM bulk density. in the constraint "o p(r:a.A) ™ o () '

(29). Together with Eqs(23),(24) these equations have to be (33
solved for a given value of. The bulk density.. is obtained

from the balance between the nuclear bulk pressure and the _ @p+1) |~ gsg 12400

external pressurpe, given by Eq.(21). Z=4mq 0 pp (ri)ri=dr’, (34

In Fig. 2 the dependence of the central compression ratio
g, Eq. (30), on the parametek is shown for several com- one sees that they are only conserved in the scaling gase

pression modeg for the nucleus*®Ca. An approximate lin- = —1/3. The compressed densitil) are now set into the
ear relation betweeg andx can be seen for all values @f field equationg9)—(12) as source terms, and then the set of
g nearly equalsc in the case of3=—1. RTF equations can be solved in a straightforward way. The
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-8.10 — — modesg for the nuclei *°Ca and?°Ph. We used the NL1
Yca " parametrization of the effective Lagrangian. The energies per
nucleon are plotted as function of the central compression
i ratio q [see Eqg.(30)]. In addition also the energies for the
case of scaled densities are given in both figures by solid
continuous lines. They are reproduced quite well by the
iy CRTF curves with parametgg~ —1 in the constraint29).

Due to the influence of Coulomb effects as well as due to
compression from the surface tension, finite compressed nu-
] clei do not show the clearly arranged behavior of the surface
energy of SINM obtained in Ref12]. From Figs. 4 and 5
one can read off, e.g., that the compression mode lowest in
. energy is given by8=0 in the case of compressefiCa,
whereas for the largé®®Pb nucleus thegd=1 mode is fa-
vored energetically. This lowest mode corresponds to the
-8-2%'70 : o.éo : o.|90 : 1"00 1"10 1"20 130 antlscaled_ mode in the pocket model of REE2] which

q cou!d be interpreted as the mode wherg the external con-
straint leaves the surface as free as possible.

FIG. 4. Energy per particle of the nucled®a as function of For a study of the energy behavior under small compres-
the central compression ratiq for several CRTF compression sion one can expand the energyA per nucleon of a finite
modesB. For comparison the scaling resultsold solid liné are  nucleus around the ground-state central densi(0):

shown, too. ,
1 (pc—pg-5<0>) .\

-8.12 -

-8.14 -

E/A [MeV]

-8.16 -

-8.18 -

E
proper CRTF equation&3),(24) could be used conversely (;)(Pc):(z>[l’g's(0)]+§3KA 95(0)
to determine the constraigtthat is responsible for the scal- p (35)
ing of nuclear densities.
The finite nucleus incompressibility
C. Energies of compressed nuclei

L *(EIA)
The intrinsic pure nuclear energy of a compressed nucleus K.=9| p2 (36)
follows by integration after inserting the compressed densi- A= Pe ap§

ties and respective mesonic and electromagnetic fields into pc=p9°(0)

the expressior(7) for the energy densit . We have . .
xp ) 9y ¥ r1F i offan be extracted numerically from the energy calculations. It

obviously depends on the compression mode given by the
parametei3. From expressioii35) those modes are seen to
ﬁ_}e energetically favored that also minimize the incompress-

the basis of the external constrai29) with its two param-
etersk and B that allow us to compress the nuclear bulk

accompanied by a special surface density change. As e
P y P y g ility Ka. The values oK, obtained for modeN=Z nu-

amples for our CRTF results we present Figs. 4 and 5 wher
P b g lei with the Coulomb interaction switched off are shown in

the energies per nucleon are plotted for several surfac&ig 6. One recovers from Fig. 6 the complicated energy

behavior of compressed nuclei as a function of the mass
numberA and the compression mode which was found also
from Figs. 4 and 5. The cagé= —2 (open circleg with K,
larger than the INM value&., (solid square on the vertical
axis of Fig. § is traced back to a surface tension which
increases with compression. This unexpected behavior also
showed up in the pocket model for SINM matter of Ref.
[12]. For comparison the scaling case is also shown in Fig. 6.
One sees in particular how well thée, values in the limit of
large mass number& approach theK., value for the NL1
Lagrangian calculated independently.

-7.66 ‘ T
-7.68 -

-7.70 -

E/A [MeV]

-7.72

-7.74 - 4 D. Stability properties of compressed nuclei

One can now compare the energies of a series of com-
pressed nuclei following from a given external constraint
‘ (29), and from there obtain information on their stability

properties under the respective compression. Instability
shows up by a final configuration—following, e.g., afier
FIG. 5. Same as Fig. 4 for the nucletféPb. decay or particle evaporation or also after fission—that is

0.70 0.80 0.90 1.00 1.10 1.20 1.30

-7.76

q
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450.0 . . 100 : . : .
¢INM Stability lines
O—O0p=-2
0—ap=—1
—0 B=—1/3
~—AP=0
350.0 b2 1 N 50 ]
®—®scaling — g=1
- g=1.25
--- g=15
—— g=1.75
— q=2
; 0 1 1
D
S, 2500 r T 0 50 100 150
v N
)¢ FIG. 7. Lines of 8 stability of compressed nuclei for several
values of the central compression ratjoThe stability lines were
extracted from RTF scaling calculations for the parameter set NL1.
150.0 - 1 .
pressed nucleus. The subsequent increase of energy by the
effect of the neutron-proton asymmetry clearly helps to stop
these decays.
The proton drip line as upper boundary and the stability
line as lower boundary of a shadowed area in thieZ)
50.0 : ' ! i in Fi i i
D 50 0.10 0.20 0.30 0.40 plane are displayed in Fig. 8 for several compression ratios

A up tog=2. It can be deduced from this figure that nuclei,
originally stable under vanishing pressure, are getting into

FIG. 6. Finite nucleus incompressibilitg, for N=Z nuclei,  g* instability regions after compression, and eventually after
with Coulomb interaction switched off, as a function &f ¥® for a critical compression they become proton unstable emitting
seyeral surface compression mog#sThe symbol on the vertical 5 proton in order to reduce the Coulomb repulsive energy. In
axis represents the INM valu¢. . contrast to the proton drip lines the neutron drip lines were

found to be shifted less under nuclear compression, and into
lower in energy under the same external constraint. With thishe opposite direction.

assumption the line oB stability as well as the proton and
neutron drip lines are defined in a way analogous to the E. Fission of compressed nuclei
standard case of uncompressed nuclei in vacuo. Thus, the
line of B stability for nuclei compressed according to the
ratio g, Eqg. (30), is given by

In the picture based on the liquid drop model and on mass
formulas the height of the potential energy barrier for the
fission process depends on the interplay between nuclear sur-

IB(A,1:q,8) face energy and Coulomb energy. Both are influenced by
— =0, (37) compression. Thus, also the fission process must depend on
Aq.8 compression. The ratio of the changes of the Coulomb and
the surface energy for a quadrupole deformation defines the
wherel denotes the relative neutron excess fissility parameter

l=— . (38) 190 T

Also the drip lines are obtained from the elementary formu-

las well known from textbookgsee, e.g.[18]). We have 50 -
extracted the stability lines for several compression ragios

from the energies calculated for scaled densities where the

full self-consistency problem of the CRTF equatiof23)

and (24) can be avoided. In Fig. 7 we display the stability

lines calculated fog parameters ranging from 1 up to 2. The 0
lines are shifted in theN,Z) plane towards nuclei with in-

creasing neutron excess. Therefore, nuclei are predicted to
becomeB™ unstable under compression. The decay of a pro- FIG. 8. Regions between the proton drip liwwper boundany
ton into a neutron obviously leads to a configuration moreand line of 8 stability (lower boundary of compressed nuclei for
stable by lowering the Coulomb energy of the original com-several values of the central compression rgtio

0 50 100 150
N
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1.2 — — ‘ ‘ using nonrelativistic descriptions of the plane surface in
R SINM. The CRTF results resemble qualitatively the nonrel-
] ativistic case. In particular the stationarity of the surface ten-
sion at saturation density, irrespective of the surface mode, is
reproduced corroborating again a theorem found by Myers
and Swiatecki in Ref{19]. In the following quantitative in-
vestigations we use the results obtained doin the scaling
N mode and also for the CRTF mod@s=0 and B=1 (see
o upper part of Fig. 8 For these modes the surface tension is
: maximum at saturation density, and is therefore reduced with
\ e increasing compression. With these resultssowe evaluate
(Z?IA) it EQ.(39). In Fig. 9 (lower par} we have plotted the
critical ratio (Z%/A); as a function of the compression ratio
g. The vanishing of the surface tension is reflected in a van-

o
©®

o [MeV/Am’]
o o o
[N N o

©
o

—— scaling mode
R ishing of this ratio at abouj=1.6. One concludes from the
0.0 1 behavior of Z%/A).; that compression makes the nucleus
5 unstable with respect to fission. The stabilizing surface ten-
Z sion is reduced and the destabilizing Coulomb energy is in-
N U .. . . .
~ 250 | | creased. Both effects reduce the fission barrier with increas-
ing compression which at first sight might seem to be
N somewhat of a paradox.
0.0 . | . | . | T I1. OUTLOOK
0.75 1.00 1.25 1.50 1.75 _ .
a=p/p, We have introduced into the standard RTF procedure a

constraint that is able to describe an external pressure exerted
FIG. 9. The critical Va'quZ/A)cm and the surface tensianas  on nuclei. From the calculated energies of compressed nuclei
functions of the compression ratipobtained from SINM scaling as  conclusions were drawn about the stability properties of nu-

well as CRTF calculations using the parameter set NL1. clei under pressure.
Nuclear shell effects cannot be taken into account by this
Z2IA 40mrr§ CRTF approach. Therefore, it is a challenge to use the RH
X= ZIn (Z7TA) erie= T3 (39  method with constraint in order to study shell effects in nu-
crit

clei under compression. In particular the change of magic
numbers is of interest. One could get, e.g., some insight

wherer . is the nuclear radius parameter following from the . . ) . .
whether special exotic nuclei—becoming magic under

bulk nuclear density, and is the nuclear surface tension. . iaht b duced i ’
For a critical value ofZ?/A corresponding tox=1 the compression—rmight beé produced in a reaction.

spherical shape becomes unstable with respect to quadrupole.':urtr?er questions relﬂted t_(:hcompressbed TUCIE.' tdhat re-
deformations, indicating the onset of spontaneous fissio uire, however, approaches with more subnucieonic degrees

For nuclei in vacuo this critical value is around?(A) i of freedom concern the onset of mesonic and even quark-
-50 gluonic condensation.

Now, if nuclei are compressed the parameteas well as
o in expression(39) change. The change of does not only
depend on the bulk compression ratjdout also on the sur- We would like to thank P.-G. Reinhard for supplying us
face compression mode. The dependence of the surface tewith his relativistic Hartree code and S. Typel for useful
sion on the compression has been calculated in R&®.  discussions.
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