New β -delayed proton precursors in the rare-earth region near the proton drip line

S.-W. Xu,¹ Z.-K. Li,¹ Y.-X. Xie,¹ Q.-Y. Pan,¹ Y. Yu,¹ J. Adam,² C.-F. Wang,¹ J.-P. Xing,¹ Q.-Y. Hu,¹ S.-H. Li,¹ H.-Y. Chen,¹ T.-M. Zhang,¹ G.-M. Jin,¹ Y.-X. Luo,¹ Yu. Penionzhkevich,² and Yu. Gangrsky²

¹Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China

²Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia

(Received 5 April 1999; published 2 November 1999)

The β -delayed proton precursors ¹²⁵Nd, ¹²⁸Pm, ¹²⁹Sm, ¹³⁷Gd, and ¹³⁹Dy near the proton drip line were produced by the irradiation of ⁹²Mo, ⁹⁶Ru, and ¹⁰⁶Cd with an ³⁶Ar beam, and definitely identified for the first time using proton-gamma coincidence in combination with a He-jet tape transport system. Their half-lives were determined to be 0.60(15) s, 1.0(3) s, 0.55(10) s, 2.2(2) s, and 0.6(2) s, respectively. The measured energy spectra of β -delayed protons and estimated proton branching ratios to the final states in "daughter" nuclei were fitted by a statistical model calculation, and then the spins and parities of ¹²⁵Nd, ¹²⁹Sm, ¹³⁷Gd, and ¹³⁹Dy were preliminarily assigned as $5/2^{\pm}$, $1/2^{+}$ (or $3/2^{+}$), $7/2^{\pm}$, and $7/2^{+}$, respectively. The agreement between the spin-parity assignments and the predicted Nilsson diagrams indirectly indicates that the ground states of ¹²⁵Nd, ¹²⁹Sm, ¹³⁷Gd, and ¹³⁹Dy are highly deformed with $\beta_2 \sim 0.3$. [S0556-2813(99)50112-X]

PACS number(s): 23.40.Hc, 21.10.Tg, 25.70.Gh, 27.60.+j

Synthesis of new nuclides near the drip line and the study of their exotic decay properties are at the frontier of nuclear physics today. The nuclei along the proton drip line in the rare-earth region speculated by Hofmann [1] or predicted by Möller *et al.* [2] are highly deformed ($\beta_2 > 0.28$) [3]. Therefore, the search for the proton radioactivity from the highly deformed ground state in the rare-earth region has been investigated by many nuclear physicists [4-7] for a long period of time. The search for the proton emission from excited states, i.e., the β -delayed proton (βp) decay in the region is closely related to the study of the proton radioactivity. It provides fundamental information on both the ground-state properties and the production mechanism for the nuclei near the proton drip line. One of the difficulties encountered in the study of continuous-energy βp from the decay of a precursor near the drip line in the rare-earth region is caused by the isobaric contaminations. In order to identify the precursor unambiguously, additional measurements, such as "x-p" coincidence, i.e., the coincidence between the characteristic x rays of proton emitter and the βp , have to be carried out following a mass separation. However, due to the low electron capture (EC) branching ratio, the "x-p" coincidence measurements will reduce the counting rate by one or two orders of magnitude. This fact severely constrains the study of an exotic decay channel with a production cross section as low as 100 nb. In this work we used a different technique to identify the precursors. In the EC/β^+ decay of an even (Z)-odd (N) βp precursor, most of the excited-state decays in the even (Z-2)-even (N+1) daughters of each odd (Z(N+1) proton "emitter" result in the transition between the lowest-energy 2^+ state and 0^+ ground state in the "daughter" nucleus. Therefore, the coincidence between βp and the $2^+ \rightarrow 0^+ \gamma$ -ray transition specific for a particular "daughter" nucleus, a " $p-\gamma$ " coincidence, can be used to identify the mother, the βp precursor. This method can also be used to identify some of the odd (Z)-odd (N) precursors. In addition, the transportation efficiency of a He-jet tape transport system (HJTTS) for the rare-earth nuclei is higher than the overall efficiency of an isotope separator on line (ISOL), and the sum of the proton branching ratios $(b_{\beta p})$ to the excited states followed by the $2^+ \rightarrow 0^+ \gamma$ -ray transition in the "daughter" nucleus is larger than the EC branching ratio followed by βp emission. Generally speaking, using the " $p-\gamma$ " coincidence in combination with a HJTTS system, the efficiency of measuring the βp specific for a particular precursor in the region can be increased by a factor of 50 in comparison with that using the "x-p" coincidence in combination with an ISOL facility. The present paper describes the syntheses and definite identifications of the βp precursors ¹²⁵Nd, ¹²⁸Pm, ¹²⁹Sm, ¹³⁷Gd, and ¹³⁹Dy for the first time, as well as the preliminary studies of their βp decays by means of the HJTTS+" $(p-\gamma)$ " coincidence.

The experiments were carried out at the National Laboratory of Heavy-Ion Accelerator in Lanzhou (NLHIAL), China. A 220-MeV 36 Ar¹¹⁺ beam from the sector-focused cyclotron of NLHIAL entered a target chamber filled with 1 atm of helium, passing through a 1.94 mg/cm² Havar window and a degrader before bombarding different enriched targets: ⁹²Mo(2.0 mg/cm², 97%), ⁹⁶Ru $(2.8 \text{ mg/cm}^2, 94\%)$, and ¹⁰⁶Cd $(2.5 \text{ mg/cm}^2, 75\%)$. The beam intensity was about 0.5 $e \mu A$. The reaction products stopped in the helium gas were swept through a 6-m-long, 2-mm-diameter plastic capillary to the movable tape in a collection chamber. PbCl₂ was used as an aerosol with a working temperature of about 430 °C. The radioactivity deposited on the tape was transported periodically to a shielded location for $p - \gamma_1(x) - \gamma_2(x) - t$ coincidence measurements. Two 570 mm² \times 350 μ m totally depleted silicon surface barrier detectors were used for proton measurements, and located on the opposite two sides of the movable tape. Behind each silicon detector there was a coaxial HpGe (GMX type) detector for $\gamma(x)$ measurements.

(1) ¹²⁵Nd. The measured $\gamma(x)$ -ray spectrum gated on 2.5–5.5 MeV protons in the ${}^{36}Ar + {}^{92}Mo$ reaction is shown in Fig. 1. All of the intense γ lines in Fig. 1 were assigned to their βp precursors except the x rays and 511-keV γ ray. Among them, the 142- and 306-keV γ lines were assigned to

FIG. 1. The measured $\gamma(x)$ spectrum in coincidence with 2.5–5.5 MeV protons in the ³⁶Ar + ⁹²Mo reaction. The intense peaks are labeled with their energies in keV and their βp precursors.

PHYSICAL REVIEW C 60 061302

the $2^+ \rightarrow 0^+$ and $4^+ \rightarrow 2^+ \gamma$ transitions in the "daughter" ¹²⁴Ce [8] of the βp precursor ¹²⁵Nd. In the $\gamma(x)$ -ray spectrum gated on both 2.5–6.0 MeV protons and the 142-keV γ ray, only one peak with six events was found with an energy less than 600 keV, and located at 35.8 keV, the energy of the Pr-K_{α} x ray. It implies that the 142-keV γ -ray transition is related to the decay of an EC/ β^+ -emitting neodymium isotope. The decay curve of the 142-keV γ line coincident with 2.5–5.5 MeV protons is shown in the inset of Fig. 2(a), from which the half-life of the new nuclide

¹²⁵Nd was extracted to be 0.60 ± 0.15 s. In Fig. 1 the intensities of 142- and 306-keV γ lines, as well as the background level at 444 keV, which corresponds to the $6^+ \rightarrow 4^+ \gamma$ transition in ¹²⁴Ce [8], were used to estimate the relative $b_{\beta p}$ to different final states in ¹²⁴Ce: $100(2^+)$, $26\pm6(4^+)$, and $<3(6^+)$. The proton energy spectrum gated on the 142-keV γ line is shown in Fig. 2(a), which is the spectrum of the βp from the ¹²⁵Nd decay followed by the 142-keV transition in ¹²⁴Ce. The component with the energies lower than 2 MeV in the spectrum is attributed to the pileup of positrons in the

FIG. 2. The observed energy spectra of βp gated by different characteristic gamma rays corresponding to five different precursors. The energies of the characteristic gamma rays for the precursors ¹²⁵Nd, ¹²⁸Pm, ¹²⁹Sm, ¹³⁷Gd, and ¹³⁹Dy are 142, 326.5, 134, 255, and 221 keV, respectively. The solid and dashed curves were calculated using the statistical model (see text). The insets show the time spectra of the characteristic gamma rays gated on 2.5–5.5 MeV protons.

PHYSICAL REVIEW C 60 061302

	Paration	Bombarding		Theor. Half-life (s)					
New			a a	Expt.	Gross	Microscopic theory [17]			
nuclide	channel	(MeV)	(nb)	(s)	theory [15,16]	Hilf	Groote	Möller	Möller [2]
¹²⁵ Nd	³⁶ Ar+ ⁹² Mo	169	230	0.60 ± 0.15	0.67	0.79	0.78	0.58	0.42
¹²⁸ Pm	$^{36}Ar + ^{96}Ru$	174	50	1.0 ± 0.3	0.71	1.8	2.5	1.5	0.40
¹²⁹ Sm	$^{36}Ar + ^{96}Ru$	165	70	0.55 ± 0.10	0.58	0.33	0.62		0.20
¹³⁷ Gd	³⁶ Ar+ ¹⁰⁶ Cd	176	450	2.2 ± 0.2	1-3				2.0
¹³⁹ Dy	$^{36}Ar + ^{106}Cd$	176	160	0.6 ± 0.2	0.61	0.57	0.65	0.47	0.50

TABLE I. The production-reaction channels, the partial reaction cross sections via βp decay ($\sigma_{\beta p}$), and the half-lives of ¹²⁵Nd, ¹²⁸Pm, ¹²⁹Sm, ¹³⁷Gd, and ¹³⁹Dy.

^aThe uncertainty is a factor of 2.

silicon detector. On the other hand, the energy spectrum of βp and the $b_{\beta p}$ to different final states in ¹²⁴Ce were calculated with a revised statistical model [9]. The structureless β -strength function predicted by the gross theory and the energy-level density based on the back-shifted Fermi gas assumption were used in the model calculation. The spins and parities of ¹²⁵Nd most consistent with the experimental results are 5/2[±], which give the final state $b_{\beta p}$ of 67.0 and 65.8 % (2⁺), 21.4 and 16.3 % (4⁺), as well as 0.5 and 0.2 % (6⁺), and reproduce the experimental energy spectrum of βp reasonably well [Fig. 2(a)].

(2) ¹²⁸Pm. A 236.5-keV γ line, which corresponds to the γ -ray transition between two low-lying states of ¹²⁷Pr [10], appeared in the γ (x)-ray spectrum gated on 2.5–5.5 MeV protons in the ³⁶Ar+⁹⁶Ru reaction. In addition, a clear few-count peak was found at the energy of Nd-K_{α} x ray in the triple-coincident γ (x)-ray spectrum gated on both 2.5- to 5.5-MeV protons and the 236.5-keV γ line. We assigned the 236.5-keV transition to the "daughter" nucleus ¹²⁷Pr produced from the initial (EC/ β^+) decay of ¹²⁸Pm after proton emission. The decay curve of the 236.5-keV γ line in the *p*- γ coincidence spectrum and the proton energy spectrum gated on the 236.5-keV γ line are shown in Fig. 2(b). From the decay curve the half-life of ¹²⁸Pm was extracted to be 1.0±0.3 s.

(3) ¹²⁹Sm. A 134-keV γ line found in the protoncoincident $\gamma(x)$ -ray spectrum in the ³⁶Ar+⁹⁶Ru reaction was assigned to the γ -ray transition between the lowest-energy 2⁺ state and 0⁺ ground state in the ''daughter'' nucleus ¹²⁸Nd [11] of the βp precursor ¹²⁹Sm. The relative $b_{\beta p}$ to different final states in ¹²⁸Nd were estimated to be 100 (2⁺) and <10 (4⁺). From the decay curve of the protoncoincident 134-keV γ line [the inset of Fig. 2(c)], the halflife of ¹²⁹Sm decay was extracted to be 0.55±0.10 s. The spin and parity of ¹²⁹Sm most consistent with the experimental results is 1/2⁺ or 3/2⁺, which yield $b_{\beta p}$ of 54.8% (2⁺) and 2.5% (4⁺) or 64.4% (2⁺) and 4.7% (4⁺), respectively. These assignments reproduce the experimental energy spectrum of βp equally well [Fig. 2(c)].

(4) 137 Gd. The γ lines with the energies of 255 and 431 keV found in the proton-coincident $\gamma(x)$ -ray spectrum in the 36 Ar+ 106 Cd reaction were assigned to the $2^+ \rightarrow 0^+$ and

 $4^+ \rightarrow 2^+ \gamma$ transitions in the "daughter" nucleus ¹³⁶Sm [12] of the precursor ¹³⁷Gd. From the decay curve of the protoncoincident 255-keV γ line (the inset of Fig. 2(d)], the halflife of the 137 Gd decay was extracted to be 2.2±0.2 s. In 1983 the half-life and the energy spectrum of the βp of ¹³⁷Gd were measured by Nitschke et al. [13] who, however, pointed out that their experimental half-life 7 ± 3 s had to be redetermined in a later experiment. The measured half-life of ¹³⁷Gd in our experiment is in agreement with the theoretical predictions (see Table I) and with the experimental-value systematics, but is different from Nitschke's result within the experimental errors. We guess that the energy spectrum of βp observed by Nitschke *et al.* is mixed with a long-life component from another proton emitter. The relative $b_{\beta p}$ to different final states in 136 Sm were estimated to be $100(2^+)$, $51\pm 5(4^+)$, and $< 5(6^+)$. The spins and parities of ¹³⁷Gd most consistent with the experimental results are $7/2^{\pm}$, which give the final-state $b_{\beta p}$ of 58.0 and 63.3 % (2^+) , 26.8 and 28.7 % (4^+) , as well as 0.8 and 1.2 % (6^+) , and reproduce the experimental energy spectrum of βp reasonably well [Fig. 2(d)].

(5) ¹³⁹Dy. A clear 221-keV γ peak and a tiny 384-keV γ peak in the proton-coincident $\gamma(x)$ -ray spectrum in the ³⁶Ar + ¹⁰⁶Cd reaction were assigned to the 2⁺ \rightarrow 0⁺ and 4⁺ \rightarrow 2⁺ γ transitions in the "daughter" nucleus ¹³⁸Gd [14] of the βp precursor ¹³⁹Dy. The relative $b_{\beta p}$ to different final states in ¹³⁸Gd were estimated to be 100 (2⁺) and 46 ±10 (4⁺). From the decay curve of the proton-coincident 221-keV γ line [the inset of Fig. 2(e)], the half-life of ¹³⁹Dy decay was extracted to be 0.6±0.2 s. The spin and parity of ¹³⁹Dy most consistent with the experimental results is 7/2⁺, which gives final-state $b_{\beta p}$ of 56.3% (2⁺) and 30.9% (4⁺), and reproduces the experimental energy spectrum of βp reasonably well [Fig. 2(e)].

The five new nuclides and their production-reaction channels, partial reaction cross sections of βp and half-lives, including the experimental values and theoretical predictions, are listed in Table I. When we estimated the partial cross sections of βp in column 4 of Table I, the final-state $b_{\beta p}$ of "daughter" nuclei in ¹²⁵Nd (5/2⁺), ¹²⁹Sm (1/2⁺), ¹³⁷Gd (7/2⁺), and ¹³⁹Dy (7/2⁺) decays were taken from the re-

					Spin and parity						
					Predictions						
Nulcide	$E_p(MeV)$	$\overline{E}_p(\text{MeV})$	ε ₂ [3]	Expt.	Arseniev [18]	Bengtsson [19]	Audi [20]	Möller [2]			
¹²⁵ Nd	2.2-6.2	3.7	0.300	$5/2^{\pm}$	5/2+	5/2+		5/2+			
¹²⁸ Pm	2.4 - 5.5	3.8	0.300								
¹²⁹ Sm	2.2 - 5.5	3.7	0.300	$1/2^+, 3/2^+$	$1/2^{+}$	$1/2^{+}$		$1/2^{+}$			
¹³⁷ Gd	2.3 - 6.5	3.9	0.267	$7/2^{\pm}$	$7/2^{+}$	$7/2^+, 1/2^-$	$7/2^{+}$	$9/2^{-}$			
¹³⁹ Dy	2.3-6.0	3.8	0.258	7/2+	7/2+	7/2+	7/2+	9/2-			

TABLE II. The observed βp energy regions (\bar{E}_p) and centroids of the βp energy spectra, the groundstate quadruple deformations (ε_2), and the spins and parities of ¹²⁵Nd, ¹²⁸Pm, ¹²⁹Sm, ¹³⁷Gd, and ¹³⁹Dy.

vised statistical model calculation, and the total $b_{\beta p}$ followed by the 236.5-keV γ ray in ¹²⁸Pm decay was assumed to be 50%. All of the estimated partial cross sections of βp emissions for the five reaction channels listed in Table I are smaller than 500 nb, which indicate the importance of the measurement efficiency. On the whole, the half-lives predicted by Möller *et al.* [2] are slightly shorter than the experimental results.

The information related to the βp and the assignments to the spins and parities of the five precursors, including preliminary experimental results and theoretical predictions is summarized in Table II. The spins and parities in columns 6 and 7 of Table II were taken from the Nilsson diagrams given by Arseniev et al. [18] and Bengtsson et al. [19], respectively, according to the quadruple deformations (ε_2) in column 4 predicted by the macroscopic-microscopic mass model of Möller et al. [3]. The preliminary experimental assignments of spins and parities for ¹²⁵Nd and ¹²⁹Sm are consistent with all theoretical predictions. The experimental assignments $7/2^+$ for both 137 Gd and 139 Dy are also consistent with the predicted Nilsson diagrams in Refs. [18,19] and the predictions derived from systematic trends by Audi et al. [20]. However, the experimental final-state $b_{\beta p}$ disagree with the predictions of $9/2^-$ for both ^{137}Gd and ¹³⁹Dy in Ref. [2]. The theoretical determination of the ground-state spin and parity for an even(*Z*)-odd(*N*) nucleus by means of the orbital occupied by the last neutron in the Nilsson diagram strongly depends on the nuclear deformation. Therefore, the consistency between the experimental spin-parity assignments and the predicted Nilsson diagrams in Refs. [18,19] is an indirect indication that the four nuclides ¹²⁵Nd, ¹²⁹Sm, ¹³⁷Gd, and ¹³⁹Dy are highly deformed with $\beta_2 \sim 0.3$. If $\beta_2 = 0.3$ and then a lower Coulomb barrier is taken into account, the calculated centroid of the proton energy spectrum (\overline{E}_p) by the statistical model shifts to the low-energy side by 0.1–0.2 MeV.

In principle, the proposed identification method can be used to study any β -delayed proton decay. Extending the technique into a different mass region is underway.

We are indebted to Academician of CAS Wei Baowen, Director of NLHIAL for his enthusiastic encouragement and help. This work was supported by the National Natural Science Foundation of China (Grant Nos. 19775056 and 19475055), the Chinese Academy of Sciences and the International Cooperative Program between the National Natural Science Foundation of China and the Russian Foundation of Basic Science.

- S. Hofmann, Proceedings of the International Conference on the Future of Nuclear Spectroscopy, Crete, Greece, 1993 (Institute of Nuclear Physics, National Center for Scientific Research Demokritos, 153 10 Aghia Paraskevi, Athens, Greece, 1993), p. 255.
- [2] P. Möller, J.R. Nix, and K.-L. Kratz, At. Data Nucl. Data Tables 66, 131 (1997).
- [3] P. Möller, J.R. Nix, W.D. Myers, and W.J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995).
- [4] P.O. Larsson, T. Batisch, R. Kirchner, O. Klepper, W. Kurcewicz, E. Roeckl, D. Schardt, W.F. Feix, G. Nyman, and P. Tidemand-Petersson, Z. Phys. A **314**, 9 (1983).
- [5] K. Livingston, P.J. Woods, N.J. Davis, A.N. James, R.D. Page, P.J. Sellin, and A.C. Shotter, Phys. Rev. C 48, 3113 (1993).
- [6] Third IN2P3-RIKEN Symposium on Heavy Ion Collisions, Shinrin-Koen, Saitama, Japan, 1994, edited by R. Beraud, A.

Emsallem, J. Ärje, A. Astier, J. Äystö, D. Rarneoud, R. Duffait, J. Genevey, A. Gizon, P. Jauho, Yu. A. Lazarev, Y. Le Coz, N. Redon, and Y. V. Shirokovsky (World Scientific, Singapore, 1995), p. 102; Workshop IGISOL-6, Dubna, Russia, 1997, p. 59.

- [7] C.N. Davids, P.J. Woods, D. Seweryniak, A.A. Sonzogni, J.C. Batchelder, C.R. Bingham, T. Davinson, D.J. Henderson, R.J. Irvine, G.L. Poli, J. Unsitalo, and W.B. Walters, Phys. Rev. Lett. 80, 1849 (1998).
- [8] H. Iimura, J. Katakura, K. Kitao, and T. Tamura, Nucl. Data Sheets 80, 895 (1997).
- [9] P. Hornshøj, K. Wilsky, P.G. Hansen, B. Johson, and O.B. Nielsen, Nucl. Phys. A187, 609 (1972); J.C. Hardy, Phys. Lett. 109B, 242 (1982).
- [10] A.N. James, T.P. Morrison, P.J. Nolan, D. Watson, K.L. Ying, T.P. Connell, and J. Simpson, Nuclear Structure Appendix,

Daresbury Annual Report 1985/86, p. 103.

- [11] R. Moscrop, M. Campbell, W. Gelletly, L. Goettig, C.J. Lister, and B.J. Varley, Nucl. Phys. A499, 565 (1989).
- [12] E.S. Paul, S. Davis, P. Vaska, P.J. Bishop, S.A. Forbes, D.B. Fossan, Y.-J. He, J.R. Hughes, I. Jenkins, Y. Liang, R. Ma, M.S. Metcalfe, S.M. Mullins, P.J. Nolan, R.J. Poynter, P.H. Regan, R. Wadsworth, and N. Xn, J. Physiol. (London) G19, 861 (1993).
- [13] J.M. Nitschke, M.D. Cable, and W.D. Zeite, Z. Phys. A 312, 265 (1983).
- [14] C.J. Lister, B.J. Varley, R. Moscrop, W. Gelletly, P.J. Nolan, D.G. Love, P.J. Bishop, A. Kirwan, D.J. Thornley, L. Ying, R. Wadsworth, J.M. O'Donnell, H.G. Price, and A.H. Nelson, Phys. Rev. Lett. 55, 810 (1985).

- [15] K. Takahashi, M. Yamada, and T. Kondoh, At. Data Nucl. Data Tables 12, 101 (1973).
- [16] T. Horiguchi, T. Tachibana, and J. Katakura, Chart of the Nuclides, 1996.
- [17] M. Hirsch, A. Staudt, K. Muto, and H.V. Klapdor-Kleingrothaus, At. Data Nucl. Data Tables 53, 165 (1993).
- [18] D.A. Arseniev, A. Sobiczewski, and V.G. Soloviev, Nucl. Phys. A126, 15 (1969).
- [19] T. Bengtsson and I. Ragnarsson, Nucl. Phys. A436, 14 (1985);
 R.B. Firestone, in *Table of Isotopes*, 8th ed., edited by V.S. Shirley, C.M. Baglin, S. Y. Frank Chu, and J. Zipkin (Wiley, New York, 1996), Vol. II, Appendices H, H3.
- [20] G. Audi, O. Bersillon, J. Blachot, and A.H. Wapstra, Nucl. Phys. A624, 1 (1997).