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K7=8" rotational band and its fragmented decay through theK™=6" intrinsic state in "Hf
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A K™=8" strongly coupled rotational band, which is built upon a 23 ns isomeric state, has been established
in Y%Hf. The single-particle configuration of the band has been determined from the in-band to out-of-band
branching ratios and associatédy — gr)|/Qo values. They-ray decay of the& "=8" isomeric state proceeds
through aKk™=6" intrinsic state, in accordance with theselection rule. A complex array of delayadray
transitions have been observed to link tki=6", intrinsic bandhead state into the yrast states. In particular,
anewAK=8, 1141 keVEL1 transition links theK™=8" isomeric state directly to the ground-state band. The
v-ray reduced hindrance factor for tHEd decay in'"%Hf is the smallesh K =8 transition observed in the Hf
nuclei. However, its value is consistent with that expected on the basis of the increased Coriolis mixing which
occurs in the lighter Hf isotope$S0556-28189)01911-1

PACS numbds): 23.20.Lv, 21.10.Re, 27.789

Low-lying multiquasiparticle isomeric states have been High-spin states were populated #%Hf with the “8Ca
established in all of the heavy, odd- and even-mass hafnium-128Te reaction. The 200-MeV beam was supplied by the
isotopes from*"*Hf to '®Hf. The systematic properties of gg-in. cyclotron at the Lawrence Berkeley National Labora-
these isomers have been discussed in R&fg]. In the even- tory. A single thick target of 2°Te with thickness
mass Hf isotopes, the two-quasiparticle highstates are _; mg/cn? was used on a 15 mg/éacking of 17Au.

built upon either theK™=8" configuration(from the cou- : S
. A total of 70x10° unpacked triple-coincident events were
pling of the two proton ([ 514]9/2[404]7/2)s - state$ or collected with the sixty-four Compton-suppressed germa-

the K7=6" configuration (from the two proton nium detectors of th&sAMMASPHERE array [10]. The main
w([404]7/29[402]5/2)¢+ states with some mass-dependentproduct of this reaction wad’?Hf [11] from the 41 exit

admixtures of the two neutron([514]7/2®[512]5/2 . .
([51417/28[512]5/2)g + channel. However:"®Hf was produced via ther6exit chan-

state$. Confirmation of the isomer configuration is generally , s ; 0 X
obtained from the measurement of the in-band to out-of-ban§€! With an intensity~6% that of the 4 exit channel.

branching ratios for the associated highrotational band. ~ Figure 1 shows a partial level scheme foPHF illustrat-
For example, these higk-rotational bands have been useding the newly-established two-quasipartidl€’=8" rota-
to establish configurations for the two-quasipartittg  tional band and its decay. A spectrum which is double-gated
=6" and 8 states in'"?Hf [3], 17*Hf [4], Y7°Hf [5], Y7OHf on theprompttransitions in this band is shown in Fig(a2
[6,7], 8%Hf [8], and *8Hf [8]. However, in1"Hf, only the ~ Two other transitions, 247 and 254 keV, were also observed
two-quasiparticleK™=6" and K™=8~ bandhead states to be in prompt coincidence with the lower-spin transitions
were previously observef®] and the configurations were, in the K™=8" band, however, they were not placed in the
therefore, not unambiguously assigned. This paper presenpsesent work. In order to establish the decay of #&
the first observation of th&™=8" rotational band and its =8~ isomeric state a matrix was constructed which was
associated(gx — gr)|/Qo values which confirm its configu- gated on those events which occurred 20—63 ns after each
ration. In addition, a complex array of delayegeray transi-  cyclotron beam pulse. Thesgelayed matrices revealed a
tions have been established which link the knafi=6",  multitude of new+y-ray transitions which carry the highly
intrinsic bandhead staf®], through a highly fragmented de- fragmented decay intensity of th€"=6" intrinsic state to
cay path, into the yrast states. Of particular intereshka  the yrast band, see Fig. 1. FiguréPshows a typical de-
=8, 1141-keV,E1 transition has been established whichlayed spectrum which was double gated on the 217 keV,
links theK™=8" isomeric state directly to the ground-state 8~ — 77, transition and the 221-keV yrast,'4-2", transi-
band. They-ray hindrance factors for these decays are distion. One of these new delayed transitions, the 1051-keV
cussed and compared with those of the systematics of th@y which deexcites the (% state at 1373-keV to the yrast
region. 4% state, was previously observed in REf2]. A new AK
=8, 1141-keV,E1 transition has been established which
links theK™=8" isomeric state directly to the ground-state
*Present address: Department of Physics and Astronomy, Mdand. This weak transition is shown in FigicRrelative to
Master University, Hamilton, Ontario, Canada L8S 4ML1. the 1131-keVAK =6 linking transition.
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The multipolarities of the new-ray transitions have been been calculated from the\( =1)/(Al =2) intensity branch-
deduced from an angular correlation analysising the di- ing ratios. These ratios are shown in Fig. 3 along with those
rectional correlation from oriented staté®CO) method for the correspondindK™=8" band in 1"?Hf also deduced
[13]], see Table I. In addition Table | shows the intensities offrom the same experiment. Table Il shows theay ener-
the transitions which deexcite th€™=6" intrinsic state. gies, intensities and spin assignments for the transitions in
These DCO ratios are consistent with the configuration of thehe K™=8~ prompt rotational band it’®Hf. From the sys-
bandhead state having spin and pari{y,=8". tematics of the region, it is assumed that thase-1 transi-

In order to confirm the configuration assignments, for thetions have positive mixing ratios and therefore, thgik (
K™=8" rotational band int’°Hf,|(g«— gr)|/Q, ratios have

TABLE I. The y-ray energies, intensities, DCO ratios, and as-
signments for the transitions which link th€"=8" andK"=6"

states into the yrast states 1/°Hf.
6000
1 E,(keV) I, DCO ratio JF—J7 Assignment
40004
] 100.71) 9(1) 0.9233 270" E2
2000 192.61) 34.22)  0.5511) 7t 6" M1
2 0; 213.92) 1.68) (6+2_>(4+) (E2)
2 216.61)  49.024) 0.7213 8 7" El
" ) 220.91) 80(8) 42" E2
] 229.21) 9.0(6) 0.5618) 6"—5(7)  Dipole (E1)
200 286.23) 0.93) 6t —(4") (E2)
1 g 320.51) 62(6) 1.0223 470" E2
1007, 5 g s 13 329.31) 5.7(5) 6*—6"  (M1AI=0)
o deknd L) ’ A ol g 400.11) 22(2) 8t -6" E2
100 200 300 400 500 600 700 800 400.41) 11.49) 6"—(6") (M1AI=0)
ENERGY (keV) 614.51) 10.1(13) 6°—(4") (E2)

730.13) 2.05 0.9726) (6" —6" (M1AI=0)

FIG. 2. (@) Double-gated spectrum for the ne”=8" two- 801.52) 4.39) 1.1023 6t 6" M1(Al=0)
quasiparticle band if”°Hf. The inset show the higher-energy part 837.12) 6.2(6) (4)—4*  (ML1AI=0)
of the spectrum. The spectrum is from a sum of the 217-, 222-901'52) 3.3(6) 1.1424) 506+ Dipo‘le E1)
239-, 262-, and 282-keV transitions in a matrix which was gated on. _ " ’ ’

the 221- and 101-keV transitions in the yrast bafg. Delayed 1050.91)  9.213) 1.0522) (67)—4" E2
spectrum double-gated on the 221-keV yrast and the 217-keV tran-122.38) 0.54) 0.9919) 6" —4" E2
sitions showing the newy-ray decays from th&"=6" intrinsic =~ 1130.41) 26.314)  0.9919) 6"—6" M1(Al=0)
state.(c) Delayed double-gated spectrum showing the dev=8,  1141(1) 0.8(2) 8 —8" (E1A1=0)
1141 keV, E1 transition. The spectrum is a sum of the 101-, 3211222.31) 5.009) 0.7515) 5(7) 4" Dipole (E1)
and 400-keV transitions in a matrix which was gated on the delayed 452.41) 0.8(1) 6t —4" E2

221-keV yrast transition.
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02U —T— T T TABLE Ill. Reduced hindrance factors for th&™=67
022 ] (<5 ns) andK™=8" (23 n3 states in*"Hf.
o e
% 016 o HfK™=8~ } Reduced
2 ok ] E, Tpartial hindrance
5 o i ! ] K™ (keV) 1, (9 MN AK »=AK-\ factor,f,
% ook 5 g ? b ] K"=8~ 2166 39.0 234 E1 2 1 1.0%1C°
% oosk § __mmmmmmmmsmmmmmmmn ] K7=8~ 1141 0.67 1361.8E1 8 7 26.5
= o0k ¢ ] K™=6" 1130.7 24.5<245 M1 6 5 <12.8
0.02:- . K7™=6" 1452.4 0.7 <180 E2 6 4 <18.6
Qo0 —t———

Spin [71] . . .
P are given in Table Ill. The calculations were only performed

FIG. 3. |gk—9rl|/Q, ratios for theK™=8" two-quasiparticle  for four of the decay transitions because & configura-
bands in "Hf (circles and '"?Hf (squares The Dmau and tions of the final states were only firmly established in these
Frauendorf estimate based on h&=8" configuration assignment cases. From the table, it can be observed that all of these
is shown by the thick-dashed line; see text for details. reduced hindrance factors are reasonably l&ogéave rea-

sonably large upper limifsvhich implies that the decays are
—gr) is positive and also that the quadrupole moments ofjoverned by the&-selection rule. It is worth noting that the
these bands are 7.& b[11]. Theoretical calculations, based short half-life of theK ”=6" intrinsic state in'’%Hf is con-
on the geometric model of Dau and Frauendo[fL4], have  sistent with that expected from th&hindrance systematics,
been performed wusing theK"=8" (w([514]9/2 [15].
®[404]7/2)g-) configuration. This calculation, shown by the ~ Recently, Walkeet al.[2] made a survey of reduced hin-
thick-dashed line in Fig. 3, is observed to be in good agreedrance factors foAK=8, E1 transitions, to the 8 state in
ment with these new data and therefore, KlE=8~ con-  the ground-state bands, for the even-e¥éh 8Hf nuclei.
figuration assignment. In the present work the correspondifgl =8, 1141-keVE1

In order to compare the new-ray decay transitions from transition in'’%Hf is observed to be very weak, see Fi¢c)2
the K™=6" and K"=8" bandhead states in’°Hf, with ~ However, its reduced hindrance factor, 26.5 see Table Ill, it
other transitions in"°Hf and those in the neighboring nuclei, is remarkably close to that expected on the basis of the ex-
it is instructive to consider the reduced hindrance factorstrapolated systematics of Walket al, see Fig. 4. Although
These are defined als,={T] /T4 (T, is the partial this reduced hindrance factor is the smallest observed for a
y-ray half |ife,T‘1"/’2 is the Weisskopf single-particle half-life AK=8, E1 transition in the Hf nuclei it is consistent with
estimate, andv=AK—\ is the degree oK forbiddeness the increased Coriolis leInEQ] in the Ilghter mass Hf nu-
where \ is the transition multipolarity The reduced hin- clei.
drance factors for th&™=8" andK™=6" bandhead states

TABLE Il. The y-ray energies, intensities, and assignments for ! ‘3\
the prompt transitions in th€™=8" rotational band in'"°Hf. The 0
y-ray intensities are normalized to the intensity of the 238.7-keV \:
transition.
10; - ]
E,(keV) I, -7 8 D/D
222.41) 126(10) 98" S
238.11) 100(9) 100 -9~ 4 /
262.16) 58(7) 11" —10° o
272.16) 69(6) 127 11" 3 u/
281.94) 37(6) 137 =127 >t
289.719) 47(7) 14~ —13
291.69) 47(7) 15" — 14~
294.85) 42(7) 16 —15° . . \ \ . \ \ . \
501.22) 33(8) 11" -9~ 0,65 170 172 172 176 178 180 182 184 186
534.Q7) 32(8) 127 —10"
554.38) 22(7) 13 11" Mass Number A
572.13) 16(5) 14 —127 FIG. 4. Reduced hindrance factors for th& =8, E1 transi-
584.15) 15 —13" tions for theZ=72 Hf nuclei. The value for'"®Hf is in excellent
588.12) 16 —14 agreement with that predicted from the systematics of these decays

[2]. The data point for'8*Hf is from Ref.[16].
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