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Bethe-Salpeter study of vector meson masses and decay constants
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The masses and decay constants of the light vector mesonsr/v, f, andK! are studied within a ladder-
rainbow truncation of the coupled Dyson-Schwinger and Bethe-Salpeter equations of QCD with a model
two-point gluon function. The approach is consistent with quark and gluon confinement, reproduces the correct
one-loop renormalization group behavior of QCD, generates dynamical chiral symmetry breaking, and pre-
serves the relevant Ward identities. The one phenomenological parameter and two current quark masses are
fixed by requiring that the calculatedf p , mp , and mK are correct. The resultingf K is within 3% of the
experimental value. For the vector mesons, all eight transverse covariants are included and the dominant ones
are identified; the complete angle dependence of the amplitudes is also retained. The calculated values for the
massesmr , mf , andmK! are within 5%, while the decay constantsf r , f f , and f K! for electromagnetic and
leptonic decays are within 10% of the experimental values.@S0556-2813~99!04511-2#

PACS number~s!: 14.40.Cs, 24.85.1p, 11.10.St, 12.38.Lg
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I. INTRODUCTION

A realistic description of vector mesons at the qua
gluon level is an important element in advancing our und
standing of hadron dynamics and reaction processes at s
where QCD degrees of freedom are relevant. They are ea
produced as decay products in electroexcitation of bar
resonances and also as precursors to dilepton events in
tivistic heavy-ion collisions. Flavorless vector mesons cou
directly to the photon and play an important role in the ph
nomenology of electromagnetic coupling to hadrons. Thi
exemplified by the general phenomenological success of
vector meson dominance model which assumes that the
tromagnetic current is saturated by the vector mesons.
ground state vector mesons, being spin modes, sample
q̄q bound state dynamics in a way that is complementary
that of the ground state pseudoscalar~PS! mesons. They also
explore quark and gluon confinement since the vector ma
are greater than the sum of typical constituent quark mas
Mesonic strong decays such asr→pp andf→KK, radia-
tive decays such asr→pg and K!→Kg, and electromag-
netic decays such asr0→e1e2 and f→e1e2 can probe
aspects of the underlying quark-gluon dynamics that
complementary to what is learned from PS mesons.

The PS mesons, especially the pion and kaon, have f
long time been a major focus of attempts to understand
internal structure of hadrons from nonperturbative QC
Chiral symmetry provides an assistance in the PS case th
not available to other mesons such as the vectors we dis
in this paper. In the chiral limit of massless QCD, the d
namical breaking of chiral symmetry generates masses
the light quarks that are consistent with the empirical c
stituent masses deduced from the hadronic spectrum.
lowest PS mesons, which would be massless in this limi
dictated by the Goldstone theorem, acquire a mass thro
the explicit breaking of chiral symmetry induced by the cu
rent quark masses. This phenomenon dominates the sys
atics of the ground state PS octet and provides chiral W
identities that relate dynamical quantities in a way that s
plifies somewhat the task of modeling low energy QCD. F
0556-2813/99/60~5!/055214~15!/$15.00 60 0552
-
r-
les
ily
n
la-
e
-
is
he
c-

he
the
o

es
es.

e

a
e
.
t is
ss

-
or
-
he
s

gh
-
m-

rd
-
r

example, the axial Ward identity dictates that the chiral lim
Bethe-Salpeter~BS! amplitude for a pseudoscalarq̄q bound
state in the dominantg5 channel is given byB0(p2)/ f P
whereB0 is the scalar part of the chiral quark self-energ
and f P is the meson weak decay constant. Consideration
the symmetry breaking effect of current masses within
PS bound state dynamics leads to an exact formula formP
the PS meson mass@1#. One corollary is the Gell-Mann–
Oakes–Renner relation at small current quark masses w
mP}Amq; a second corollary is the behaviormP}mQ for
heavy quark PS mesons@2#. With these aids, an efficient an
qualitatively useful phenomenology for observables a
other quantities associated with the pion and kaon can
produced without explicit solution of the bound state Beth
Salpeter equation~BSE!. The only dynamical input required
is the dressed quark propagator as defined by the q
Dyson-Schwinger equation~DSE!.

The study of hadronic processes is often facilitated
parametrizing DSE quark propagator solutions into analy
forms with a few parameters readjusted to accommodate
ral observables@3#. With such an approach,mp/K and f p/K ,
the charge radiir p/K and form factorsFp/K(Q2), and the
p-p scattering lengths have been well described@3#. This
approach has also been successful in studies of coupling
stants and form factors for processes such asp0→gg @4#
and gp→pp @5#. The incorporation of vector mesons ha
been hindered by the lack of a symmetry-based mean
obtaining approximate dynamical insight without direct s
lution of the vector BSE. There is a conserved current an
corresponding vector Ward-Takahashi identity linking t
longitudinal vector vertex with the quark propagator. Ho
ever, this Ward identity does not constrain the transve
vector meson BS amplitude and therefore purely pheno
enological vector BS amplitudes have often been used
study processes involving vector mesons in this framewo
Successful applications of this type include the dec
r→pp and r→pg @6,7# and diffractive electroproduction
of vector mesons@8#. Uncertainties concerning contribution
to hadronic observables from the neglected covariants in
PS meson BS amplitudes beyond the canonicalg5 were not
©1999 The American Physical Society14-1
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PIETER MARIS AND PETER C. TANDY PHYSICAL REVIEW C60 055214
addressed until recently@9,10#. Several studies@9,11# also
incorporated some aspects of vector BSE dynamics and w
able to make a crude assessment of the role of subdom
covariants of the rho@12# in r→pp andr→pg but at the
expense of using a separableAnsatz@9# for the BSE kernel.
A recent study of heavy meson decays also employs p
nomenological BS amplitudes for vector mesons@2#.

The persistent outcome of the above studies is that
observables associated with the pion and kaon are co
tently and naturally described in terms of the moment
dependent quark self-energy from realistic solutions@13# of
the quark DSE. Important to the success of this approach
the features of quark confinement and dynamical chiral s
metry breaking that are implemented through a strong
hancement in the infrared behavior of the effective qua
quark interaction~or effective gluon two-point function@14#!
in rainbow approximation. In the light pseudoscalar sec
the most comprehensive and quantitatively reliable study
date@10# involves direct solution of the bound state BSE
conjunction with quark DSE solutions for propagators. Th
work represents the development of an appropriate phen
enological representation for the infrared structure of
gluon two-point function in conjunction with a bare quar
gluon vertex so that the DSE solution for the quark propa
tor exhibits dynamical chiral symmetry breaking as well
confinement@15# and, through the BSE, produces a go
description soft pion and kaon observables. One of the a
of Ref. @10# was an exposition of the detailed numerical co
sequences of the constraint provided by the axial ve
Ward-Takahashi identity~AV-WTI ! upon PS meson dynam
ics. This constraint is formally assured by the coordina
rainbow-ladder truncation of the DSE-BSE complex
DSEs. The inclusion of all possible covariants for the B
amplitude was found necessary to numerically preserve
constraint and to obtain quantitatively accurate observab
Of general importance are two other advances represente
Ref. @10#. First, since the ultraviolet structure of the model
equipped with the one-loop renormalization group proper
from perturbative QCD, it is a realistic and covariant hadr
model that can be unambiguously evolved in scale. S
ondly, it is produced by well-defined truncations of the QC
equations of motion~DSEs!, and thus can be systematical
improved by including higher-order corrections to the qua
antiquark scattering kernel.

The extension of the DSE approach to vector meson
explored here. Solution of the vector BSE is more diffic
than in the PS case because of the significantly larger n
ber of covariants that must be investigated and also bec
the higher masses produce a larger domain of the quark c
plex p2 plane that must be sampled. This latter issue w
avoided in a previous work@16# that made an extensiv
study of the meson spectrum from the ladder-rainbow tr
cation of the DSE-BSE system. In that approach, a deriva
expansion of the quark self-energy was used to infer
behavior away from the real axis and some attempt w
made to estimate the resulting error. The implications
quark confinement in that approach are unclear. One of
aims here is to generate vector meson BS amplitudes wit
compromising the analytic structure in a way that may i
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pair the subsequent explorations of meson decays and
factors. These amplitudes can then be used to calibrate
guide approximate representations that simplify the study
hadronic interactions.

In this paper we calculate the ground state vector mes
r/v, K!, andf in the DSE-BSE approach, using the ladde
rainbow truncation. The effective quark-quark interaction
fixed by pion and kaon properties and we investigate
quality of generated vector meson masses and decay
stants. In Sec. II we outline the framework of the DSE a
proach we employ along with the truncation and theAnsatz
we use to specify the kernel~or effective gluon two-point
function! for both the quark DSE and the bound state BS
Our investigations are conducted with a variation of the k
nel Ansatzthat was developed in Ref.@10# for the pion and
kaon. To facilitate the analysis and solution of the vec
BSE, we have employed a convenient set of eight Dirac
variants that satisfy both the CPT constraints and a tra
orthogonality property. These are presented and discusse
Sec. III. Also in that section we outline the technique
expansion of the amplitudes in terms of Chebyshev poly
mials that is sometimes used to resolve the angle depend
and reduce the BSE to a set of one-dimensional equation
Sec. IV the meson decay constants treated here are defi
Results are presented and discussed in Sec. V, and a
mary and conclusion follows in Sec. VI. Some technical d
tails are collected in an Appendix.

II. DYSON-SCHWINGER EQUATIONS

In a Euclidean space formulation, with$gm ,gn%52dmn ,
gm

† 5gm anda•b5( i 51
4 aibi , the DSE for the renormalized

dressed-quark propagator is

S~p!215Z2ig•p1Z4m~m!

1Z1E
q

L

g2Dmn~p2q!
la

2
gmS~q!Gn

a~q,p!, ~1!

whereDmn(k) is the renormalized dressed-gluon propagat
Gn

a(q;p) is the renormalized dressed-quark-gluon vertex, a
*q

L[*Ld4q/(2p)4 represents mnemonically a translatio
ally invariant regularization of the integral, withL the regu-
larization mass scale. The final stage of any calculation i
remove the regularization by taking the limitL→`. The
solution of Eq.~1! has the general form

S~p!215 ig•pA~p2,m2!1B~p2,m2!, ~2!

and the renormalization condition is

S~p!21up25m25 ig•p1m~m!, ~3!

at a sufficiently large spacelikem2, with m(m) the renormal-
ized quark mass at the scalem. The renormalization con-
stants for the quark-gluon-vertex, the quark wave functi
and the mass, namely,Z1(m2,L2), Z2(m2,L2), and
Z4(m2,L2), respectively, depend on the renormalizati
point and the regularization mass scale. In Eq.~1!, S, Gm

a ,
4-2
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BETHE-SALPETER STUDY OF VECTOR MESON MASSES . . . PHYSICAL REVIEW C 60 055214
andm(m) depend on the quark flavor, although we have
indicated this explicitly. However, in our analysis we a
sume, and employ, a flavor independent renormaliza
scheme and hence all the renormalization constants
flavor-independent.

A. Meson Bethe-Salpeter equation

The renormalized, homogeneous BSE for a bound stat
a quark of flavora and an antiquark of flavorb having total
momentumP is given by

GM
ab~p;P!5EL d4q

~2p!4
K~p,q;P!

3Sa~q1hP!GM
ab~q;P!Sb~q2h̄P!, ~4!

whereh1h̄51 describes momentum sharing,GM
ab(p;P) is

the BS amplitude, andM specifies the meson type: pseud
scalar, vector, axial-vector, or scalar. In this paper we c
sider the pseudoscalar and vector amplitudes only. The
nel K operates in the direct product space of color and Di
spin for the quark and antiquark and is the renormaliz
amputatedq̄q scattering kernel that is irreducible with re
spect to a pair ofq̄q lines. It is often convenient to expres
Eq. ~4! in the abbreviated form

@GM
ab~p;P!# tu5E

q

L

Ktu
rs~p,q;P!@xM

ab~q;P!#sr , ~5!

wherexM
ab(q;P)ªSa(q1)GM

ab(q;P)Sb(q2) is the BS wave

function,q1ªq1hP, q2ªq2h̄P, and the labelsr , . . . ,u
represent color- and Dirac-matrix indices. This equation
fines an eigenvalue problem with physical solutions at
mass-shell pointsP252m2 with m being the bound state
mass.

The canonical normalization condition of the solution
the homogeneous BSE is

2Pm5
]

]Pm
H E

q

L

TrCD@ḠM
ba~q;2K !Sa~q1hP!

3GM
ab~q;K !Sb~q2h̄P!#

1E
q

LE
k

L

@x̄M
ba~k;2K !#utKtu

rs~k,q;P!

3@xM
ab~q;K !#srJ U

P25K252m2

, ~6!

where ḠM(k,2P) t5C21GM(2k,2P)C, in which C
5g2g4 is the charge conjugation matrix, andXt denotes the
matrix transpose ofX. The trace in the first term is over bot
color and Dirac indices. If the quark-antiquark scattering k
nel K is independent of the total momentumP, as is the case
in the ladder truncation we consider here, then the sec
term vanishes.
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B. Ladder-rainbow truncation

We use a ladder truncation for the BSE

Ktu
rs~p,q;P!→2G@~p2q!2#Dmn

free~p2q!S la

2
gmD ru

^ S la

2
gnD ts

, ~7!

which is consistent with a rainbow truncation for the qua
DSE

Z1E
q

L

g2Dmn~p2q!
la

2
gmS~q!Gn

a~q,p!

→E
q

L

G@~p2q!2#Dmn
free~p2q!

la

2
gmS~q!

la

2
gn . ~8!

HereDmn
free(k) is the perturbative gluon propagator in Land

gauge. The model is completely specified once a form
chosen for the ‘‘effective coupling’’G(k2).

The consistency of Eqs.~7! and~8! lies in the fact that the
axial-vector Ward-Takahashi identity is preserved@1,10#.
This ensures that in the chiral limit the ground state PS m
sons are massless even though the quark mass function
strongly enhanced in the infrared. In the physical case
explicit chiral symmetry breaking, it also ensures an ex
relation between the PS meson mass and weak decay
stant, the current quark masses, and the residue at th
meson pole in the PS vertex@1,10#. The analysis in Ref.@17#
shows that the next-order contributions to the kernel in
quark-gluon skeleton graph expansion, have a signific
amount of cancellation between repulsive and attractive c
rections for pseudoscalar mesons. Indications are that th
also the case in the vector channel, which strongly supp
the use of ladder truncations in these cases.

In choosing a form forG(k2) we know that the behavio
of the QCD running couplinga(k2) in the ultraviolet, i.e.,
for k2.2 –3 GeV2, is well described by perturbation theor
In principle, constraints on the infrared form ofG(k2) can be
sought from studies of the DSEs satisfied by the dres
gluon propagatorDmn(k) and the dressed gluon-quark verte
Gn

a(q,p). The latter is often represented by anAnsatz; there
is almost no information available from DSE studies; t
gluon propagator has been often studied via its DSE. If
ghost loop and the quark loop in the gluon DSE are un
portant, then the qualitative conclusion from such studie
that the gluon propagator is significantly enhanced in
infrared and well represented by an integrable singula
such as a regularization of 1/k4 @14#. Phenomenological stud
ies containing such an enhancement show that dynam
chiral symmetry breaking and quark confinement follow in
straightforward and natural way from the quark DSE with
empirically correct value for the chiral condensate^q̄q&0 and
an excellent description of pion and kaon properties@10#.

Recent gluon DSE studies that include the ghost loop
not the quark loop have suggested a weak infrared stre
that vanishes atk250 for the transverse component o
4-3
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PIETER MARIS AND PETER C. TANDY PHYSICAL REVIEW C60 055214
Dmn(k) due to a strong infrared enhancement of the gh
propagator@18,19#. In some studies of this type, unphysic
particlelike singularities occur in theAnsatzfor the dressed
ghost-gluon and three-gluon vertices@18#. It is apparent that
such gluon DSE studies are presently limited by the type
truncation that can be accommodated and the prelimin
nature of theAnsätzeemployed for some of the dressed ve
tices. Several lattice studies ofDmn(k) have been interprete
in terms of an infrared behavior less singular than 1/k2 @20#.
The phenomenological implications of either type of nons
gular infrared behavior forDmn(k) have recently been ex
plored within the quark DSE@21#. It was found that dynami-
cal chiral symmetry breaking as represented by a nonz
chiral condensate is either absent or is a small fraction
what is required to explain pion phenomena; the produ
quark propagator does not show quark confinement.

To provide a quark DSE-based description of pion a
kaon phenomena as a basis for exploring vector meson p
erties, we utilize a variation of the followingAnsatzintro-
duced in Ref.@10#:

G~k2!

k2
58p4Dd4~k!1

4p2

v6
Dk2e2k2/v2

14p
gmp

~1/2!ln@t1~11k2/LQCD
2 !2#

F~k2!, ~9!

with F(k2)5$12exp(2k2/@4mt
2#)%/k2, t5e221, and gm

512/(3322Nf). This Ansatzpreserves the one-loop reno
malization group behavior of QCD for solutions of the qua
DSE. In particular, the correct one-loop QCD anomalous
mension of the quark mass functionM (p2) is preserved in
its ultraviolet behavior for both the chiral limit@m(m)50,
anomalous dimension 12gm] and explicit chirally broken
case@m(m)Þ0, anomalous dimensiongm]. This asymptotic
behavior, a characteristic of QCD, is confirmed by analy
of the numerical solution in the ultraviolet as described
detail in Ref.@10#. The main qualitative feature of Eq.~9! is
that the phenomenologically required strong infrared
hancement in the region 0 –0.5 GeV2 is distributed over an
integrabled4(k) singularity @22# and a finite-width approxi-
mation tod4(k) normalized so that both terms have the sa
*d4k. The last term in Eq.~9! is proportional toa(k2)/k2 at
large spacelikek2 and has no singularity on the realk2 axis.
The parametersv andmt were not varied freely in the stud
of Ref. @10#; the fixed values mt50.5 GeV and v
50.3 GeV were chosen mainly to ensure thatG(k2)
'4pa(k2) for k2.2 GeV2. The free parameters wereD
and the renormalizedu/d- and s-quark current masses t
obtain a good description ofp andK properties.

Solutions of the rainbow DSE for the quark propagat
when investigated, usually reveal a nonanalytic behavio
the complexp2 plane often in the form of complex conjuga
branch points@23,24# that are modified or even eliminate
when the gluon-quark vertex is dressed@25#. Subsequent use
of the propagator solutions in the BSE for the bound st
meson should be accompanied by a determination that
nonanalytic points~that are likely artifacts of the truncation!
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lie outside the complex domain of integration that natura
arises in the search for a solution of the BSE in Euclide
metric. The mass of the meson determines the extent of
required departures from the quark realp2 axis and the pion
and kaon solutions from theAnsatzof Eq. ~9! are free of
such problems. However, with the parameters of Ref.@10#,
we have found this not to be the case for the more mas
vector solutions. For the present study of vector mesons,
eliminate thed-function term from Eq.~9! and increase the
strength of the second~finite-width! term so that it alone
implements the infrared enhancement. The quark confi
ment and dynamical chiral symmetry breaking properties
preserved because the essential feature, the integr
strength in the infrared domain, remains. The removal of
d-function term allows parameters to be easily found to p
duce quark DSE solutions that are smooth functions in
entire integration domain required for the vector meso
considered here as well as for the pion and kaon; the qua
of the pseudoscalar results is preserved.

We therefore employ theAnsatz

G~k2!

k2
5

4p2

v6
Dk2e2k2/v2

14p
gmp

~1/2!ln@t1~11k2/LQCD
2 !2#

F~k2!. ~10!

As in the earlier pion and kaon studies, we usemt

50.5 GeV, t5e221, Nf54, LQCD
Nf54

50.234 GeV, and a
renormalization pointm519 GeV, which is sufficiently per-
turbative to allow the one-loop asymptotic behavior of t
quark propagator to be used as a check. We consider t
parameter sets characterized by three different values ov.
For each parameter set,D is treated as a phenomenologic
parameter, which was fitted, along with the renormaliz
current quark masses, to obtain a good description ofmp/K
and f p . Subsequently, the vector meson sector was stud
without parameter adjustment. For comparison we also
port, for theAnsatzof Ref. @10#, vector meson masses es
mated by an extrapolation of the BSE eigenvalue to
mass-shell point.

III. VECTOR MESON BETHE-SALPETER AMPLITUDES

The general form of a vector vertexGm(q;P) can be ex-
pressed as a decomposition into twelve independent Lor
covariants, made from the three vectorsgm , the relative mo-
mentumqm , and the meson total momentumPm , each mul-
tiplied by one of the four independent matrices~1!, g•q,
g•P, andsmnqmPn . Since a vector meson BS amplitude
transverse the number of allowed covariants reduces to 8
that the general decomposition of the vector BS amplitud

Gm
V~q;P!5(

i 51

8

Tm
i ~q;P!Fi~q2,q•P;P2!, ~11!

with the invariant amplitudesFi(q
2,q•P;P2) being Lorentz

scalar functions. The choice for the covariantsTm
i (q;P) to be
4-4
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used as a basis is constrained by the required properties
der Lorentz and parity transformations, but is not uniq
The BSE equation~4! must be projected onto the covaria
basis to produce a coupled set of eight linear equations
the invariant amplitudesFi to be cast in matrix form. This
requires a procedure to project out a single amplitude fr
the general form~11!. It is therefore helpful if the chosen
covariants satisfy a Dirac-trace orthonormality property.

We have chosen the following set of dimensionless
thogonal covariants:

Tm
1 ~q;P!5gm

T , ~12!

Tm
2 ~q;P!5

6

q2A5
@qm

T~gT
•q!2 1

3 gm
T~qT!2#, ~13!

Tm
3 ~q;P!5

2

qP
@qm

T~g•P!#, ~14!

Tm
4 ~q;P!5

iA2

qP
@gm

T~g•P!~gT
•q!1qm

T~g•P!#, ~15!

Tm
5 ~q;P!5

2

q
qm

T , ~16!

Tm
6 ~q;P!5

i

qA2
@gm

T~gT
•q!2~gT

•q!gm
T #, ~17!

Tm
7 ~q;P!5

iA3

PA5
~12cos2u!@gm

T~g•P!2~g•P!gm
T #

2
1

A2
Tm

8 ~q;P!, ~18!

Tm
8 ~q;P!5

i2A6

q2PA5
qm

T~gT
•q!~g•P!, ~19!

whereVT is the component ofV transverse toP

Vm
T5Vm2

Pm~P•V!

P2
, ~20!

andq•P5qP cosu. Note that at the mass-shellP5 im. The
orthonormality property satisfied by these covariants is

1
12 TrD@Tm

i ~q;P!Tm
j ~q;P!#5 f i~cosu!d i j , ~21!

where the functionsf i(z) are given by f 1(z)51, f i(z)
5 4

3 (12z2) for i 53,4,5,6 and f i(z)5 8
5 (12z2)2 for i

52,7,8. For later use we also note the relation

E
0

p

du sin2u f i~cosu!5
p

2
. ~22!

The covariants are dimensionless and independent of
magnitudesq andP. These properties are helpful in allowin
05521
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the relative magnitude of the amplitudesFi to be a qualita-
tive measure of the dynamical importance of the various
variants. A more quantitative measure can depend on
particular observable being studied; amplitudes that are
important at low momenta can become dominant when h
momentum behavior of the bound state solution is be
probed.

For unflavored mesons that are eigenstates ofC ~charge
conjugation!, such as ther, v, andf, there is an additiona
constraint on the BS amplitude1 to obtain a specified
C-parity. Of the eight covariants given in Eqs.~12!–~19!, T3

and T6 are even underC, the others are odd underC. The
only remaining quantity that can produce a desired unifo
C-parity is q•P which is odd underC. Thus aC521 solu-
tion ~such as ther andf) will have amplitudesF3 andF6
that are odd inq•P while the remaining amplitudes are eve
in q•P. For the flavored vector mesonK!, which is not an
eigenstate ofC, each amplitude will contain both even an
odd terms inq•P. Since the ladder truncation of the BSE
invariant under charge conjugation if equal momentum sh
ing (h50.5) is used, the observation of the above odd-e
behavior inq•P of Fi can be used as a test of numeric
accuracy. Alternatively, the amplitudesFi can be expanded
in terms of a basis of functions that are appropriately odd
even in cosu to save significantly on computer time an
memory. Because the mass-shell condition makes the m
nitudeP imaginary, it is not difficult to verify that with defi-
nite C parity, each amplitude associated with our chosen
sis of covariants is either purely real or purely imagina
The amplitudesFi for theK! solution are in general comple
due to the dependence upon all powers ofq•P.

After using representation~11! for the solution in terms of
the covariant basis, followed by projection using the Dira
trace orthonormality property~21!, the homogeneous BSE
equation~4! for a meson with flavored constituentsab̄ re-
duces to a set of coupled integral equations for the e
functionsFi

ab(q2,q•P;P2) in the form

Fi
ab~p2,p•P;P2! f i~z!

52 4
3 EL d4q

~2p!4
G@~p2q!2#Dmn

free~p2q!F j
ab~q2,qP;P2!

3 1
12 TrD@Tr

i ~p;P!gmSa~q1hP!Tr
j ~q;P!Sb~q2h̄P!gn#.

~23!

The above system of equations was solved by two com
mentary methods. The first method was a direct treatmen
an integral eigenvalue equationl(P2)F5K(P2)F for a set
of functionsF of two variablesp2 andz5cosu. An iterative
method is used to determine the smallestm satisfying

1We do not discriminate between up and down quarks, and do
take into account electromagnetic corrections; therefore the BS
plitudes forr6 are equal to those forr0. Furthermore, the ladde
truncation cannot discriminate between isovector and isoscalar
sons; therefore ther and thev are degenerate in this truncation.
4-5
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l(2m2)51. Both variables were discretized via Gauss
quadrature and the summations for the double integra
were carried out at each iteration. This has a high deman
computer memory.

In the second method, the angle dependence of the am
tudes is expanded in the form

Fi~q2,qP;P2!5(
j 50

`

jFi~q2;P2!U j~cosu!, ~24!

where theU j (z) are Chebyshev polynomials of the seco
kind. This allows the angle integrations in Eq.~23! to be
carried out to produce an integral equation in one varia
but for a larger set of functionsjFi(q

2;P2). For C521
eigenstates such asr and f, amplitudesF3 and F6 will
require only odd order Chebyshev terms while the other a
plitudes will require only even terms. In practice, the numb
of Chebyshev terms required is quite low~one or two terms!
so that the memory requirements are effectively reduce
this second method. The solutions from the direct tw
variable approach can be projected onto the Chebyshev b
as a check on the second method and also as a mea
presentation.

The specific normalization condition for the vector mes
solutions of the ladder BSE follows from Eq.~6! and is

2Pm5
]

]Pm

Nc

3 E
q

L

TrD@Ḡn
ba~q;2K !Sa~q1hP!

3Gn
ab~q;K !Sb~q2h̄P!#uP25K252m2, ~25!

where the factor 1/3 appears because the three trans
directions are summed.

IV. ELECTROWEAK DECAY

Here we summarize the definition of, and our convent
for, the vector meson leptonic and electromagnetic de
constants and their explicit relationship to the BS amplitud
The electromagnetic decay mediated by a photon~e.g.,r0,
v, f), and the leptonic decay mediated by aW boson~e.g.,
r6, K!6), are described by the vector decay constant
fined by @26#

f VmVem
(l)~P!5^0uq̄bgmqauVab~P,l!&, ~26!

where em
(l) is the polarization vector of the vector meso

satisfyinge (l)
•P50 and normalized such thatem

(l)* em
(l)53.

This is completely analogous to the definition

f PPm5^0uq̄bgmg5qauPab~P!& ~27!

for the pseudoscalar decay constant that corresponds tf p

5131 MeV under the normalization convention of Eq.~6!.
The vector decay constant from Eq.~26! can be expressed a
the loop integral
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Z2Nc

3 EL d4q

~2p!4

3TrD@gmSa~q1hP!Gm
ab~q;P!Sb~q2h̄P!#,

~28!

which is exact if the dressed quark propagators and the
son BS amplitude are exact@2#. In the next section we use
Eq. ~28! to calculate the decay constantsf r , f f , and f K!.

The coupling of ther0

ur0&5
1

A2
~ uuū&2udd̄&) ~29!

to the photon is conventionally expressed via a dimensi
less coupling constantgr in the form

mr
2

gr
em

(l)~P!5^0uQ̄Q̂gmQur0~P,l!&, ~30!

where the flavor multiplet of quark field spinors isQ
5column(u,d), and Q̂ is the quark electromagnetic charg
operator. The normalization condition given in Eq.~25! is in
a form appropriate for a single flavor configurationq̄aqb , not
for a multiflavor configuration state such as ther0. For such
states, Eq.~25! can be generalized by promoting the qua
propagators to flavor matricesS5diag(Su,Sd), multiplying
BS amplitudesGm by the appropriate flavor matrix, and trac
ing over flavor indices as well. The isospin-symmetric lim
with Su5Sd produces BS amplitudes that are independen
flavor labels; ther0 BS amplitude, for example, can then b
expressed as (t3 /A2)Gm where Gm is the normalized BS
amplitude for ther6. Use of Eq.~29! in Eq. ~30! then gives

mr
2

gr
5

Z2Nc

3A2
EL d4q

~2p!4
TrD@gmSu5d~q1hP!

3Gm
ab~q;P!Su5d~q2h̄P!#5

f rmr

A2
. ~31!

The decay widthGr0→e1e256.77 keV@27# leads via

Gr0→e1e25
4pa2mr

3gr
2

~32!

to the valuegr55.03, that isf r5216 MeV. Note that the
isoscalar version of these considerations produces an e
factor of 1/3 on the right of Eq.~31! for the coupling of the
v to a photon. The partial widthGv→e1e2 is indeed about 10
times smaller thanGr0→e1e2.

In a similar way, the coupling of the photon to thef,
assumed to be a puress̄ state, is defined as

mf
2

gf
em

(l)~P!5 1
3 ^0us̄gmsuf~P,l!&, ~33!
4-6
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and the relation betweengf and the vector decay constantf f
is

mf
2

gf
5

f fmf

3
~34!

5
Z2Nc

9 EL d4q

~2p!4
TrD@gmSs~q1hP!Gm

ssSs~q2h̄P!#.

~35!

The partial width of thef→e1e2 decay is

Gf→e1e25
4pa2mf

3gf
2

, ~36!

and the experimental value 1.3760.05 keV @27# produces
f f5237 MeV, that isgf512.9.

The decay constantf V determines not only the couplin
of the neutral vector mesons to a photon, but also the c
pling of r6 andK!6 to the weak vector bosonsW6. There
are no data available for the leptonic decay of these cha
vector mesons, but the couplings can be extracted indire
from the decayst→rnt andt→K!nt . The partial width for
such a decay is

Gt→Vnt
5

GF
2mt

8p
Vab

2 f V
2mV

2S 12
mV

2

mt
2D 2S 11

mt
2

2mV
2 D . ~37!

With the experimental values for the partial decay wid
@27# Gt→rnt

525.02%G total andGt→K!nt
51.28%Gtotal, along

with the CKM matrix elementsVud50.974 andVus50.220,
this gives a ratio

f K!

f r
51.042 ~38!

and thus a decay constantf K!5225 MeV, if we use the
experimental valuef r5216 MeV.

With the available data, the absolute value off r using Eq.
~37! gives f r5208 MeV. We expect, however, that the d
rect determination off r through r0→e1e2, giving f r

5216 MeV, is a more accurate determination of this dec
constant. In particular, most higher-order corrections to
electroweak vertex are likely to cancel in the ratio of t
partial decay widths, and therefore we use the ratio in
~38! to extract the experimentalf K!.

V. NUMERICAL RESULTS

In Fig. 1 we show ourAnsatzfor the effective interaction,
Eq. ~10!, for the three different parameter sets we have
plored, characterized by the values ofv, together with the
one-loop perturbative coupling for comparison. We use th
different values of the parameterv, constrained only by the
requirement that the perturbative coupling aboveq2

53 GeV2 should be reproduced. It is only in the infrare
region, belowq252 GeV2, that there is a significant differ
ence between the three parametrizations and the perturb
05521
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result. The parameterD and the current quark massmu/d(m)
are fixed by fittingmp and f p . Next, the strange quark mas
ms(m) is determined by a fit to the kaon mass. The result
value of the kaon decay constantf K is within 3% of the
experimental value, almost independent of the paramete
for the effective interaction. All three parameter sets lead
a good description of the pion and kaon masses and de
constants, as well as a reasonable value of the chiral con
sate. In Table I we have summarized these results for
three different parameter sets, together with the results f
Ref. @10#.

With our parametrization, the quark mass functi
M (p2)5B(p2)/A(p2) has qualitatively the same behavior
obtained in Ref.@10#. With a Euclidean constituent-quar
massME defined as the solution ofp25M2(p2), we obtain
constituent quark masses of aboutMu/d53002500 MeV
for the light quarks, andMs55002640 MeV for a strange
quark, spanned by the three parameter sets; the parame
tion of Ref. @10# gives constituent massesMu/d5560 MeV
andMs5700 MeV.

A. Results for vector meson observables

In Table II we present our results for the vector mes
masses and decay constants. The full angular depend
was retained in the calculation of these results: we solve
set of integral equations~23! with the Fi(p2,p•P;P2)
treated as functions of two variablesp2 and z5cosu. This
eigenvalue problem defines physical solutions at the m
shell P252mV

2 . All calculations with the gluonAnsatzof
Eq. ~10! were performed at the physical mass shell; the c
culations we have performed with the parametrization
Ref. @10# for comparison involved some extrapolation2 to the

2The extrapolations were necessary because of nonanalytic be
ior of the resulting quark propagator as discussed in Sec. II B.

FIG. 1. TheAnsatzfor the effectiveq̄q interactionG(q2)/q2,
Eq. ~10!, for the three parameter sets, together with the one-l
perturbative result for comparison.
4-7
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TABLE I. Calculated values of the properties of light, pseudoscalar mesons, for the parametrization
effective interaction~10!, using three different parameter sets, and also for the parametrization of Ref.@10#.

Experiment v50.3 GeV v50.4 GeV v50.5 GeV
~estimates! Ref. @10# D51.25 GeV2 D50.93 GeV2 D50.79 GeV2

2^q̄q&m51 GeV
0 (0.236 GeV)3 (0.241 GeV)3 0.242 0.241 0.243

mm51 GeV
u5d 5–10 MeV 5.5 MeV 5.54 5.54 5.35

mm51 GeV
s 100–300 MeV 130 MeV 124 125 123

mp 0.1385 GeV 0.1385 0.139 0.138 0.138
f p 0.1307 GeV 0.1307 0.130 0.131 0.131
mK 0.496 GeV 0.497 0.496 0.497 0.497
f K 0.160 GeV 0.154 0.154 0.155 0.157
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mass shell, which makes these results less accurate. In
ticular the integral for the normalization condition, Eq.~25!,
is very sensitive to such an extrapolation, which is why
do not report the decay constant for this particular mode

All parametrizations we used give equally good results
the masses and decay constants: the results are fairly in
sitive to changes inv andD, as long as they are fit tomp ,
f p , and mK . Our result formr is typically 5% too low,
whereasmK! andmf are typically 5% too large. Our resu
for the decay constants are within 10% of the experime
value for f r and f K!, and within 10 to 15 % forf f , depend-
ing on the parameter set. This agreement with experime
quite encouraging, given the fact that the parameters
fixed by pseudoscalar observables.

The broad qualitative features of the results for the mas
and decay constants shown in Table II can be obtained
using only the infrared-dominant term of our gluonAnsatz,
that is the first term of Eq.~10!. For example, the masses an
decay constants forp andr would then be typically 5–20 %
lower. However, such a model would be missing the U
behavior characteristic of QCD and this is important
some observables, such as the asymptotic form of form
tors @10#, that are not so dominated by the integrated infra
behavior. Furthermore, the link to QCD via the UV behav
05521
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and the associated renormalization group properties can
sist greatly in future efforts to connect phenomenologi
models such as the present one to studies of the gluon s
of QCD via Dyson-Schwinger equations@18,19#.

From Table II we can also conclude that only five of t
eight covariants are qualitatively and quantitatively impo
tant for the vector meson masses and decay constants
seems to be general, i.e., independent of the paramete
used. Of course, the relative importance of different cova
ants in a BS amplitude does depend on the observable u
consideration. Also, use of a basis set of eight independ
covariants that is different from the present basis given
Eqs. ~12!–~19!, could produce a different conclusion con
cerning the number of important covariants.

In Fig. 2 we show the behavior of the leading Chebysh
projection of the invariant amplitudes of ther BS amplitude
0Fi

r(q2;P2). This and the other plots of the BS amplitud
are produced with the parameter setv50.4 GeV andD
50.93 GeV2; the results for the other parameter sets lo
qualitatively the same. The leading amplitudes for the p
Ep and for the rhoF1 are very similar; however, this simi
larity might be accidental. Of the subdominant amplitud
F4 andF5 are significantly larger than the rest. The mag
or the
ly
TABLE II. Comparison of the results for the vector mesons for the three different parameter sets f
effective interaction, using all eight BS amplitudes~top!, and using the five leading BS amplitudes on
~bottom!.

r K! f
mr f r mK* f K* mf f f

Experiment 0.770 0.216 0.892 0.225 1.020 0.237
All amplitudesF1-F8

v50.3 GeV,D51.20 GeV2 0.747 0.197 0.956 0.246 1.088 0.255
v50.4 GeV,D50.93 GeV2 0.742 0.207 0.936 0.241 1.072 0.259
v50.5 GeV,D50.79 GeV2 0.74 0.215 0.94 0.25 1.08 0.266

AmplitudesF1 . . . F5 only

Maris–Roberts Ref.@10# 0.71 0.95 1.1
v50.3 GeV,D51.20 GeV2 0.737 0.192 0.942 0.235 1.080 0.247
v50.4 GeV,D50.93 GeV2 0.729 0.199 0.919 0.229 1.062 0.250
v50.5 GeV,D50.79 GeV2 0.731 0.207 0.926 0.237 1.072 0.259
4-8
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tude of the amplitudesF6 , F7, andF8 is much smaller than
that ofF1 , F4, andF5, as is evident from Fig. 2; this make
it understandable why these amplitudes contribute so littl
the vector meson masses and decay constants. From thi
ure one might conclude that the amplitudesF2 andF3 have
a similar minor role. However, it turns out that these amp
tudes are essential for the convergence of the loop inte
for the decay constant, Eq.~28!, as discussed below, in Se
V B.

To study the relevance of the various covariants for phy
cal observables in more detail, we calculate the vector me
masses and decay constants using different subsets o
eight covariants in our basis. These results are given in T
III for one particular parameter set, together with the resu
from use of only the leading Chebyshev moments of e
amplitudeFi(q

2,q•P;P2). Note that the leading Chebyshe
order for theK! is zeroth order for all amplitudesFi , in
contrast to the case for ther andf: the functionsF3 andF6
are odd inq•P for the r andf because of charge conjuga
tion symmetry, so the leading Chebyshev order isU1(cosu)
for those mesons. It is evident that for ther andf only the
leading Chebyshev moment is needed to get accurate re
for the masses and decay constants; but the second Ch
shev moment ofF1 is needed for strict convergence of E
~28!. We expect this to be a general phenomenon: pract
calculations of hadron observables might be facilitated b
suitable parametrization of the leading Chebyshev mom
of the amplitudesF1 throughF5. For theK!, which is not a
charge conjugation eigenstate, one needs at least the z
and the first Chebyshev moments for an accurate descrip

Another difference between theK! and ther andf me-
sons, is the dependence on the momentum sharing param
h in Eq. ~23!. Charge conjugation dictates use ofh50.5 for
the r and thef. For theK! there is no such constraint an
we explored momentum partition sets (hu ,h̄s) varying be-
tween (0.5,0.5) and (0.4,0.6). Physical observables ar

FIG. 2. The leading Chebyshev projections of all eightr BS

amplitudes, normalized to0F1(0)51, with an effectiveq̄q interac-
tion, Eq. ~10!, with v50.4 GeV, D50.93 GeV2. The most im-
portant amplitudes,F1-F5, are labeled by lines with symbols.
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principle independent of this partitioning; any dependence
K! physical observables on (hu ,h̄s) would signal an inad-
equacy of the ladder truncation or subsequent approxi
tions. We find that the results formK! and f K! are indeed
unchanged under variation of the momentum sharing, as l
as all covariants and the full angular dependence are ta
into account. Once certain amplitudes are dropped and/or
angular dependence of the amplitudes is truncated, phys
observables do become dependent on (hu ,h̄s): variations
between (0.5,0.5) and (0.4,0.6) lead to changes inmK! and
f K! of up to 5%.

A comparison of the BS amplitudes of the three differe
vector mesons is made in Fig. 3. This figure clearly sho
the difference between ther andf mesons on the one hand
and theK! on the other: while the leading Chebyshev m
ments of ther and f amplitudes are very similar to eac
other and to the corresponding moments of theK! ampli-
tude, the latter has both even and odd moments, due to
lack of C parity. This is especially evident for the amplitude
F3(q,q•P;P2) and F6(q,q•P;P2), which have no zeroth
Chebyshev moment in the case of ther and f, but have a
significant zeroth Chebyshev moment for theK!.

B. Asymptotic behavior of the BS amplitudes

The asymptotic behavior of the BS amplitudes for t
r-meson is shown in Fig. 4, and as in the pseudoscalar c
all amplitudes behave as 1/q2 or 1/q3, up to calculable loga-
rithmic corrections. We emphasize that in QCD these lo
rithmic corrections are essential for the convergence of
integral for the decay constant. Evaluation of the trace in
~28! for equivalent flavors and equal momentum partitioni
gives the leading behavior

TABLE III. The influence of the different covariants and of th
angular dependence of the amplitudes on the vector meson pro
ties with parameter setv50.4 GeV, D50.93 GeV2. For this
table, we have calculated the loop for the decay constant up to
renormalization pointm519 GeV, since for some of the approx
mations considered this integral is ultraviolet divergent. In the c
of a convergent integral, the error made by cutting off the integra
the renormalization point is less than 1%.

Full angular r K! f
calculation mr f r mK! f K! mf f f

All 8 amplitudes 0.742 0.207 0.936 0.241 1.072 0.25
F1 only 0.88 0.20 .1.2 1.24 0.20
F1 , F2, andF3 0.90 0.17 .1.2 1.25 0.20
F1 , F4, andF5 0.722 0.23 0.911 0.26 1.059 0.28
F1•••F5 0.729 0.199 0.919 0.23 1.062 0.25

Leading Chebyshev
decomposition

All 8 amplitudes 0.743 0.211 0.92 0.24 1.074 0.26
F1 only 0.875 0.20 1.09 0.22 1.24 0.22
F1 , F2, andF3 0.900 0.17 1.10 1.25 0.20
F1 , F4, andF5 0.724 0.23 0.90 0.26 1.062 0.28
F1•••F5 0.730 0.201 0.91 0.23 1.065 0.25
4-9
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f VmV5
Z2Nc

3 EL d4q

~2p!4
$@12ss

1ss
21~4q218q2cos2u

23P2!sv
1sv

2#F1~q2,q•P;P2!

232q2~12cos2u!2sv
1sv

2F2~••• !/A5

216q2cosu~12cos2u!sv
1sv

2F3~••• !

1 i8A2Pq~12cos2u!sv
1sv

2F4~••• !

2 i8q~12cos2u!~sv
1ss

21ss
1sv

2!F5~••• !

1O@~F61F71F8!qsv
6ss

7#%, ~39!

wheresv,s are the vector and scalar components of the qu
propagator

sv5
A~q!

A2~q!q21B2~q!
, ~40!

ss5
B~q!

A2~q!q21B2~q!
, ~41!

and f 6
ª f (q6). The last terms in Eq.~39!, proportional to

F6 , F7, and F8, give small and convergent contribution
since they behave in the ultraviolet as

FIG. 3. Leading and subleading BS amplitudes for ther, K!,
andf mesons,~a! zeroth Chebyshev projections ofF1, and for the
K! also the first Chebyshev projection;~b! as ~a!, but then forF2;
~c! first Chebyshev projections ofF3, and for theK! also the zeroth
projection;~d! as~a!, but then forF4; ~e! as~a!, but then forF5; ~f!
as~c!, but then forF6; ~g! as~a!, but then forF7; ~h! as~a!, but then
for F8. The parameters are the same as in the previous plov
50.4 GeV,D50.93 GeV2.
05521
rk

Fi~q2,q•P;P2!qsv
6ss

7;
1

q5
, ~42!

up to logarithmic corrections. Both contributions involvin
F4 andF5, which fall off as 1/q3, are also ultraviolet finite.
Since the amplitudesF1 , F2, andF3 fall off as 1/q2, simple
power counting shows that their individual contributions
Eq. ~39! are logarithmically divergent, even accounting f
the cutoff dependence ofZ2(L2,m2).3

In order to analyze the asymptotic behavior produced
the vector meson BSE in more detail, we follow the strate
used in Ref.@28# for the asymptotic behavior of the functio
B(p2) from the quark DSE. The key step is to replace t
effective running couplingG@(p2q)2# by G@max(p2,q2)#. In
the ultraviolet region the running coupling behaves as 1/lny)
with y5k2/LQCD

2 which is a slowly varying function; there
fore the error made in using this approximation is und
control. In the infrared region, such an approximation is n
to be trusted. After this approximation, and with use of t
Chebyshev decomposition for the angular dependence
Fi(q

2,q•P,P2) in Eq. ~23!, all angular integrations can b
performed analytically. For the leading Chebyshev mome
of ther BS amplitudes, Eq.~23! produces integral equation
of the form

Fi~x!5
gm

ln xE0

x

dyKx.y
i j ~x,y!F j~y!

1gmE
x

`

dyKy.x
i j ~x,y!

F j~y!

ln y
, ~43!

3The factor Z2(L2,m2) ensures gauge invariance and canc
logarithmic divergences in covariant gauges other than Lan
gauge.

FIG. 4. The ultraviolet behavior of ther BS amplitudes: the
leading Chebyshev moments ofF1-F8, obtained using the full an-
gular dependence, are shown by the symbols. The lines display
analytically calculated behavior forF1-F5, given by Eqs.~45!–~47!,
~53!, and~54!.
4-10
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where x5p2/LQCD
2 , y5q2/LQCD

2 , Fi(x)50Fi(q
2;P2) for

i 51,2,4,5,7,8 andFi(x)51Fi(q
2;P2) for i 53,6. Now the

coupled integral equations can be converted to a se
coupled linear differential equations, which can be solved
the ultraviolet region by assuming a series expansion in b
x and lnx. For completeness, we have given the relev
kernels Ki j and other details in the Appendix.

The analysis in the Appendix shows that the ultravio
behavior of the amplitudesF1(x), F2(x), andF3(x) is of the
form

Fi~x!5
ai~ ln x!a

x S 11(
j 51

`

cj~ ln x!2 j D , ~44!

and the steps leading to identification of the powera and the
leading coefficientsai are also given there. The leading u
traviolet behavior is found to be

0F1~q2;P2!5F1~x!;
a1~ ln x!a

x
, ~45!

0F2~q2;P2!5F2~x!;
a12A5~ ln x!a

9x
, ~46!

1F3~q2;P2!5F3~x!;
a1~ ln x!a

3x
, ~47!

with

a5211gm/108. ~48!

The overall constanta1 is not determined by the homoge
neous BSE; its value follows from the normalization con
tion.

Our numerical results show that the leading ultravio
behavior of the BS amplitudes is governed not only by
leading Chebyshev moments0F1(q2;P2), 0F2(q2;P2), and
1F3(q2;P2), but also by the second Chebyshev mom
2F1(q2;P2), see Fig. 5. Numerically, we find in the ultravio

FIG. 5. The ultraviolet behavior of ther BS amplitudes: the
ratio kFi(q

2;P2)/ 0F1(q2;P2) for the leading amplitudes.
05521
of
n
th
t

t

-

t
e

t

let

0F2~q2;P2!
0F1~q2;P2!

50.4860.01, ~49!

1F3~q2;P2!
0F1~q2;P2!

50.3360.01, ~50!

2F1~q2;P2!
0F1~q2;P2!

520.1160.005, ~51!

while all other kFi fall off faster. This is in excellent agree
ment with the analytical results for the relative magnitudes
the leading Chebyshev components, Eqs.~45!–~47!. The
power a of the logarithm is much harder to determine n
merically; our results indicate20.95,a,21.0, which is
consistent witha520.996 from Eq.~48!. We have not stud-
ied whether the inclusion of2F1 in the analysis of the
asymptotic behavior would change our analytical result
a; our numerical results indicate that it will not influence th
coefficientsai of 0F1 , 0F2, and 1F3, nor will it change the
powerb in Eq. ~A7!.

The ultraviolet behavior of the integral for the decay co
stant, Eq.~39!, can now be analyzed in more detail. Th
ultraviolet behavior of the functionsF1 , F2, and F3 does
indeed lead to individual divergent integrals fora>21.
However, thecombinedcontribution is

f VmV;EL2

dy
~ ln y!a

y
$6a124A5a224a312b1%,

~52!

whereb1 is the coefficient of the second Chebyshev mom
2F1(q2;P2), that is, the counterpart ofa1 in Eq. ~45!. Use of
the asymptotic behavior we have found analytically,a2

5a12A5/9 anda35a1/3, shows that the integral for the de
cay constant is finite ifb152a1/9, which agrees with our
numerical result, Eq.~51!. This cancellation between naiv
divergences coming from different covariants provides
illustration of how renormalizibility is realized; it is expecte
since the one-loop renormalization group behavior of QC
is preserved in our rainbow-ladder truncation of the DSE a
BSE. It is the vector counterpart of a similar cancellation
the integral for the pseudoscalar decay constant: numeric
@10#, it was found that in the ultraviolet region thep BS
amplitudes satisfyGp52Fp /q2, which makes the integra
for f p finite, although the separate contributions fromFp and
Gp diverge. The above analysis, when applied to the ps
doscalar BSE, produces an asymptotic behavior of the
plitudesFp andGp that exactly givesGp52Fp /p2.

Finally, in the Appendix, the same ultraviolet analysis a
plied to the vector BS amplitudesF4 andF5 gives

F4~x!;
a4

x3/2~ ln x!12(1/3)gm
, ~53!
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F5~x!;
a5

x3/2~ ln x!12(1/2)gm
. ~54!

In principle, the influence ofF6 , F7, andF8 might change
the power of the logarithm forF4 or F5, but we expect no
change in the leading ultraviolet behavior ofF1 , F2, andF3.

VI. CONCLUDING REMARKS

We have calculated the light vector meson masses and
decay constants associated with electromagnetic and lep
decays using the ladder truncation for the meson BSE
conjunction with the rainbow truncation for the quark DS
We use an effective quark-antiquark interactionG(k2)/k2

with one phenomenological parameter, which is fitted to
producef p ; the two other parameters are the current qu
massesmu/d and ms which are fixed throughmp and mK .
The calculated values for the vector meson masses are w
5% of the experimental values; the decay constants
within 10% of their experimental values. These results
fairly robust: they are weakly dependent upon the scale
which the interaction starts to deviate from the perturbat
behavior, as long as the parameters are fitted to pseudos
observables.

An earlier BSE study@16# in a related framework pro
duced qualitatively comparable results formr , mK!, andmf
as part of a study that included heavy mesons and inco
rated five quark flavors. Vector meson decay constants w
not considered. That approach produced a dependence
the momentum-sharing parameterh that is stronger than
what we find. The present results for physical observab
such as the mass and decay constant, areindependentof the
momentum sharing, as long as all relevant covariants and
full angular dependence are included in the calculation
recent work@29# has explored the feasibility of extractin
ground state vector meson masses from the large Euclid
time behavior of the quark current-current correlator as c
culated from the ladder truncation of the inhomogene
BSE for the vector vertex. Only ther was studied, the BS
amplitudes were not extracted and the decay constant
not calculated.

Of the eight allowed transverse covariants, five are b
quantitatively and qualitatively important, whereas the
maining three amplitudes contribute little to the mass a
decay constant. Neglect of these three amplitudes cha
the calculated masses by only 2% and decay constant
8%. For ther andf the dependence of the BS amplitudes
q•P is very small; truncation to the leading Chebyshev m
ments leads to very similar results. However, the second
ment ofF1 is needed for convergence of the loop integral
the decay constant. This suggests that, in general, hadr
observables can be well described by a rather limited num
of covariants and Chebyshev moments. For theK!, however,
more Chebyshev moments are required, since it is no
charge conjugation eigenstate. Our numerical results ca
used to guide the development of approximating forms
the BS amplitudes for calculation of a variety of observab
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such as electromagnetic form factors and strong decays
fied by r→pp andf→KK.

The ladder truncation of the BSE is known to be a go
approximation for flavor nonsinglet pseudoscalar mes
@17#, and it is expected to be reliable for vector mesons
well. This is to be contrasted with the scalar channel, wh
the same analysis revealed@30# that the next-order correc
tions are much more important. For flavor-singlet meso
there are also contributions from diagrams correspondin
quark annihilation to timelike gluons. These play an impo
tant role for pseudoscalars, e.g., in the generation of theh8
mass through the axial anomaly@31#. For the flavor-singlet
vector mesons however, there is no such anomaly. Also
quark annihilation diagrams play a major role for such m
sons one would expect more flavor mixing than is evident
the v andf. It is therefore reasonable to expect the ladd
truncation to be appropriate for vector mesons. For
ground state vector mesons considered here, there is an
decay channel to a pair of pseudoscalars~e.g.,r→pp), but
this is a P-wave coupling that tends to suppress the me
nism relative to such a decay of a scalar. Estimates of
effects of meson loops on ther mass vary between 2 an
10 %@32#. With the BS amplitudes calculated here we exp
to be able to investigate the effects of meson dressing m
accurately in the future. Note that both the meson dress
and the quark annihilation diagrams can contribute to
splitting between ther and v, which are degenerate in th
ladder truncation.

The confinement property embedded within the dyna
cally dressed propagators in the present BSE approach r
the prospect of studies of excited state light-quark mes
without unphysical quark decay thresholds. However,
straightforward application of the present calculational te
nique is limited by the complexp2-plane singularities tha
arise in the quark propagator DSE solutions in rainbow
proximation. As the meson mass increases, the integra
region for the mass-shell BSE solution in Euclidean me
covers a larger complex domain and such complex singu
ties will eventually be encountered. This may be an artif
of the ladder-rainbow truncation. A different calculation
procedure that may alleviate these difficulties is to base
approach upon the relevant current-current correlator wh
the meson momentum remains spacelike and is Fou
transformed to a large Euclidean time@29#. The meson
ground state mass is identifiable from the exponential fall-
with time. The numerical accuracy of that approach as w
as the feasibility of obtaining excited state masses and
lating the associated BS amplitude are topics that req
further study.

The task of modeling vector mesons within QCD at fin
temperature and chemical potential has recently begun
extremely simplified Ansa¨tze for the kernel of the BSE@33#.
The present work may provide valuable guidance for
extension and improvement of such efforts to explore
behavior of vectorq̄q states and correlations relevant to ch
ral restoration and quark deconfinement transitions.
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APPENDIX: ASYMPTOTIC BEHAVIOR
OF THE BS AMPLITUDES

In order to analyze the asymptotic behavior of the
amplitudesiF j (q

2;P2), we have to perform all angular inte
grals analytically. These angular integrals have measure

E dVp,qª
2

p2E0

p

dupsin2upE
0

p

duqsin2uqE
0

p

df sinf51,

~A1!

whereup is the angle between the external momentump and
P, anduq is the angle between the integration momentumq
andP. This type of integral can be performed with the he
of the appendix of Ref.@34#, and some typical results are

E dVp,q

p•q

~p2q!2
5

pq min~p,q!

2 max~p,q!3
, ~A2!

E dVp,q

p•q

~p2q!4
5

pq min~p,q!

max~p,q!3@max~p,q!22min~p,q!2#
.

~A3!

Other, more complicated, integrals can be expressed
similar way. A common feature of these angular integrals
that they can all be expressed in terms of max(p,q) and
min(p,q). This allows us to convert the integral equations
differential equations@28#.

We have performed all the angular integrals in the fi
coupled integral equations for0F1(q2;P2), 0F2(q2;P2),
1F3(q2;P2), 0F4(q2;P2), and 0F5(q2;P2), ignoring the
functionsF6 , F7, andF8, and truncating the Chebyshev m
ments at the leading order. With the leading ultraviolet b
havior of the functionsF1 , F2, andF3 considered first, the
relevant kernels are

Kx.y
11 ~x,y!5

1

4x
, Ky.x

11 ~x,y!5
x

4y2
,

Kx.y
12 ~x,y!5

2A5

6x
, Ky.x

12 ~x,y!5
2A5~4y2x!

18y2
,

Kx.y
13 ~x,y!5

21

6x
, Ky.x

13 ~x,y!5
2~4y2x!

18y2
,

Kx.y
21 ~x,y!5

2A5~4y23x!

54x2
, Ky.x

21 ~x,y!5
2A5x

54y2
,

Kx.y
22 ~x,y!5

5~9y28x!

216x2
, Ky.x

22 ~x,y!5
5x2

216y3
,
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Kx.y
23 ~x,y!5

2A5~8x23y!

216x2
, Ky.x

23 ~x,y!5
25A5x2

216y3
,

Kx.y
31 ~x,y!5

2~4y23x!

36x2
, Ky.x

31 ~x,y!5
2x

36y2
,

Kx.y
32 ~x,y!5

2A5~8x23y!

144x2
, Ky.x

32 ~x,y!5
25A5x2

144y3
,

Kx.y
33 ~x,y!5

17y28x

144x2
, Ky.x

33 ~x,y!5
~25x216y!x

144y3
.

~A4!

These are to be inserted into the integral equation~43!,
which is

Fi~x!5
gm

ln xE0

x

dyKx.y
i j ~x,y!F j~y!

1gmE
x

`

dyKy.x
i j ~x,y!

F j~y!

ln y
, ~A5!

where Fi(x)5 0Fi(q
2;P2) for i 51,2 and F3(x)

51F3(q2;P2). This set of coupled integral equations ca
now be converted into a set of coupled fourth-order diff
ential equations forF123(x) of the type

x4k4iFi99~x!1x3k3iFi-~x!1x2k2iFi9~x!1xk1iFi8~x!

1k0iFi~x!50. ~A6!

Substitution of the series expansion

Fi~x!5
ai~ ln x!a

xb S 11(
j 51

`

ci
j~ ln x!2 j D ~A7!

into the set of differential equations leads to a set of coup
equations for the powersa and b, and the leading coeffi-
cientsai . It is easy to see that all terms in the differenti
equation have the same power ofx, and collection of all the
leading powers of lnx gives an equation for the powerb.
One of the solutions of this equation isb51, which is ob-
viously the physical solution, see Fig. 4. The next-to-lead
order terms lead to three coupled equations for the four c
stantsa, a1 , a2, anda3; the homogeneous BSE allows fo
an arbitrary overall scaling and we seta151. The solution
for the other constants is then

a5211
gm

108
, ~A8!

a25
2A5

9
, ~A9!

a35
1

3
. ~A10!
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Note that the powersa and b are the same for all thre
functions. Differences between these functions arise o
from differences in the leading coefficientsai , and in the
subleading coefficientsci

j .
Next we consider0F4, which decouples from the othe

amplitudes after performing the angular integrals. The o
nonzero kernels in Eq.~A5! are

Kx.y
44 ~x,y!5

Ay

x3/2
, Ky.x

44 ~x,y!5
Ax

y3/2
. ~A11!

The resulting asymptotic behavior can be expressed by
~A7! with

b45 3
2 , ~A12!

a45211 1
3 gm . ~A13!

This is in agreement with the numerical result, see Fig
The equation forF5 is more complicated, since0F5 does
couple to 0F1 , 0F2, and 1F3. The relevant kernels are

Kx.y
51 ~x,y!5

M ~y!

2x3/2
, Ky.x

51 ~x,y!5
AxM~y!

2y2
,

Kx.y
52 ~x,y!5

A5M ~y!

3x3/2
, Ky.x

52 ~x,y!5
A5AxM~y!

3y2
,

s.

y,

. J

in

05521
ly

y

q.

.

Kx.y
53 ~x,y!5

M ~y!

3x3/2
, Ky.x

53 ~x,y!5
AxM~y!

3y2
,

Kx.y
55 ~x,y!5

Ay

2x3/2
, Ky.x

55 ~x,y!5
Ax

2y3/2
.

~A14!

However, a careful analysis shows that the leading ultrav
let behavior of 0F5 is not influenced by coupling to othe
amplitudes; the leading behavior arises fromK55 only. The
result is Eq.~A7! with

b55 3
2 , ~A15!

a55211 1
2 gm , ~A16!

also in agreement with our numerical results, see Fig. 4.
influence of 0F5 on our previous results for0F1 , 0F2, and
1F3 can be examined for consistency. Those three am
tudes fall off like 1/x, while contributions from0F5 to these
amplitudes via the differential equations in Eq.~A6! will be
suppressed by a factor ofM (x)/Ax, and thus contribute to
the subleading behavior only.
v.
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