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The masses and decay constants of the light vector mgsens¢, andK* are studied within a ladder-
rainbow truncation of the coupled Dyson-Schwinger and Bethe-Salpeter equations of QCD with a model
two-point gluon function. The approach is consistent with quark and gluon confinement, reproduces the correct
one-loop renormalization group behavior of QCD, generates dynamical chiral symmetry breaking, and pre-
serves the relevant Ward identities. The one phenomenological parameter and two current quark masses are
fixed by requiring that the calculated,, m_, and my are correct. The resultin§x is within 3% of the
experimental value. For the vector mesons, all eight transverse covariants are included and the dominant ones
are identified; the complete angle dependence of the amplitudes is also retained. The calculated values for the
massesn,, my, andmg. are within 5%, while the decay constarits, f,, andfy. for electromagnetic and
leptonic decays are within 10% of the experimental val(86556-281®9)04511-2

PACS numbse(s): 14.40.Cs, 24.85:p, 11.10.St, 12.38.Lg

[. INTRODUCTION example, the axial Ward identity dictates that the chiral limit
Bethe-Salpete(BS) amplitude for a pseudoscalgg bound
A realistic description of vector mesons at the quark-state in the dominantys channel is given byBo(p?)/fe
gluon level is an important element in advancing our underwhere By, is the scalar part of the chiral quark self-energy,
standing of hadron dynamics and reaction processes at scalegd fp is the meson weak decay constant. Consideration of
where QCD degrees of freedom are relevant. They are easitjie symmetry breaking effect of current masses within the
produced as decay products in electroexcitation of baryo®S bound state dynamics leads to an exact formularor
resonances and also as precursors to dilepton events in rekie PS meson madd]. One corollary is the Gell-Mann—
tivistic heavy-ion collisions. Flavorless vector mesons couplédakes—Renner relation at small current quark masses where
directly to the photon and play an important role in the phe-mpe\mg; a second corollary is the behaviatpxmg for
nomenology of electromagnetic coupling to hadrons. This idheavy quark PS mesofn2]. With these aids, an efficient and
exemplified by the general phenomenological success of thgualitatively useful phenomenology for observables and
vector meson dominance model which assumes that the eleother quantities associated with the pion and kaon can be
tromagnetic current is saturated by the vector mesons. Theroduced without explicit solution of the bound state Bethe-
ground state vector mesons, being spin modes, sample tl8alpeter equatiofBSE). The only dynamical input required
gg bound state dynamics in a way that is complementary tas the dressed quark propagator as defined by the quark
that of the ground state pseudoscdR® mesons. They also Dyson-Schwinger equatiofDSE).
explore quark and gluon confinement since the vector masses The study of hadronic processes is often facilitated by
are greater than the sum of typical constituent quark massegarametrizing DSE quark propagator solutions into analytic
Mesonic strong decays such as> 77 and ¢—KK, radia-  forms with a few parameters readjusted to accommodate chi-
tive decays such ags— 7y and K*—Ky, and electromag- ral observable$3]. With such an approactm_,«x andf .,
netic decays such gs’—e'e™ and ¢—e'e” can probe the charge radir ,« and form factorsF,«(Q?), and the
aspects of the underlying quark-gluon dynamics that arer-7 scattering lengths have been well descrilp@ This
complementary to what is learned from PS mesons. approach has also been successful in studies of coupling con-
The PS mesons, especially the pion and kaon, have for stants and form factors for processes suchréss yy [4]
long time been a major focus of attempts to understand thand y=— 7 [5]. The incorporation of vector mesons has
internal structure of hadrons from nonperturbative QCD.been hindered by the lack of a symmetry-based means of
Chiral symmetry provides an assistance in the PS case thatabtaining approximate dynamical insight without direct so-
not available to other mesons such as the vectors we discukgion of the vector BSE. There is a conserved current and a
in this paper. In the chiral limit of massless QCD, the dy-corresponding vector Ward-Takahashi identity linking the
namical breaking of chiral symmetry generates masses fdongitudinal vector vertex with the quark propagator. How-
the light quarks that are consistent with the empirical con-ever, this Ward identity does not constrain the transverse
stituent masses deduced from the hadronic spectrum. Thesctor meson BS amplitude and therefore purely phenom-
lowest PS mesons, which would be massless in this limit asnological vector BS amplitudes have often been used to
dictated by the Goldstone theorem, acquire a mass througttudy processes involving vector mesons in this framework.
the explicit breaking of chiral symmetry induced by the cur- Successful applications of this type include the decays
rent quark masses. This phenomenon dominates the system- 77 and p— 7y [6,7] and diffractive electroproduction
atics of the ground state PS octet and provides chiral Wardf vector meson§8]. Uncertainties concerning contributions
identities that relate dynamical quantities in a way that sim+o hadronic observables from the neglected covariants in the
plifies somewhat the task of modeling low energy QCD. ForPS meson BS amplitudes beyond the canonjgalvere not
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addressed until recently9,10]. Several studie$9,11] also  pair the subsequent explorations of meson decays and form
incorporated some aspects of vector BSE dynamics and wefactors. These amplitudes can then be used to calibrate and
able to make a crude assessment of the role of subdominaguide approximate representations that simplify the study of

covariants of the rh¢12] in p— mr andp— 7y but at the hadronic interactions.

expense of using a separalfiesatz[9] for the BSE kernel. In thjs paper we calculate the ground state vector mesons
A recent study of heavy meson decays also employs phe?/ @, K*, and¢ in the DSE-BSE approach, using the ladder-
nomenological BS amplitudes for vector mes§@k rainbow truncation. The effective quark-quark interaction is

The persistent outcome of the above studies is that soffx€d by pion and kaon properties and we investigate the
observables associated with the pion and kaon are consiguality of generated vector meson masses and decay con-
tently and naturally described in terms of the momentunStants. In Sec. Il we outline the framework of the DSE ap-
dependent quark self-energy from realistic solutift@ of ~ Proach we employ along with the truncation and Awesatz
the quark DSE. Important to the success of this approach al¥€ Use to specify the kern¢br effective gluon two-point
the features of quark confinement and dynamical chiral symfunction for both the quark DSE and the bound state BSE.
metry breaking that are implemented through a strong enOur investigations are conductgd with a varlatlon_of the ker-
hancement in the infrared behavior of the effective quark €l Ansatzthat was developed in Reff10] for the pion and
quark interactior{or effective gluon two-point functiofl.4]) kaon. To facilitate the analysis an_d solution Qf the.vector
in rainbow approximation. In the light pseudoscalar sectorBSE, we have employed a convenient set of eight Dirac co-
the most comprehensive and quantitatively reliable study tyariants that satisfy both the CPT constraints and a trace-
date[10] involves direct solution of the bound state BSE in Orthogonality property. These are presented and discussed in
conjunction with quark DSE solutions for propagators. That>€C: Ill- Also in that section we outline the technique of
work represents the development of an appropriate phenongXPansion of the amplitudes in terms of Chebyshev polyno-
enological representation for the infrared structure of theMials thatis sometimes used to resolve the angle dependence
gluon two-point function in conjunction with a bare quark- and reduce the BSE to a set of one-dimensional equations. In
gluon vertex so that the DSE solution for the quark propaga-sec- IV the meson decay constants tre_ated here are defined.
tor exhibits dynamical chiral symmetry breaking as well asResults are presented and discussed in Sec. V, and a sum-
confinement15] and, through the BSE, produces a goodMary and concluspn follows in _Sec. VI. Some technical de-
description soft pion and kaon observables. One of the aim&ilS are collected in an Appendix.
of Ref.[10] was an exposition of the detailed numerical con-
sequences of the constraint provided by the axial vector Il. DYSON-SCHWINGER EQUATIONS
Ward-Takahashi identityAV-WTI ) upon PS meson dynam- , , , B
ics. This constraint is formally assured by the coordinated |, In a Euclidean space formulation, wifty,, , y,;=26,,,
rainbow-ladder truncation of the DSE-BSE complex of Yx= Yux @nda-b=2i_;a;b;, the DSE for the renormalized
DSEs. The inclusion of all possible covariants for the Bsdressed-quark propagator is
amplitude was found necessary to numerically preserve the 1 .
constraint and to obtain quantitatively accurate observables. S(P) ~=Zaly-p+Zsm(u)

Of general importance are two other advances represented by A A2

Ref.[10]. First, since the ultraviolet structure of the model is +Zlf gZDW(p—q)? Y, S(@)T%(a,p), (1)
equipped with the one-loop renormalization group properties q

from perturbative QCD, it is a realistic and covariant hadron . ]

model that can be unambiguously evolved in scale. Sec¥hereD,,,(K) is the renormalized dressed-gluon propagator,
ondly, it is produced by well-defined truncations of the QCDI';(d;p) is the renormalized dressed-quark-gluon vertex, and
equations of motiolDSES, and thus can be systematically [4=/"d*q/(2m)* represents mnemonically a translation-
improved by including higher-order corrections to the quark-ally invariant regularization of the integral, with the regu-
antiquark scattering kernel. larization mass scale. The final stage of any calculation is to

The extension of the DSE approach to vector mesons igemove the regularization by taking the limi—o. The
explored here. Solution of the vector BSE is more difficult solution of Eq.(1) has the general form
than in the PS case because of the significantly larger num-
ber of covariants that must be investigated and also because S(p)~*=iy-pA(p®, 1) +B(p%u?), (2
the higher masses produce a larger domain of the quark com-
plex p? plane that must be sampled. This latter issue wagnd the renormalization condition is
avoided in a previous work16] that made an extensive
study of the meson spectrum from the ladder-rainbow trun- S(p) " Hpe=p2=iy-ptm(u), (€)
cation of the DSE-BSE system. In that approach, a derivative
expansion of the quark self-energy was used to infer thet a sufficiently large spacelike?, with m(x) the renormal-
behavior away from the real axis and some attempt wagzed quark mass at the scale The renormalization con-
made to estimate the resulting error. The implications forstants for the quark-gluon-vertex, the quark wave function,
quark confinement in that approach are unclear. One of ouand the mass, namelyZ,(u?A?), Zy(u%A?), and
aims here is to generate vector meson BS amplitudes without,(u?,A?), respectively, depend on the renormalization
compromising the analytic structure in a way that may im-point and the regularization mass scale. In Eq, S I'2,
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andm(u) depend on the quark flavor, although we have not B. Ladder-rainbow truncation
indicated this explicitly. However, in our analysis we as- \ye use a ladder truncation for the BSE
sume, and employ, a flavor independent renormalization

scheme and hence all the renormalization constants are s o~ free A2 ru
flavor-independent. Kuw(P.G;P) = =dl(p=a)7]D,, (P=a)| 5 7u
A. Meson Bethe-Salpeter equation \? ts
. p q ®(?’y,,) , (7)

The renormalized, homogeneous BSE for a bound state of
a quark of flavora and an antiquark of flavds having total

momentumP is given by which is consistent with a rainbow truncation for the quark

DSE
d*q
(2m)*

a

A
Zlfq 9°D,..(P~ ) 5 7. S(AT(a,p)

b A
Fi’ﬂ(p;P)=f K(p.q;P)

X SY(q+7P)CRP(a;P)S (= 7P),  (4) A \a \a
- - [Cam-aTpiEe-ay vsay . ©
where »+ =1 describes momentum sharifg (p;P) is d
the BS amplitude, ant specifies the meson type: pseudo- free, - ) )
scalar, vector, axial-vector, or scalar. In this paper we cont€"€D ., (k) is the perturbative gluon propagator in Landau
sider the pseudoscalar and vector amplitudes only. The kef@uge. The model is completely specified once a form is

nel K operates in the direct product space of color and Dirachosen for the “effective coupling'G(k?).
spin for the quark and antiquark and is the renormalized, The consistency of Eq7) and(8) lies in the fact that the

amputatedqq scattering kernel that is irreducible with re- @Xial-vector Ward-Takahashi identity is preserved10).

spect to a pair ofjq lines. It is often convenient to express This ensures that in the chiral limit the ground state PS me-
Eq. (4) in the abbreviated form sons are massless even though the quark mass functions are

strongly enhanced in the infrared. In the physical case of

A explicit chiral symmetry breaking, it also ensures an exact
[TRr(P:P) = f K'S(p,q:P)[x2P(q;P)]s;,  (5) relation between the PS meson mass and weak decay con-
q stant, the current quark masses, and the residue at the PS

meson pole in the PS verté%,10]. The analysis in Ref.17]

wherexﬁ‘ﬂb(q;P)::Sa(q+)Fﬁ‘,|b(q;P)Sb(q,) is the BS wave shows that the next-order contributions to the kernel in a
function, g, :=q+ 7P, q_:=q— 5P, and the labels, ... ,u  quark-gluon skeleton graph expansion, have a significant
represent color- and Dirac-matrix indices. This equation de2mount of cancellation between repulsive and attractive cor-
fines an eigenvalue problem with physical solutions at théections for pseudoscalar mesons. Indications are that this is
mass-shell point$2=—m? with m being the bound state @lso the case in the vector channel, which strongly supports

mass. the use of ladder truncationg in these cases.
The canonical normalization condition of the solution of N choosing a form foiG(k®) we know that the behavior
the homogeneous BSE is of the QCD running couplingx(k?) in the ultraviolet, i.e.,

for k®>2-3 GeVf, is well described by perturbation theory.
A In principle, constraints on the infrared form @fk?) can be
f TrcD[FE,.a(q;—K)Sa(qu nP) sought from studies of the DSEs satisfied by the dressed
q gluon propagatob ,,,(k) and the dressed gluon-quark vertex
aby . by T I'%(qg,p). The latter is often represented by Ansatz there
*Tu(aK)Sa=7P)] is almost no information available from DSE studies; the
AfA s gluon propagator has been often studied via its DSE. If the
+f f [xm (K = K) JuKia(k,q; P) ghost loop and the quark loop in the gluon DSE are unim-
a4 Jk portant, then the qualitative conclusion from such studies is
that the gluon propagator is significantly enhanced in the
; (6) infrared and well represented by an integrable singularity
P2=K2=-m?2 such as a regularization ofkf/[14]. Phenomenological stud-
o ies containing such an enhancement show that dynamical
where T'y(k,—P)'=C™I'y,(—=k,—P)C, in which C chiral symmetry breaking and quark confinement follow in a
= vy,v, is the charge conjugation matrix, aXd denotes the straightforward and natural way from the quark DSE with an
matrix transpose oX. The trace in the first term is over both empirically correct value for the chiral condensédg)® and
color and Dirac indices. If the quark-antiquark scattering ker-an excellent description of pion and kaon properfiEg].
nel K is independent of the total momentunas is the case Recent gluon DSE studies that include the ghost loop but
in the ladder truncation we consider here, then the secondot the quark loop have suggested a weak infrared strength
term vanishes. that vanishes ak?=0 for the transverse component of

2P’u:z9_Plur

X[xﬁ‘ﬂq;K)]sr}
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D,.(K) due to a strong infrared enhancement of the ghoslie outside the complex domain of integration that naturally
propagatof18,19. In some studies of this type, unphysical arises in the search for a solution of the BSE in Euclidean
particlelike singularities occur in thAnsatzfor the dressed metric. The mass of the meson determines the extent of the
ghost-gluon and three-gluon verticgls]. It is apparent that required departures from the quark r@élaxis and the pion
such gluon DSE studies are presently limited by the type oind kaon solutions from thAnsatzof Eq. (9) are free of
truncation that can be accommodated and the preliminarguch problems. However, with the parameters of R&d),
nature of theAnsaze employed for some of the dressed ver- we have found this not to be the case for the more massive
tices. Several lattice studies Df, (k) have been interpreted vector solutions. For the present study of vector mesons, we
in terms of an infrared behavior less singular thak? 120]. eliminate thes-function term from Eq(9) and increase the
The phenomenological implications of either type of nonsin-strength of the secondinite-width) term so that it alone
gular infrared behavior foD ,,(k) have recently been ex- implements the infrared enhancement. The quark confine-
plored within the quark DSIE21]. It was found that dynami- ment and dynamical chiral symmetry breaking properties are
cal chiral symmetry breaking as represented by a nonzerpreserved because the essential feature, the integrated
chiral condensate is either absent or is a small fraction o$trength in the infrared domain, remains. The removal of the
what is required to explain pion phenomena; the produced-function term allows parameters to be easily found to pro-
guark propagator does not show quark confinement. duce quark DSE solutions that are smooth functions in the

To provide a quark DSE-based description of pion andentire integration domain required for the vector mesons
kaon phenomena as a basis for exploring vector meson progensidered here as well as for the pion and kaon; the quality
erties, we utilize a variation of the followingnsatzintro-  of the pseudoscalar results is preserved.

duced in Ref[10]: We therefore employ th&nsatz
k2 472 G(k?) 4am?
g(kz ! gD 5%(k)+ 2 DK2e e’ (kZ L 2T pyee?
w w
YmT™ YmT

Fk?), (9 F(k?). (10)

+4m T ERY 4m 2/A2 2
(1/2)In[ 7+ (1 +k“/ Agep)“] (1/2In[ 7+ (1+ k7 AQep) ]
with F(k?)={1—exp(k[4nD}/K2, r=e—1, and yn As in the earlier pion and Iﬁlagﬁ studies, we UuBg
=12/(33- 2Ny). This Ansatzpreserves the one-loop renor- =0.5 GeV, 7=e’~1, Ny=4, A, '=0.234 GeV, and a
malization group behavior of QCD for solutions of the quarkrenormalization poini.=19 GeV, which is sufficiently per-
DSE. In particular, the correct one-loop QCD anomalous diturbative to allow the one-loop asymptotic behavior of the
mension of the quark mass functidh(p?) is preserved in quark propagator to be used as a check. We consider three
its ultraviolet behavior for both the chiral limjtm(x)=0, parameter sets characterized by three different values. of
anomalous dimension-y,,] and explicit chirally broken For each parameter sdd, is treated as a phenomenological
case[ m(u)# 0, anomalous dimension,,]. This asymptotic ~ parameter, which was fitted, along with the renormalized
behavior, a characteristic of QCD, is confirmed by analysiscurrent quark masses, to obtain a good descriptiomgf
of the numerical solution in the ultraviolet as described inand f .. Subsequently, the vector meson sector was studied
detail in Ref.[10]. The main qualitative feature of E(Q) is  without parameter adjustment. For comparison we also re-
that the phenomenologically required strong infrared enyport, for theAnsatzof Ref. [10], vector meson masses esti-
hancement in the region 0-0.5 Gl distributed over an mated by an extrapolation of the BSE eigenvalue to the
integrables*(k) singularity[22] and a finite-width approxi- mass-shell point.
mation tos*(k) normalized so that both terms have the same
Jd*k. The last term in Eq(9) is proportional toa(k?)/k? at |1l VECTOR MESON BETHE-SALPETER AMPLITUDES
large spaceliké? and has no singularity on the réel axis.

The parameters andm, were not varied freely in the study 1€ general form of a vector vertdk, (q;P) can be ex-
of Ref. [10]: the fixed valuesm=0.5 GeV and pressed as a decomposition into twelve independent Lorentz

—0.3 GeV were chosen mainly to ensure thé¢k?) covariants, made from the three vectgss, the relative mo-

~47a(k?) for k2>2 Ge\P. The free parameters wei2 mentumgq,,, and the meson total momentu#y, , each mul-

and the renormalizedi/d- and s-quark current masses to tPliéd by one of the four independent matriced, y-q,
obtain a good description af andK properties. v-P,ando,,q,P,. Since a vector meson BS amplitude is
Solutions of the rainbow DSE for the quark propagator,lfansverse the number of allowed covariants reduces to 8, so

when investigated, usually reveal a nonanalytic behavior ifhat the general decomposition of the vector BS amplitude is

the complexp? plane often in the form of complex conjugate 8
branch pointd 23,24 that are modified or even eliminated ™VaP)=S T (q:P)E.(q2.q- P: P2 11
when the gluon-quark vertex is dresg@d]. Subsequent use ulG:P) .21 wlAPIFi(a7.a- PP, D

of the propagator solutions in the BSE for the bound state
meson should be accompanied by a determination that sushith the invariant amplitudeg;(g?,q- P;P?) being Lorentz
nonanalytic pointsthat are likely artifacts of the truncatipn scalar functions. The choice for the covariaﬁLs{q; P) to be
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used as a basis is constrained by the required properties uthe relative magnitude of the amplitudes to be a qualita-

der Lorentz and parity transformations, but is not uniquetive measure of the dynamical importance of the various co-
The BSE equatiort4) must be projected onto the covariant variants. A more quantitative measure can depend on the
basis to produce a coupled set of eight linear equations fgparticular observable being studied; amplitudes that are un-
the invariant amplitude&; to be cast in matrix form. This important at low momenta can become dominant when high
requires a procedure to project out a single amplitude fronmomentum behavior of the bound state solution is being

the general form(11). It is therefore helpful if the chosen probed.

covariants satisfy a Dirac-trace orthonormality property.

For unflavored mesons that are eigenstate€ ¢€harge

We have chosen the following set of dimensionless orconjugation, such as the, », and¢, there is an additional

thogonal covariants:

TL(aP)=17,, (12)
6 1
T2(q;P)= qzﬁ[q,ﬁ(vT'q)—wL(qT)z], (13)
3 . 2 T
T.(a;P)= q—P[qM(% P)], (14

i\2
To(q;P)= Iqi;[y;(y' P)(y"-q)+a,(y-P)], (15

2

To(q;P)= q

a,,. (16)
Tii(q;P>=q'—ﬁ[y;wq)—(ﬂq)y;], 17)

iv3
T/(q;P)= %(kcoémm(v- P)=(y-P)y,]

1

- ET‘%; P), (189
i2\6
T8(q;P)= Ty P), 19
PCH) qZF,ﬁch,,(*y a)(y-P) 19
whereV' is the component o transverse td
P.(P-V)

V;:V#_#T, (20

andq- P=qP cosé. Note that at the mass-shéll=im. The
orthonormality property satisfied by these covariants is

T[T, (A P)TL(a;P)]=fi(cos6) &, (2D
where the functionsf;(z) are given byf,(2)=1, fi(2)

=%(1-2% for i=3,4,56 andf(2)=2(1-2%2 for i
=2,7,8. For later use we also note the relation

Fdosin% fi(cose)zg. 22)
0

constraint on the BS amplitutieto obtain a specified
C-parity. Of the eight covariants given in Eq42)—(19), T®
and T® are even unde€, the others are odd und€. The
only remaining quantity that can produce a desired uniform
C-parity isq- P which is odd undeC. Thus aC= —1 solu-
tion (such as the and ¢) will have amplituded-5; andF4
that are odd irg- P while the remaining amplitudes are even
in q- P. For the flavored vector mesd*, which is not an
eigenstate of, each amplitude will contain both even and
odd terms ing- P. Since the ladder truncation of the BSE is
invariant under charge conjugation if equal momentum shar-
ing (=0.5) is used, the observation of the above odd-even
behavior inq-P of F; can be used as a test of numerical
accuracy. Alternatively, the amplitudés can be expanded
in terms of a basis of functions that are appropriately odd or
even in co¥ to save significantly on computer time and
memory. Because the mass-shell condition makes the mag-
nitude P imaginary, it is not difficult to verify that with defi-
nite C parity, each amplitude associated with our chosen ba-
sis of covariants is either purely real or purely imaginary.
The amplitude$; for the K* solution are in general complex
due to the dependence upon all powersjoP.

After using representatiofil) for the solution in terms of
the covariant basis, followed by projection using the Dirac-
trace orthonormality property21), the homogeneous BSE

equation(4) for a meson with flavored constituends re-
duces to a set of coupled integral equations for the eight
functionsF2°(g?,q- P;P?) in the form

F28(p2,p-P;P?)fi(2)

__ 4 Ad4q 21 free ab, 2 .p2
——gf (2 i (P~ W7IDL P AF (7 qP;P?)

X HTrp[Th(p;P)y,S%(a+7P)Th(q; P)S°(q— 7P) 7, ].
(23

The above system of equations was solved by two comple-
mentary methods. The first method was a direct treatment as
an integral eigenvalue equatior(P?)F=K(P?)F for a set
of functionsF of two variablesp? andz= cosé. An iterative
method is used to determine the smallest satisfying

IWe do not discriminate between up and down quarks, and do not
take into account electromagnetic corrections; therefore the BS am-
plitudes forp™ are equal to those fas°. Furthermore, the ladder

The covariants are dimensionless and independent of theuncation cannot discriminate between isovector and isoscalar me-
magnitudes) andP. These properties are helpful in allowing sons; therefore thp and thew are degenerate in this truncation.
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A(—m?)=1. Both variables were discretized via Gaussian Z,N, (A d%q
guadrature and the summations for the double integration f\,m\,z—c n
were carried out at each iteration. This has a high demand on 3 (2m)
computer memory. _ T (g4 nPIT(q PYSP(0— 7P
In the second method, the angle dependence of the ampli- XTro[v,S%(q+7P)I',(a;P)S*(a—7P)],
tudes is expanded in the form (29

o0 which is exact if the dressed quark propagators and the me-
Fi(g%,qP;P?)= > IFi(g%P?U(cosf), (24  son BS amplitude are exaf2]. In the next section we use
=0 Eq. (28) to calculate the decay constarits f,, andfy«.
The coupling of thep®
where theU;(z) are Chebyshev polynomials of the second
kind. This allows the angle integrations in E@3) to be 1 _
carried out to produce an integral equation in one variable 1p°)=—=(luu)—|dd)) (29)
but for a larger set of function$F;(q%;P?). For C=—-1 V2
eigenstates such gs and ¢, amplitudesF; and Fg will
require only odd order Chebyshev terms while the other ami[0 the photon is conventionally expressed via a dimension-
ess coupling constary, in the form
plitudes will require only even terms. In practice, the number P

of Chebyshev terms required is quite l¢ane or two termps m?2
so that the memory requirements are effectively reduced in —LeM(P)=(019Q7,9|p°(P,\)), (30)
this second method. The solutions from the direct two- 9, “

variable approach can be projected onto the Chebyshev basi

as a check on the second method and also as a means ¥ ?Pere the flavor multiplet of quark field spinors i@

presentation. =column(u,d), andQ is the quark electromagnetic charge
The specific normalization condition for the vector mesonoperator. The normalization condition given in Eg9) is in
solutions of the ladder BSE follows from E@) and is a form appropriate for a single flavor configuratipy,, , not

for a multiflavor configuration state such as #fe For such

d Ng —ba states, Eq(25) can be generalized by promoting the quark

2P,= P, gf Trp[T7%(a; —K)S*(a+ 7P) propagators to flavor matrice$= diag(s",S"), multiplying
BS amplituded”,, by the appropriate flavor matrix, and trac-
Xl—wib(q;K)Sb(q_;P)“Pz P (25) ing over flavor indices as well. The isospin-symmetric limit

with S'=¢&¢ produces BS amplitudes that are independent of
flavor labels; thep® BS amplitude, for example, can then be
e%pressed aSTé/\/—)F where I, is the normalized BS
amplitude for thep™. Use of Eq. (29) in Eq. (30) then gives

where the factor 1/3 appears because the three transvers
directions are summed.

IV. ELECTROWEAK DECAY m2  Z,N, (A d4q
£ -2 SU=9(q+ 5P
Here we summarize the definition of, and our convention 9 \/— (2m )
for, the vector meson leptonic and electromagnetic decay
constants and their explicit relationship to the BS amplitudes. _ — f,m,

ab/ . =d/~_ N
The electromagnetic decay mediated by a phdtag., p°, xT (a;P)S™%(a—7P)]= (3D

>
@, ¢), and the leptonic decay mediated by\aboson(e.g., \/—

p~, K*¥), are described by the vector decay constant de- The decay widtt 0 . ¢+e-=6.77 keV[27] leads via
fined by[26]

o 47Ta2mp
fumye®M(P)=(0[qPy, a7 V32(P,\)), (26) o ete- “Tag? (32)
p
where e(") is the polarization vector of the vector meson to the valueg,=5.03, that isf,=216 MeV. Note that the
satlsfylngem P=0 and normalized such thaf)* eM=3.  isoscalar version of these considerations produces an extra
This is completely analogous to the definition factor of 1/3 on the right of Eq.31) for the coupling of the
 to a photon. The partial width,_, .+~ is indeed about 10
PP#:<O|abyﬂ,y5qa|Pab(P)> 27) times smaller thal’ jo_, ¢+ ¢-

In a similar way, the coupling of the photon to tlyg

for the pseudoscalar decay constant that corresponds to assumed to be a puss state, is defined as

=131 MeV under the normalization convention of Ef).
The vector decay constant from E@6) can be expressed as ¢ (A)(p 3<O|S‘y s|(P.\)), (33
the loop integral gs “ a
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and the relation betweegy, and the vector decay constdry 10 |. . .
is ! — — 1-loop perturbative
[ N ©=0.5GeV
m3  f,m 8 | T e loacey
S —-- ®=0.3Ge 4
94 3
o
Z,N¢ (A dq . — > 8
— J WTVD[YMSS(QWL 7P (q—7P)]. Ng
o
(35 < 4
The partial width of thep—e*e™ decay is ©
r 47Ta2m¢ (36) 2
$—eter T T o 5
e'e 392(/5
and the experimental value 1.30.05 keV[27] produces 0 0 1 2 3 4 5
f4,=237 MeV, that isg,=12.9. q’ [GeV]]

The decay constarft, determines not only the coupling _
of the neutral vector mesons to a photon, but also the cou- FIG. 1. TheAnsatzfor the effectiveqq interactiongG(q?)/q?,
pling of p* andK*™ to the weak vector boson&™. There Eq. (10), _for the three param(_eter sets, together with the one-loop
are no data available for the leptonic decay of these chargeRfrturbative result for comparison.
vector mesons, but the couplings can be extracted indirectl
from the decays— pv, and7—K*v_. The partial width for
such a decay is

Yesult. The parameté and the current quark masg,4(u)

are fixed by fittingm_, andf .. Next, the strange quark mass
my(u) is determined by a fit to the kaon mass. The resulting
value of the kaon decay constaft is within 3% of the

2 2\ 2 2
r :%\/Z 2mal 1= =Y [ 1+ M- (37  experimental value, almost independent of the parameter set
TV _ 8 ab'Vv''lv 2 2 2/ . . .
. my, for the effective interaction. All three parameter sets lead to

a good description of the pion and kaon masses and decay

With the experimental values for the partial decay widthsconstants, as well as a reasonable value of the chiral conden-
[27]1,_,, =25.02%" o andl’,_x+, =1.28% s, @lONG  sate. In Table | we have summarized these results for the
with the CKM matrix element¥ 4=0.974 andv,,=0.220, three different parameter sets, together with the results from
this gives a ratio Ref.[10].

With our parametrization, the quark mass function
M (p?)=B(p?)/A(p?) has qualitatively the same behavior as
obtained in Ref[10]. With a Euclidean constituent-quark
massMFE defined as the solution gf®=M?(p?), we obtain
and thus a decay constafi.=225 MeV, if we use the constituent quark masses of abadut,q=300—-500 MeV
experimental valué,=216 MeV. for the light quarks, and/l;=500—-640 MeV for a strange

With the available data, the absolute valud ptising Eq.  quark, spanned by the three parameter sets; the parametriza-
(37) givesf,=208 MeV. We expect, however, that the di- tion of Ref.[10] gives constituent masséé ;=560 MeV
rect determination off, through p’—ete”, giving f, andM =700 MeV.
=216 MeV, is a more accurate determination of this decay
constant. In particular, most higher-order corrections to the A. Results for vector meson observables
electroweak vertex are likely to cancel in the ratio of the

partial decay widths, and therefore we use the ratio in Eq, In Table Il we present our results for the vector meson
(38) to extract the experimentdl masses and decay constants. The full angular dependence

was retained in the calculation of these results: we solve the
set of integral equationg23) with the F;(p%p-P;P?)
V. NUMERICAL RESULTS treated as functions of two variableé and z=cosé. This

In Fig. 1 we show ouAnsatzfor the effective interaction, €igenvalue pr;)blem defines physical solutions at the mass-
Eq. (10), for the three different parameter sets we have exShell P?=—mj. All calculations with the gluomnsatzof
plored, characterized by the values of together with the ~EQ. (10) were performed at the physical mass shell; the cal-
one-loop perturbative coupling for comparison. We use thre€ulations we have performed with the parametrization of
different values of the parameter, constrained only by the Ref.[10] for comparison involved some extrapolattdo the
requirement that the perturbative coupling abogg
=3 Ge\ should be reproduced. It is only in the infrared
region, belowg?=2 Ge\?, that there is a significant differ-  2The extrapolations were necessary because of nonanalytic behav-
ence between the three parametrizations and the perturbatiue of the resulting quark propagator as discussed in Sec. Il B.

fiee
1042 (39)
fo
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TABLE I. Calculated values of the properties of light, pseudoscalar mesons, for the parametrization of the
effective interaction(10), using three different parameter sets, and also for the parametrization dflBlef.

Experiment 0=0.3 GeV 0w=0.4 GeV 0=0.5 GeV

(estimates Ref.[10] D=1.25 Ge¥ D=0.93 Ge¥ D=0.79 GeV
—(q0)%-; gev  (0-236 GeV§ (0.241 GeVy 0.242 0.241 0.243
mi=9 cev 5-10 MeV 5.5 MeV 5.54 5.54 5.35
M1 Gev 100-300 MeV 130 MeV 124 125 123
m, 0.1385 GeV 0.1385 0.139 0.138 0.138
f. 0.1307 GeV 0.1307 0.130 0.131 0.131
My 0.496 GeV 0.497 0.496 0.497 0.497
fx 0.160 GeV 0.154 0.154 0.155 0.157

mass shell, which makes these results less accurate. In pand the associated renormalization group properties can as-
ticular the integral for the normalization condition, E85),  sist greatly in future efforts to connect phenomenological
is very sensitive to such an extrapolation, which is why wemodels such as the present one to studies of the gluon sector
do not report the decay constant for this particular model. of QCD via Dyson-Schwinger equatiof$8,19.

All parametrizations we used give equally good results for  From Table Il we can also conclude that only five of the
the masses and decay constants: the results are fairly inseé]ght covariants are qualitatively and quantitatively impor-
sitive to changes im andD, as long as they are fit .,  tant for the vector meson masses and decay constants; this
f,, andmy. Our result form, is typically 5% too low, seems to be general, i.e., independent of the parameter set
whereasmy. andm, are typically 5% too large. Our result ,seq. Of course, the relative importance of different covari-
for the decay constants are within 10% of the experimental s jn 4 BS amplitude does depend on the observable under
yalue forf, andfy., and W'th'.n 1010 15% fo|_f¢, depe_nd- consideration. Also, use of a basis set of eight independent
INg on the parameter set, This agreement with experiment 'Sovariants that is different from the present basis given in
quite encouraging, given the fact that the parameters arEqs (12—(19), could produce a different conclusion con-
fixed by pseudoscalar observables. . ’ . :

The broad qualitative features of the results for the massea N9 the number of |mportar_1t covariants. .

In Fig. 2 we show the behavior of the leading Chebyshev

and decay constants shown in Table Il can be obtained bg o . . . )

using only the infrared-dominant term of our gludmsatz Orogec;uonz of the invariant amplitudes of theBS amplitude
that is the first term of Eq10). For example, the masses and F1 (47 P?). This and the other plots of the BS amplitudes
decay constants far andp would then be typically 5-20% are produced with the parameter set=0.4 GeV andD
lower. However, such a model would be missing the UvV=0.93 GeVf; the results for the other parameter sets look
behavior characteristic of QCD and this is important forqualitatively the same. The leading amplitudes for the pion
some observables, such as the asymptotic form of form fads,, and for the rhoF; are very similar; however, this simi-
tors[10], that are not so dominated by the integrated infraredarity might be accidental. Of the subdominant amplitudes,
behavior. Furthermore, the link to QCD via the UV behaviorF, andF5 are significantly larger than the rest. The magni-

TABLE Il. Comparison of the results for the vector mesons for the three different parameter sets for the
effective interaction, using all eight BS amplitudéep), and using the five leading BS amplitudes only

(bottom.
P K* ¢
m, f, My f my fy

Experiment 0.770 0.216 0.892 0.225 1.020 0.237
All amplitudesF ;-Fg
0=0.3 GeV,D=1.20 GeV 0.747 0.197 0.956 0.246 1.088 0.255
0=0.4 GeV,D=0.93 GeV 0.742 0.207 0.936 0.241 1.072 0.259
0=0.5 GeV,D=0.79 GeV\ 0.74 0.215 0.94 0.25 1.08 0.266

AmplitudesF, . . .Fs only
Maris—Roberts Ref.10] 0.71 0.95 1.1

0=0.3 GeV,D=1.20 GeV 0.737 0.192 0.942 0.235 1.080 0.247
0=0.4 GeV,D=0.93 GeV 0.729 0.199 0.919 0.229 1.062 0.250
0=0.5 GeV,D=0.79 GeV 0.731 0.207 0.926 0.237 1.072 0.259
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' TABLE lll. The influence of the different covariants and of the
angular dependence of the amplitudes on the vector meson proper-
ties with parameter seb=0.4 GeV, D=0.93 Ge\f. For this
table, we have calculated the loop for the decay constant up to the
renormalization poinju=19 GeV, since for some of the approxi-
mations considered this integral is ultraviolet divergent. In the case
of a convergent integral, the error made by cutting off the integral at
the renormalization point is less than 1%.

F(a)

Full angular p K* ¢

calculation m, f, My« frs m, fg

All 8 amplitudes 0.742 0.207 0.936 0.241 1.072 0.259

F, only 088 020 >1.2 1.24 0.20
F,, Fp,andF; 090 0.17 >1.2 1.25 0.20
. ‘ F,, Fy, andFs 0722 0.23 0.911 026 1.059 0.28
0 05 1 15 2 Fi---Fs 0.729 0.199 0.919 0.23 1.062 0.250

FIG. 2. The leading Chebyshev projections of all eighgs ~ Leading Chebyshev
amplitudes, normalized t8F,(0)=1, with an effectiveqq interac- decomposition
tion, Eq. (10), with v=0.4 GeV,D=0.93 GeV.. The most im-  a|| g amplitudes 0.743 0.211 092 024 1074 0.262

portant amplitudesk;-F5, are labeled by lines with symbols. F, only 0.875 020 1.09 022 124 022
) ) F., F,, andF; 0.900 0.17 1.10 1.25 0.20

tude of the amplitudeB¢, F;, andFg is much smaller than F,, Fy, andFs 0724 023 090 0.26 1.062 0.28

that of Fy, F4, andFs, as is evident from Fig. 2; this makes g .. -Fs 0730 0201 091 023 1.065 0.251

it understandable why these amplitudes contribute so little to
the vector meson masses and decay constants. From this fig- = ) o

ure one might conclude that the amplitudesand F 5 have principle independent of this partitioning; any dependence of
a similar minor role. However, it turns out that these ampli-K* physical observables ory( ,7s) would signal an inad-
tudes are essential for the convergence of the loop integr@quacy of the ladder truncation or subsequent approxima-

for the decay constant, E8), as discussed below, in Sec. tions. We find that the results fan,. and fi. are indeed
V B. unchanged under variation of the momentum sharing, as long

To study the relevance of the various covariants for physi&S all covariants and the full angular dependence are taken
cal observables in more detail, we calculate the vector mesdfft® @ccount. Once certain amplitudes are dropped and/or the
masses and decay constants using different subsets of t@9ular dependence of the amplitudes is truncated, physical
eight covariants in our basis. These results are given in TablgPServables do become dependent op,fs): variations

Il for one particular parameter set, together with the resultdetween (0.5,0.5) and (0.4,0.6) lead to changesin and

from use of only the leading Chebyshev moments of eacfik+ of up to 5%. _ _
amplitudeF;(g2,q- P;P2). Note that the leading Chebyshev A comparison of the B_S a_mphtude_s of the three different
order for theK* is zeroth order for all amplitudeB;, in vectqr mesons is made in Fig. 3. This figure clearly shows
contrast to the case for theand ¢: the functionsF; andF, e dlffere*nce between theand ¢ mesons on the one hand,
are odd ing- P for the p and ¢ because of charge conjuga- and theK™ on the other: wh|le the leading thbyshev mo-
tion symmetry, so the leading Chebyshev orded i¢cos6) ments of thep and ¢ amplltu_des are very similar to e_ach
for those mesons. It is evident that for theand ¢ only the ~ Other and to the corresponding moments of Kie ampli-
leading Chebyshev moment is needed to get accurate resuft&le; the latter has both even and odd moments, due to the
for the masses and decay constants; but the second Chelgek of C parzlty. This is espeC|aII2y evident for the amplitudes
shev moment of, is needed for strict convergence of Eq. F3(@,0-P;P%) and F¢(q,q-P;P?), which have no zeroth
(28). We expect this to be a general phenomenon: practicdrhebyshev moment in the case of fheand ¢, but have a
calculations of hadron observables might be facilitated by #ignificant zeroth Chebyshev moment for #e.

suitable parametrization of the leading Chebyshev moments

of the amplituded=, throughFs. For theK*, which is not a B. Asymptotic behavior of the BS amplitudes

charge conjugation eigenstate, one needs at least the zerothTpe asymptotic behavior of the BS amplitudes for the
and the first Chebyshev moments for an accurate descriptior[}._meson is shown in Fig. 4, and as in the pseudoscalar case
Another difference between the" and thep and ¢ me- 5| gmplitudes behave asq®/or 1/9%, up to calculable loga-

sons, is the dependence on the momentum sharing paramefghmic corrections. We emphasize that in QCD these loga-
7 in Eq. (23). Charge conjugation dictates usep#0.5 for  ithmic corrections are essential for the convergence of the
the p and the¢. For theK™ there is no such constraint and jntegral for the decay constant. Evaluation of the trace in Eq.
we explored momentum partition setg(, ) varying be-  (28) for equivalent flavors and equal momentum partitioning
tween (0.5,0.5) and (0.4,0.6). Physical observables are igives the leading behavior
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FIG. 4. The ultraviolet behavior of the BS amplitudes: the
leading Chebyshev moments Bf-Fg, obtained using the full an-
gular dependence, are shown by the symbols. The lines display the

0 os 1 s 2 Mo 05 15 2 analytically calculated behavior fét;-F 5, given by Eqs(45)—(47),
q [GeV] q [GeV] (53), and(54).

FIG. 3. Leading and subleading BS amplitudes for phe<*, 1
and ¢ mesons(a) zeroth Chebyshev projections Bf, and for the Fi(9%,q-P; Pz)qa-f og~ = (42
K* also the first Chebyshev projectiofiy) as(a), but then forF; q
(c) first Chebyshev projections &f;, and for theK* also the zeroth . . . L . .
projection;(d) as(a), but then forF ; (e) as(a), but then forFs; (f) 4P to logarithmic corrections. Both contributions involving

. 3 . - .
as(c), but then forF¢; (g) as(a), but then forF: (h) as(a), but then F4 andFs, which fall off as 14°, are also ultravg)let- finite.
for Fg. The parameters are the same as in the previous plot: SiNce the amplitudes,, F,, andF s fall off as 147, simple
=0.4 GeV,D=0.93 Ge\’. power counting shows that their individual contributions to

Eq. (39) are logarithmically divergent, even accounting for
the cutoff dependence @,(A2,u?).2

4
fVmV:ZZNC A d'q ([1207 o] + (462 +8g2coLh In order to analyze the asymptoti_c behavior produced by
3 (2m)* the vector meson BSE in more detail, we follow the strategy
o 4 ) s used in Ref[28] for the asymptotic behavior of the function
—3P%o, o, JF1(9%,q-P;P) B(p?) from the quark DSE. The key step is to replace the

effective running couplingi[ (p—q)?] by G max@?q?)]. In

_ 2(1— 25t 57 -
320%(1-cog) Ty 7y Fal )5 the ultraviolet region the running coupling behaves as yyIn(

_ 16q2c030(1—co§0)0\f o Fs(-++) with y= kzlAéCD which is a slowly varying function; there-
fore the error made in using this approximation is under
+i8V2Pq(1-cog0)ay oy Fyl--+) control. In the infrared region, such an approximation is not

. 2 - 4 to be trusted. After this approximation, and with use of the
—i8q(1-cost)(a, o5 + 050, )Fs(---) Chebyshev decomposition for the angular dependence of
+ 3 Fi(g?,q-P,P?) in Eq. (23), all angular integrations can be
+O[(Fg+F,+F , 39 i . ,
[(Fe+FrtFo)goy os} 39 performed analytically. For the leading Chebyshev moments

wherea,  are the vector and scalar components of the quar®f thep BS amplitudes, Eq(23) produces integral equations

propagator of the form
Ym [ X i
A F. =_J dyKii V)F.
Uv:%, (40) I(X) In x 0 y x>y(X Y) J(Y)
A“(q)q°+B(q)
T BTSRRI
B(q) ¥m « YRy=x(XY Iny °
0SS 2 aZe B2 (42)
A%(@)q°+B(q)

and f*:=f(q.). The last terms in Eq(39), proportional to  3The factor Z,(A% u?) ensures gauge invariance and cancels
Fe, F7, and Fg, give small and convergent contributions, logarithmic divergences in covariant gauges other than Landau
since they behave in the ultraviolet as gauge.
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FIG. 5. The ultraviolet behavior of the BS amplitudes: the
ratio *F;(q% P?)/°F (g% P?) for the leading amplitudes.

where x=p%/Adcp, Y=0%/Adcp, Fi(x)=CFi(q?P?) for
i=1,2,4,5,7,8 and~;(x) ='F;(g% P?) for i=3,6. Now the

coupled integral equations can be converted to a set

coupled linear differential equations, which can be solved i
the ultraviolet region by assuming a series expansion in bot
x and Inx. For completeness, we have given the relevant

kernels Kl and other details in the Appendix.

The analysis in the Appendix shows that the ultraviolet.

behavior of the amplitudds;(x), F,(x), andF;(x) is of the
form

a;(Inx)“

Fi)=—— (44)

1+ >, ¢(In x)‘j> ,
<1

and the steps leading to identification of the poweand the

PHYSICAL REVIEW C 60 055214

let
OF Z;PZ
%=0.48ﬁ0.01, (49)
F1(g%P9)
1F 2;P2
03(0'—22):0.33:0.01, (50
F1(g%P9)
2F 2;P2
Ol(q—zz) =—0.11+0.005, (51)
Fi(9%P9)

while all other XF; fall off faster. This is in excellent agree-
ment with the analytical results for the relative magnitudes of
the leading Chebyshev components, E5)—(47). The
power « of the logarithm is much harder to determine nu-
merically; our results indicate- 0.95<a<—1.0, which is
consistent withw=—0.996 from Eq(48). We have not stud-
ied whether the inclusion ofF; in the analysis of the
asymptotic behavior would change our analytical result for
of> our numerical results indicate that it will not influence the
Coefficientsa; of 9F,, 9F,, and !F, nor will it change the
Rower,B in Eq. (A7).

The ultraviolet behavior of the integral for the decay con-
stant, EqQ.(39), can now be analyzed in more detail. The
ultraviolet behavior of the functions,, F,, andF; does
indeed lead to individual divergent integrals far=—1.
However, thecombinedcontribution is

(Iny)“
y

A2
fvmv"" dy {6a1—4\/§8.2—4a3+2b1},

(52

leading coefficients; are also given there. The leading ul- Whereb, is the coefficient of the second Chebyshev moment

traviolet behavior is found to be

a;(Inx)*

°F1<q2;P2):F1(x>~%, (45)
a:2y/5(Inx)“

OFz(qz;Pz):Fz(X)N#, (46)

a;(Inx)*
1F3<q2;P2)=F3<x>~1(3—X), (47)

with

a=—1+1v,/108. (49

2F,(g?;P?), that is, the counterpart @f; in Eq. (45). Use of

the asymptotic behavior we have found analyticakhy,
=a,2+/5/9 andaz=a,/3, shows that the integral for the de-
cay constant is finite ib;=—a;/9, which agrees with our
numerical result, Eq(51). This cancellation between naive
divergences coming from different covariants provides an
illustration of how renormalizibility is realized,; it is expected
since the one-loop renormalization group behavior of QCD
is preserved in our rainbow-ladder truncation of the DSE and
BSE. It is the vector counterpart of a similar cancellation in
the integral for the pseudoscalar decay constant: numerically
[10], it was found that in the ultraviolet region the BS
amplitudes satisiyG._=2F /g2, which makes the integral
for f . finite, although the separate contributions frbmand

G, diverge. The above analysis, when applied to the pseu-

The overall constang, is not determined by the homoge- doscalar BSE, produces an asymptotic behavior of the am-
neous BSE; its value follows from the normalization condi-plitudesF . andG , that exactly givess = 2F _/p2.

tion.

Finally, in the Appendix, the same ultraviolet analysis ap-

Our numerical results show that the leading ultravioletpjied to the vector BS amplitudds, andF5 gives
behavior of the BS amplitudes is governed not only by the

leading Chebyshev moment& ,(g%;P?), °F,(g?% P?), and

1F3(g%P?), but also by the second Chebyshev moment
2F (g% P?), see Fig. 5. Numerically, we find in the ultravio-

ay
X3/2( In X) 1-(13)yy’

Fa(x) (53
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such as electromagnetic form factors and strong decays typi-
~— T (54)  fied by p— a7 and $—KK. _
x¥2(In x) 1~ (12)0m The ladder truncation of the BSE is known to be a good
approximation for flavor nonsinglet pseudoscalar mesons
o ) ] [17], and it is expected to be reliable for vector mesons as
In principle, the influence oFg, F7, andFg might change  well. This is to be contrasted with the scalar channel, where
the power of the logarithm foF, or Fs, but we expect no  the same analysis revealg80] that the next-order correc-
change in the leading ultraviolet behaviorfef, F,, andF;.  tions are much more important. For flavor-singlet mesons,
there are also contributions from diagrams corresponding to
quark annihilation to timelike gluons. These play an impor-
VI. CONCLUDING REMARKS tant role for pseudoscalars, e.g., in the generation ofithe

. mass through the axial anomdlg1]. For the flavor-singlet
We have calculated the light vector meson masses and ”{fector mesons however, there is no such anomaly. Also, if

decay constants associated with t_electromagnetic and Iepto_ruﬁlark annihilation diagrams play a major role for such me-
decays using the ladder truncation for the meson BSE iRons one would expect more flavor mixing than is evident for
conjunction with the rainbow truncation for the quark DSE. the o and ¢. It is therefore reasonable to expect the ladder
We use an effective quark-antiquark interactigtk?)/k®  truncation to be appropriate for vector mesons. For the
with one phenomenological parameter, which is fitted to reground state vector mesons considered here, there is an open
producef ; the two other parameters are the current quarkdecay channel to a pair of pseudoscalarg.,p— 7), but
massedan,,4 and mg which are fixed throughm_ and my . this is a P-wave coupling that tends to suppress the mecha-
The calculated values for the vector meson masses are withitism relative to such a decay of a scalar. Estimates of the
5% of the experimental values; the decay constants areffects of meson loops on the mass vary between 2 and
within 10% of their experimental values. These results arél0 %[32]. With the BS amplitudes calculated here we expect
fairly robust: they are weakly dependent upon the scale g be able to investigate the effects of meson dressing more
which the interaction starts to deviate from the perturbativeaccurately in the future. Note that both the meson dressing
behavior, as long as the parameters are fitted to pseudoscaff¥d the quark annihilation diagrams can contribute to the
observables. splitting between the and w, which are degenerate in the

An earlier BSE study[16] in a related framework pro- ladder truncation. L _
duced qualitatively comparable results fo, my-, andm, The confinement property embedded within the dynami-
as part of a study that included heavy mesons and incorp ally dressed propagators in the present BSE approach raises

rated five quark flavors. Vector meson decay constants we e prospect of studies of excited state light-quark mesons

not considered. That aporoach produced a dependence u without unphysical quark decay thresholds. However, a
' - app P . P pgf?aightforward application of the present calculational tech-
the momentum-sharing parameter that is stronger than

. . . . 2- . o
what we find. The present results for physical observablesnlque Is limited by the complep”-plane singularities that

. arise in the quark propagator DSE solutions in rainbow ap-
such as the mass and decay constantj aiepende_nbf the roximation. As the meson mass increases, the integration
momentum sharing, as long as all relevant covariants and t gion for the mass-shell BSE solution in Euclidean metric
full angular dependence are included in the calculation. : : :

. vers a larger complex domain an h complex singulari-
recent work[29] has explored the feasibility of extractlngA,[ciO ers a larger complex domain and such complex singula

round state vector meson masses from the large Euclided€S will eventually be encountered. This may be an artifact
g d @1 the ladder-rainbow truncation. A different calculational

time behavior of the quark current-current correlator as caly rocedure that may alleviate these difficulties is to base the

(E:’,uslaEtigrftrr?énvg::?o:a\?gr?éxm(])nr::latlt%n \?v;;hsethiZ%m?r?ee%eSC)u pproach upon the relevant current-current correlator where
' y the ’ the meson momentum remains spacelike and is Fourier

amplitudes were not extracted and the decay constant W8S, \<formed to a large Euclidean tinj@9]. The meson

notO(;atlrc;‘uIatiecr:i].t lowed transver variants. five are b t}%;round state mass is identifiable from the exponential fall-off
it (teivelg ﬁdo € lit ?ivsl eifne Ccr)t ?ltawrs{ ; N aﬂ:a ?_with time. The numerical accuracy of that approach as well
quantitatively and guaitatively important, ereas e €55 the feasibility of obtaining excited state masses and iso-

maining three amplitudes contribute little to the mass and,;n . 1he associated BS amplitude are topics that require
decay constant. Neglect of these three amplitudes Changﬁ?rther study

the calculated masses by only 2% and decay constants by Th . - -

. e task of modeling vector mesons within QCD at finite
8%. I_:or thep andf.p the dependence of thgz BS amplitudes Ontemperature and chemical potential has recently begun with
q-P is very small; truncation to the leading Chebyshev MO-aytremely simplified Andae for the kernel of the BSE33].

ments leads to very similar results. However, the second MOrpa present work may provide valuable guidance for the

ment ofF, is needed for_convergence of the loop integral forextension and improvement of such efforts to explore the
the decay constant. This suggests that, in general, hadronic

observables can be well described by a rather limited numb ehavior Of. vectonq states and gorrelations fe!‘?va”t o chi-
of covariants and Chebyshev moments. Forkiiehowever, ral restoration and quark deconfinement transitions.

more Chebyshev moments are required, since it is not a ACKNOWLEDGMENTS

charge conjugation eigenstate. Our numerical results can be

used to guide the development of approximating forms for We acknowledge useful conversations and correspon-
the BS amplitudes for calculation of a variety of observableslence with C.D. Roberts, L.S. Kisslinger, and D. Jarecke.

as

Fs(x)

055214-12



BETHE-SALPETER STUDY OF VECTOR MESON MASSE ..

This work was funded by the National Science Foundation
under Grant No. PHY97-22429, and benefited from the reK2>y(x y)=
sources of the National Energy Research Scientific Comput-

ing Center.

APPENDIX: ASYMPTOTIC BEHAVIOR
OF THE BS AMPLITUDES

In order to analyze the asymptotic behavior of the BS

amplitudes'F, (q :P?), we have to perform all angular inte-
grals analytically. These angular integrals have measure

f dQyp

whered, is the angle between the external momenfuand
P, and 6, is the angle between the integration momentym

2 (= ) T ) T )
:?fo dapsmzapfo daqsmzﬁqfo desing=1,
(A1)

andP. This type of integral can be performed with the help

of the appendix of Ref.34], and some typical results are

_ pg min(p,q)

Q A2
jd P9 (p— q)2 2 maxp,q)®’ (A2)
fdQ p-q pgmin(p,q)

"(p—q)*  max(p,q)3[maxp,q)>—min(p,q)?]
(A3)

Other, more complicated, integrals can be expressed in a,
similar way. A common feature of these angular integrals is® %4i

that they can all be expressed in terms of npag( and

min(p,q). This allows us to convert the integral equations to

differential equation$28].

PHYSICAL REVIEW C 60 055214

—V5(8x—3y) —515x°
Taed YT e
—(4y—3x) -
K3Ly(X,y)= el Kiix(X,Y)Zgyz,
—\/5(8x—3y) —55x2
K32, (X,y)= T iaal KJ2(X,y) = EV7ER
17y —8x (25x—16y)x
Kiiy(X:Y)=T4X2, Kiix(x.y)=T4y3-

(A4)

These are to be inserted into the integral equaiié®),
which is

P00 = | "y ey Fy)

Fi(y)
+ 7mJ dyKy>x(XaY)|Jn—y,

(A5)
where F;(x)=C"F;(g%P? for i=1,2 and F3(x)
=1F,4(g% P?). This set of coupled integral equations can
now be converted into a set of coupled fourth-order differ-
ential equations foF;_3(x) of the type

Fiwr(x) +X3K3iF;”(X) +X2K2iF;,(X) +XKliFi’(X)

We have performed all the angular integrals in the five

coupled integral equations fofF;(q%P?), °F,(g%P?),
F4(g%P?), °F,(g%P?), and °F5(g%P?), ignoring the
functionsFg, F;, andFg, and truncating the Chebyshev mo-
ments at the leading order. With the leading ultraviolet be-
havior of the functiong=,, F,, andF; considered first, the
relevant kernels are

X
11 _ 11 _
Kx>y(xay)_ &v Ky>x(xay)_ 4_yz:
K2 <x,y>=_—£, Ky2 x(X y):M,
y B6X y 18y2
- —(4y—x)
13 _ 13 _
Ky =50 Ksuxy)= Y
K2 (xy)= “VB(4y=30 X
x>y ,Y)— 54X2 ’ y>x(X1y)_ 54y2 1
5(9y— 8x) 5x?
KEyxy) == Ky = s Y

+ KOiFi(X):O' (A6)
Substitution of the series expansion
a;(Inx)® o .
Fi(x)= inx) 1+ c{(lnx)‘l) (A7)
xP =1

into the set of differential equations leads to a set of coupled
equations for the powera and B, and the leading coeffi-
cientsa;. It is easy to see that all terms in the differential
equation have the same powengfand collection of all the
leading powers of Ix gives an equation for the powes.
One of the solutions of this equation &= 1, which is ob-
viously the physical solution, see Fig. 4. The next-to-leading
order terms lead to three coupled equations for the four con-
stantsea, a;, a,, andas; the homogeneous BSE allows for
an arbitrary overall scaling and we s&tf=1. The solution

for the other constants is then

Ym
a=—1+ 108’ (A8)
2+/5
=22, (A9)
9
_1 Al10
a3_3' ( )
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Note that the powersr and 8 are the same for all three M(y) &M(y)
functions. Differences between these functions arise only Kiiy(x,y)z Ty K?ix(x,y)z—z,
from differences in the leading coefficiends, and in the 3x 3y

subleading coefficients .
Next we consider’F,, which decouples from the other

; . : Wy X
amplitudes after performing the angular integrals. The only K22 (x,y)= . K32 (x,y)= i
nonzero kernels in EqA5) are =y 2x3/2 y=x 2y32
5 x (Al4)
y X
Kedyxy)=—5  KL(xy)=—5. (Al _ _ _
X y However, a careful analysis shows that the leading ultravio-

let behavior of °F5 is not influenced by coupling to other

The resulting asymptotic behavior can be expressed by Eqyjitydes: the leading behavior arises frét only. The

(A7) with result is Eq.(A7) with

Ba=3, (A12)

dg=—1+Lym. (A13) Bs=%. (A9
This is in agreement with the numerical result, see Fig. 4. as=—1+%vm, (A16)

The equation forFs is more complicated, sinc8Fg does

couple to°F;, °F,, and 'F. The relevant kernels are . _ _ _
also in agreement with our numerical results, see Fig. 4. The

o M(y) o VXM(y) influence of °F5 on our previous results fofF;, °F,, and
K= y(X,y)= VY Ky=x(X,y)= PR 1F; can be examined for consistency. Those three ampli-
X y tudes fall off like 1k, while contributions fromPF to these
amplitudes via the differential equations in E4.6) will be
K52 (x,y)= M K52 (x,y)= M suppressed by a factor ™ (x)//x, and thus contribute to
X>y il 3/2 il y>X il 2 1 . .
3X 3y the subleading behavior only.
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