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A light-front treatment for finite nuclei is developed from a relativistic effective Lagran¢@rD1) in-
volving nucleons, scalar mesons, and vector mesons. We show that the necessary variational principle is a
constrained one which fixes the expectation value of the total momentum opRratorbe the same as that
for P~. This is the same as minimizing the sum of the total momentum oper&orsP*. We obtain a new
light-front version of the equation that defines the single nucleon modes. The solutions of this equation are
approximately a nontrivial phase factor times certain solutions of the usual equal-time Dirac equation. The
ground-state wave function is treated as a meson-nucleon Fock state, and the meson fields are treated as
expectation values of field operators in that ground state. The resulting equations for these expectation values
are shown to be closely related to the usual meson field equations. A new numerical technique to solve the
self-consistent field equations is introduced and applietf@and*°Ca. The computed binding energies are
essentially the same as for the usual equal-time theory. The nucleon plus momentum dist(fyobaiility
for a nucleon to have a given value pf) is obtained, and peaks for values @f about 70 percent of the
nucleon mass. The mesonic component of the ground-state wave function is used to determine the scalar and
vector meson momentum distribution functions, with a result that the vector mesons carry about 30 percent of
the nuclear plus-momentum. The vector meson momentum distribution becomes more concenfpdted at
=0 asA increases[S0556-28189)01511-3

PACS numbd(s): 25.30.Mr, 21.60.Cs, 24.10.Jv

[. INTRODUCTION ing conventional nuclear dynamics. This provides the
technical challenge which we address in the present manu-
The purpose of this paper is to derive the light-frélof) script.
formalism necessary to compute the properties of finite nu- The conventional equal-time approach to nuclear structure
clei. Nuclear properties are very well handled within the ex-physics provides an excellent framework, so it is worthwhile
isting conventional nuclear theory, so it behooves us to exto introduce the light-front variables and describe the ex-
plain why we are embarking on this project. Our motivationpected advantages in a general way. The use of the light-
is that understanding experiments involving high energycone variables can be obtained using a simple argument
nuclear reactions seems to require that light-front dynamicbased on kinematicg2]. Suppose the virtual photon is ab-
and light cone variables be used. Consider the EMC experisorbed by a fermion at a space-time poiag,(t;). The
ment[1], which showed that there is a significant differencefermion then starts to move at high momentum and nearly
between the parton distributions of free nucleons and nuclethe speed of light and emits the photon at another space-time
ons in a nucleus. This difference can be interpreted as a shiftoint (z,, t,). In between the two times, the wave function
in the momentum distribution of valence quarks towardsof the entire system has undergone a time evolution given by
smaller values of the Bjorken variabtg;. The Bjorken vari- the complicated operata " (t2"')_ But we havez,+ct,
able is a ratio of the plus-momentuki =k°+k® of a quark  =z,+ct,, if the z axis is opposite to the direction of the
to that of the target. Thus light cone variables are relevant. I¥irtual photon. The two scattering events occur at different
one usek’ as a momentum variable the corresponding catimes, but at the same value ®f =z+ct. Thus if we use
nonical spatial variable is~ =x°—x® and the time variable x* as a time variable, no time evolution factor appears. The
is x*=x%+x3. net result is that the cross section involves lightlike correla-
It is important to realize that the use of light-front dynam- tion functions which involve field operators evaluated at the
ics is not limited to quarks within the nucleon—it also ap- same light-front timex* =0 (see for example the reviews
plies to nucleons within the nucleus. This formalism is useful[3,4]). Thus it is a specific and general feature of the light-
whenever the momentum of initial or final state nucleons isfront wave approach that knowing only the ground-state
large compared to their magg]. In particular, it can be used wave function is sufficient for computing the distribution
for (e,e’p) and (p,2p) reactions. If one uses light-front vari- functions.
ables for nucleons in a nucleus, it is also necessary to main- Let us review the salient features of the basic idea that
tain consistency with the information derived previously us-using the light-front approach leads to a simplified treatment.
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To be spepific, cqnsider high energy elgctron .scattering from do—~d2pBL<i|bngpB“>:d2pBLn(MvaBL)v (1.5
nucleons in nuclei. The key ingredient in the light-front sim-

plification is to realize the main difference between the twoWhere n(Mx,pg,) is the probability for a nucleon in the

fqrmallsms. In the equal-time fprmallsm, sums over m?erm.e- round state to have a momentuM,pg, ). Integration in
diate states are taken over eigenstates of the Hamiltonia 4. (1.5) leads to

P®. The usual three-momentum is conserved, but energy is
not conserved in intermediate states. In the light-front ap-
proach one sums over eigenstates of the minus component of g~f d?p, n(Mx,p,)=f(Mx), (1.6)
the total momentum operator. The valueR®f is not con-
- . 4
B e i oveon i en1 (M) 3 the probabiy for @ uckon i the roung
tate to have a plus momentum Mdfx.

ergy reactions, in which the plus-component is the Iarges? The quantityf(Mx) has been a widely used prescription

component of the momentum for each projectile or ejectile. X / . . )
P “ N UP for handling the light-front in a simple way. The variable
The advantage of using  as an “energy” variable can Mx is replaced byM — &, + k3, in which the labekr denotes

be easily described. Let the four-momentupof the ex- . -

changed virtual photon be given by,0,0— Q2+ 7)., with a shell-model orbitalp,, of binding energye,. Then
Q?=—¢?, andQ? and v? are both very large bu@?/v is
finite.(the Bjorken ]imh). IQ this case.it is vyorthwhile to use fUPZE naf dszf dp®| ¢, (p%p,)|?
the light-cone variableg™ =q°+q® in which q"~Q?/2v «

=Mx, q ~2v—Q?2v, so thatq >q*. Here M is the
mass of a nucleon anxlis the Bjorken variable. We shall

neglectq™ in comparison tog™, noting that corrections to . . . . . - .
this can be handled in a systematic fashion. Then the sche'zr-] whichn,, is an occupation probability. The validity of this

matic form of the scattering cross section fot A—e’ prescription, which rests on a rerasonaple as§umptipn, is
+(A—1);+p, wheref represents the final nuclear eigenstaterather suspect because the varigple=Mx is a kinematic

of P~ ando the four-momentum of the final broton. is given variable, unrelated to discrete eigenvalues of a wave equa-
' P P 159 tion. One of the main purposes of the present paper is to see

by if anything like this prescription emerges from our calcula-
d3p; tions. We shall see that E{L.7) is not obtained, if a vector
do~ >, f E—f d*pd(p?—M?) potential is a significant part of the nuclear mean field.
f f It is useful to discuss the relation withscaling[5]. The
X 64(q+pi— ps— p)|(p,f|J(q)|i)|2. (1.2) arguments that the cross section depends on a plus-
momentum distribution are well known when used for
Here the operatod(q) is a schematic representation of the quarks in a nucleon, but they also apply to nucleons in a
electromagnetic current. Performing the four-dimensional inucleus[2]. Ji and Filippong[6] showed that the-scaling
tegral overp leads to the expression function F(y) extracted in quasielastic electron scattering on
nuclei is= the light cone plus-momentum distribution func-
d?psdp; ) tion for nucleons in the nucleus. It is useful to use a relativ-
dU~Z f p—+5[(pi_pf+q)2_ M?]|(p,f|3(a)]i)|*. istic form of the variabley [7] in which
f

(1.2

X 8(M—g,+p3—Mx), (1.7)

y=—0>+v+testM, (1.8
The argument of the delta functiorp ps+q)2— M2~ . _ . .
—Q2+2q (p;—p;s) . Thus we see that; does not appear as bothg® and v are large in magnitude, ari is the single
in the argument of the delta function, or anywhere else, s@ucleon separation energy. But
we can replace the sum over intermediate states by unity. In 35 o
the usual equal-time representation, one finds the argument Y= (@) —v a8
of the delta function to be- Q2+ 2v(E;— E;). The energy 2Mv M
of the final state appears, and one cannot do the sum.

To proceed further in this schematic approach we take so that

J(q):f d3kbl+qbkl (1.3 MX=M+Eg—y=Mpya. (1.9

Herey, is a newy-scaling variable. This means that accord-

whereb is a nucleon destruction operator and a generic Vecfng to Eq.(1.4)

tor V=(V*,V,). Itis useful to defingog=p;—p; because

pa = Q2%/2v=MXx, (1.4) Pg =MaYa/M=~Ay,, (1.10

as demanded by the delta function. Then one can reexpress that a measurement of determines the probability that
Eq. (1.2 as the struck nucleon has a plus-momentunfgf, . This prob-
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ability also enters in convolution model calculations of which the total plus and. momentum of each component

nuclear deep inelastic scattering. are fixed. In calculations involving many particles, the Fock
The use of light-front dynamics to compute nuclear wavestate approach cannot be used in practical calculations—
functions should allow us to computgy) from first prin-  instead one uses a mean field in which each particle moves in

ciples. Furthermore, we claim that using light-front dynamicsan “external” potential. In this case the total momentum is
incorporates the experimentally relevant kinematics from thanot fixed, and a Lagrange multiplier term needs to be in-
beginning, and therefore is the most efficient way to computeluded in order to avoid solutions with infinite LF momen-
the cross sections for nuclear deep inelastic scattering artdm.
nuclear quasielastic scattering. In order to fix this potential problem with “runaway so-
It is worthwhile to review some of the features of the lutions” (P —) to variational calculations for LF Hamil-
EMC effect[1,4]. The key experimental result is the suppres-tonians, any term proportional t8* would suffice. How-
sion of the structure function for~0.5. This means that the ever, by setting the coefficient for the term proportional to
valence quarks of bound nucleons carry less plus-momentu®* equal to one, i.e., minimizing® ~+P™", one automati-
than those of free nucleons. One way to understand this reeally guarantees tha®* =P~ (or P3=0). The reason is
sult is to postulate that mesons carry a larger fraction of theéhat, using covariance?~ has eigenvalues of the fori,
plus-momentum in the nucleus than in free space. While=(|\/|§+ pi)/p*l i.e., it scales like B*. Therefore, when
such a model explains the shift in the valence distributiongne minimizesP~ +P* with respect toP*, the minimum

one obtains at the same time a mesios., antiquark distri- occurs for PT=JM2+PZ  which yields P*=(M2
bution in the nucleus, which is strongly enhanced compareqr p2 nov ;

v T =T e
to free nucleons and which should be observable in Drell- DIPT=yMy+P1 as well. This “equipartition” be

+ — . . .
Yan experimentg8]. However, no such enhancement hasgy(gigpoangsie m;sfti%zrs'lrgcne ?thuedit\rgvaol %%%gtsor?uzfslfhlgt
been observed experimentallg], and the implications are this isy uiFt)(Fa) analo oﬁs to the nongrelativistic harm.onic oscil-
analyzed in Ref{10]. q 9

The use of light-front dynamics allows us to compute theldtor where, under scale transformations, potential and ki-

necessary nuclear meson distribution functions using varigt?gﬁ ggf&%ﬁﬁcaéi}e'gti(;?gﬁztﬁir\?;?férneesruIt'ng in the equipar-
ables which are experimentally relevant. The need for a com- pot L 9y- _
The net result is that we minimize the sumf +P .

putation of such functions in a manner consistent with 98N 0 heed to include the plus-momentum can also be seen in
erally known properties of nuclei led one of us to attempt to_" P
a simple example. Consider a nucleusfofhucleons of mo-

construct a light-front treatment of nuclear physidsl]. . .
9 physiasl] mentumP, =M., P, =0, which consists of a nucleon of

These calculations, using a Lagrangian in which Dirac nucle I d iduald—1 |
ons are coupled to massive scalar and vector meggs ~mementum p7,p, ), and a residualA—1) nucleon system

treated the example of infinite nuclear matter within theWhich must have momentunPg —p*,—p,). The kinetic
mean field approximation. In this case, the meson fields ar8N€rgyK is given by the expression

constants in both space and time and the momentum distri- 2 5 2 2
bution has support only &" =0. Such a distribution would K = pi+M PL+Mia
not be accessible experimentally, so the suppression of the pt Pi—p*
plus-momentum of valence quarks would not imply the ex-

istence of a corresponding testable enhancement of an
guarks. However, it is necessary to ask if the result is only a
artifact of the infinite nuclear size and of the mean field
approximation. The present paper is an attempt to handl
finite-sized nuclei using light-front dynamics.

(1.11

% the second expression, one is tempted to neglect the term
Tﬁ in comparison withP , ~M . This would be a mistake.
Igstead we make the expansion

pi+M?* MR pT) pi+M?

K= - i + ? F ~
A. Recovery of rotational invariance P A A P

It is worthwhile to discuss, in a general way, how it is that
we are able to find spectra which have the correct number gfacause for larga, Mifl/Piwl- For free particles, of or-
degenerate states. Let us imagine that we try to determin&nary three momenturp one hasE?(p)=p?+m? andp*
eigenstates of a LF Hamiltonian by means of a variationalL E(p)+p3, so that
calculation. Simply minimizing the LF energy obviously
leads to nonsensical results since the LF energy scales like

. . E2 _(n3)2
the inverse of the LF momentum. Even if one has onIy_aK%[ ()~ (P ]+E(p)+p3+MA,1=2E(p)+MA,l.
poor ansatz for the intrinsic wave function, one can easily E(p)+p

reach zero energy by letting the overall momentum scale to (1.13
infinity. However, this problem is avoided by performing a

constrained variation, in which the total LF momentum isWe see thaK depends only on the magnitude of a three-
fixed by including a Lagrange multiplier term proportional to momentum and rotational invariance is restored. The physi-
the total momentum in the LF Hamiltonian. Note that this iscal mechanism of this restoration is the inclusion of the re-
not a problem if one is able to use a Fock space basis inoil kinetic energy of the residual nucleus.
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B. Outline lows a convenient separation of dependent and independent
The organization of the paper is as follows. The Iight—\""_‘”""bI,es via the projection operatoAstE_%yoy* (18,19,
front quantization for our chosen Lagrangian is presented ifVith #~=A_¢’. The independent fermion degree of free-
Sec. Il. This quantization is applied, along with a constrainedom is chosen to be', , and one finds
minimization of the expectation value ¢, to derive a .
light-front version of mean field theory in Sec. Ill. We obtain (19" =9,V )¢ =[a,-(p. —9,V.) +BM+gsh) J¥"
a new light version of the equation that defines the single
nucleon modes. The solutions of this equation are approxi- (id" =g,V )¢ =[a, -(p, —9,V,)+BM+gsp) ¢ .

mately a nontrivial phase factor times the solutions of the (2.9
usual equal-timéET) Dirac equation. The consequences of ) ] )
this phase factor are discussed. The relation betweery’ andy/, is very complicated unless

The meson fields are treated as expectation values of o€ may set the plus-component of the vector field to zero
erators. The equations for these expectation values afd?]- This is a matter of a choice of gauge for QED and
closely related to the meson field equations appearing in th@CD., but the nonzero mass of the vector meson prevents
usual treatment of the Walecka model. However, the meSUCh a choice here. Instead, one Slmpllfles the equation for
sonic Fock space is accessible in our formalism. Our nucleott”- by [18,20 transforming the fermion field according to
mode equation is simplified by the use of a two-component g AG) . N
spinor formalisnm{13], and by an angular momentum reduc- P'=e 0y 9TA=VT (2.9
tion in Sec. IV. The numerical aspects are discussed in Ap-_ . i
pendix A. The binding energies, nucleon, and meson distri] is transformation leads to the replacement of @) by
butions for %0 and “°Ca are presented in Sec. V. A _ _
concluding discussion appears in Sec. VI. Numerical details (19~ =9,V )¢, =[a, - (p,— 09,V ) +B(M+gsd) ¢,
of how we evaluate the momentum distributions are given in .

Appendix B. A brief discussion of some of the results can be 0" y_=[a, -(p,—9,V,)+BM+gsp)]v,, (2.7
found in Ref.[14]. A related set of solutions of some toy
model problems and a heuristic derivation of our nucleorwhere
mode equation will appear in a separate pdaét.
G VH= gt VE— gVt 2.9
Il. LIGHT-FRONT QUANTIZATION

. . . _}L . . _
We start with a model in which the nuclear constituents \Ot€ that while it isV# that enters in the nucleon field equa

are nucleong/ (or '), scalar mesong and vector mesons t'or_}%’ It 'S\f rtfri]altdent(nerts) In ;her mesg?nfkelgmequ?u;)nsﬁ. n and
V. The Lagrangiar’ is given by e scalar field can be expresse erms of creation a

destruction operators:

1 1 1
L= (0" Pd,p—mid?) — ZVHV,,+ S miVAV d2k, dk* a(k* 4 .
20 e ¢(x)=f—i L fae e ral (ke
(277_)3/2 2k+
— [ , (2.9
where

where the bare masses of the nucleon, scalar and vector me- L
sons are given b, mg, m,, andV#”=g¢*V"—g"V*. We v Sty ke oy =L
ignore pions here. kex 2(k X mkx =kex, (210

The field equations are given by
and the fields and their derivatives with respectxio are

y-(id=g,\V) ' =(M+gsh) /', (220 evaluated atx™=0. This notation is used throughout this
_ work. The consequence is that the energy momentum tensor
a,VH'+ m2V'=g, ¢y’ (2.3 T does not depend ox'. In the above expansiof@nd in
- the expansions for any of our fieldghe particles are on the
9, " p+mip=—gs' ' (2.4  mass shell. Her&™ = (k? +mZ)/k". The theta function re-

strictsk* to positive values. The commutation relations are
The next step is obtain the light-front HamiltoniaR ()
[16] as a sum of free, noninteracting terms and a set of terms [a(k),a’(k")]=6(k, —k)8(kT—k'"), (2.1D
containing all of the interactions. This is accomplished by
separating the independent and dependent degrees of fregith [a(k),a(k’)]=0. It is useful to define
dom in the usual way17,3] and then using the energy mo-
mentum tensor. Consider the nucleons: Although described 8@ (k=k")=8k, —k)o(kT—k'"). (212
by four-component spinors, these fields have only two inde-
pendent degrees of freedom. The light-front formalism al- The expression for the vector meson field operator is
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([ d%k KOGk
w0 | e ¢

x[a(k,w)e” **+a'(k,w)e™ ],

(2.13

where the polarization vectors are the usual ones:

k¥e,(K,0)=0, e“(k,w)e#(k,w’)=—5wwr,
kHK”
Z‘igeﬂ(k,w)a(k,w):—(gw_ 2). (2.14

Once again the four-momenta are on-shell, with=[k?
+mZ]/k* . The commutation relations are

[a(k,w),a"(k’,0")]=6,, 6% (k=k"), (2.19

with [a(k,w),a(k’,w')]=0, and lead to commutation rela-

PHYSICAL REVIEW (0 055211

1 1
T 7=V, ¢V grmip?+ 2 (VE7)2+ S VAV mivkvE

Ty (pL—9VT)+M+gsdli. (2.22

This form is still not useful for calculations because the
constrained fieldy_ contains interactions. We follow Refs.
[18,21] in expressing/_ as a sum of terms, on&  whose
relation with ¢, is free of interactions, the othej_ con-
taining the interactions. That is, we rewrite the second part of
Eq. (2.7) as[13]

1
§—:ia_+(aypi+ﬂM)‘ﬂ+v

1 _
777:ia_+(_al'gvvl+ﬁgs¢) /208 (2.23

tions among the field operators that are the same as in Rety;ithermore. we defing, (x)=. (x), so that

[20].
We also need the eigenmode expansion\Mér This is
given by

_ a2k, dk oK) < —
Vi) = | T S G,
x J (2m) 22k 2, )

x[a(k,w)e” **+al(k,w)e'**],

(2.19

where, using Eqs(2.8) and (2.13), the polarization vectors
e*(k,w) are

_ KkH
e“(k,w)=e"“(k,w)—k—+e+(k,w). (2.17
Note that
v M
> ekw)eko)=—- gﬂ”—g*ﬂk——g”k— :
w=1,3 k* k*
(2.18

P(X) = &(X) + 5-(X), (2.249
where &(X)=£&_(X) + &.(X). This separates the dependent
and independent parts gf.

One needs to make a similar treatment for the vector me-
son fields. The operatdr® ~, is determined by

2 .
v-+=ﬁ—+[ng+—m§v+—aiv'+]. (2.29

Part of this operator is determined by a constraint equation,
because the independent variables \dfeandV'". To see
this we examine Eq2.25, and make a definition

Vi =vt +o', (2.26
where
2
w+‘=—0—+J+ (2.27)

Then we may construct the total four-momentum operator

from

1

with (as usual

TH=—g"'L+ D o Iy,
r &(&M(ﬁr)

in which the degrees of freedom are labeled#&y We need
T"* andT*~, which are

(2.20

T =0 o p+VKVK+m2VIVT+2yti0T g, ,
(2.21)

and

The sum of the last term of E¢2.22 and the terms involv-
ing o™~ is the interaction density. Then one may use Egs.
(2.22, (2.24), and (2.26 to rewrite theP~ as a sum of
different terms, with

1 _
PENZEJ d?x, dx &(y, -p. +M)E, (2.289
and the interactions
P =vitvytvs, (2.29
with
vi- | @ ax Eoy Viaws (230
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Vo= f dZXJ_dX_E( - gv’Y'V+ gs¢)

+

Y
2i9"

(2.31

X——(—0,7-V+0s)¢,

and
2
V3:%f dZXLdX7
Xf dy; e(x” —y1)EL (Y1 X))y €y X))

x [ dys o —ya el )y ez ),
(2.32

wheree(x)= 6(x) — 6(—Xx). The termv, accounts the emis-

sion or absorption of a single vector or scalar meson. The
termv, includes contact terms in which there is propagation

of an instantaneous fermion. The texry accounts for the
propagation of an instantaneous vector meson.

Our variational procedure will involve the independent

fields ¢ , so we need to express the interacti®ig , vy, in
terms of&, . A bit of Dirac algebra shows that

PN=Pon+Vit+Vy

2, X 4 -
= | A% €200V

+[a - (pL—9,V,)+BM+gsd)]

1 _
XmT[aL'(pL_gvVL)—"_B(M +9sP)] (&

(2.33

It is worthwhile to define the contributions @~ arising
from the mesonic terms &, andP, . Then one may use

Egs. (2.22 and (2.21) along with the field expansions to

obtain

Py == [ a2 dx (V. -V, g+ m2g?
s 2 X, dx (V. ¢-V, p+mse?)

k? +m?
=fd2dek+0(k+)aT(k)a(k) e (2.34
P;:f d?k, dk*o(kH)a'(k)a(k)k™, (2.35
k? +m?
P, = ElsfdeLkof0(k+)%a’r(k,w)a(k,w)+v3,
(2.36

and

PHYSICAL REVIEW C60 055211

i Z3Jdz'&dw49(|<+)|<+61T(k,w)a(k,w)-
w=1,
(2.37

The termv; is the vector-meson instantaneous term, and we

include it together with the purely mesonic contribution to

P, because it is canceled by part of that contribution.
Thus, our result for the total minus-momentum operator is

P =Pyt+Ps;+P,, (2.39
and for the plus-momentum
PT=Py+PJ+P,, (2.39
where from Eq.(2.21)
dx~ )
P,zsf d?x, 72§1|a+§+ . (2.40

Ill. MEAN FIELD THEORY

The light-front Schroedinger equation for the complete
nuclear ground-state wave functi¢¥r) is

PW)y=M,|¥). (3.1
We choose to work in the nuclear rest frame so that we also
need

PHWY=M,|W). 3.2
We want to use a variational principle. One might think that
one may simply minimize the expectation valueRf, but
this makes no sense becaseP~ = M4 when acting on the
wave function. One would get a zero Bf* for an infinite
value of P*. As explained in the Introduction, one must
minimize the expectation value &~ subject to the condi-
tion that the expectation value & is equal to the expec-
tation value ofP~. This is the same as minimizing the av-
erage ofP~ andP™, which is the rest-frame energy of the
entire system. To this end we define a light-front Hamil-
tonian

1
HLFEE(P++P‘). (3.3
We stress thatl| ¢ is not usual the Hamiltonian, because the
light-front quantization is used to define all of the operators
that enter.

The wave functiof¥) consists of a Slater determinant of
nucleon field§®) times a mesonic portion
|W)=|D)®|mesons, (3.9
and the mean field approximation is characterized by the
replacements

— (V]| W)

VA (W VE| W), (3.5
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We shall derive the meson field equations, and then detefFhe minus sign enters to remove the minus sign between the
mine the nucleon modes using a variational principle. two terms of the factok-x in Eqg. (2.10. Then one may
redefine the operator

A. Meson field equations

{9 2
We shall go through the derivation of the equation for the —Vf - ( ZW)
expectation value of(x) in a detailed fashion. Consider the
quantityH, ra(k)|¥), and use commutators to obtain appearing in Eq(3.1) as — V2. Note that we previously

_ [22] obtained the above relatidB.12 simply by examining
Hira(k)[¥)=[Hir a0 ][¥)+Maa(k)[¥). (3.6 the space-time diagram for a static soufoelependent of

The operator®; of Egs.(2.34 and(2.35 and the standard x%). The net result is that

commutation relations allow one to obtain ) ) _
(= VMY (x)|[ W) = —g( V[ () p(x) | V),

k?+k*24+mZ J(k) (3.13

H,ak)]=———a(k) + ———,
[Hir.adko)] 2k* () (2m)%2\2k* which has the same form as the equation in the usual equal-

(3.7 time formulation. Note that the right-hand side of Eg.13

3 B _ should be a function ofx| for the spherical nuclei of our
where J(k)/((27)*J2k™) is the commutator of the inter- hresent concern. Our formalism for the nucleon fields uses

action, Eq(2.29, between the scalar meson and the nucleons(l andx~ as independent variables, so that obtaining nu-
Ik 1 merically scalar and vector nucleon densities that depend
Lz Zrp- only onx?+(x~/2)? will provide a central, vital test of our
, [P .a(k)]. (3.9 1 _ _
(2m)%22kt 2 procedures and mean field theory. Assuming for the moment
that this occurs, the scalar field?|4(x)|¥) will depend
We use Eqs(2.30—(2.32, and take the commutator of only |x| according to(3.13.

the interactions/; with a(k). We then reexpress the results  \ye stress that the use of E§.12 is merely a convenient

in terms of¢ to obtain way to simplify the calculation—using it allows us to treat
1 thel and minus spatial variables on the same footing, and to

J(k)=— _gsf d2x, dxe'kXE(x) &(X). (3.9  maintain explicit rotational invariance. We will obtain the
2 mesonic plus-momentum distributions from the ground-state

expectation value of different operators.
The procedure of Eq$3.6)—(3.13 can also be applied to
the vector fields. The appearance of the barred vector poten-
- . (3.10 tial makes it necessary to display certain steps. The starting
2k " (2m)%22k* point is to consider the expressith ra(k)|¥) and the in-
teraction

We take the overlap of Eq3.6) with (¥| to find

ki +k2+mg  (W]I(k)|W
(¥]a(k)|w)— _(VRK)|Y)

We multiply the above equation3.10 by a factor

[V2kT/(2m)%?]e”**. We then add the result of that opera- J(k, ) 1

tion to its complex conjugate. The integral of the resulting T\/—+: >[Prakw)]. (3.19
equation over alk, and positive values df" and using the (2m)*V2K

field expansion(2.9) leads to the result Using EQs.(2.30—(2.32), taking the commutator of the in-

9 \2 teractionsv; with a(k), and reexpressing the results in terms
(—Vf— 2ax_* +m2 (V| p(x)| W) of ¢, leads to
1 I —
d*k, dk” (k™) Silexy 3Tyt ikex J(k,w>=——gvf d?x, dx” e *E(x) - e(k, w) £(X).
=(| ——5 ke +J3T(k)e™ ' x]|w). 2
(2m) (3.19

(3.1 This, along with the other terms in the expression for

The evaluation of the right-hand side of E.1) pro-  Hira(k,®)|¥), allows us to obtain
ceeds by using Eq(3.9) and its complex conjugate. The

2 2
combination of those two terms allows one to remove the(\If|a(k ©)|¥) L+k+2+mv
factor 6(k™) and obtain a delta function from the momentum ' ok
integral. That3 k™ appears in the exponential leads to the
removal of the factor of Eg. (3.9). One can also change 1 ik —
variables using ? a g <\I’| - Egv dZXJ_dX elk X§(X)7 6(k,w)§(X)|\I’>
—x- - (2m)32\2k*

7= —, XE(Z,XL). (3-12 (3-16

055211-7
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The field equation for the vector mesow¢ is obtained by ~normalization of the independent fields remains fixed. The
multiplying the above bye“(k,®), summing overo and nuclgo_n field operators enter only in the teRy + Py, so
performing standard manipulations. We need to know thdhat it is useful to define

guantity 1
H,_FEE(ngLP,j). (3.29
XHK)=D) yae¥(K,w)e (K, ). (3.17)
@ The specific operator is obtained by using E33 to find
The use of Egs(2.18 and(2.17) leads to dx~ :
HLF:deZXL§+HLF§+a (3.29
— vk K
Xﬂ(k)—_’y#+25(,u,,—)k—++k—+’y . (318) Where
One makes familiar manipulations to obtain the result 2H LFEi(7++29vV_
_ _ — 1
(—V2+m3)<‘1’|V"(X)I‘I’>=9v<‘1’|§(X)y"§(X)I‘I’>+(A”.9) tla - (pL=9V)+BM+0so]—r
3.1
with X[a - (pL =gV )+BM+gsh)].  (3.26
4o’ The potentials appearing in E¢3.26 are indipendent of
AM(X)E—<\II|f X 3eik~(><—><')g(xr) x*. This implies some. simplificationsﬂ*V‘=a+V_‘
(2m) —9"V*=g"V", so thatV_ =V, and (for i=1,2) 9"V’
" K :a+l/'—a'v+:—a'v+. Using the relation(2.6) we find
X —+y++25(u,—)7—+) E(X)|W). thatV'=—g'A.
k k The Slater determinanf®) is defined by allowingA

(3.20  hucleon states, denoted by the indexo be occupied. For
our Slater determinant the constrained minimization is given
Note that(as in the derivation given above fef) the by the equation
variablek* (confined to positive valuﬁ replaced by the dx o
inclusion of the complex conjugate tera(k,w) by a vari- 2 X _ Pa _
able k3 which ranges from— to . We proceed by first 5f d XLTWM*(H'—F 2 )A*|a>_0’ (327
assuming that
where the quantitiep,, are the Lagrange multiplication fac-
(—V2+m2) (W |VA(X) | W) =g (W[E(X) y*E(X) | W) =T#, tors for each occupied orbital. The relati¢®27) leads im-
(3.2)  Mediately to our mode equation

which is to be verified by showing that E¢8.19 and(3.21) po A |a)=(id"+2g9,V)A_|a)
are consistent with the defining relatid@.8). Taking the

difference between Eg$3.19 and(3.21) and using the de- T 1
fining relation lead$23] to a consistency requirement tla-(pr—09yV)+B(M +Qs<¢>)]m—+

I =aTAn (3.22 X[a - (pL=GVL) +BM+gsh) A |a).
For u+# — the above relation is verified by integration by (3.28
parts in the expressiaf3.20 for A*. If u=—, one may use

- + The operatorgy and 8 have nonzero values when appearing
;ﬁigig‘gﬁgﬁ 8 and tha(W[V"|¥) does not depend on betweenA . and A_, but vanish when appearing between

the two identical projection operators. Thus we may obtain

o (W[ WY =am (W VW), (323 MNlwas
Thus the validity of Eq(3.21) is established. A_|a)= %[% -(p, _gV\TL) +B(M+0sh)]A 1| a),
id
B. Nucleon single-particle wave functions (3.29

The mesonic field equations are given in the previous suber
section. The equation for the nucleon modes are to be found o
using the procedure of minimizinB~+ P™ with respect to i0"A_|a)=[a, -(p,—9,V, )+ B(M+gsh)]A | a).
the nucleon wave function, subject to the condition that the (3.30

055211-8
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One may use E(.3.30 to rewrite Eq.(3.28 as
P, A |a)=(id"+29,V A, |a)

+la - (pL =9,V )+ B(M+geh)]A_|a).
(3.3)

Equations(3.31) and (3.30 are the essential results of this

PHYSICAL REVIEW (0 055211

Jy(K)=g,(¥| f d®x YT ()P0 |¥).  (3.37)

The nuclear masM 4 is then given by

occ -
a

p
Mp= >, 5> tEs+Ey,

(3.39

section. We have obtained the light-front version of the Harwith expressions for each of the contributions given above.

tree equations.

C. Nuclear energy

There are contributions to the expectation valuePof

D. Relation with the equal-time formulation

Our main results obtained using the mean field approxi-
mation and including the recoil of th&—1 nuclear system

+P* from the nucleons, scalar mesons, and vector mesonare embodied in Eq$3.31) and(3.30. We solve these equa-
The nucleonic term is given from the expectation value oftions below using a mixed momentum-coordinate space pro-

the nucleonic part ¢ (3.26). Taking the nuclear expecta-

cedure in which the wave functions arép™,x |a)

tion value ofH ¢ leads to a sum of matrix elements in the = _(p*,x,). The values op™ are greater than zero. Thus

occupied state$a). The use of the wave equatidB.28
leads to the result

occ —

<\P|HLF|\P>=§0; p7a (3.32

in which the sum is ovew includes only occupied states.
The contribution from the scalar mesdagis given from
the scalar meson terms of Eq2.34) and(2.35 by

2 2

1 ki +m
Es:if d%dk*&(k*){%ﬂ* (wla'(k)a(k)[¥).

(3.33

In our mean field approximation
(Pla'(kya(k)[w)=KW¥la(k)|[¥)[? (3.39

with the matrix element already known from E.10.
Then straightforward calculation leads to the result

d3k

(27)% k?+m?

1
e~ RECRIR

(3.39

whereJ(k) is given by Eq.(3.9), the replacement3.12) is
used, and as aboue is replaced by®. The above expres-
sion is strikingly familiar—it is the result obtained in stan-
dard equal-time calculations.

The vector meson contribution to the enekyis defined
as one-half of the sum of the termsR} of Egs.(2.36 and
(2.37. The calculation oP,, is rather similar to the one just
done for the scalar mesons. One uses the reg8ltH),

(3.16, andX* (3.18. The effects of the instantaneous term

vg are canceled by the nop term of X#, so that we find

d3k 1
(27)% k2+m?

1
E-—3)

13,(k)|%, (3.36

where

the so-called spectrum condition that positive energy par-
ticles have only positive plus-momenta is maintained in our
mean field approximation.

An intermediate step is to make an approximation by us-
ing coordinate space techniques. Here one does not maintain
the spectrum condition in an exact manner. Then one can
show there is a very closéut approximatg relationship
between ouw/,(x,X,) and the usual solutions to the Dirac
equation obtained from the ET formulation.

To see this, let us first consider the case where there is no
vector potential at all\{/*—0). We then multiply Eq(3.30
by y* and Eq.(3.3) by y . Use y"A|a)=y (A,
+A_)|a)=y"|a), and then add the two equations. This
gives

[Y%p. = Y3(2p" —p ) 1ta(X7 X))

=2[y.-prFMAged (X X)) [Pha(X7,X,). (3.39

We convert this to ordinary coordinates usig= —2z, so
that

+ i gt — i J . d
pr=id —2|0,)X—7—> IE'
The operatop™ acts as g° operator, and the resu(8.39
looks like the Dirac equation of the equal-time formulation,
except for the offending term-p_, multiplying the y3. This
motivates us to look for a solution of the forg,(z,X,)
=f(2)yE(z,x,), in which f(2) is chosen to remove to the
offending term. The notation ET refers to the usual equal-
time solution, because we see thdt’ obeys the usual ET
Dirac equation

yop_a_

5= 7 P—M=ge(z.x,) | ¥E(2,x) =0,

(3.40
provided

f(z)= eip;z/Z,

(3.41

055211-9
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so that o
A(z,xL)=J dz’Vo(z' x,), (3.49
a(z ) =P?2yET(2,x,). (3.42 ’
The quantity of interest igr,(p*,x,) which is expressed and
as PP, — 9NV YE (X ) = (7 P+ M +0sh) Y5 (2X,).
(3.50

Relation(3.48) tells us that the influence of the vector poten-
tial is to remove plus-momentum from the nucleons. This
The approximation is that the correct versiongaf(p™*,x,) removal and enhancement of the nuclear vector meson con-
will have no support fop™ <0, but the approximatio(8.43  tent is the most dramatic result we have.

does. We can determine this support by examining the in- How accurate is Eq(3.48? This can only be addressed

1 (= in+
Pa(z,X, %\/T_wfo dp"e® Y, (p*.x,). (343

verse Fourier transform. This gives by solving the problem in a manner which respects the spec-
trum condition. The results show an astonishing agreement
. 1 (= i(o* 0 /22 ET between the eigenvalues of H§.31) and those of the equal-
Po(pT X )= Nz dz e 'P" P27y l(7,x, ), time Dirac equation. Thus it should be safe to use Ba8
mmJ —» . .
(3.44) for qualitative purposes.
which is a Fourier transform of the equal-time Dirac wave IV. TECHNICAL ASPECTS

: o o
function at az component of m?“_“e”t“"“ pa/2._ This 'S The solution of the nucleon and meson field equations are
not exactly equal to zero vyhem Is zero or negative, but it discussed. The reduction of Ed8.31) and(3.30 to a two-
IS vgry small becausp,, /2 mclgdes the nuclgon mass. The dimensional matrix equation is presented here. The new nu-
relationship between the terp),/2 and the binding energy merical technique involving splines is elaborated in Appen-
of the level denoted bw is dix A.

The nucleon mode equation resulting from the minimiza-
tion of 3(P*+P™) is given by the coupled set of equations
(3.31) and(3.30. The meson fieldg andV= obey the equa-

p.l2=M—¢,. (3.45

Thus the relation3.44) is just the usual equal-time proce-

dure equal-time prescription, represented by @), of re- tions
placing the kinematic variable* by the combination of [— ()%= 2 +m2](x,x,)
dynamical and kinematic variabléd — e + p* for the or- s e
bital «: oce
= =052 ha(X X)X X)), (4]
pt—=M—g!+pd (3.46 @
However, the prescriptiofB.46) is dramatically changed [—(97)? =2 +mZIV=(x",x,)
when the vector potential is included. To see this, we multi- oce
ply Eq.(3.31) by y~ and Eq.(3.30 by y*. Then Eq.(3.39 _ — - + _
bacomes 02 YulX XY XX, (42
[Y°(p, —29,V°) —¥3(2p" —p, +29,VO) 1¢ha(X",X,) in which ,(x~,x,)=(x",x,|«). We use the Harindranath-
. Zhang[13] representation for the Dirac matricesand 3,
=2y P M+ ) (X X0, (3.47 gl13] representati | cesand 5

which allows us to write Egs(3.31) and (3.30 in two-
component form. This representation can be obtained from

. . ___ - 0 . .
in which we usedv™ =V~ =V". We again wish to reduce the standard representation

the coefficient of they® term to 2. This can be done with

a new version of the multiplief(z). We find that the light- 0 o 1 0
front wave function is given by = ! E , (4.3
g 0 0 -1
dla(p+ixi) . .
by the unitary transformation
1 (= o _
_ - —i(pT =P, 12)za—igyA(z.X )/ ET,
U=— 1 (4.4
(3.48 J2los
where Hencey— Uy and #— U OUT, whered is a Dirac matrix in
the standard representation. In our representation, the matri-
aTA(XT,x)=VO(x",x,), ces of interest are
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- 0 0 . 10

lo 1) 1o o)’
0 o5 -1 0 (O o,
P=los o) 0o 1) “Tlo, o)

(4.5

The four-component wave functidg,) may now be written
in the form

(X vxl|¢a>), 4.6

(X7 x|y

in terms of the two-component wave functiops,) and
|, ). Thus the two-component form of Eq$3.31) and
(3.30 is

(P, =29,V —id)|y,)
=(0o,-[p.—9,0 A)+o3(M+gsd)]|¥,),
(4.79

ig" [y y=[o, - (p.—9,0, A)+os(M+gsd)1|¥)).
(4.7p

<X_,XL|</fa>:(

The scalar and vector densities are defined as

occ occ

pSEg Jawfg (Ylosp,+i o30,), (4.9

occ occ

Pr=2 Y =2 2000) W (4.9

In the nuclear rest frame," =p~ = p°, wherep® is the usual
nucleon density. Hencé, =0 andV~ =V in this frame.

A. Angular momentum

We can write

O -PL=0)P—) T o)Py (4.10
whereo(.)=3(01*i0,) and
TR I O 1
Py =Prtipp=—ie| Stxr ool (4

PHYSICAL REVIEW (0 055211

where x4, and xy _1,» are the two-component Pauli spinors.

The equations to be solved are then

J j (L2 IA
9 112 )l

(pa—2gvv*—i&*)U2=—(

ar r Vor e
+M*u,_, (4.1339
(P, =20,V =19,
B I Pl O Vi N
_(o’a—r_f_lg"a_r u, —M*l,,
(4.13b
_ _ Jd (A2 | 9A
+ [ T L S A g+ %, .t
id"u, (&r+ . 9y = [,+M*u,,
(4.130
[ jm(2) . IA
+ N _ _ + _ %+
ig"l, (ar 719y Ya M*1, .
(4.130

The wave functionss;, andl} , the nucleon effective mass
M* =M +gs¢, the vector potentiaV *, andA are all func-
tions of bothx™ andr. Equationg4.13 have a manifest spin
degeneracy undgr,— —j,. Solutions with the same eigen-
valuep, are obtained with the corresponding replacement

.

Combined with isospin symmetry, we therefore have a mani-
fest fourfold degeneracy of each single particle state. The
numerical solution to Eqg4.13 is discussed in Appendix
A.

(4.14)

V. NUCLEAR BINDING ENERGIES

If these solutions to Eq$3.31) and(3.30 are to have any
relevance at all, they should respect rotational invariance.
The success in achieving this is examined in Tables | and II,
which give our results for the spectra 810 and “°Ca, re-
spectively. Scalar and vector meson parameters are taken
from Horowitz and Serof24], and we have assumed isospin
symmetry. We see that th= *1/2 spectrum contains the
eigenvalues of all states, since all states must have=a
+1/2 component. Furthermore, the essential feature that the

Herer =|x, | and ¢ is the azimuthal angle, using cylindrical expected degeneracies among states with different values of
coordinates. For the nuclear physics problems of interest, wé, are reproduced numerically.

anticipate that there is an axis of azimuthal symmetry. Hence The results shown in Tables I-IIl are obtained using a
we can expand the two-component wave functions in eigenbasis of 20 splines, a box size of 224 fm, and 24 Fourier
states of angular momentudy, with eigenvalug,: components in the expansion of the wave funciisee Ap-
pendix A). This value ofL is large enough so that our results
do not depend on it, and the number of terms in the expres-
sion for the density is enough to ensure that the densities are
spherically symmetric. Another feature is that the spectrum
with p*>0 has no negative energy states, so that in using
the LF method one is working in a basis of positive energy
states only.

(X% [ ) =i(x",rlug)eliz=(W210y, )
+(x7,r|Ig) ezt 210y ),
iu:*;(xf,r)ei[]—z*(llz)]d’

=iz etz 412
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TABLE |. Comparison of the single particle spectra 60 in
the equal-timgET) formalism E,— M) with the light-front (LF)
method ©,/2—M). Units are in MeV.

PHYSICAL REVIEW C60 055211

TABLE Ill. Total plus-momentum per nucleon fdfO, 4°Ca,
807r, and nuclear mattgiNM) in MeV. No Coulomb interaction is
included here.

ET LF Nucleus Py/A PIA PIIA P*/A
Statea E,—M J,=*1/2 J,=+3/2 10 704.7 6.4 221.8 932.9
“Ca 672.6 4.7 253.3 930.6
851’2 :;%;3 :‘21(1)';3 2077 80zr 655.2 3.6 270.2 929.0
Par2 ' ' ' NM 569.0 0.0 354.2 923.2
0p1s2 —12.49 —1251
The values op,, /2 given in Tables | and Il are essentially A= fxd pTfn(pT), (6.2)
the same as the single particle enerdgiesof the ET formal- 0
ism, to within the expected numerical accuracy of our pro-
gram. This equality is not mandated by spherical symmetry .
alone becau§e _the solutions in t.he equa}—tlme fran:ework P:‘:f dp*p fu(pt). 6.3
have nonvanishing components with negative valueg™of 0

Table IIl gives the contributions to the totBI* momen-

tum from the nucleons, scalar mesons, and vector mesons f

160, 40Cca, and®%zr, as well as the nuclear matter limit. In

qjhe next step is to define a dimensionless varigble

the next section we examine in detail the momentum distri-

butions giving rise to these expectation values.

VI. PLUS-MOMENTUM DISTRIBUTIONS AND LEPTON-
NUCLEUS DEEP INELASTIC SCATTERING

We discuss the probability that a nucleon, or meson has
momentump*. In the light-front formulation, these distribu-

tion functions are determined by the absolute square of the
ground state wave function. Each distribution is discussed in

turn.

A. Nucleon plus-momentum distribution

The light-front formulation is very useful for obtaining
this observable. The probability that we wafit(p™*), fol-
lows from Eq.(4.9) as

occ

fu(p") =23 fdzxil<p+,xilwz>|2, 6.

with

TABLE II. Comparison of the ET and LF single particle spectra
of “°Ca.

ET LF

Statea E,~M  J,=*12 J,=*312 J,=+5/2
0sy/ —55.40 —55.39
0psp —38.90 —-38.91 —38.90
0p1» —33.18 —-33.18
0ds, —22.75 —22.76 —22.75 —22.74
1sy -1439  —14.36
0ds, -1387 —13.88 -13.89

+

©

=pt A = (6 4)
y_p MA_ MA, .
and a dimensionless distributidR(y):
a
fn(p™)
f =— 6.
n(Y) M (6.5

The result is shown in Fig. 1 fol?0, 4°Ca, and®Zr. The
peaks of the distributions range froy=0.72 toy=~0.80,
whereas the average valuég) are somewhat lowefsee
Table Ill). The distribution is not symmetric about its aver-
age value, as it would be if a simple Fermi gas model were
used. Both of these effects are caused by the presence of
nuclear mesons, which carry the remainder of the plus-
momentum.

3.0 T T T T T T

Nucleon p* distribution

FIG. 1. Nucleon plus-momentum distribution functidi(y),
for 10, °Ca, and®zr. Herey=p*/(M/A).
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B. Scalar meson distribution

The probability we want is given by

)= [ ak (wlaloakw). 69
Using Egs.(3.34) and(3.10 this becomes
2 a +
+y 2
(k) f(277)3(k2+mg)z'<“’”(k)"l’>" 6.7

This result is of the same form as in RE22]. A final step is
to define a dimensionless distributidg(y):

fo(k™)
fy)=——.
s(Y) M

(6.9

PHYSICAL REVIEW 0 055211

4.0

35 Vector meson p* distribution

30 |
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3

=20 b
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FIG. 2. Vector meson plus-momentum distributiphf,(y). In
the nuclear matter limity f,(y) becomes a delta function.

The scalar mesons are found to carry less than 1% of théactor of 1k™ in Eq. (6.12 which enhances the distribution

plus-momentum of the nucleuJable Ill), which is negli-
gible.

C. Vector meson distribution

The probability we want is given by
fv(k*):J d?k, >, (¥|a'(k,w)a(k,0)|¥). (6.9
w=1,3

Using Egs.(3.16) and the mean field approximatiqi3.5)
this becomes

d2k,  2k*
+y 2

Mk f(zw>3<k2+m€)2 2 el

(6.10

in which

J(k,w)=f d3x &KW | (x) yip(x) - e(k, )| ).
(6.11)

Using EqQ.(2.18 and that only theu=v=— term enters,
leads to the result that

2kt K+m]

d%k,
fV(k+):f 3 (2 2\2 +2
(2m)% (k?+m?)? k

13,(K)[%,
(6.12

another result which is of the same form as in Rag]. A
final step is to define a dimensionless distributigfy)

fu(k™)

fo(y)= ——.
v(y)M

(6.13

of vector mesons of lok ™. The results for the vector meson
distribution are shown in Fig. 2. Clearly as the size of the
nucleus increases the enhancement of the distribution at
lower values ofk* becomes more evident. In the case of
nuclear matter the distributiok™f, (k™) becomes a delta
function.

D. Lepton-nucleus deep inelastic scattering

It is worthwhile to see how the present results are related
to lepton-nucleus deep inelastic scattering experiments. We
find that the nucleons carry only about 70% of the plus-
momentum. The use of our, in standard convolution for-
mulas leads to a reduction in the nuclear structure function
that is far too large £ 95% is needef4]) to account for the
reduction observef4] in the vicinity of x~0.5. The reason
for this is that the quantit¥ + gs¢ acts as a nucleon effec-
tive mass of about 670 MeV, which is very small. A similar
difficulty occurs in the ¢,e’) reaction[25] when the mean
field theory is used for the initial and final states. The use of
a small effective mass and a large vector potential enables a
simple reproduction of the nuclear spin orbit folde?,24.
However, effects beyond the mean field may lead to a sig-
nificant effective tensor coupling of the isoscalar vector me-
son [26] and to an increased value of the effective mass.
Such effects are incorporated in Brueckner theory, and a
light-front version[27] could be applied to finite nuclei with
better success in reproducing the data.

VII. SUMMARY AND DISCUSSION

The previous sections present a derivation of a light-front
version of mean field theory. The necessary technique is to
minimize expectation value of the suB +P™*. This leads
to a new set of coupled equatiof.31) and (3.30 for the
single nucleon modes. These depend on the meson fields of

The vector mesons carry approximately 30% of theEgs.(3.13 and(3.2).

nuclear plus-momentum. The technical reason for the differ-

The most qualitatively startling feature emerging from the

ence with the scalar mesons is that the evaluation oflerivation is that the meson field equatid@sl3 and(3.21)
a'(k,w)a(k,») counts vector mesons “in the air’ and the are the same as that of the usual theory, exceptztbéithe
resulting expression contains polarization vectors that give aqual-time theory translates tox /2 of the light-front ver-
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sion. This can be understood in a simple manner by notingnomentum. Another interesting possibility would be to ob-

that light-front quantization occurs &t = 0. If one then sets tain a light-front version of the quark-meson coupling model

z=—t, thenx™ =t—z=—2z. However, this simple argu- [29], in which confined quarks interact by exchanging me-

ment is not really justified, because usixg precludes the sons with quarks in other nucleons. This model also has

use ofz andt. A general argument, using the feature that asmaller magnitudes of the scalar and vector potentials.

static source in the usual coordinates corresponds to a source In any case, these kinds of nuclear physics calculations

moving with a constant velocity in light front coordinates, can be done in a manner in which modern nuclear dynamics

will be presented in a separate pap&b]. That paper also is respected, boost invariance in thdirection is preserved,

contains a number of solutions of toy models. and in which the rotational invariance so necessary to under-
Even though the meson field equations of the light-frontstanding the basic features of nuclei is maintained.

and equal-time theories are the same, there are substantial

and significant differences between the two theories. In our ACKNOWLEDGMENTS

treatment, the mesonic fields are treated as quantum field

operators. The mean field approximation is developed by re- P.G.B. was supported in part by the Natural Sciences and

placing these operators by their expectation values in th&ngineering Research Council of Canada. G.A.M. and M.B.

complete ground-state nuclear wave function. This meanwere supported in part by the U.S. DOE.

that the ground-state wave function contains Fock terms with

mesonic degrees of freedom. We can therefore compute ex- APPENDIX A: NUMERICAL TECHNIQUES
pectation values other than that of the field. In particular, we
are able to obtain the mesonic momentum distributi@ec. There are many possible numerical approaches to solving

VI). This feature has been absent in standard approaches.Egs.(4.13. We choose a method that is robust, and empha-

We obtain an approximate soluti@B.48 of our nucleon sizes the physical content of the wave functions, at the ex-
mode equation. Our nucleon mode functions are approxipense of being computationally intensive. We begin by mak-
mately a phase factor times the usual equal-time mode fundng a Fourier expansion of the wave functions in the variable

tions (evaluated a™ = —2z). This shows that the energy X :

eigenvalues of the two theories should have very similar val-

ues. But the wave functions are different—the presence of 1 e

the phase factor explicitly shows that the nucleons give up ug (x~,r)= e ; e PnX 2ur (1), (A1)

substantial amounts of plus momentum to the vector mesons.
A new numerical technique, discussed in Sec. IV and Ap- o ) . N
pendix A, is introduced to solve the coupled nucleon andVith a similar expansion for, (x,r). Boundary conditions
meson field equations. Our results display the expecfed 2 are imposed by constraining the system to be in a “box" of
+1 degeneracy of the single nucleon levels, and the resul@ given length in the variabbe™. In the nuclear rest frame,
ing binding energies are essentially the same as for the usul = —22, and sod” =24_=—d/dz. Hence for—L<z=<
equal-time formulation. This indicates that the approxima-*L, we write
tion (3.48 is valid.

As discussed in Sec. VID, the present results related to = (20) 1 D ipz = (A2)
- i i i i u,(z,r)= e'Pn?u; (1),
lepton-nucleus deep inelastic scattering experiments and N n

(e,e’) reactions are not consistent with experimental find-

ings. This is because, if°Ca for example, the nucleons ith o — B B

carry only 72% of the plus momentum. This is a result of theith {Pn =nd, N=1,2,3.. .}, andg=m/L. .

fact that the quantitM +g.¢, which acts as a nucleon ef- ~ For bound states, the functions, ,(r) andl, .(r) are
fective mass, is very small, about 670 MeV. The use of 4eal, and so the scalar and vector densities take the form
small effective mass and a large vector potential enables a

simple reproduction of the nuclear spin orbit folde,24. S _ s

However, effects beyond the mean field may lead to a sig- p (z,r)—méo Pm(r)cOSMAZ, (A3)
nificant effective tensor coupling of the isoscalar vector me-

son [26] and to an increased value of the effective mass.

Such effects are incorporated in Bruckner theg@¥] which, p=(z,r)= 2, pa(r)cosmqz (A4)
for infinite nuclear matter, results in nucleons having about m=0

80-85 % of the nuclear plus-momentum. A light-front ver-

sion[27] should be applied to finite nuclei with better suc- with m=0,1,2 ..., and

cess in reproducing the data. Another approach could be to

use different Lagrangians, with nonlinear couplings between 2 oce

scalar mesons and the nucledig], or ones in which the prlr)= o7 1T 2 2 U (DU (D)
coupling is of derivative formi28]: ¢y*yd,¢. These mod- mo @ "

els are known to have significantly smaller magnitudes of the FUgn(NUL (D = 2 (D] pem(1)

scalar and vector potentials. In particular, in nuclear matter B .

vector mesons carry only about 10—15 % of the nuclear-plus (Ml gnem(M], (A5)
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2 2 occ
P%(r):m 1+ o 20; > [Us o(DUL pem(T)

n

*

Hlan(Dl g nem(M]:

The normalization integral for a nucleus wighnucleons is

(AB)

0 L
A=277J dr rj dzp*(zr)
0 -L

=2772LJ drrpg(r)
0

occ

:Zfoxdr r> Z LU (DP+AL (1) (A7)

1. Meson fields

The equations for the meson fields are solved using

PHYSICAL REVIEW (0 055211

_[{zru™) L .0
P (<z,r|l*>):{(zgvv 'z

Green’s function methods. We illustrate this for the vector

field V*, with results for¢ following by analogy. Starting

with

—+mZ |V (z,r)=g,p"(z,1),
(A8)

we expand/*(z,r) in the same form as the densjy (z,r),
Eq. (A4):

V*(z,r)=2, Vi (r)cosmqz (A9)
m
The functionsV,(r) satisfy
#? 19
- 2 2~2 + _ +
( ar2 ror +m,+mq Vm(r)_gvpm(r)v
(A10)
and their solution may be written as
vr;(r):gvfodr'r'G(r,r')pmr'). (A11)
The Green'’s function is
G(r,r")=lo(msr)Ko(mir')o(r'—r)
+lo(MEHKo(mir)o(r—r’). (Al2)

We have introduced the definitian® = \/m2+m?g?, andl

and K, are modified cylindrical Bessel functions of zeroth

1
I+H[—i((9/az)]lH]
(zr|u™)
X(<z,r|l+> ’ (A19
with the constrained subsidiary relation
z,rju” 1 z,rlu®
@) 1)
(z,x|17)y ] [=i(ala)l] "\ (zr|I*)
Herel is the 2< 2 identity matrix, and
M* D,+igy (dA/dr)
H= . , (Al5)
D,—igy (dA/ar) —M*
D= J jz+% AL6
i b (A16)
d jz_%
Do=| - —— ) (A7)

If we takeN Fourier componente=1,2,3 ... N in the ex-
pansion of Eq.(A2) in z then u*(zr)={(zr|u*) and
I (z,r)=(z,r|lI") have the matrix representation

uy (r) 17 (r)

+ |+

uz (1) | (1) | a8)
uy (1) I (r)

whereu, (r)=(p, ,rlu®) andlf(r)=(p; r|I").

Equation(A13) becomes a R X 2N matrix equation. Ma-
trix elements of theN XN sub-blocks are determined from
the integrals

[VE(O) Iy =(Pa IVF (z.1)|py) (A19)
1 L . +
=—| dz &Py Pn)2vT(zr) (A20)
2L ),
1+ 6m0
= V(D) 8- nrm- (A21)

2

Similarly,

1+6mo
[M* (1) ]y =M S+ = GsBo(1) G- m.

order. The meson fields are computed numerically from Eg.

(A11) by an outward and an inward integration.

2. Solution of nucleon equation

To streamline the notation, we drop the explicit depen-
dence on the single particle labelin this section. Equation
(4.13 can be rewritten in the form of @22 matrix equation

(A22)

{—i 22| =Padn (A23)
(nn’)

[Dl](nn’):Dlgn,n’ ) (A24)

[DZ](nn’):ngn,n’ ) (A25)
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—3Vn(D+ (=)™ (1)

Pr =P

m=+0.

[iA(r)](nn’):

[n—n’|,m

(A26)

The last relation comes from the definitiendA/dz=V".

Using integration by parts, and a careful treatment of surface

terms, gives matrix elements in the foi#26).

PHYSICAL REVIEW C60 055211

The problem has now been reduced to an eigenvalue

problem involving 2N coupled differential equations in the
variabler. To solve this, we make a further expansion of

u, (r) andl; (r) in a finite basis of8 splines of degred
[30,31:

N

Uy (1) =2, e B(r), (A27)
N

ln(n=2 B.BM(r). (A28)
=1

The B splines{B®, i=1,... A} are polynomials of de-
gree k—1 spanning a domain of equally spaced knots
1,... N+k} in r. They are smooth “local” func-

{ti, i=

tions that are nonzero only on the interéafr <t; ... This

basis forms an accurate, but nonorthogonal set. Hence the

overlap matrix

S”:jxdr rBM(nBM(r) (A29)
0

is nondiagonal. It is diagonally banded, however, since

B{(r) andB{“(r) are functions that only overlap jf -]

<k—1. The property of being diagonally banded also ap-

plies to the matrix elements of other operators.
We now have a matrix equation with thex2 block
structure

+ . 9 a’
|20 -1 7o e
a,+
=p [1]®l g (A30)

where ® denotes an outer product of matricesf={a;i}
and B+={,8;i} are column vectors of lengtiN(x \V), and
the (NXN) X (NXN) sub-blocks have matrix elements

[V+](nn'),(ij):fo dr rBR(M BRIV ()]
(A31)

[M*Jmn»,mﬁfo dr rBH () BR(N)IM* (1) ](any »
(A32)

. d n
= 5 =Pn 5n,n’$j ) (A33)
(nn’),(ij)
[L](nny, i) = Onnr Sij » (A34)
o d
[D1ltnn),(i)y=Snn | dr rBI(N)| = —BM(r)
0 dr
i3
- ZB,“‘)(r)), (A35)
o d
[Dz](nn'),(ij):‘sn,n’fo dr rBi(k)(r)(aBJ(k)(r)
j _1
2
—%B}”(r)), (A36)

dA © d
[7 =—f0 dr 5 BI()BM (M)A o) -

Lnn'mn
(A37)

The last relation follows from using integration by parts.

3. Numerical methods

For our numerical calculations we ute=12 fm andN
=24 Fourier components, and set the number of terms in the
cosine expansion of the densities to bé2, or 12. We
choosek=5 for the degree of thB splines,\/=20B splines
in the expansion im, and take 6<r<L. The integrals over
are performed using Gaussian integration between knots,
which gives exact results for the matrix elemefs, Eq.
(A29).

The matrix eigenvalue problefd30) is of the formAx
=\BX, whereA andB are real, symmetric matrices. In our
problem,A andB are diagonally banded, and there are effi-
cient EISPACK routines that take advantage of thi32].
Cholesky decomposition is used to efficiently compute the
matrix

1
[T @azel 39

which is needed both to determine and|l™ as well as to
construct the matrix in EqA30).

APPENDIX B: MOMENTUM DISTRIBUTIONS

In momentum space the meson field equations become

g
Sk k== g pdk ko), (B1)
S
+/+ 9v +/+
VI kD)= e (K k), (B2
S

055211-16



LIGHT-FRONT NUCLEAR PHYSICS: MEAN FIELD . ..

with k?=(k™)?+k?, and the convention

V+(k+,kL):f dZXLJ dz e kx-ikTayt(z x ).
(B3)

The scalar meson momentum distribution from E&y7)
can be rewritten as

L2kt odk, g o
folk )= 277](2 )2 (K2+ 2)2|ps(k k)| (B4
2k+ d2k o
f(z )2|¢( k)[? (B5)
2k*
~r | @xlotc P (B6)
Then
P;'= fxdk+k+fs(k+) (B7)
0
1 (= dk*
:gﬁxz—Z(k*)zf d?x, | (k™ ,x,)|? (B8)
:f d3x[ 9" (x)]? (B9)
=(Ts 7). (B10)

The vector meson momentum distribution is a little more

complicated. Starting from E¢6.12),

| (kT k)2
(B11)

f(k+)_2k+j d*k, gy K+
Y 2m ) (2m)? (kK2+m?)? (k)2

_ 2k*f d’k, g,
(27)2 K2+ m?

Kty (k)2 ) b
eV Kk K k) B12)

= dek —g, vV (kT k)pt(k",k))
(2m)? T 9v 1)p .l

—k V(R k)P (B13

PHYSICAL REVIEW B0 055211
Then

Pl = f dkTk*f (k") (B14)
0

B 1fw dk*2
T 2) .27

[ aata e xop ot )

—(K")V* (k™ x)[%] (B15)
ZJ A9,V (X)p " (x)=[d"VF(%)]%]
(B16)
=(T, ). (B17)
Clearly f, (k") is singular atk* =0, so we plotk™ f, (k™)

instead.

Momentum distributions involve integrals over , or
equivalently overk, , so one really only needs to Fourier
transformV*(z,x,) in z If we define

V+(k+,xi)=f dz e "2Vt (z,x,), (B18)
then for k., =mg, q=/L, it follows from the definition
(A9) that

Vi), (B19)

1+56
V7 (kg X ) =2L =
with a similar result for p* (k. ,x.), &(ky,x.), and
ps(ki ,x,). Hence we calculate the momentum distributions
from the expressions

2 1+ 8m0)
otk = (rzq) (L oml% maL [ dr 10T
(B20)
(k)= om0 ot [ ar a5

—(mQ)z[VrTq(f)]Z]- (B21)

The nucleon momentum distribution fpf, =nq is given by
2 o occ
fN(prT)=af0 dr r; [[Uan(MIP+[1 (117,
(B22)
so that A=[jdp fy(p.)=~aq.fn(py), and Py
=[odp p fu(pr)=~a=.p, fn(ps). We interpolate be-

tween the discrete values kf andp, to produce the plots
of Figs. 1 and 2.
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