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Light-front nuclear physics: Mean field theory for finite nuclei
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A light-front treatment for finite nuclei is developed from a relativistic effective Lagrangian~QHD1! in-
volving nucleons, scalar mesons, and vector mesons. We show that the necessary variational principle is a
constrained one which fixes the expectation value of the total momentum operatorP1 to be the same as that
for P2. This is the same as minimizing the sum of the total momentum operators:P21P1. We obtain a new
light-front version of the equation that defines the single nucleon modes. The solutions of this equation are
approximately a nontrivial phase factor times certain solutions of the usual equal-time Dirac equation. The
ground-state wave function is treated as a meson-nucleon Fock state, and the meson fields are treated as
expectation values of field operators in that ground state. The resulting equations for these expectation values
are shown to be closely related to the usual meson field equations. A new numerical technique to solve the
self-consistent field equations is introduced and applied to16O and 40Ca. The computed binding energies are
essentially the same as for the usual equal-time theory. The nucleon plus momentum distribution~probability
for a nucleon to have a given value ofp1) is obtained, and peaks for values ofp1 about 70 percent of the
nucleon mass. The mesonic component of the ground-state wave function is used to determine the scalar and
vector meson momentum distribution functions, with a result that the vector mesons carry about 30 percent of
the nuclear plus-momentum. The vector meson momentum distribution becomes more concentrated atp1

50 asA increases.@S0556-2813~99!01511-3#

PACS number~s!: 25.30.Mr, 21.60.Cs, 24.10.Jv
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I. INTRODUCTION

The purpose of this paper is to derive the light-front~LF!
formalism necessary to compute the properties of finite
clei. Nuclear properties are very well handled within the e
isting conventional nuclear theory, so it behooves us to
plain why we are embarking on this project. Our motivati
is that understanding experiments involving high ene
nuclear reactions seems to require that light-front dynam
and light cone variables be used. Consider the EMC exp
ment@1#, which showed that there is a significant differen
between the parton distributions of free nucleons and nu
ons in a nucleus. This difference can be interpreted as a
in the momentum distribution of valence quarks towa
smaller values of the Bjorken variablexBj . The Bjorken vari-
able is a ratio of the plus-momentumk15k01k3 of a quark
to that of the target. Thus light cone variables are relevan
one usesk1 as a momentum variable the corresponding
nonical spatial variable isx25x02x3 and the time variable
is x15x01x3.

It is important to realize that the use of light-front dynam
ics is not limited to quarks within the nucleon—it also a
plies to nucleons within the nucleus. This formalism is use
whenever the momentum of initial or final state nucleons
large compared to their mass@2#. In particular, it can be used
for (e,e8p) and (p,2p) reactions. If one uses light-front var
ables for nucleons in a nucleus, it is also necessary to m
tain consistency with the information derived previously u
0556-2813/99/60~5!/055211~18!/$15.00 60 0552
-
-
x-

y
s

ri-

e-
ift
s

If
-

l
s

in-
-

ing conventional nuclear dynamics. This provides t
technical challenge which we address in the present ma
script.

The conventional equal-time approach to nuclear struc
physics provides an excellent framework, so it is worthwh
to introduce the light-front variables and describe the
pected advantages in a general way. The use of the li
cone variables can be obtained using a simple argum
based on kinematics@2#. Suppose the virtual photon is ab
sorbed by a fermion at a space-time point (z1 , t1). The
fermion then starts to move at high momentum and nea
the speed of light and emits the photon at another space-
point (z2 , t2). In between the two times, the wave functio
of the entire system has undergone a time evolution given
the complicated operatore2 iH (t22t1). But we havez11ct1
5z21ct2 , if the z axis is opposite to the direction of th
virtual photon. The two scattering events occur at differe
times, but at the same value ofx15z1ct. Thus if we use
x1 as a time variable, no time evolution factor appears. T
net result is that the cross section involves lightlike corre
tion functions which involve field operators evaluated at t
same light-front time:x150 ~see for example the review
@3,4#!. Thus it is a specific and general feature of the lig
front wave approach that knowing only the ground-st
wave function is sufficient for computing the distributio
functions.

Let us review the salient features of the basic idea t
using the light-front approach leads to a simplified treatme
©1999 The American Physical Society11-1
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To be specific, consider high energy electron scattering fr
nucleons in nuclei. The key ingredient in the light-front sim
plification is to realize the main difference between the t
formalisms. In the equal-time formalism, sums over interm
diate states are taken over eigenstates of the Hamilton
P0. The usual three-momentum is conserved, but energ
not conserved in intermediate states. In the light-front
proach one sums over eigenstates of the minus compone
the total momentum operator. The value ofP2 is not con-
served in intermediate state sums, and the values ofP1 and
P' are conserved. This is especially convenient for high
ergy reactions, in which the plus-component is the larg
component of the momentum for each projectile or eject

The advantage of usingP2 as an ‘‘energy’’ variable can
be easily described. Let the four-momentumq of the ex-
changed virtual photon be given by (n,0,0,2AQ21n2), with
Q252q2, andQ2 and n2 are both very large butQ2/n is
finite ~the Bjorken limit!. In this case it is worthwhile to use
the light-cone variablesq65q06q3 in which q1'Q2/2n
5Mx, q2'2n2Q2/2n, so that q2@q1. Here M is the
mass of a nucleon andx is the Bjorken variable. We sha
neglectq2 in comparison toq1, noting that corrections to
this can be handled in a systematic fashion. Then the s
matic form of the scattering cross section fore1A→e8
1(A21) f1p, wheref represents the final nuclear eigensta
of P2, andp the four-momentum of the final proton, is give
by

ds;(
f
E d3pf

Ef
E d4pd~p22M2!

3d (4)~q1pi2pf2p!u^p, f uJ~q!u i &u2. ~1.1!

Here the operatorJ(q) is a schematic representation of th
electromagnetic current. Performing the four-dimensional
tegral overp leads to the expression

ds;(
f
E d2pfdpf

1

pf
1

d@~pi2pf1q!22M2#u^p, f uJ~q!u i &u2.

~1.2!

The argument of the delta function (pi2pf1q)22M2'
2Q212q2(pi2pf)

1. Thus we see thatpf
2 does not appea

in the argument of the delta function, or anywhere else,
we can replace the sum over intermediate states by unity
the usual equal-time representation, one finds the argum
of the delta function to be2Q212n(Ei2Ef). The energy
of the final state appears, and one cannot do the sum.

To proceed further in this schematic approach we tak

J~q!5E d3kbk1q
† bk , ~1.3!

whereb is a nucleon destruction operator and a generic v
tor V[(V1,V'). It is useful to definepB[pi2pf because

pB
15Q2/2n[Mx, ~1.4!

as demanded by the delta function. Then one can reexp
Eq. ~1.2! as
05521
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ds;d2pB'^ i ubpB

† bpB
u i &5d2pB'n~Mx,pB'!, ~1.5!

where n(Mx,pB') is the probability for a nucleon in the
ground state to have a momentum (Mx,pB'). Integration in
Eq. ~1.5! leads to

s;E d2p'n~Mx,p'![ f ~Mx!, ~1.6!

with f (Mx) as the probability for a nucleon in the groun
state to have a plus momentum ofMx.

The quantityf (Mx) has been a widely used prescriptio
UP for handling the light-front in a simple way. The variab
Mx is replaced byM2«a1k3, in which the labela denotes
a shell-model orbitalfa of binding energy«a . Then

f UP5(
a

naE d2p'E dp3ufa~p3,p'!u2

3d~M2«a1p32Mx!, ~1.7!

in which na is an occupation probability. The validity of thi
prescription, which rests on a reasonable assumption
rather suspect because the variablep15Mx is a kinematic
variable, unrelated to discrete eigenvalues of a wave eq
tion. One of the main purposes of the present paper is to
if anything like this prescription emerges from our calcu
tions. We shall see that Eq.~1.7! is not obtained, if a vector
potential is a significant part of the nuclear mean field.

It is useful to discuss the relation withy scaling@5#. The
arguments that the cross section depends on a p
momentum distribution are well known when used f
quarks in a nucleon, but they also apply to nucleons in
nucleus@2#. Ji and Filippone@6# showed that they-scaling
functionF(y) extracted in quasielastic electron scattering
nuclei is' the light cone plus-momentum distribution fun
tion for nucleons in the nucleus. It is useful to use a relat
istic form of the variabley @7# in which

y52q31n1«s1M , ~1.8!

as bothq3 andn are large in magnitude, andEs is the single
nucleon separation energy. But

x5
~q3!22n2

2Mn
'11

«s2y

M
,

so that

Mx5M1Es2y[MAyA . ~1.9!

HereyA is a newy-scaling variable. This means that accor
ing to Eq.~1.4!

pB
15MAyA /M'AyA , ~1.10!

so that a measurement ofs determines the probability tha
the struck nucleon has a plus-momentum ofAyA . This prob-
1-2
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LIGHT-FRONT NUCLEAR PHYSICS: MEAN FIELD . . . PHYSICAL REVIEW C60 055211
ability also enters in convolution model calculations
nuclear deep inelastic scattering.

The use of light-front dynamics to compute nuclear wa
functions should allow us to computeF(y) from first prin-
ciples. Furthermore, we claim that using light-front dynam
incorporates the experimentally relevant kinematics from
beginning, and therefore is the most efficient way to comp
the cross sections for nuclear deep inelastic scattering
nuclear quasielastic scattering.

It is worthwhile to review some of the features of th
EMC effect@1,4#. The key experimental result is the suppre
sion of the structure function forx;0.5. This means that th
valence quarks of bound nucleons carry less plus-momen
than those of free nucleons. One way to understand this
sult is to postulate that mesons carry a larger fraction of
plus-momentum in the nucleus than in free space. W
such a model explains the shift in the valence distributi
one obtains at the same time a meson~i.e., antiquark! distri-
bution in the nucleus, which is strongly enhanced compa
to free nucleons and which should be observable in Dr
Yan experiments@8#. However, no such enhancement h
been observed experimentally@9#, and the implications are
analyzed in Ref.@10#.

The use of light-front dynamics allows us to compute t
necessary nuclear meson distribution functions using v
ables which are experimentally relevant. The need for a c
putation of such functions in a manner consistent with g
erally known properties of nuclei led one of us to attempt
construct a light-front treatment of nuclear physics@11#.
These calculations, using a Lagrangian in which Dirac nuc
ons are coupled to massive scalar and vector mesons@12#,
treated the example of infinite nuclear matter within t
mean field approximation. In this case, the meson fields
constants in both space and time and the momentum d
bution has support only atk150. Such a distribution would
not be accessible experimentally, so the suppression of
plus-momentum of valence quarks would not imply the e
istence of a corresponding testable enhancement of
quarks. However, it is necessary to ask if the result is only
artifact of the infinite nuclear size and of the mean fie
approximation. The present paper is an attempt to han
finite-sized nuclei using light-front dynamics.

A. Recovery of rotational invariance

It is worthwhile to discuss, in a general way, how it is th
we are able to find spectra which have the correct numbe
degenerate states. Let us imagine that we try to determ
eigenstates of a LF Hamiltonian by means of a variatio
calculation. Simply minimizing the LF energy obvious
leads to nonsensical results since the LF energy scales
the inverse of the LF momentum. Even if one has only
poor ansatz for the intrinsic wave function, one can ea
reach zero energy by letting the overall momentum scal
infinity. However, this problem is avoided by performing
constrained variation, in which the total LF momentum
fixed by including a Lagrange multiplier term proportional
the total momentum in the LF Hamiltonian. Note that this
not a problem if one is able to use a Fock space basi
05521
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which the total plus and' momentum of each componen
are fixed. In calculations involving many particles, the Fo
state approach cannot be used in practical calculation
instead one uses a mean field in which each particle move
an ‘‘external’’ potential. In this case the total momentum
not fixed, and a Lagrange multiplier term needs to be
cluded in order to avoid solutions with infinite LF mome
tum.

In order to fix this potential problem with ‘‘runaway so
lutions’’ ( P1→`) to variational calculations for LF Hamil-
tonians, any term proportional toP1 would suffice. How-
ever, by setting the coefficient for the term proportional
P1 equal to one, i.e., minimizingP21P1, one automati-
cally guarantees thatP15P2 ~or P350). The reason is
that, using covariance,P2 has eigenvalues of the formPn

2

5(Mn
21P'

2 )/P1, i.e., it scales like 1/P1. Therefore, when
one minimizesP21P1 with respect toP1, the minimum
occurs for P15AMn

21P'
2 , which yields P25(Mn

2

1P'
2 )/P1 5AMn

21P'
2 as well. This ‘‘equipartition’’ be-

tweenP1 andP2 thus arises since the two operators scale
exactly opposite ways under longitudinal boosts. Note t
this is quite analogous to the nonrelativistic harmonic os
lator where, under scale transformations, potential and
netic energy scale in opposite ways, resulting in the equip
tition between potential and kinetic energy.

The net result is that we minimize the sum ofP11P2.
The need to include the plus-momentum can also be see
a simple example. Consider a nucleus ofA nucleons of mo-
mentumPA

15MA , PA'50, which consists of a nucleon o
momentum (p1,p'), and a residual (A21) nucleon system
which must have momentum (PA

12p1,2p'). The kinetic
energyK is given by the expression

K5
p'

2 1M2

p1
1

p'
2 1MA21

2

PA
12p1

. ~1.11!

In the second expression, one is tempted to neglect the
p1 in comparison withPA

1'MA . This would be a mistake
Instead we make the expansion

K'
p'

2 1M2

p1
1

MA21
2

PA
1 S 11

p1

PA
1D'

p'
2 1M2

p1
1p11MA21 ,

~1.12!

because for largeA, MA21
2 /PA

2'1. For free particles, of or-
dinary three momentump one hasE2(p)5p21m2 and p1

5E(p)1p3, so that

K'
@E2~p!2~p3!2#

E~p!1p3 1E~p!1p31MA2152E~p!1MA21 .

~1.13!

We see thatK depends only on the magnitude of a thre
momentum and rotational invariance is restored. The ph
cal mechanism of this restoration is the inclusion of the
coil kinetic energy of the residual nucleus.
1-3
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B. Outline

The organization of the paper is as follows. The ligh
front quantization for our chosen Lagrangian is presente
Sec. II. This quantization is applied, along with a constrain
minimization of the expectation value ofP2, to derive a
light-front version of mean field theory in Sec. III. We obta
a new light version of the equation that defines the sin
nucleon modes. The solutions of this equation are appr
mately a nontrivial phase factor times the solutions of
usual equal-time~ET! Dirac equation. The consequences
this phase factor are discussed.

The meson fields are treated as expectation values of
erators. The equations for these expectation values
closely related to the meson field equations appearing in
usual treatment of the Walecka model. However, the m
sonic Fock space is accessible in our formalism. Our nucl
mode equation is simplified by the use of a two-compon
spinor formalism@13#, and by an angular momentum redu
tion in Sec. IV. The numerical aspects are discussed in
pendix A. The binding energies, nucleon, and meson dis
butions for 16O and 40Ca are presented in Sec. V.
concluding discussion appears in Sec. VI. Numerical det
of how we evaluate the momentum distributions are given
Appendix B. A brief discussion of some of the results can
found in Ref. @14#. A related set of solutions of some to
model problems and a heuristic derivation of our nucle
mode equation will appear in a separate paper@15#.

II. LIGHT-FRONT QUANTIZATION

We start with a model in which the nuclear constitue
are nucleonsc ~or c8), scalar mesonsf and vector mesons
Vm. The LagrangianL is given by

L5
1

2
~]mf]mf2ms

2f2!2
1

4
VmnVmn1

1

2
mv

2VmVm

1c̄8FgmS i

2
]Jm2gvVmD2M2gsfGc8, ~2.1!

where the bare masses of the nucleon, scalar and vector
sons are given byM ,ms , mv , andVmn5]mVn2]nVm. We
ignore pions here.

The field equations are given by

g•~ i ]2gvV!c85~M1gsf!c8, ~2.2!

]mVmn1mv
2Vn5gvc̄8gnc8 ~2.3!

]m]mf1ms
2f52gsc̄8c8. ~2.4!

The next step is obtain the light-front Hamiltonian (P2)
@16# as a sum of free, noninteracting terms and a set of te
containing all of the interactions. This is accomplished
separating the independent and dependent degrees of
dom in the usual way@17,3# and then using the energy mo
mentum tensor. Consider the nucleons: Although descri
by four-component spinors, these fields have only two in
pendent degrees of freedom. The light-front formalism
05521
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lows a convenient separation of dependent and indepen
variables via the projection operatorsL6[ 1

2 g0g6 @18,19#,
with c68 [L6c8. The independent fermion degree of fre
dom is chosen to bec18 , and one finds

~ i ]22gvV2!c18 5@a'•~p'2gvV'!1b~M1gsf!#c28 ,

~ i ]12gvV1!c28 5@a'•~p'2gvV'!1b~M1gsf!#c18 .
~2.5!

The relation betweenc28 andc18 is very complicated unless
one may set the plus-component of the vector field to z
@17#. This is a matter of a choice of gauge for QED a
QCD, but the nonzero mass of the vector meson preve
such a choice here. Instead, one simplifies the equation
c28 by @18,20# transforming the fermion field according to

c85e2 igvL(x)c, ]1L5V1. ~2.6!

This transformation leads to the replacement of Eq.~2.5! by

~ i ]22gvV̄2!c15@a'•~p'2gvV̄'!1b~M1gsf!#c2 ,

i ]1c25@a'•~p'2gvV̄'!1b~M1gsf!#c1 , ~2.7!

where

]1V̄m5]1Vm2]mV1. ~2.8!

Note that while it isV̄m that enters in the nucleon field equ
tions, it isVm that enters in the meson field equations.

The scalar field can be expressed in terms of creation
destruction operators:

f~x!5E d2k'dk1u~k1!

~2p!3/2A2k1
@a~k!e2 ik•x1a†~k!eik•x#,

~2.9!

where

k•x5
1

2
~k1x2!2k'•x'[k–x, ~2.10!

and the fields and their derivatives with respect tox1 are
evaluated atx150. This notation is used throughout th
work. The consequence is that the energy momentum te
Tmn does not depend onx1. In the above expansion~and in
the expansions for any of our fields! the particles are on the
mass shell. Herek25(k'

2 1ms
2)/k1. The theta function re-

strictsk1 to positive values. The commutation relations a

@a~k!,a†~k8!#5d~k'2k'8 !d~k12k81!, ~2.11!

with @a(k),a(k8)#50. It is useful to define

d (2,1)~k2k8![d~k'2k'8 !d~k12k81!. ~2.12!

The expression for the vector meson field operator is
1-4
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Vm~x!5E d2k'dk1u~k1!

~2p!3/2A2k1 (
v51,3

em~k,v!

3@a~k,v!e2 ik–x1a†~k,v!eik–x#, ~2.13!

where the polarization vectors are the usual ones:

kmem~k,v!50, em~k,v!em~k,v8!52dvv8 ,

(
v51,3

em~k,v!en~k,v!52S gmn2
kmkn

mv
2 D . ~2.14!

Once again the four-momenta are on-shell, withk25@k'
2

1mv
2#/k1 . The commutation relations are

@a~k,v!,a†~k8,v8!#5dvv8d
(2,1)~k2k8!, ~2.15!

with @a(k,v),a(k8,v8)#50, and lead to commutation rela
tions among the field operators that are the same as in
@20#.

We also need the eigenmode expansion forV̄m. This is
given by

V̄m~x!5E d2k'dk1u~k1!

~2p!3/2A2k1 (
v51,3

ēm~k,v!

3@a~k,v!e2 ik•x1a†~k,v!eik•x#, ~2.16!

where, using Eqs.~2.8! and ~2.13!, the polarization vectors
ēm(k,v) are

ēm~k,v!5em~k,v!2
km

k1
e1~k,v!. ~2.17!

Note that

(
v51,3

ēm~k,v!ēn~k,v!52S gmn2g1m
kn

k1
2g1n

km

k1D .

~2.18!

Then we may construct the total four-momentum opera
from

Pm5
1

2E dx2d2x'T1m~x150,x2,x'!, ~2.19!

with ~as usual!

Tmn52gmnL1(
r

]L
]~]mf r !

]nf r , ~2.20!

in which the degrees of freedom are labeled byf r . We need
T11 andT12, which are

T115]1f]1f1VikVik1mv
2V1V112c1

† i ]1c1 ,
~2.21!

and
05521
ef.

r

T125“'f•“'f1mf
2 f21

1

4
~V12!21

1

2
VklVkl1mv

2VkVk

1c̄@g'•~p'2gvV̄2!1M1gsf#c. ~2.22!

This form is still not useful for calculations because t
constrained fieldc2 contains interactions. We follow Refs
@18,21# in expressingc2 as a sum of terms, onej2 whose
relation with c1 is free of interactions, the otherh2 con-
taining the interactions. That is, we rewrite the second par
Eq. ~2.7! as @13#

j25
1

i ]1 ~a'•p'1bM !c1 ,

h25
1

i ]1 ~2a'•gvV̄'1bgsf!c1 . ~2.23!

Furthermore, we definej1(x)[c1(x), so that

c~x!5j~x!1h2~x!, ~2.24!

where j(x)[j2(x)1j1(x). This separates the depende
and independent parts ofc.

One needs to make a similar treatment for the vector m
son fields. The operatorV12, is determined by

V215
2

]1 @gvJ12mv
2V12] iV

i 1#. ~2.25!

Part of this operator is determined by a constraint equat
because the independent variables areV1 and Vi 1. To see
this we examine Eq.~2.25!, and make a definition

V125v121v12, ~2.26!

where

v1252
2

]1 J1. ~2.27!

The sum of the last term of Eq.~2.22! and the terms involv-
ing v12 is the interaction density. Then one may use E
~2.22!, ~2.24!, and ~2.26! to rewrite theP2 as a sum of
different terms, with

P0N
2 5

1

2E d2x'dx2j̄~g'•p'1M !j, ~2.28!

and the interactions

PI
25v11v21v3 , ~2.29!

with

v15E d2x'dx2j̄~gvg•V̄1gsf!j, ~2.30!
1-5
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v25E d2x'dx2j̄~2gvg•V̄1gsf!

3
g1

2i ]1
~2gvg•V̄1gsf!j, ~2.31!

and

v35
gv

2

8 E d2x'dx2

3E dy1
2e~x22y1

2!j1
† ~y1

2 ,x'!g1j1~y1
2 ,x'!

3E dy2
2e~x22y2

2!j1
† ~y2

2 ,x'!g1j1~y2
2 ,x'!,

~2.32!

wheree(x)[u(x)2u(2x). The termv1 accounts the emis
sion or absorption of a single vector or scalar meson. T
termv2 includes contact terms in which there is propagat
of an instantaneous fermion. The termv3 accounts for the
propagation of an instantaneous vector meson.

Our variational procedure will involve the independe
fieldsc1 , so we need to express the interactionsP0N

2 ,v1,2 in
terms ofj1 . A bit of Dirac algebra shows that

PN
2[P0N

2 1v11v2

5E d2x'

dx2

2
j1

† H 2gvV̄2

1@a'•~p'2gvV̄'!1b~M1gsf!#

3
1

i ]1
@a'•~p'2gvV̄'!1b~M1gsf!#J j1 .

~2.33!

It is worthwhile to define the contributions toP6 arising
from the mesonic terms asPs

6 and Pv
6 . Then one may use

Eqs. ~2.22! and ~2.21! along with the field expansions t
obtain

Ps
25

1

2E d2x'dx2~“'f•“'f1ms
2f2!

5E d2k'dk1u~k1!a†~k!a~k!
k'

2 1ms
2

k1
, ~2.34!

Ps
15E d2k'dk1u~k1!a†~k!a~k!k1, ~2.35!

Pv
25 (

v51,3
E d2k'dk1u~k1!

k'
2 1mv

2

k1
a†~k,v!a~k,v!1v3 ,

~2.36!

and
05521
e
n

t

Pv
15 (

v51,3
E d2k'dk1u~k1!k1a†~k,v!a~k,v!.

~2.37!

The termv3 is the vector-meson instantaneous term, and
include it together with the purely mesonic contribution
Pv

2 because it is canceled by part of that contribution.
Thus, our result for the total minus-momentum operato

P25PN
21Ps

21Pv
2 , ~2.38!

and for the plus-momentum

P15PN
11Ps

11Pv
1 , ~2.39!

where from Eq.~2.21!

PN
1[E d2x'

dx2

2
2j1

† i ]1j1 . ~2.40!

III. MEAN FIELD THEORY

The light-front Schroedinger equation for the comple
nuclear ground-state wave functionuC& is

P2uC&5MAuC&. ~3.1!

We choose to work in the nuclear rest frame so that we a
need

P1uC&5MAuC&. ~3.2!

We want to use a variational principle. One might think th
one may simply minimize the expectation value ofP2, but
this makes no sense becauseP1P25MA

2 when acting on the
wave function. One would get a zero ofP2 for an infinite
value of P1. As explained in the Introduction, one mu
minimize the expectation value ofP2 subject to the condi-
tion that the expectation value ofP1 is equal to the expec
tation value ofP2. This is the same as minimizing the av
erage ofP2 and P1, which is the rest-frame energy of th
entire system. To this end we define a light-front Ham
tonian

HLF[
1

2
~P11P2!. ~3.3!

We stress thatHLF is not usual the Hamiltonian, because t
light-front quantization is used to define all of the operato
that enter.

The wave functionuC& consists of a Slater determinant o
nucleon fieldsuF& times a mesonic portion

uC&5uF& ^ umesons&, ~3.4!

and the mean field approximation is characterized by
replacements

f→^CufuC&

Vm→^CuVmuC&. ~3.5!
1-6
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We shall derive the meson field equations, and then de
mine the nucleon modes using a variational principle.

A. Meson field equations

We shall go through the derivation of the equation for t
expectation value off(x) in a detailed fashion. Consider th
quantityHLFa(k)uC&, and use commutators to obtain

HLFa~k!uC&5@HLF ,a~k!#uC&1MAa~k!uC&. ~3.6!

The operatorsPs
6 of Eqs.~2.34! and~2.35! and the standard

commutation relations allow one to obtain

@HLF ,a~k!#52
k'

2 1k121ms
2

2k1
a~k!1

J~k!

~2p!3/2A2k1
,

~3.7!

whereJ(k)/„(2p)3/2A2k1
… is the commutator of the inter

action, Eq.~2.29!, between the scalar meson and the nucle

J~k!

~2p!3/2A2k1
5

1

2
@PI

2 ,a~k!#. ~3.8!

We use Eqs.~2.30!–~2.32!, and take the commutator o
the interactionsv i with a(k). We then reexpress the resul
in terms ofj to obtain

J~k!52
1

2
gsE d2x'dx2eik–xj̄~x!j~x!. ~3.9!

We take the overlap of Eq.~3.6! with ^Cu to find

^Cua~k!uC&
k'

2 1k121ms
2

2k1
5

^CuJ~k!uC&

~2p!3/2A2k1
. ~3.10!

We multiply the above equation~3.10! by a factor
@A2k1/(2p)3/2#e2 ik–x. We then add the result of that oper
tion to its complex conjugate. The integral of the resulti
equation over allk' and positive values ofk1 and using the
field expansion~2.9! leads to the result

S 2¹'
2 2S 2

]

]x2D 2

1ms
2D ^Cuf~x!uC&

5^Cu E d2k'dk1u~k1!

~2p!3
@J~k!e2 ik–x1J†~k!e1 ik–x#uC&.

~3.11!

The evaluation of the right-hand side of Eq.~3.11! pro-
ceeds by using Eq.~3.9! and its complex conjugate. Th
combination of those two terms allows one to remove
factoru(k1) and obtain a delta function from the momentu
integral. That1

2 k1 appears in the exponential leads to t
removal of the factor12 of Eq. ~3.9!. One can also chang
variables using

z[
2x2

2
, x[~z,x'!. ~3.12!
05521
r-

:

e

The minus sign enters to remove the minus sign between
two terms of the factork•x in Eq. ~2.10!. Then one may
redefine the operator

2¹'
2 2S 2

]

]x2D 2

appearing in Eq.~3.11! as 2¹2. Note that we previously
@22# obtained the above relation~3.12! simply by examining
the space-time diagram for a static source~independent of
x0). The net result is that

~2¹21ms
2!^Cuf~x!uC&52gs^Cuc̄~x!c~x!uC&,

~3.13!

which has the same form as the equation in the usual eq
time formulation. Note that the right-hand side of Eq.~3.13!
should be a function ofuxu for the spherical nuclei of our
present concern. Our formalism for the nucleon fields u
x' and x2 as independent variables, so that obtaining n
merically scalar and vector nucleon densities that dep
only on x'

2 1(x2/2)2 will provide a central, vital test of our
procedures and mean field theory. Assuming for the mom
that this occurs, the scalar field̂Cuf(x)uC& will depend
only uxu according to~3.13!.

We stress that the use of Eq.~3.12! is merely a convenien
way to simplify the calculation—using it allows us to tre
the' and minus spatial variables on the same footing, an
maintain explicit rotational invariance. We will obtain th
mesonic plus-momentum distributions from the ground-st
expectation value of different operators.

The procedure of Eqs.~3.6!–~3.13! can also be applied to
the vector fields. The appearance of the barred vector po
tial makes it necessary to display certain steps. The star
point is to consider the expressionHLFa(k)uC& and the in-
teraction

J~k,v!

~2p!3/2A2k1
5

1

2
@PI

2 ,a~k,v!#. ~3.14!

Using Eqs.~2.30!–~2.32!, taking the commutator of the in
teractionsv i with a(k), and reexpressing the results in term
of j, leads to

J~k,v!52
1

2
gvE d2x'dx2eik•xj̄~x!g• ē~k,v!j~x!.

~3.15!

This, along with the other terms in the expression
HLFa(k,v)uC&, allows us to obtain

^Cua~k,v!uC&
k'

2 1k121mv
2

2k1

5

^Cu2
1

2
gvE d2x'dx2eik•xj̄~x!g• ē~k,v!j~x!uC&

~2p!3/2A2k1
.

~3.16!
1-7
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The field equation for the vector mesonsV̄m is obtained by
multiplying the above byēm(k,v), summing overv and
performing standard manipulations. We need to know
quantity

Xm~k![(
a,v

gaēa~k,v!ēm~k,v!. ~3.17!

The use of Eqs.~2.18! and ~2.17! leads to

Xm~k!52gm12d~m,2 !
g•k

k1
1

km

k1
g1. ~3.18!

One makes familiar manipulations to obtain the result

~2¹21mv
2!^CuV̄m~x!uC&5gv^Cu j̄~x!gmj~x!uC&1Dm,

~3.19!

with

Dm~x![2^Cu E d3x8

~2p!3
eik–(x2x8)j̄~x8!

3S km

k1
g112d~m,2 !

g•k

k1 D j~x8!uC&.

~3.20!

Note that ~as in the derivation given above forf) the
variablek1 ~confined to positive values! is replaced by the
inclusion of the complex conjugate terma†(k,v) by a vari-
able k3 which ranges from2` to `. We proceed by first
assuming that

~2¹21mv
2!^CuVm~x!uC&5gv^Cu j̄~x!gmj~x!uC&[Jm,

~3.21!

which is to be verified by showing that Eqs.~3.19! and~3.21!
are consistent with the defining relation~2.8!. Taking the
difference between Eqs.~3.19! and ~3.21! and using the de-
fining relation leads@23# to a consistency requirement

]mJ15]1Dm. ~3.22!

For mÞ2 the above relation is verified by integration b
parts in the expression~3.20! for Dm. If m52, one may use
the definition~2.8! and that̂ CuV1uC& does not depend on
x1 to see that

]2^CuV̄2uC&5]2^CuV2uC&. ~3.23!

Thus the validity of Eq.~3.21! is established.

B. Nucleon single-particle wave functions

The mesonic field equations are given in the previous s
section. The equation for the nucleon modes are to be fo
using the procedure of minimizingP21P1 with respect to
the nucleon wave function, subject to the condition that
05521
e

b-
nd

e

normalization of the independent fields remains fixed. T
nucleon field operators enter only in the termPN

21PN
1 , so

that it is useful to define

HLF[
1

2
~PN

21PN
1!. ~3.24!

The specific operator is obtained by using Eq.~2.33! to find

HLF5E dx2

2
d2x'j1

† HLFj1 , ~3.25!

where

2H LF[ i ]112gvV̄2

1[ a'•~p'2gvV̄'!1b~M1gsf#
1

i ]1

3@a'•~p'2gvV̄'!1b~M1gsf!#. ~3.26!

The potentials appearing in Eq.~3.26! are independent o
x1. This implies some simplifications:]1V̄25]1V2

2]2V15]1V2, so thatV̄25V2, and ~for i 51,2) ]1V̄i

5]1Vi2] iV152] iV1. Using the relation~2.6! we find
that V̄i52] iL.

The Slater determinantuF& is defined by allowingA
nucleon states, denoted by the indexa to be occupied. For
our Slater determinant the constrained minimization is giv
by the equation

dE d2x'

dx2

2
^auL1S HLF2

pa
2

2 DL1ua&50, ~3.27!

where the quantitiespa
2 are the Lagrange multiplication fac

tors for each occupied orbital. The relation~3.27! leads im-
mediately to our mode equation

pa
2L1ua&5~ i ]112gvV̄2!L2ua&

1@a'•~p'2gvV̄'!1b~M1gsf!#
1

i ]1

3@a'•~p'2gvV̄'!1b~M1gsf!#L1ua&.

~3.28!

The operatorsa andb have nonzero values when appeari
betweenL1 and L2 , but vanish when appearing betwee
the two identical projection operators. Thus we may obt
L2ua& as

L2ua&5
1

i ]1
@a'•~p'2gvV̄'!1b~M1gsf!#L1ua&,

~3.29!

or

i ]1L2ua&5@a'•~p'2gvV̄'!1b~M1gsf!#L1ua&.
~3.30!
1-8
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One may use Eq.~3.30! to rewrite Eq.~3.28! as

pa
2L1ua&5~ i ]112gvV̄2!L1ua&

1@a'•~p'2gvV̄'!1b~M1gsf!#L2ua&.

~3.31!

Equations~3.31! and ~3.30! are the essential results of th
section. We have obtained the light-front version of the H
tree equations.

C. Nuclear energy

There are contributions to the expectation value ofP2

1P1 from the nucleons, scalar mesons, and vector mes
The nucleonic term is given from the expectation value
the nucleonic partHLF ~3.26!. Taking the nuclear expecta
tion value ofHLF leads to a sum of matrix elements in th
occupied statesua&. The use of the wave equation~3.28!
leads to the result

^CuHLFuC&5(
a

occ pa
2

2
, ~3.32!

in which the sum is overa includes only occupied states.
The contribution from the scalar mesonsEs is given from

the scalar meson terms of Eqs.~2.34! and ~2.35! by

Es5
1

2E d2k'dk1u~k1!F k'
2 1ms

2

k1
1k1G ^Cua†~k!a~k!uC&.

~3.33!

In our mean field approximation

^Cua†~k!a~k!uC&5u^Cua~k!uC&u2, ~3.34!

with the matrix element already known from Eq.~3.10!.
Then straightforward calculation leads to the result

Es5
1

2E d3k

~2p!3

1

k21ms
2

u^CuJ~k!uC&u2, ~3.35!

whereJ(k) is given by Eq.~3.9!, the replacement~3.12! is
used, and as abovek1 is replaced byk3. The above expres
sion is strikingly familiar—it is the result obtained in sta
dard equal-time calculations.

The vector meson contribution to the energyEv is defined
as one-half of the sum of the terms ofPv

6 of Eqs.~2.36! and
~2.37!. The calculation ofPv

6 is rather similar to the one jus
done for the scalar mesons. One uses the results~3.15!,
~3.16!, andXm ~3.18!. The effects of the instantaneous ter
v3 are canceled by the non-gm term of Xm, so that we find

Ev52
1

2E d3k

~2p!3

1

k21mv
2

uJv~k!u2, ~3.36!

where
05521
-

s.
f

Jv~k![gv^Cu E d3x eik–xc†~x!c~x!uC&. ~3.37!

The nuclear massMA is then given by

MA5(
a

occ pa
2

2
1Es1Ev , ~3.38!

with expressions for each of the contributions given abov

D. Relation with the equal-time formulation

Our main results obtained using the mean field appro
mation and including the recoil of theA21 nuclear system
are embodied in Eqs.~3.31! and~3.30!. We solve these equa
tions below using a mixed momentum-coordinate space p
cedure in which the wave functions arêp1,x'ua&
5ca(p1,x'). The values ofp1 are greater than zero. Thu
the so-called spectrum condition that positive energy p
ticles have only positive plus-momenta is maintained in o
mean field approximation.

An intermediate step is to make an approximation by
ing coordinate space techniques. Here one does not main
the spectrum condition in an exact manner. Then one
show there is a very close~but approximate! relationship
between ourca(x2,x') and the usual solutions to the Dira
equation obtained from the ET formulation.

To see this, let us first consider the case where there i
vector potential at all (V̄m→0). We then multiply Eq.~3.30!
by g1 and Eq. ~3.31! by g2. Use g6L7ua&5g6(L1

1L2)ua&5g6ua&, and then add the two equations. Th
gives

@g0pa
22g3~2p12pa

2!#ca~x2,x'!

52@g'•p'1M1gsf~x2,x'!#ca~x2,x'!. ~3.39!

We convert this to ordinary coordinates usingx2522z, so
that

p15 i ]152i
]

]x2 →2 i
]

]z
.

The operatorp1 acts as ap3 operator, and the result~3.39!
looks like the Dirac equation of the equal-time formulatio
except for the offending term2pa

2 multiplying theg3. This
motivates us to look for a solution of the formca(z,x')
5 f (z)ca

ET(z,x'), in which f (z) is chosen to remove to th
offending term. The notation ET refers to the usual equ
time solution, because we see thatca

ET obeys the usual ET
Dirac equation

S g0
pa

2

2
2g•p2M2gsf~z,x'! Dca

ET~z,x'!50,

~3.40!

provided

f ~z!5eipa
2z/2, ~3.41!
1-9
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so that

ca~z,x'!5eipa
2z/2ca

ET~z,x'!. ~3.42!

The quantity of interest isca(p1,x') which is expressed
as

ca~z,x'!'
1

A2p
E

0

`

dp1eip1zca~p1,x'!. ~3.43!

The approximation is that the correct version ofca(p1,x')
will have no support forp1,0, but the approximation~3.43!
does. We can determine this support by examining the
verse Fourier transform. This gives

ca~p1,x'!5
1

A2p
E

2`

`

dz e2 i (p12pa
2/2)zca

ET~z,x'!,

~3.44!

which is a Fourier transform of the equal-time Dirac wa
function at az component of momentump12pa

2/2. This is
not exactly equal to zero whenp1 is zero or negative, but i
is very small becausepa

2/2 includes the nucleon mass. Th
relationship between the termpa

2/2 and the binding energy
of the level denoted bya is

pa
2/25M2«a . ~3.45!

Thus the relation~3.44! is just the usual equal-time proce
dure equal-time prescription, represented by Eq.~1.7!, of re-
placing the kinematic variablep1 by the combination of
dynamical and kinematic variablesM2«a

11p3 for the or-
bital a:

p1→M2«a
11p3. ~3.46!

However, the prescription~3.46! is dramatically changed
when the vector potential is included. To see this, we mu
ply Eq. ~3.31! by g2 and Eq.~3.30! by g1. Then Eq.~3.39!
becomes

@g0~pa
222gvV0!2g3~2p12pa

212gvV0!#ca~x2,x'!

52~g'•p'1M1gsf!ca~x2,x'!, ~3.47!

in which we usedV̄25V25V0. We again wish to reduce
the coefficient of theg3 term to 2p1. This can be done with
a new version of the multiplierf (z). We find that the light-
front wave function is given by

ca~p1,x'!

5
1

A2p
E

2`

`

dz e2 i (p12pa
2/2)ze2 igvL(z,x')ca

ET~z,x'!,

~3.48!

where

]1L~x2,x'!5V0~x2,x'!,
05521
-

i-

L~z,x'!5E
z

`

dz8V0~z8,x'!, ~3.49!

and

g0~pa
22gvV0!ca

ET~z,x'!5~g•p1M1gsf!ca
ET~z,x'!.

~3.50!

Relation~3.48! tells us that the influence of the vector pote
tial is to remove plus-momentum from the nucleons. T
removal and enhancement of the nuclear vector meson
tent is the most dramatic result we have.

How accurate is Eq.~3.48!? This can only be addresse
by solving the problem in a manner which respects the sp
trum condition. The results show an astonishing agreem
between the eigenvalues of Eq.~3.31! and those of the equal
time Dirac equation. Thus it should be safe to use Eq.~3.48!
for qualitative purposes.

IV. TECHNICAL ASPECTS

The solution of the nucleon and meson field equations
discussed. The reduction of Eqs.~3.31! and ~3.30! to a two-
dimensional matrix equation is presented here. The new
merical technique involving splines is elaborated in Appe
dix A.

The nucleon mode equation resulting from the minimiz
tion of 1

2 (P11P2) is given by the coupled set of equation
~3.31! and~3.30!. The meson fieldsf andV6 obey the equa-
tions

@2~]1!22]'
2 1ms

2#f~x2,x'!

52gs(
a

occ

c̄a~x2,x'!ca~x2,x'!, ~4.1!

@2~]1!22]'
2 1mv

2#V6~x2,x'!

5gv(
a

occ

c̄a~x2,x'!g6ca~x2,x'!, ~4.2!

in which ca(x2,x')[^x2,x'ua&. We use the Harindranath
Zhang @13# representation for the Dirac matricesa and b,
which allows us to write Eqs.~3.31! and ~3.30! in two-
component form. This representation can be obtained fr
the standard representation

a i5S 0 s i

s i 0 D , b5S 1 0

0 21D , ~4.3!

by the unitary transformation

U5
1

A2
S 1 2s3

s3 1 D . ~4.4!

Hencec→Uc andu→UuU†, whereu is a Dirac matrix in
the standard representation. In our representation, the m
ces of interest are
1-10
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L15S 0 0

0 1D , L25S 1 0

0 0D ,

b5S 0 s3

s3 0 D , a35S 21 0

0 1D , a'5S 0 s'

s' 0 D .

~4.5!

The four-component wave functionuca& may now be written
in the form

^x2,x'uca&5S ^x2,x'uca
2&

^x2,x'uca
1&

D , ~4.6!

in terms of the two-component wave functionsuca
1& and

uca
2&. Thus the two-component form of Eqs.~3.31! and

~3.30! is

~pa
222gvV22 i ]1!uca

1&

5~s'•@p'2gv'L!1s3~M1gsf!#uca
2&,

~4.7a!

i ]1uca
2&5@s'•~p'2gv'L!1s3~M1gsf!#uca

1&.
~4.7b!

The scalar and vector densities are defined as

rs[(
a

occ

c̄aca5(
a

occ

~ c̄a
1s3ca

21c̄a
2s3ca

1!, ~4.8!

r6[(
a

occ

c̄ag6ca5(
a

occ

2~ca
6!†ca

6 . ~4.9!

In the nuclear rest frame,r15r25r0, wherer0 is the usual
nucleon density. HenceV'50 andV25V1 in this frame.

A. Angular momentum

We can write

s'•p'5s (1)p(2)1s (2)p(1) , ~4.10!

wheres (6)5
1
2 (s16 is2) and

p(6)5p16 ip252 ie6 ifS ]

]r
6

1

r

]

]f D . ~4.11!

Herer 5ux'u andf is the azimuthal angle, using cylindrica
coordinates. For the nuclear physics problems of interest
anticipate that there is an axis of azimuthal symmetry. He
we can expand the two-component wave functions in eig
states of angular momentumJz , with eigenvaluej z :

^x2,x'uca
6&5 i ^x2,r uua

6&ei [ j z2~1/2!]fx1/2

1^x2,r u l a
6&ei [ j z1~1/2!]fx21/2

5S iua
6~x2,r !ei [ j z2~1/2!]f

l a
6~x2,r !ei [ j z1~1/2!]fD , ~4.12!
05521
e
e

n-

wherex1/2 andx21/2 are the two-component Pauli spinors
The equations to be solved are then

~pa
222gvV12 i ]1!ua

152S ]

]r
1

j z1~1/2!

r
2 igv

]L

]r D l a
2

1M* ua
2 , ~4.13a!

~pa
222gvV12 i ]1!l a

1

5S ]

]r
2

j z2~1/2!

r
2 igv

]L

]r Dua
22M* l a

2 ,

~4.13b!

i ]1ua
252S ]

]r
1

j z1~1/2!

r
2 igv

]L

]r D l a
11M* ua

1 ,

~4.13c!

i ]1l a
25S ]

]r
2

j z2~1/2!

r
2 igv

]L

]r Dua
12M* l a

1 .

~4.13d!

The wave functionsua
6 and l a

6 , the nucleon effective mas
M* 5M1gsf, the vector potentialV1, andL are all func-
tions of bothx2 andr. Equations~4.13! have a manifest spin
degeneracy underj z→2 j z . Solutions with the same eigen
valuepa

2 are obtained with the corresponding replaceme

S ua
1

l a
1 D→S l a

1

ua
1D , S ua

2

l a
2 D→2S l a

2

ua
2D . ~4.14!

Combined with isospin symmetry, we therefore have a ma
fest fourfold degeneracy of each single particle state. T
numerical solution to Eqs.~4.13! is discussed in Appendix
A.

V. NUCLEAR BINDING ENERGIES

If these solutions to Eqs.~3.31! and~3.30! are to have any
relevance at all, they should respect rotational invarian
The success in achieving this is examined in Tables I and
which give our results for the spectra of16O and 40Ca, re-
spectively. Scalar and vector meson parameters are ta
from Horowitz and Serot@24#, and we have assumed isosp
symmetry. We see that theJz561/2 spectrum contains th
eigenvalues of all states, since all states must have aJz5
61/2 component. Furthermore, the essential feature that
expected degeneracies among states with different value
Jz are reproduced numerically.

The results shown in Tables I–III are obtained using
basis of 20 splines, a box size of 2L524 fm, and 24 Fourier
components in the expansion of the wave function~see Ap-
pendix A!. This value ofL is large enough so that our resul
do not depend on it, and the number of terms in the exp
sion for the density is enough to ensure that the densities
spherically symmetric. Another feature is that the spectr
with p1.0 has no negative energy states, so that in us
the LF method one is working in a basis of positive ener
states only.
1-11
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The values ofpa
2/2 given in Tables I and II are essential

the same as the single particle energiesEa of the ET formal-
ism, to within the expected numerical accuracy of our p
gram. This equality is not mandated by spherical symme
alone because the solutions in the equal-time framew
have nonvanishing components with negative values ofp1.

Table III gives the contributions to the totalP1 momen-
tum from the nucleons, scalar mesons, and vector meson
16O, 40Ca, and80Zr, as well as the nuclear matter limit. I
the next section we examine in detail the momentum dis
butions giving rise to these expectation values.

VI. PLUS-MOMENTUM DISTRIBUTIONS AND LEPTON-
NUCLEUS DEEP INELASTIC SCATTERING

We discuss the probability that a nucleon, or meson ha
momentump1. In the light-front formulation, these distribu
tion functions are determined by the absolute square of
ground state wave function. Each distribution is discusse
turn.

A. Nucleon plus-momentum distribution

The light-front formulation is very useful for obtainin
this observable. The probability that we want,f N(p1), fol-
lows from Eq.~4.9! as

f N~p1!52(
a

occ E d2x'u^p1,x'uca
1&u2, ~6.1!

with

TABLE I. Comparison of the single particle spectra of16O in
the equal-time~ET! formalism (Ea2M ) with the light-front ~LF!
method (pa

2/22M ). Units are in MeV.

ET LF

Statea Ea2M Jz561/2 Jz563/2

0s1/2 241.73 241.73
0p3/2 220.77 220.79 220.77
0p1/2 212.49 212.51

TABLE II. Comparison of the ET and LF single particle spect
of 40Ca.

ET LF

Statea Ea2M Jz561/2 Jz563/2 Jz565/2

0s1/2 255.40 255.39
0p3/2 238.90 238.91 238.90
0p1/2 233.18 233.18
0d5/2 222.75 222.76 222.75 222.74
1s1/2 214.39 214.36
0d3/2 213.87 213.88 213.89
05521
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A5E
0

`

dp1 f N~p1!, ~6.2!

PN
15E

0

`

dp1p1 f N~p1!. ~6.3!

The next step is to define a dimensionless variabley:

y[p1
A

MA

[
p1

M̄A

, ~6.4!

and a dimensionless distributionf N(y):

f N~y![
f N~p1!

M̄A

. ~6.5!

The result is shown in Fig. 1 for16O, 40Ca, and80Zr. The
peaks of the distributions range fromy'0.72 to y'0.80,
whereas the average values^y& are somewhat lower~see
Table III!. The distribution is not symmetric about its ave
age value, as it would be if a simple Fermi gas model w
used. Both of these effects are caused by the presenc
nuclear mesons, which carry the remainder of the pl
momentum.

FIG. 1. Nucleon plus-momentum distribution function,f N(y),
for 16O, 40Ca, and80Zr. Herey[p1/(MA /A).

TABLE III. Total plus-momentum per nucleon for16O, 40Ca,
80Zr, and nuclear matter~NM! in MeV. No Coulomb interaction is
included here.

Nucleus PN
1/A Ps

1/A Pv
1/A P1/A

16O 704.7 6.4 221.8 932.9
40Ca 672.6 4.7 253.3 930.6
80Zr 655.2 3.6 270.2 929.0
NM 569.0 0.0 354.2 923.2
1-12
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B. Scalar meson distribution

The probability we want is given by

f s~k1!5E d2k'^Cua†~k!a~k!uC&. ~6.6!

Using Eqs.~3.34! and ~3.10! this becomes

f s~k1!5E d2k'

~2p!3

2k1

~k21ms
2!2

u^CuJ~k!uC&u2. ~6.7!

This result is of the same form as in Ref.@22#. A final step is
to define a dimensionless distributionf s(y):

f s~y![
f s~k1!

M̄A

. ~6.8!

The scalar mesons are found to carry less than 1% of
plus-momentum of the nucleus~Table III!, which is negli-
gible.

C. Vector meson distribution

The probability we want is given by

f v~k1!5E d2k' (
v51,3

^Cua†~k,v!a~k,v!uC&. ~6.9!

Using Eqs.~3.16! and the mean field approximation~3.5!
this becomes

f v~k1!5E d2k'

~2p!3

2k1

~k21mv
2!2 (

v51,3
uJ~k,v!u2,

~6.10!

in which

J~k,v!5E d3x eik•x^Cuc̄~x!gc~x!• ē~k,v!uC&.

~6.11!

Using Eq. ~2.18! and that only them5n52 term enters,
leads to the result that

f v~k1!5E d2k'

~2p!3

2k1

~k21mv
2!2

k'
2 1mv

2

k12
uJv~k!u2,

~6.12!

another result which is of the same form as in Ref.@22#. A
final step is to define a dimensionless distributionf v(y)

f v~y![
f v~k1!

M̄
. ~6.13!

The vector mesons carry approximately 30% of t
nuclear plus-momentum. The technical reason for the dif
ence with the scalar mesons is that the evaluation
a†(k,v)a(k,v) counts vector mesons ‘‘in the air’’ and th
resulting expression contains polarization vectors that giv
05521
e

r-
f

a

factor of 1/k1 in Eq. ~6.12! which enhances the distributio
of vector mesons of lowk1. The results for the vector meso
distribution are shown in Fig. 2. Clearly as the size of t
nucleus increases the enhancement of the distribution
lower values ofk1 becomes more evident. In the case
nuclear matter the distributionk1 f v(k1) becomes a delta
function.

D. Lepton-nucleus deep inelastic scattering

It is worthwhile to see how the present results are rela
to lepton-nucleus deep inelastic scattering experiments.
find that the nucleons carry only about 70% of the plu
momentum. The use of ourf N in standard convolution for-
mulas leads to a reduction in the nuclear structure func
that is far too large (;95% is needed@4#! to account for the
reduction observed@4# in the vicinity of x;0.5. The reason
for this is that the quantityM1gsf acts as a nucleon effec
tive mass of about 670 MeV, which is very small. A simil
difficulty occurs in the (e,e8) reaction@25# when the mean
field theory is used for the initial and final states. The use
a small effective mass and a large vector potential enabl
simple reproduction of the nuclear spin orbit force@12,24#.
However, effects beyond the mean field may lead to a s
nificant effective tensor coupling of the isoscalar vector m
son @26# and to an increased value of the effective ma
Such effects are incorporated in Brueckner theory, an
light-front version@27# could be applied to finite nuclei with
better success in reproducing the data.

VII. SUMMARY AND DISCUSSION

The previous sections present a derivation of a light-fr
version of mean field theory. The necessary technique i
minimize expectation value of the sumP21P1. This leads
to a new set of coupled equations~3.31! and ~3.30! for the
single nucleon modes. These depend on the meson field
Eqs.~3.13! and ~3.21!.

The most qualitatively startling feature emerging from t
derivation is that the meson field equations~3.13! and~3.21!
are the same as that of the usual theory, except thatz of the
equal-time theory translates to2x2/2 of the light-front ver-

FIG. 2. Vector meson plus-momentum distributiony fv(y). In
the nuclear matter limit,y fv(y) becomes a delta function.
1-13
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sion. This can be understood in a simple manner by no
that light-front quantization occurs atx150. If one then sets
z52t, then x25t2z522z. However, this simple argu
ment is not really justified, because usingx6 precludes the
use ofz and t. A general argument, using the feature tha
static source in the usual coordinates corresponds to a so
moving with a constant velocity in light front coordinate
will be presented in a separate paper@15#. That paper also
contains a number of solutions of toy models.

Even though the meson field equations of the light-fro
and equal-time theories are the same, there are substa
and significant differences between the two theories. In
treatment, the mesonic fields are treated as quantum
operators. The mean field approximation is developed by
placing these operators by their expectation values in
complete ground-state nuclear wave function. This me
that the ground-state wave function contains Fock terms w
mesonic degrees of freedom. We can therefore compute
pectation values other than that of the field. In particular,
are able to obtain the mesonic momentum distributions~Sec.
VI !. This feature has been absent in standard approache

We obtain an approximate solution~3.48! of our nucleon
mode equation. Our nucleon mode functions are appr
mately a phase factor times the usual equal-time mode fu
tions ~evaluated atx2522z). This shows that the energ
eigenvalues of the two theories should have very similar v
ues. But the wave functions are different—the presence
the phase factor explicitly shows that the nucleons give
substantial amounts of plus momentum to the vector mes

A new numerical technique, discussed in Sec. IV and A
pendix A, is introduced to solve the coupled nucleon a
meson field equations. Our results display the expectedj a
11 degeneracy of the single nucleon levels, and the res
ing binding energies are essentially the same as for the u
equal-time formulation. This indicates that the approxim
tion ~3.48! is valid.

As discussed in Sec. VI D, the present results related
lepton-nucleus deep inelastic scattering experiments
(e,e8) reactions are not consistent with experimental fin
ings. This is because, in40Ca for example, the nucleon
carry only 72% of the plus momentum. This is a result of t
fact that the quantityM1gsf, which acts as a nucleon e
fective mass, is very small, about 670 MeV. The use o
small effective mass and a large vector potential enable
simple reproduction of the nuclear spin orbit force@12,24#.
However, effects beyond the mean field may lead to a
nificant effective tensor coupling of the isoscalar vector m
son @26# and to an increased value of the effective ma
Such effects are incorporated in Bruckner theory@27# which,
for infinite nuclear matter, results in nucleons having ab
80–85 % of the nuclear plus-momentum. A light-front ve
sion @27# should be applied to finite nuclei with better su
cess in reproducing the data. Another approach could b
use different Lagrangians, with nonlinear couplings betwe
scalar mesons and the nucleons@12#, or ones in which the
coupling is of derivative form@28#: c̄gmc]mf. These mod-
els are known to have significantly smaller magnitudes of
scalar and vector potentials. In particular, in nuclear ma
vector mesons carry only about 10–15 % of the nuclear-p
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momentum. Another interesting possibility would be to o
tain a light-front version of the quark-meson coupling mod
@29#, in which confined quarks interact by exchanging m
sons with quarks in other nucleons. This model also
smaller magnitudes of the scalar and vector potentials.

In any case, these kinds of nuclear physics calculati
can be done in a manner in which modern nuclear dynam
is respected, boost invariance in thez direction is preserved
and in which the rotational invariance so necessary to un
standing the basic features of nuclei is maintained.
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APPENDIX A: NUMERICAL TECHNIQUES

There are many possible numerical approaches to sol
Eqs.~4.13!. We choose a method that is robust, and emp
sizes the physical content of the wave functions, at the
pense of being computationally intensive. We begin by m
ing a Fourier expansion of the wave functions in the varia
x2:

ua
6~x2,r !5

1

A2L2p
(

n
e2 ipn

1x2/2ua,n
6 ~r !, ~A1!

with a similar expansion forl a
6(x2,r ). Boundary conditions

are imposed by constraining the system to be in a ‘‘box’’
a given length in the variablex2. In the nuclear rest frame
x2522z, and so]152]252]/]z. Hence for2L<z<
1L, we write

ua
6~z,r !5

1

A2L2p
(

n
eipn

1zua,n
6 ~r !, ~A2!

with $pn
15nq, n51,2,3, . . . %, andq5p/L.

For bound states, the functionsua,n
6 (r ) and l a,n

6 (r ) are
real, and so the scalar and vector densities take the form

rs~z,r !5 (
m>0

rm
s ~r !cosmqz, ~A3!

r6~z,r !5 (
m>0

rm
6~r !cosmqz, ~A4!

with m50,1,2, . . . , and

rm
s ~r !5

2

2L2p

1

11dm,0
(
a

occ

(
n

@ua,n
1 ~r !ua,n1m

2 ~r !

1ua,n
2 ~r !ua,n1m

1 ~r !2 l a,n
1 ~r !l a,n1m

2 ~r !

2 l a,n
2 ~r !l a,n1m

1 ~r !#, ~A5!
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rm
6~r !5

2

2L2p

2

11dm,0
(
a

occ

(
n

@ua,n
6 ~r !ua,n1m

6 ~r !

1 l a,n
6 ~r !l a,n1m

6 ~r !#. ~A6!

The normalization integral for a nucleus withA nucleons is

A52pE
0

`

dr r E
2L

L

dz r1~z,r !

52p2LE
0

`

dr rr0
1~r !

52E
0

`

dr r(
a

occ

(
n

@„ua,n
1 ~r !…21„l a,n

1 ~r !…2#. ~A7!

1. Meson fields

The equations for the meson fields are solved us
Green’s function methods. We illustrate this for the vec
field V1, with results forf following by analogy. Starting
with

S 2
]2

]z2
2

]2

]r 2
2

1

r

]

]r
1mv

2D V1~z,r !5gvr1~z,r !,

~A8!

we expandV1(z,r ) in the same form as the densityr1(z,r ),
Eq. ~A4!:

V1~z,r !5(
m

Vm
1~r !cosmqz. ~A9!

The functionsVm
1(r ) satisfy

S 2
]2

]r 2
2

1

r

]

]r
1mv

21m2q2D Vm
1~r !5gvrm

1~r !,

~A10!

and their solution may be written as

Vm
1~r !5gvE

0

`

dr8r 8G~r ,r 8!rm
1~r 8!. ~A11!

The Green’s function is

G~r ,r 8!5I 0~mv* r !K0~mv* r 8!u~r 82r !

1I 0~mv* r !K0~mv* r 8!u~r 2r 8!. ~A12!

We have introduced the definitionmv* [Amv
21m2q2, andI 0

and K0 are modified cylindrical Bessel functions of zero
order. The meson fields are computed numerically from
~A11! by an outward and an inward integration.

2. Solution of nucleon equation

To streamline the notation, we drop the explicit depe
dence on the single particle labela in this section. Equation
~4.13! can be rewritten in the form of a 232 matrix equation
05521
g
r

.

-

p2S ^z,r uu1&

^z,r u l 1&
D 5H S 2gvV12 i

]

]zD I 1H 1

@2 i ~]/]z!#I
HJ

3S ^z,r uu1&

^z,r u l 1&
D , ~A13!

with the constrained subsidiary relation

S ^z,r uu2&

^z,r u l 2&
D 5

1

@2 i ~]/]z!I #
HS ^z,r uu1&

^z,r u l 1&
D . ~A14!

Here I is the 232 identity matrix, and

H5S M* D11 igv ~]L/]r !

D22 igv ~]L/]r ! 2M* D , ~A15!

D152S ]

]r
1

j z1
1
2

r
D , ~A16!

D25S ]

]r
2

j z2
1
2

r
D . ~A17!

If we takeN Fourier componentsn51,2,3, . . . ,N in the ex-
pansion of Eq.~A2! in z, then u1(z,r )5^z,r uu1& and
l 1(z,r )5^z,r u l 1& have the matrix representation

S u1
1~r !

u2
1~r !

A

uN
1~r !

D , S l 1
1~r !

l 2
1~r !

A

l N
1~r !

D , ~A18!

whereun
1(r )5^pn

1 ,r uu1& and l n
1(r )5^pn

1 ,r u l 1&.
Equation~A13! becomes a 2N32N matrix equation. Ma-

trix elements of theN3N sub-blocks are determined from
the integrals

@V1~r !# (nn8)5^pn
1uV1~z,r !upn8

1 & ~A19!

5
1

2LE2L

L

dz ei (p
n8
1

2pn
1)zV1~z,r ! ~A20!

5
11dm,0

2
Vm

1~r !d un2n8u,m . ~A21!

Similarly,

@M* ~r !# (nn8)5Mdn,n81
11dm,0

2
gsf0~r !d un2n8u,m ,

~A22!

F2 i
]

]zG
(nn8)

5pn
1dn,n8 , ~A23!

@D1# (nn8)5D1dn,n8 , ~A24!

@D2# (nn8)5D2dn,n8 , ~A25!
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@ iL~r !# (nn8)5
2 1

2 Vm
1~r !1~21!mV0

1~r !

pn
12pn8

1 d un2n8u,m mÞ0.

~A26!

The last relation comes from the definition2 ]L/]z5V1.
Using integration by parts, and a careful treatment of surf
terms, gives matrix elements in the form~A26!.

The problem has now been reduced to an eigenva
problem involving 2N coupled differential equations in th
variable r. To solve this, we make a further expansion
un

6(r ) and l n
6(r ) in a finite basis ofB splines of degreek

@30,31#:

un
6~r !5(

i 51

N
an,i

6 Bi
(k)~r !, ~A27!

l n
6~r !5(

i 51

N
bn,i

6 Bi
(k)~r !. ~A28!

The B splines$Bi
(k) , i 51, . . . ,N% are polynomials of de-

gree k21 spanning a domain of equally spaced kn
$t i , i 51, . . . ,N1k% in r. They are smooth ‘‘local’’ func-
tions that are nonzero only on the intervalt i,r ,t i 1k . This
basis forms an accurate, but nonorthogonal set. Hence
overlap matrix

Si j 5E
0

`

dr rBi
(k)~r !Bj

(k)~r ! ~A29!

is nondiagonal. It is diagonally banded, however, sin
Bi

(k)(r ) andBj
(k)(r ) are functions that only overlap ifu i 2 j u

<k21. The property of being diagonally banded also a
plies to the matrix elements of other operators.

We now have a matrix equation with the 232 block
structure

H F2gvV12 i
]

]zG ^ I 1H 1

@2 i ~]/]z!# ^ I
HJ S a1

b1D
5p2@1# ^ I S a1

b1D , ~A30!

where ^ denotes an outer product of matrices.a15$an,i
1 %

and b15$bn,i
1 % are column vectors of length (N3N), and

the (N3N)3(N3N) sub-blocks have matrix elements

@V1# (nn8),(i j )5E
0

`

dr rBi
(k)~r !Bj

(k)~r !@V1~r !# (nn8) ,

~A31!

@M* # (nn8),(i j )5E
0

`

dr rBi
(k)~r !Bj

(k)~r !@M* ~r !# (nn8) ,

~A32!
05521
e

e

f

s

he

e

-

F2 i
]

]zG
(nn8),(i j )

5pn
1dn,n8Si j , ~A33!

@1# (nn8),(i j )5dn,n8Si j , ~A34!

@D1# (nn8),(i j )5dn,n8E
0

`

dr rBi
(k)~r !S 2

d

dr
Bj

(k)~r !

2
j z1

1
2

r
Bj

(k)~r !D , ~A35!

@D2# (nn8),(i j )5dn,n8E
0

`

dr rBi
(k)~r !S d

dr
Bj

(k)~r !

2
j z2

1
2

r
Bj

(k)~r !D , ~A36!

F i
]L

]r G
(nn8),(i j )

52E
0

`

dr
d

dr
„rBi

(k)~r !Bj
(k)~r !…@ iL~r !# (nn8) .

~A37!

The last relation follows from using integration by parts.

3. Numerical methods

For our numerical calculations we useL512 fm andN
524 Fourier components, and set the number of terms in
cosine expansion of the densities to beN/2, or 12. We
choosek55 for the degree of theB splines,N520 B splines
in the expansion inr, and take 0,r ,L. The integrals overr
are performed using Gaussian integration between kn
which gives exact results for the matrix elementsSi j , Eq.
~A29!.

The matrix eigenvalue problem~A30! is of the formAx
5lBx, whereA andB are real, symmetric matrices. In ou
problem,A andB are diagonally banded, and there are e
cient EISPACK routines that take advantage of this@32#.
Cholesky decomposition is used to efficiently compute
matrix

1

@2 i ~]/]z!# ^ I
H, ~A38!

which is needed both to determineu2 and l 2 as well as to
construct the matrix in Eq.~A30!.

APPENDIX B: MOMENTUM DISTRIBUTIONS

In momentum space the meson field equations becom

f~k1,k'!52
gs

k21ms
2
rs~k1,k'!, ~B1!

V1~k1,k'!5
gv

k21ms
2
r1~k1,k'!, ~B2!
1-16
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with k25(k1)21k'
2 , and the convention

V1~k1,k'!5E d2x'E dz e2 ik'•x'2 ik1zV1~z,x'!.

~B3!

The scalar meson momentum distribution from Eq.~6.7!
can be rewritten as

f s~k1!5
2k1

2p E d2k'

~2p!2

gs
2

~k21ms
2!2

urs~k1,k'!u2 ~B4!

5
2k1

2p E d2k'

~2p!2
uf~k1,k'!u2 ~B5!

5
2k1

2p E d2x'uf~k1,x'!u2. ~B6!

Then

Ps
15E

0

`

dk1k1 f s~k1! ~B7!

5
1

2E2`

` dk1

2p
2~k1!2E d2x'uf~k1,x'!u2 ~B8!

5E d3x@]1f~x!#2 ~B9!

5^Ts
11&. ~B10!

The vector meson momentum distribution is a little mo
complicated. Starting from Eq.~6.12!,

f v~k1!5
2k1

2p E d2k'

~2p!2

gv
2

~k21mv
2!2

k'
2 1mv

2

~k1!2
ur1~k1,k'!u2

~B11!

5
2k1

2p E d2k'

~2p!2

gv

k21mv
2

3
k21mv

22~k1!2

~k1!2
V1~k1,k'!r1~k1,k'! ~B12!

5
2

2pE d2k'

~2p!2 F 1

k1
gvV1~k1,k'!r1~k1,k'!

2k1uV1~k1,k'!u2G . ~B13!
05521
Then

Pv
15E

0

`

dk1k1 f v~k1! ~B14!

5
1

2E2`

` dk1

2p
2E d2x'@gvV1~k1,x'!r1~k1,x'!

2~k1!2uV1~k1,x'!u2# ~B15!

5E d3x@gvV1~x!r1~x!2@]1V1~x!#2#

~B16!

5^Tv
11&. ~B17!

Clearly f v(k1) is singular atk150, so we plotk1 f v(k1)
instead.

Momentum distributions involve integrals overx' , or
equivalently overk' , so one really only needs to Fourie
transformV1(z,x') in z. If we define

V1~k1,x'!5E dz e2 ik1zV1~z,x'!, ~B18!

then for km
15mq, q5p/L, it follows from the definition

~A9! that

V1~km
1 ,x'!52L

11dm,0

2
Vm

1~r !, ~B19!

with a similar result for r1(km
1 ,x'), f(km

1 ,x'), and
rs(km

1 ,x'). Hence we calculate the momentum distributio
from the expressions

km
1 f s~km

1!5
2~mq!2

q

~11dm,0!
2

4
2p2LE

0

`

dr r @fm~r !#2

~B20!

km
1 f v~km

1!5
2

q

~11dm,0!
2

4
2p2LE

0

`

dr r @gvVm
1~r !fm

1~r !

2~mq!2@Vm
1~r !#2#. ~B21!

The nucleon momentum distribution forpn
15nq is given by

f N~pn
1!5

2

qE0

`

dr r(
a

occ

@@ua,n
1 ~r !#21@ l a,n

1 ~r !#2#,

~B22!

so that A5*0
`dp1 f N(pn

1)'q(nf N(pn
1), and PN

1

5*0
`dp1p1 f N(pn

1)'q(npn
1 f N(pn

1). We interpolate be-
tween the discrete values ofkn

1 andpn
1 to produce the plots

of Figs. 1 and 2.
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