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NN interaction in a Goldstone boson exchange model
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Adiabatic nucleon-nucleon potentials are calculated in a six-quark nonrelativistic chiral constituent quark
model where the Hamiltonian contains a linear confinement and a pseudoscalar (Gesdstone boson
exchange interaction between quarks. Calculations are performed both in a cluster model and a molecular
orbital basis, through coupled channels. In both cases the potentials present an important hard core at short
distances, explained through the dominance of 818, 5 configuration, but do not exhibit an attractive pocket.

We add a scalar meson exchange interaction and show how it can account for some middle-range attraction.
[S0556-28189)04510-0

PACS numbd(s): 24.85+p, 21.30-X, 13.75.Cs

[. INTRODUCTION range part, of opposite sign to the long-range one, is mainly
responsible for the good description of the baryon spectra

There have been many attempts to study the nucleorj7—9] and also induces a short-range repulsion in lie
nucleon interaction starting from a system of six interactingsystem, both in theé’S; and 'S, channeld13]. The present
quarks described by a constituent quark model. These modtudy is an extension ¢6] and we calculate here the inter-
els explain the short-range repulsion as due to the color magction potential between twooBclusters as a function &,
netic part of the one-gluon exchan¢®GE) interaction be- the separation distance between the centers of the clusters.
tween quarks and due to quark interchanges between ¢wo 3This separation distance is a good approximation of the Ja-
clusterd 1,2]. To the OGE interaction it was necessary to addcobi relative coordinate between the two clusters. Under this
a scalar and a pseudoscalar meson exchange interaction lzssumption, here we calculate the interaction potential in the
tween quarks of different@ clusters in order to explain the adiabatic(Born-Oppenheimgrapproximation, as explained
intermediate- and long-range attraction between two nuclebelow.
ons[3-5]. A common issue in solving thBIN problem is the con-

In a previous worl{6] we have calculated the nucleon- struction of adequate six-quark basis states. The usual choice
nucleon (NN) interaction potential at zero-separation dis-is a cluster model bas|4,2,14. In calculating the potential
tance between two three-quark clusters in the framework of at zero-separation distance, in RE§] we used molecular-
constituent quark mod¢l—9] where the quarks interact via type orbitals[15] and compared the results with those based
pseudoscalar meson exchange, i.e., Goldstone boson euxn cluster model single-particle states. The molecular orbit-
change(GBE) instead of OGE. An important motivation in als have the proper axially and reflectionally symmetries and
using the GBE model is that it describes well the baryoncan be constructed from appropriate combinations of two-
spectra. In particular, it correctly reproduces the order otcenter Gaussians. At zero separation between ¢helBsters
positive and negative parity states both for nonstraf@le the six-quark states obtained from such orbitals contain cer-
and strang¢9] baryons where the OGE model has failed. tain p"s®~" configurations which are missing in the cluster

The underlying symmetry of the GBE model is related tomodel basis. By using molecular orbitals, in REs] we
the flavor-spin SW(3)x SUs(2) group. Combining it with  found that the height of the repulsion reduces by about 22%
the S; symmetry, a thorough analysis performed for the and 25% in the®S; and 'S, channels, respectively, with
=1 baryons[10] has shown that the chiral quark picture respect to cluster model results. It is therefore useful to ana-
leads to more satisfactory fits to the observed baryon spedyze the role of molecular orbitals at distancBs:0. By
trum than the OGE models. construction, aZ — o the molecular orbital states are simple

The one-pion exchange potential between quarks appeapgrity conserving linear combinations of cluster model
naturally as an iteration of the instanton-induced interactiorstates. Their role is expected to be important at short range at
in the t channel[11]. The meson exchange picture is alsoleast. They also have the advantage of forming an orthogonal
supported by explicit QCD lattice calculatiof2]. and complete basis while the cluster modelo-centey

Another motivation in using the GBE model is that the states are not orthogonal and are overcomplete. For this rea-
exchange interaction contains the basic ingredients requiresbn we found that in practice they are more convenient to be
by theNN problem. Its long-range part, required to provide used than the cluster model basis, where one must carefully
the long-rangeNN interaction, is a Yukawa-type potential [14] consider the limitz—0. Here, too, for the purpose of
depending on the mass of the exchange meson. Its shotemparison we perform calculations both in the cluster

model and the molecular orbital basis.
In Sec. Il we recall the procedure of constructing molecu-
*Electronic address: d.bartz@ulg.ac.be lar orbital single-particle states starting from the two-center
TElectronic address: fstancu@ulg.ac.be Gaussians used in the cluster model calculations. In Sec. Il
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the GBE Hamiltonian is presented. Section IV is devoted tdn principle one can obtain molecular orbital single-particle
the results obtained for theN potential. In Sec. V we in- states from mean field calculatiofsee, for examplg,16]).
troduce a middle-range attraction through a scalar meson exiere we approximate them by good parity, orthonormal
change interaction between quarks parametrized consistentiyates constructed from the cluster model stéigss

with the pseudoscalar meson exchange. The last section is

devoted to a summary and conclusions. o
- =[2(1=(RIL)] "A(R=L). 8

II. SINGLE-PARTICLE ORBITALS

In the cluster model one can define states which in theSuch molecular orbitals are a very good approximation to the

limit of large intercluster separatian are rightR and leftL exact' eigenstates Of. a two-cen.ter osqlllator frequently
States: used in nuclear physics or occasiondlly’] in the calcula-

tion of theNN potential. They provide a convenient basis for
first-step calculations based on the adiabatic approximation
(1)  as described below.
Introduced in Eq(6) they give

>

z
R=¢<F—§) and L=

>

2

In the simplest cluster model basis these are ground state

. . . ri 1 R+L R—L
harmonic oscillator wave functions centered AR and =3 TP 7| - 9
—Z/2, respectively. They contain a paramef@mwhich is 2| (1+(R[L) ™7 (1—(RIL))

fixed variationally to minimize the nucleon mass described
as a 3) cluster within a given Hamiltonian. The stat@g are At Z—0 one hasr—s and7—p (with m=0,%1) wheres
normalized but are not orthogonal at finile They have andp are harmonic oscillator states. Thus in the lirdit
good parity about their centers but not about their common—0 one has
centerr=0.

From R and L one constructs six-quark states of given r ST
orbital symmetry{ f]o. The totally antisymmetric six-quark ||=27(s%p),
states also contain a flavor-spin part of symmegfry-s and a

color part of symmetry[222]c. In the cluster model the and atz— one recovers the cluster model basis because
most important basis statd43] for the Hamiltonian de- ; . R andl-—L.

(10

scribed in the following section are Equation(9) with R and L defined by Egs(1) ensures
that the same& is used both in the molecular and cluster

|R3L3[6]O[33]FS>1 (2) model bases.

33 From (r,l) as well as from(o,7r) orbitals one can con-
|R°L42]0[33]ks), 3 struct six-quark states of the required permutation symmetry.

3 3 For the Sg¢ symmetries relevant for th&N problem the
IR°L[42]o[51]ks), (4 transformations between six-quark states expressed in terms

5 3 of (r,I) and(o,m) states are given in Table | of Rdf15].
|RL[42]6[411]Es). (5 This table shows that in the limE—0 six-quark states ob-

. o tained from molecular orbitals contain configurations of the
Harvey[14] has shown that with a proper normalization thetype s"p® " with n=0,1,.. . ,6. Forexample, thd 6], state
symmetry[6]o contains onlys® and[42]o only s*p? con-  containss®, s8p?, s?p*, andp® configurations and thg42]
figurations in the limitZ—0. _ state associated with tH® channel contains®p? and s2p*
_According to Ref[15] let us consider now molecular or- ¢onfigurations. This is in contrast to the cluster model basis
bital single-particle states. Most generally these are eigenyhere[6], contains onlys® and[42], only s*p? configu-
states of a Hamiltoniall, having axial and reflectional sym-  rations, as mentioned above. This suggests that the six-quark
metries characteristic of tHeN problem. These eigenstates pasis states constructed from molecular orbitals form a richer

have therefore good parity and good angular momentum prayasis without introducing more single particle states.

lowest stateR andL, in the molecular orbital basis we also states needed for thS; or 1S, channels are
consider the two lowest states,of positive parity andr of
negative parity. From these we can construct pseudoright

and pseudoleft states as |33 6]0[33]rs) = %I[\/g( 08— %) — B(o* 72— o?m?)]
=2 ¥oxm) for all z, ©) X[610[33]rs), (19)
1
where |354210[33]r9) = \[5|[a4w2—ozw4][42]o[33]ps>,
(riry=(1l1)=1, (rfl)=0. @) (12
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TABLE |. Parameters of the Hamiltoniai20)—(25).

1
|33{42]o[51]FS>: \[§|[U4772_ 02774][4210[51]Fs>,

13 Vo (MeV) C(fm™?) galdm  gilam Reference
0 0.474 0.67 1.206 [8]
1
|33[42]o[411]Fs>: \[E|[0'4772_0'2774][4210[411]FS>1
=2 >\ D
(14 _ . P (Zip) i
H_EI n’]I_‘_ i Zmi 2Eimi +i<j VCOﬂi(rI])
1 /1
|42°[6]0[33]r)= 5 \ﬁlwl—swﬂw%—(o“wz
4 V2 +i2<j V. (i), (20)
+a?7*)][6]0[33]ks), (15)
with the linear confining interaction
1
421142533 =\ﬁ A2+ o?m*)[42] o[ 33]ks), 3
[42°[42]0[33es) = /5[ "7+ o> ][ 42]o[ 33]r) VeandT3) = — NS (Vo Cry) 21

(16) 8
1 and the spin-spin component of the GBE interaction in its
|42+[42]0[ 51]rs) = \[5|[o4w2+azw“][42]o[51]ps>, SUr(3) form:

17

3 7
Vo (rij)= > Vw(rij))\i':)\]!:+2 VK(rij)MF)\jF
=1 =

1
|427[42]o[411]¢s) = \[E [ m*+ o?n*|[42]o[ 411]k),

(18) +V.”(r|j))\|8A18+V”r(r”))\lo7\10 5’,6’1, (22)

with \°=/2/31, wherel is the 3x 3 unit matrix. The inter-

51*[6]0[33]rs) = %|N§<a6— 7%+ \5(c*m?— o?m)]
X[6]0[33rs), (19

where the notation 33 amdn™ on the left-hand side of each
equality above means’l® andr™"+r"I™ as in Ref.[15].

action (22) containsy=, K, 7, and ' meson exchange
terms and the form o¥ ,(r;;) is given as the sum of two
distinct contributions: a Yukawa-type potential containing
the mass of the exchanged meson and a short-range contri-
bution of opposite sign, the role of which is crucial in baryon
spectroscopy.

Each wave function contains an orbital pa®)( and a
flavor-spin part(FS) which combined with the color singlet du
[222]. state gives rise to a totally antisymmetric state. We

In the parametrization of Ref8] the exchange potential
e to a mesory has the form

restricted the flavor-spin states {83]gs, [51]gs, and g2 R
[411]¢¢ as for the cluster model basig)—(5). V()= 4_7 Tom [ o(r — ro),uf/ a8
As explained above, besides being pooresip® " con- ™ Lam;m; r Jm

figurations, the number of basis states is smaller in the clus-
ter model although we deal with the samigg and|[f]rg
symmetries and the same harmonic oscillator statesd p

in both cases. This is due to the existence of three-quark
clusters only in the cluster model states, while the moleculafhe shifted Gaussian of E¢23) results from a pure phe-
basis also allows configurations with five quarks to the lefthomenological fitsee below of the baryon spectrum with
and one to the right, or vice versa, or four quarks to the left _

and two to the right or vice versa. At large separations these ro=043 fm, «=2.91 fm %, (24)
states act as “_hidde_-n color” states but at short- and r_nedium- For a system ofi andd quarks only, as is the case here,
range separation distances they are expected to bring a Sigse K exchange does not contribute. Tagriori determined
nificant contribution, as we shall see t;elow._ The _ h'qdenparameters of the GBE model are the masses

color” are states where ai3cluster in ars® configuration is

a color octet, in contrast to the nucleon which is a color
singlet. Their role is important at short separations but it
vanishes at large ondsee, e.g.[14]).

Xexq—az(r—ro)z]]. (23

Myq=340 MeV, u,=139 MeV,

wn,=547 MeV, u, =958 MeV. (25
The other parameters are given in Table I.
It is useful to comment on E23). The coupling of pseu-
The GBE Hamiltonian considered in this study has thedoscalar mesons to quarksr nucleong gives rise to a two-
form [8,9] body interaction potential which contains a Yukawa-type

Ill. HAMILTONIAN
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TABLE II. Variational solution of the Hamiltoniar{20)—(25) 29
for the nucleon massy with 8 as a variational parametésee 28
text). a7l
B (fm) my (MeV) =r
25
0.437 969.6 _
% 24 F
ET 231+ e 4
L 2.242
term and a contact term of opposite sigee, €.9.[18]). The 22
second term of Eq(23) stems from the contact term, regu- a1}
larized with parameters fixed phenomenologically. Certainly  ,[
more fundamental studies are required to understand thi: |
second term and attempts are being made in this direction
The instanton liquid model of the vacuuifor a review see "t 05 . 15 2 25
[19]) implies pointlike quark-quark interactions. To obtain a Z{fm

realistic description of the hyperfine interaction this interac- g 1. The cluster model basis. The expectation value of the

tion has to be iterated in thechannel[11]. Thet channel  yinetic energy(KE) as a function of the separation distaride-

|terat|on admlt_s a meson exchange mterpretali&ﬁ]._ _ tween two 3 clusters. The asymptotic value of 2.242 GeV, given
In principle it would be better to use a parametrization ofpy Eq. (29), is indicated. The solid line corresponds|f6]o) and

the GBE interaction as given {i21] based on a semirelativ- the dashed line t{{42],) states.

istic Hamiltonian. However, in applying the quark cluster

approach to two-baryon systems we are restricted to use a 342

nonrelativistic kinematics and ast wave function for the Krel=m, (27)
ground state baryon.

The matrix elements of the Hamiltonid@0) are calcu-  \wherem above and in the following designates the mass of

lated in the base&2)—(5) and (11)—(19) by using the frac- the u or d quark. For the value of of Table Il this gives
tional parentage technique described in R¢fst,22 and K =0.448 GeV.

also applied in Ref.13]. A program based OMATHEMATICA

[23] has been created for this purpose. In this way every
six-body matrix element reduces to a linear combination of
two-body matrix elements of either symmetric or antisym- N Fig. 1 we present the expectation value of the kinetic

metric states for which Eq$3.3) of Ref.[7] can be used to energy(KE) as a function ofZ. One can see that for the state
integrate in the f|avor-spin space. |R3L3[42]O> it decreases withZ but for the state

|IR3L3[6]o) it first reaches a minimum at around
=0.85fm and then tends to an asymptotic value equal to its

A. Cluster model

IV. RESULTS value at the origin due to its® structure. This value is
We diagonalize the Hamiltoniaf20)—(25) in the six- 15
guark cluster model basi®)—(5) and in the six-quark mo- (KE)7-0=(KE)7-o.=—T o, (29

lecular orbital basig11)—(19) for values of the separation 4

distanceZ up to 2.5 fm. Using in each case the lowest ei'wherehwzﬁzlmﬂz. Actually this is also the asymptotic
genvalue, denoted b{H),, we define theNN interaction \51e for all states.

potential in the adiabati¢Born-Oppenheimerapproxima- The diagonal matrix elements of the confinement poten-
tion as tial are presented in Fig. 2. Beyo@d> 1.5 fm one can notice
a linear increase except for tH&®3L342]o[51]cs) state
Van(Z)=(H)z—2my—Kg. (26)  Where it reaches a plateau of 0.3905 GeV.

As an example the diagonal matrix elements of the chiral

_ _ o interactionV, are exhibited in Fig. 3 foS=1, 1=0. At Z
Here my is the nucleon mass obtained as a variatisfal —Q one recovers the values obtained in Hél. At Z—o
solution for a 3] system described by the Hamiltonié20).  the symmetries corresponding to baryon-baryon channels,
The wave function has the formpocex —(p*+2\%)/28°]  namely,[51]rs and[33]cs, must appear with proper coeffi-
where p=(F;—1,)/\2 and X=(F;+,—2F3)/\/6. The cients, as given by Eq29). The contribution due to these
variational solution fomy=(H)3, and the corresponding  symmetries must be identical to the contribution/gfto two
is given in Table Il. The same value gfis also used for the nucleon masses also calculated with the Hamilto{20).
6q system. This is equivalent to imposing the “stability con- This is indeed the case. In the total Hamiltonian the contri-
dition” which is of crucial importance in resonating group bution of the[411]rsV, state tends to infinity wherZ
method (RGM) calculations[1,2]. The quantityK,, repre- —o. Then this state decouples from the rest which is natural
sents the relative kinetic energy of twaq 8lusters separated because it does not correspond to an asymptotic baryon-
at infinity: baryon channel. It plays a role at smallbut at largeZ its
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Confinement (GeV)

0.3

FIG. 2. The cluster model basis. The expectation valu¥ gf;
of Eg. (21). The corresponding states af®) |[6]o[33]rs), (2)
I[42]6[33]es), (3) [[42]0[51]ks), and (4) |[411]o[51]¢s). Note

- 0.388

- 0.3875

1
0.5

Z (fm)

- 0.39

- 0.3895

- 0.389

- 0.3885

0.391

0.3905

Adiabatic potential (GeV)

L L 0.387 04
15 2 25

that for curve(3) the scale is on the right-hand siRHS) vertical

line.

amplitude in theN N wave function vanishes, similarly to the
“hidden color” states. Actually, in diagonalizing the total
Hamiltonian in the basig2)—(5) we obtain anNN wave

function which in the limitZ— oo becomeg14]

PHYSICAL REVIEW C 60 055207

1
0.5

Z (fm)

FIG. 4. Comparison of the adiabatic potential &1, 1=0,
calculated in the cluster model bassslid curve and the molecular
orbital basis(dashed curve

Our cluster model results can be compared to previous
literature based on OGE models. A typical example for the

33, and 1S, adiabatic potentials can be found in RE24].
The results are similar to ours. There is a repulsive core but
no attractive pocket. However, in our case, in either basis,

the core is about twice higher @&=0 and about 0.5 fm

wider than in[24].

1 2 2
'/fNN:§ I[6]o[33lks) + §|[42]o[33]|:s> 3 I[42]o[ 51]Fs)-

curves one should subtrat of Eq. (27) in order to obtain

(29

B. Molecular orbital basis

In the molecular basis the diagonal matrix elements of the

kinetic energy are similar to each other as decreasing func-
The adiabatic potential drawn in Figs. 4 and 5 is definedions of Z. As an illustration in Fig. 6 we sho{KE) corre-
according to Eq(26) where(H); is the lowest eigenvalue sponding t0|336],[33]rs) and to the most dominant state
resulting from the diagonalization. Figure 4 corresponds tgt Z=0, namely,|42"[42]o[51]cs) (see[6]). The kinetic
S=1,1=0 and Fig. 5 t0S=0, | =1. Note that from these energy of the latter is larger than that of the former because

of the presence of the configuratisfp* with a 50% prob-

the asymptotic value zero for the potential. One can see thaibility while in the first state this probability is smaller as

the potential is repulsive at ar in both sectors.

02

0

-02

-04

-0.6

-08

Chiral Interaction (GeV)

FIG. 3. The cluster model basis. The expectation value of the

M

Z (m)

well as that of thep® configuration; see Eq$11) and (17).
The large kinetic energy of the statt7) is compensated by

Adiabatic potential (GeV)

0.4

chiral interaction, Eqs(22)—(25), for S=1, | =0. The curves are
numbered as in Fig. 2 and the scale @ris also on the rhs vertical

line.
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large negative values ofV,) so that this state becomes
{1 dominant at smalZ in agreement with Ref.6].

15 2 25
Z (fm)

FIG. 5. Same as Fig. 6 but f{@=0, | =1.
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31

- also given by Eq(29) inasmuch as—R andl—L as indi-
N _ cated below Eq(10).
Adding together these contributions we diagonalize the
Hamiltonian and use its lowest eigenvalue to obtainNiie
28 - . potential according to the definitiq26). TheS=1,1=0 and
S=0,1=1 cases are illustrated in Figs. 4 and 5, respectively,
for a comparison with the cluster model basis. As shown in
26 1 Ref. [6] at Z=0 the repulsion reduces by about 22% and
25% in the®S; and 'S, channels, respectively, when passing

29

27

KE (GeV)

25 F

from the cluster model basis to the molecular orbital basis.

24| . From Figs. 4 and 5 one can see that the molecular orbital
basis has an important effect up to abdat 1.5 fm, giving a
=r T p2a] lower potential at small values &. ForZ~1 fm it gives a
22 - : - L - potential larger by a few tens of MeV than the cluster model
2 (fm) potential. However, there is no attraction at all in either case.

Actually, by construction, the molecular orbital basis is
richer atZ=0 [15] than the cluster model basis. For this
reason, at small it leads to a lower potential than the cluster
model basis. Within a truncated space this property may not
hold beyond some value &. However, by an increase of

the Hilbert space one can possibly bring the molecular po-
tential lower again. In fact we chose the most important con-

The expectation values of the confinement potential infigurations from symmetry argumerits3] based on Casimir
crease withZ becoming linear beyond>1.5fm except for  operator eigenvalues. These arguments hold if the interaction
the state|3342]o[51]rs) which gives a result very much is the same for all quarks in the coordinate space. This is
similar to the cluster model staf&3L3[42]o[51]cs) drawn  certainly a better approximation f@=0 than for larger val-
in Fig. 2. Such a behavior can be understood through thees ofZ. So it means that other configurations, which have
details given in the Appendix. As a result of the similarity to been neglected, may play a role at>0.4fm. Then, if
the cluster model results, we do not show hévg,» ex-  added, they could possibly lower the molecular basis result.
plicitly for the molecular orbital basis. As defined in Sec. Il the quanti®¥ is the separation dis-

The expectation value of the chiral interaction either detance between two@clusters. It represents the Jacobi rela-
creases or increases withdepending on the state. In Fig. 7 tive coordinate between the two nucleons only for large
we illustrate the case of tHd2"[42]o[51]rs) state both for We view it as a generator coordinate and the potential we
S=1,1=0 andS=0, | =1 sectors. This state is the dominant obtain represents the diagonal kernel appearing in the reso-
component ofyyyy at Z=0 with a probability of 87% for nating group or the generator coordinate method. The com-
SI=(10) and 93% foiS1=(01) [6]. With increasingZ these  parison given above should then be considered in the context
probabilities decrease and tend to zercZat. In fact in  of the generator coordinate method which will be developed
the molecular orbital basis the asymptotic form afy is  in further studies and will lead to nonlocal potentials. How-

ever, the adiabatic potentials, calculated in the two bases, can

04 . . . . be compared with each other in an independent and different
way. One can introduce the quadrupole moment of the six-
quark system,

FIG. 6. The molecular orbital basis. The expectation value of
the kinetic energKE) for the |[6]o[33]rs) (solid curve and
|42*[42]o[51]rs) (dashed curvestates[see Egs.(11) and (17),
respectively. The latter is the most dominant state Z£0 (see
text).

6

Q20= 2, reY ool f1), (30

=1

and treat the square root of its expectation value

Chiral Interaction (GeV)

(Q)=(¥nnld20l ¥nn) (31

| as a collective coordinate describing the separation between
———————— the two nucleons. Obviously(Q)—Z for largeZ.

22y o5 ] s 2 25 In Fig. 8 we plot\(Q) as a function oZ. The results are
Z(m) practically identical forlS=(01) andIS=(10). Note that

FIG. 7. The molecular orbital basis. The expectation value on{Q) is normalized such as to be identicalZoat largeZ.
the chiral interaction, Eqg22)—(25), for |427[42]o[51]r) which ~ One can see that the cluster model basis giveR)=0 at
is the most dominant state Zt=0. The dashed curve corresponds Z= 0, consistent with the spherical symmetry of the system,
to S=1,1=0 and the solid curve t6=0, | =1. while the molecular basis result ig(Q)=0.573fm atZ
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25 F

Sqril (fm)
&
Adiabatic potential (GeV)

05 |

0 05 1 15 2 2.5
Z (fm) Sqri{Q] (fm)

FIG. 8. \(Q) for IS=(01) or(10) as a function o with (Q), FIG. 10. Same as Fig. 9 but f@=0, | =1.
defined by Eq.(31) and normalized as indicated in the text. The
solid line corresponds to the cluster model basis and the dashetie net contribution of this part of the quark-quark interac-
line, to the molecular orbital basis. tion we repeated the calculations in the molecular orbital

basis by completely removing the first term—the Yukawa

=0, which suggests that the system acquires a small defopotential part—in Eq(23). The result is shown in Fig. 11 for
mation. This also means that its rms radius is larger in thes|=(10). One can see that beyo#d-1.3 fm the contribu-
molecular basis. tion of the Yukawa potential tail is very small, of the order of

In Figs. 9 and 10 we plot the adiabatic potentials as a—2 MeV. At small values of the Yukawa part of Eq(23)
function of \(Q) instead ofZ, for IS=(01) and(10), re-  contributes to increase the adiabatic potential because it di-
spectively. As\/@vﬁo at anyZ in the molecular orbital minishes the attraction in the two-body matrix elements.
basis, the corresponding potential is shifted to the right and The missing medium- and long-range attraction can in
appears above the cluster model potential at finite values girinciple be simulated in a simple phenomenological way.
J(Q) but tends asymptotically to the same value. The comFor example, in Ref.1] this has been achieved at the baryon
parison made in Figs. 9 and 10 is meaningful in the contextevel. Here we adopt a more consistent procedure assuming
of a Schralinger-type equation where a local potential ap-that besides the pseudoscalar meson exchange interaction of
pears in conjunction with an effective mass depending or$ec. Il there exists an additional scalarmeson exchange
V(Q) also. Such an effective mass can be obtained througtiteraction between quarks. This is in the spirit of the spon-

the resonating group method, for example. taneous chiral symmetry breaking mechanism on which the
GBE model is based. Themeson is the chiral partner of the
V. MIDDLE RANGE ATTRACTION pion and it should be considered explicitly.

Actually once the one-pion exchange interaction between
In principle we expected some attraction at lafgdue to  quarks is admitted, one can inquire about the role of at least
the presence of the Yukawa potential tail in E2@3). To see
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055 I 05 |

045 |-

04 1 1 1 1
0 0.5 1 1.8 2 25

. . . .
0 0.5 1 15 2 25 2 (fm)
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FIG. 11. The adiabatic potential in the molecular orbital basis

FIG. 9. The adiabatic potential f@=1, =0 as a function of for SI=(10). The solid curve is the same as in Fig. 6. The dashed

\/@. The solid line is the cluster model result and the dashed linecurve is the result obtained by removing the Yukawa part of the
the molecular orbital basis result. quark-quark interactio23).
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One can see tha¥, produces indeed an attractive pocket,
L | deeper forSI=(10) than for(01), as it should be for tha&lN
problem. The depth of the attraction depends essentially on
0 - 1 a'. The precise values of the parameters entering(B®).
should be determined in further RGM calculations. As men-
N 1 tioned above the Born-Oppenheimer potential is in fact the
ol | diagonal RGM kernel. It is interesting that an attractive
pocket is seen in this kernel whensameson exchange in-
06 - 1 teraction is combined with pseudoscalar meson exchange
and OGE interactionghybrid mode], the whole being fitted
o5 T to theNN problem[25].

0.4

0.8 |

Adiabatic potential (GeV)

VI. SUMMARY

0.3 1 1 1 L

2 (fm) ' We have calculated thidN potential in the adiabatic ap-

] ) o . _proximation as a function oZ, the separation distance be-

FIG. 12. The adiabatic potential in the molecular _orbltal basisyyeen the centers of the twalusters. We used a constitu-
for S1=(10) (full curve) and SI=(01) (dashed curvewith pseu-  ont quark model where quarks interact via pseudoscalar
doscalart- scalar quark-quark interaction. meson exchange. The orbital part of the six-quark states was

) ) constructed either from cluster model or molecular orbital
two-pion exchanges. Recently it was fouid] that the two-  single particle states. The latter are more realistic, having the

pion exchange also plays a significant role in the quark-quarkroper axial and reflectional symmetries. Also technically
interaction. It enhances the effect of the |sosp|n-dependeqhey are more convenient. We explicitly showed that they are
spin-spin component of the one-pion exchange interactiofmportant at small values a. In particular we found that
and cancels out its tensor component. Apart from that ithe NN potential obtained in the molecular orbital basis has a
gives rise to a spin-independent central component, whicess repulsive core than the one obtained in the cluster model
averaged over the isospin wave function of the nucleon propis. However, none of the bases leads to an attractive
duces an attractive spin-independent interaction. These fin%‘ocket. We have simulated this attraction by introducing a
ings also support the introduction of a scalarmeson ex- ;. meson exchange interaction between quarks.
change interaction between quarks as an approximate Tq have a better understanding of the two bases we have
description of the two-pion exchange loops. _ also calculated the quadrupole moment of tiesgstem as a
For consistency with the parametrizatify we consider  nction of Z. The results show that in the molecular orbital
here a scalar quark-quark interaction of the form basis the system acquires some small deformation even at
Z=0. When the potential is plotted as a function of the quad-
9> ,e ke 4 rupole moment it looks more repulsive in the molecular or-
V,(r)= a7 1ommm O(r —r{)ps P —a' bital than in the cluster model basis. In this light one could
v Vm naively expect that the molecular basis will lead to scattering
phase shifts having a more repulsive behavior than the other.
' (32 The present calculations give us an idea about the size and
shape of the hard core produced by the GBE interaction.
Except for small values a the two bases give rather similar

whereu,=675MeV, andr}, a’ and the coupling constant potentials. TakingZ as a generator coordinate the following

gf,/47r are arbitrary parameters. In order to be effective attep s to perform a dynamical study based on the resonating

medium-range separation between nucleons we expect thig OUP method which will provide phase shifts to be com-

. . , , ared to the experiment. The present results constitute an
interaction to have j# o and a’ # a. I\I_ote th'at the factor i?]termediate steg towards such% study.
1/mym; has only been introduced for dimensional reasons.

We first looked at the baryon spectrum with the same
variational parameters as before. The only modification is a ACKNOWLEDGMENTS
shift of the whole spectrum which would correspond to tak-
ing Vo=~ —60MeV in Eq.(21).

For the & system we performed calculations in the mo-
lecular basis, which is more appropriate than the cluster
model basis. We found that the resulting adiabatic potential APPENDIX
is practically insensitive to changes jn, andry but very
sensitive toa’. In Fig. 12 we show results for

xexgd —a'(r—rg)?]

We are very grateful to L. Wilets, K. Shimizu, and L.
Glozman for useful comments.

In this appendix we study the behavior of the confinement
potential in the molecular orbital basis at large separation
distanceZ between the centers of twog3clusters. As an
ry=0.86 fm, a'=1.47 fmt, g%/4mw=g3ldm. example we consider the stq#2"[42]o[33]s). Through

(33)  the fractional parentage techniqli4,22 the six-body ma-

055207-8



NN INTERACTION IN A GOLDSTONE BOSON ... PHYSICAL REVIEW C 60 055207

trix elements can be reduced to the calculation of two-bodyvherea and b are some constants. This brings us to the
matrix elements. Using this technique and integrating in théollowing asymptotic behavior of the matrix elements on the
color space one obtains right-hand side of Eq(Al):

(42" 14210331k g Veorl 427 [42]0[33]r ) (g0|V|go)—(a+b2)/2,

1 (mw|V|7mm)y—(a+b2)/2,
= —[ 2 ww|V|m7)+ 76 on|V|ow)+ 26{ow|V| 7o)
40 (om|V|om)—(a+b2)/2,

—58 m7|V|oo)+22oa|V|oo)], (A1) (om|V|mo)—(a—b2)/2,

where the right-h{:\nd side contains two-body orbital matrix (malV]|oo)—(a—b2)/2, (A%)
elements. According to Eq8) for Z—«~ one has

from which it follows that

1 1
—(11a+19%2)/10; (A5)

Replacing these asymptotic forms in the above equation one ) ) _ )
obtains matrix elements containing the sta@s and|L).  I-€- this matrix element grows linearly with at largeZ. In
Most of these matrix elements vanish asymptotically. The? Similar manner one can show that with the confinement
only surviving ones are matrix element of the stati83 42]o[51]s) the coefficient

of the term linear inZ cancels out so that in this case one

(RRVIRR—a, (RL|V|RL)—bZ, (A3)  obtains a plateau as in Fig. 2.
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