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Phase diagram and bulk thermodynamical quantities in the Nambu–Jona-Lasinio model
at finite temperature and density

T. M. Schwarz, S. P. Klevansky, and G. Papp*
Institut für Theoretische Physik, Universita¨t Heidelberg, Philosophenweg 19, D-69120, Heidelberg, Germany

~Received 11 June 1999; published 1 October 1999!

We reexamine the recent instanton motivated studies of Alford, Rajagopal, and Wilczek, and Berges and
Rajagopal in the framework of the standard SU~2! Nambu–Jona-Lasinio~NJL! model. The chiral phase
diagram is calculated in the temperature-density plane, and the pressure is evaluated as the function of the
quark density. Obtaining simple approximate relations describing the T-m andT-pF phase transition lines, we
find that the results of the instanton based model and that of the NJL model are identical. The diquark transition
line is also given.@S0556-2813~99!06210-X#

PACS number~s!: 11.30.Rd, 12.38.Mh, 11.10.Wx
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I. INTRODUCTION

Recent studies by several authors using an effective f
fermionic interaction between quarks@1–3# or direct instan-
ton approach@4# have rekindled interest in the two flavo
QCD phase transitions. In particular, Alford, Rajagopal, a
Wilczek @1# have studied the pressure density and gap
rameter using a fermionic Lagrangian with an instanton m
tivated four-point interaction. At zero temperature, these
thors found negative pressure for a certain range of the Fe
momentumpF and showed the solutions of the gap equat
as a function ofpF . Berges and Rajagopal@2# extended this
work and have calculated the phase diagram of a stron
interacting matter as a function of temperature and bar
number density in the same model.

The question that we raise and examine in this pape
whether or not these results are fundamentally different fr
those obtained via the standard well-known Nambu–Jo
Lasinio ~NJL! model @5–10#, at least with regard to chira
symmetry breaking. Quantities such as the gap param
pressure density, and other thermodynamical quantities h
been extensively studied in this model over the last dec
@6,8,11,12#, and even to a level of sophistication that go
beyond the standard mean field treatments@11,12#. However,
the results have usually been presented as a function o
chemical potential, and not as of the Fermi momentumpF or
density, as the authors of@1,2# have done, and hence th
connection between their results and those of the NJL mo
are not obvious. Thus, in order to make a systematic c
parison, we have to reevaluate the gap, pressure, and p
diagram in these variables. In Sec. II we derive a sim
analytical approximate expression for the phase bound
that is independent of the parameters of the NJL model
Sec. III, we examine the pressure as a function of the den
and calculate the complete chiral phase diagram numeric
from Maxwell constructions. We compare our results w
that of Ref.@2#. In Sec. IV, we write down the form of the
gap equation for a superconducting diquark transition,
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thus the line of points in theT-m plane. This is evaluated
numerically. We summarize and conclude in Sec. V.

II. PHASE BOUNDARY CURVE—AN ANALYTIC
EXPRESSION

We commence by deriving an approximate analytic e
pression for the phase boundary curve. Our starting poin
the gap equation for the dynamically generatedup and
down quark massm that is derived from the SU~2! chirally
symmetric Lagrangian

LNJL5c̄ id”c1G@~ c̄c!21~ c̄ ig5tWc!2#, ~1!

with G a dimensionful coupling andc quark spinors foru
and d quarks. At nonzero temperature and chemical pot
tial, the mean-field self-energy or gap equation reads@6#

S* 5m54GNcNfmE d3p

~2p!3

1

Ep
@12 f 1~pW ,m!2 f 2~pW ,m!#,

~2!

with the Fermi distribution functionsf p
6[1/@eb(Ep6m)11#

5 f 6(pW ,m). The gap equation is easily seen to minimize t
thermodynamical potential@6,15#

V~m!5
m2

4G
2gE d3p

~2p!3
Ep2gTE d3p

~2p!3

3 ln@11e2b(Ep1m)#@11e2b(Ep2m)#, ~3!

where Ep
25p21m2, b51/T and g52NcNf is the degen-

eracy factor. The condensate is related tom via m

522G^c̄c&. The three momentum integrals are understo
to be regulated by a cutoffL, and a standard set of param
eters;L50.65 GeV andG55.01 GeV22 are used to fix the
values of f p593 MeV and the condensate density per fl
vor, ^ūu&5^d̄d&5(2250 MeV)3.

Let us examine first theT50 limit of Eq. ~2!. The gap
equation for the nontrivial solution is
,
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p2

2GNcNf
5E

pF

L

dp
p2

Ap21m2
~4!

in terms of the Fermi momentumpF . pF is a decreasing
function of the constituent mass taking its maximum va
pc at the chiral phase transitionm→0:1

pc5LA12
p2

GL2NcNf

. ~5!

Using the numerical values ofG and L given above and
fixing Nc53, Nf52 leads to the numerical valuepc
50.307 GeV. We use this relation to eliminateL2 in favor
of pc

2 . Now, in order to determine the phase transition lin
we start with the gap equation~2! and dividemÞ0 out. The
critical values of the temperature and chemical potential
lie on the phase transition boundary are determined thro
the vanishing chiral condensate and hencem→0. Perform-
ing the usual substitutionu5b(p6m) as appropriate, and
evaluating the integral on the right hand side, one finds

m25pc
22

p2T2

3
. ~6!

This equation defines the chiral phase transition curve in
T-m plane, and in this form contains no explicit model d
pendence onG andL. We would, however, prefer to displa
the phase transition line as a function of temperature
quark density. To do so, we express the density through
Fermi momentum,pF at zero temperature,

n5
2NcNf

6p2
pF

3. ~7!

At finite temperature, the quark densityn is given as

n52NcNfE d3p

~2p!3
@ f p

22 f p
1#. ~8!

The cube root of the density definesn3 asn1/35cn3, where
c52/p2, andn3 is evaluated to be

n35F3 sinhS m

T D •E dp
p2

cosh~m/T!1cosh~Ep /T!G
1/3

.

~9!

Using this transformation, we can display all quantities
functions ofn3 ~or density! and not of the chemical potentia
m any more. One can take a set ofT andm and calculate, for
example,m(T,m) andn3(T,m). The result obtained can b
seen in Fig. 1 where for fixedT, T50 the massm is plotted

1Here we assume a second order transition where the smooth
ishing of the order parameter signals the transition. However,
small temperatures the phase transition is of first order with a ju
in the order parameter. Nevertheless, the approximation made
qualitatively gives the proper answer~cf. Fig. 2!.
05520
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as a function ofpF ~solid line! and of m ~dashed line! for
comparison. We note that the behavior found is qualitativ
the same as that in@1#. At the chiral phase transition poin
m→0 andn3→n3,c with

n3,c
3 5m~m21p2T2!. ~10!

This expression can be used to eliminatem from Eq.~6! and
the chiral phase transition curve in theT-n3 plane is deter-
mined from the simple analytical expression

4p6

27
T62p2pc

4T21~n3,c
6 2pc

6!50. ~11!

The solution of this third order equation inT2, defining
the critical temperatureTc at which the phase transition oc
curs for a given ratior5n3,c/pc can be written as

Tc~r!5
A3pc

p
AcosS 1

3
kr D<

A3

p
pc , ~12!

with

k5H tan21A@r621#2221 r<1,

p1tan21A@r221#2221 1<r<21/6 . ~13!

The trivial solution to the gap equation is the only solution
the temperature exceeds the maximum value of the crit
temperature on the transition curve,

Tm5
A3pc

p
.0.169 GeV, ~14!

or if n3,c /pc>21/6. One can now recast the solution forn3,c
in terms ofTm yielding a parameter-free normalized relatio

S n3,c

pc
D 3

5F2XS T

Tm
D 2

11CGA12S T

Tm
D 2

. ~15!

an-
r
p

ere

FIG. 1. The gap parameterm shown both as a function ofm
~solid curve! andpF ~dotted line! at T50.
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these curves lies in the observation that the mixed phase
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We illustrate this relation in a more usual way in Fig.
plotting the critical value of the temperature as a function
the quark density divided by normal nuclear matter den
n050.17 fm23.

III. PHASE TRANSITION CURVE VIA MAXWELL
CONSTRUCTION

We return now to the thermodynamical quantities. Fro
Eq. ~3! for V(m), it follows that the pressure density is give
as

p52V5
g

bE d3p

~2p!3
ln@~11e2b(Ep1m)!~11e2b(Ep2m)!#

1gE d3p

~2p!3
Ep2

m2

4G
. ~16!

The energy density is found to be

e5gE d3p

~2p!3
Ep@ f p

21 f p
1#2gE d3p

~2p!3
Ep1

m2

4G
.

~17!

In the limit T→0,m→0, one has

FIG. 2. The phase diagram calculated from the approxim
analytical form~11! ~dashed line! and as determined numericall
~solid lines! as a function of the quark densityn, scaled by normal
nuclear matter densityn050.17 fm23.
05520
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evac5eT→0,m→05
m* 2

4G
2

NcNf

p2 E
0

L

dpp2Ap21m* 2,

~18!

wherem* 5m(T50,m50), while an analogous calculatio
for the pressure densityp at T→0, m→0 yields

pvac52evac. ~19!

pvac and evac are independent of temperature and chemi
potential and their value is~up to the sign! the same. For our
choice of parameters,evac52(407 MeV)4. Measuring the
pressure and energy densities relative to their vacuum val
we have

ephys5e2evac, ~20!

pphys5p1evac. ~21!

In Fig. 3, we plot the pressure density as a function ofn3 for
a range of temperatures. Note that atT50, p becomesnega-
tive and displays a cusplike structure. This is brought ab
by the fact that the two solutions for the gap equation en
into the pressure density on the different arms of the pr
sure: the rising curve is brought about by them50 solution,
while the solution that goes down has a value ofmÞ0. Note
that this situation is similar to that observed in Ref.@1#.

The phase transition curve can now be calculated usin
more standard but numerical treatment and compared to
approximate~second order! curve shown as the dashed lin
in Fig. 2. The difference between these two curves lies in
fact that the analytic one is calculated withL→`, while the
numerical curve hasL finite. It is worth noting that the trun-
cation of the NJL model to zero modes@13# shows a similar
behavior to the one observed in the full model, howev
lacking the unstable backbending of the phase curve at h
temperatures. Plotting the pressure instead as a functio
volume allows one to perform Maxwell constructions a
obtain the full information of the phase diagram, includin
the metastable region. The results of this calculation
shown in Fig. 4 as a function ofn1/3 as the solid curves. Also
shown~dashed curves! are the calculations of Ref.@2#. We
note that the phase transition curve for the chiral transit

te
FIG. 3. Pressure shown as a function ofn3

5(2/p2)n ~left side! and as a function of the vol-
ume, normalized by a characteristic volume.
5-3



e
in
l o

ig.
m
ng

a

n
ge
g

tte
ity
s

ca

-

ut-
ed

t is

he
n is
d by

er-

r
the

s-
nly

we
of

i-

T. M. SCHWARZ, S. P. KLEVANSKY, AND G. PAPP PHYSICAL REVIEW C60 055205
given by Ref. @2# already starts atn50, similarly to the
truncated NJL calculation@13#. The equivalence of thes
models is perhaps not simply apparent when one exam
the Lagrangians. However, the thermodynamical potentia
Ref. @2# is precisely that of Eq.~3! in the absence of the
diquark condensate. Thus the differences observed in F
can only be attributed to the use of slightly different para
eters; in addition the different method of implementi
regularization—in the NJL model here, a ‘‘hard’’ cutoffL is
employed, and in the approximate expression for the ph
curve, is also taken asL→`, while the authors of@1,2# use
a soft form factorF(p)5L2/(p21L2) to regulate their mo-
mentum integrals. The physics however cannot and does
depend on this and the qualitative results remain unchan

Limitations and difficulties of this model in describin
thermodynamical quantities are well known@12,14#. We il-
lustrate one problem in showing the energy per quark plo
at T50 as a function of the density in Fig. 5. This quant
does not posses a minimum at normal nuclear matter den
as expected, in apposition to recent linear sigma model
culations@16#.

IV. DIQUARK CONDENSATE TRANSITION LINE

The thermodynamic potential for three colors2 V(m)
given in Eq.~3! corresponds precisely to theD50 limit of
the functionV(m,D) @2#:

V~m,D!5
m2

4G
1

D2

4G1
22NfE d3p

~2p!3
$~Nc22!

3@Ep1T ln~11e2b(Ep2m)!~11e2b(Ep1m)!#

1Aj1
2 1D21sAj2

2 1D212T

3 ln~11e2bAj1
2

1D2
!

3~11e2bsAj2
2

1D2
!%, ~22!

2For two colors a massless pionic diquark may form.

FIG. 4. Direct comparison of the NJL phase diagram~solid
lines! shown as a function ofn1/3, with that of @2# ~dashed lines!.
The lines to the right ofn1/3;0.19 are the superconducting trans
tion lines.
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wherej65Ep6m, andD is the color superconducting con
densate in the diquark channel.s is a sign function, ands
561 for Ep.m or Ep,m. Here the expression from@2# has
been modified to remove the form factor—instead a 3D c
off upW u,L as is usual in the NJL model and which was us
in the previous section is to be understood.G1 is a new
coupling strength mediating a four-fermion interaction tha
attractive in the diquark channel. The form forV(m)
5V(m,0) from Eq.~3! thus indicates that the models are t
same, and the same gap equation for the chiral transitio
retained. For the superconducting sector, the gap obtaine
differentiatingV(0,D) with respect toD is

1

2G1
52NFE d3p

~2p!3 H 1

Aj1
2 1D2

tanh
b

2
Aj1

2 1D2

1
1

Aj2
2 1D2

tanh
b

2
Aj2

2 1D2J . ~23!

This expression is a relativistic generalization of the sup
conducting gap equation for electron pairs@17# in which the
quasiparticle energiesAj2

2 1D2 andAj1
2 1D2 relative to the

Fermi surface are introduced. Note that atT50, one recov-
ers the result of@1# for mÞ0, assuming that the form facto
of these authors is set to one. The phase transition line in
T-m or T-n3 planes can now be obtained quite simply. A
suming that the superconducting phase transition can o
occur in the region where chiral symmetry is restored,
may setE5p. Furthermore we assume the transition to be
second order, driven by the conditionD→0. Thus theT-m
critical curve satisfies

p2

2NfG1
5E

0

L

dpp2
1

p1m
tanh

1

2
b~p1m!

1E
m

L

dpp2
1

p2m
tanh

1

2
b~p2m!

1E
0

m

dpp2
1

m2p
tanh

1

2
b~m2p!, ~24!

which, with obvious changes of variables, reduces to

FIG. 5. The energy per quark shown as a function ofn/n0. The
minimum occurs at approximatelyn.5n0 and not atn53n0.
5-4
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p2

2NfG1
5E

0

L1m

djS j22m1
m2

j D tanh
1

2
bj

1E
0

L2m

djS j12m1
m2

j D tanh
1

2
bj. ~25!

Unlike the case for electron pairing, in whichm@vD , with
vD the Debye frequency, we cannot regard the logarithm
term as being leading, and it is not possible to obtain
simple analytic expression for the right-hand side of E
~25!. We thus solve Eq.~25! numerically for the critical line.
Clearly this depends on the choice of the strengthG1 and is
a sensitive function thereof. Arbitrarily demanding thatTc
540 MeV at m50.4 GeV close to the values of Ref.@2#
sets G153.10861 GeV22, or G1L251.31. The resulting
curve is indicated by the dotted line in Fig. 4. As can
seen, the qualitative behavior of the model of Ref.@2# is
confirmed. We found a somewhat lower gap,D being
;35 MeV at the chiral transition point and zero temperat
increasing up to;95 MeV at andm50.53 GeV and zero
temperature. The general behavior of the gap parameter
function of the chemical potential and temperature is giv
in Fig. 6.

Finally, we comment that although the diquark pha
transition line was investigated here under the expecta
that chiral symmetry is restored, this is not necessarily
case: in principle, the diquark phase transition line can
tend into the region in which chiral symmetry is broken, i.
where^c̄c&Þ0 or mÞ0. In practice, this turns out to be
function of the parameters chosen. If the diquark phase t
sition line enters into the region of chiral symmetry breaki
at a temperature larger than the tricritical temperature,
dependence ofm(T,m) that enters into Eq.~23! is continu-
ous, and a solution to this equation can be found. For
choice of G1, however, the diquark transition line woul
enter into the region where a first order phase transition ta
place. Thusm(T,m) is discontinuous, and no physically a
cessible solution to this equation can be found. The situa

FIG. 6. The diquark gap parameterD shown as a function ofm
andT. The contour values are given in MeV.
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is illustrated in Fig. 7, in which Eq.~23! is inverted and
solved forG1 and the functional dependence, as well as
numerical parameter value 3.1 GeV22, are plotted as a func
tion of temperature for several values ofm. One sees from
this figure that the lineG153.1 GeV22 cannot intersect the
curve m50.3 GeV, for example, which lies in the broke
phase, and therefore there is no physically attainable s
tion. Note however that by adjusting the value of the co
stantG1 to a somewhat smaller value could admit a soluti
within this region.

V. CONCLUSIONS

In analyzing the chiral phase transition in the NJL mod
at finite temperature and density, we find the same beha
for the chiral and diquark phases as that reported in R
@1,2#, which use an instanton motivated interaction that
also four point in nature. That this must occur can be s
directly from the explicit form of the thermodynamical po
tential that is well known in our case@6,15#, and which is
obtained from@2# on setting the form factor to one and in
troducing a 3D cutoffL. In addition, we are easily able t
give an approximate analytic form for the chiral phase cu
in theT-m andT-n3 planes that is independent of the mod
parameters. We have examined the extended form of
thermodynamic potential that makes provisions for a diqu
condensate and obtained the appropriate critical line in
NJL model. Our qualitative results conform with those
@2#. In addition, we find evidence for the appearance o
diquark condensate also within the region where chiral sy
metry is not restored, but this is strongly parameter dep
dent.
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FIG. 7. The functional dependence ofG1 as calculated from Eq.
~23! is plotted as a function of the temperature for different valu
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