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Phase diagram and bulk thermodynamical quantities in the NambuJona-Lasinio model
at finite temperature and density
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We reexamine the recent instanton motivated studies of Alford, Rajagopal, and Wilczek, and Berges and
Rajagopal in the framework of the standard (BlUNambu—Jona-LasinidNJL) model. The chiral phase
diagram is calculated in the temperature-density plane, and the pressure is evaluated as the function of the
quark density. Obtaining simple approximate relations describing theafid T-pr phase transition lines, we
find that the results of the instanton based model and that of the NJL model are identical. The diquark transition
line is also given[S0556-281®9)06210-X]

PACS numbsefs): 11.30.Rd, 12.38.Mh, 11.10.Wx

. INTRODUCTION thus the line of points in th@-x plane. This is evaluated
numerically. We summarize and conclude in Sec. V.
Recent studies by several authors using an effective four-

fermionic interaction between quarks—3] or direct instan-
ton approacH4] have rekindled interest in the two flavor
QCD phase transitions. In particular, Alford, Rajagopal, and
Wilczek [1] have studied the pressure density and gap pa- We commence by deriving an approximate analytic ex-
rameter using a fermionic Lagrangian with an instanton moJpression for the phase boundary curve. Our starting point is
tivated four-point interaction. At zero temperature, these authe gap equation for the dynamically generated and
thors found negative pressure for a certain range of the Fern$iown quark massn that is derived from the S(@) chirally
momentumpg and showed the solutions of the gap equationSyMmetric Lagrangian

as a function ofpr. Berges and RajagopEt] extended this

II. PHASE BOUNDARY CURVE—AN ANALYTIC
EXPRESSION

work and have calculated the phase diagram of a strongly Lygi= i B+ GL(gh) %+ (giysm) 2], (1)
interacting matter as a function of temperature and baryon
number density in the same model. with G a dimensionful coupling ané quark spinors fou

The question that we raise and examine in this paper igand d quarks. At nonzero temperature and chemical poten-
whether or not these results are fundamentally different frontial, the mean-field self-energy or gap equation red@ds
those obtained via the standard well-known Nambu-Jona-

Lasinio (NJL) model[5-10], at least with regard to chiral d®p 1 _ .
symmetry breaking. Quantities such as the gap paramete¥” =m=4G NcmeJ 3 E—[l—f+(p,/vt)—f7(p,,u)],
pressure density, and other thermodynamical quantities have ™) Ep

2

been extensively studied in this model over the last decade
[6,8,11,12, and even to a level of sophistication that goes . o R +
beyond the standard mean field treatméhis12. However, W'th+ Uje Fermi dlstrlbutlon. fur.1ct|on9‘.,5El[eﬁ(Epf.#).Jr.l]

the results have usually been presented as a function of thef™ (p.x). The gap equation is easily seen to minimize the
chemical potential, and not as of the Fermi momenpyor  thermodynamical potentigb,15]

density, as the authors ¢1,2] have done, and hence the

connection between their results and those of the NJL model m?2 d3p d3p
are not obvious. Thus, in order to make a systematic com- Q(m)= = 7[ —5E7 f—3
. 4G (2m) (2m)
parison, we have to reevaluate the gap, pressure, and phase
diagram in these variables. In Sec. Il we derive a simple XIn[1+e AE+m[1+e BE~mM] (3

analytical approximate expression for the phase boundary
that is mdepende_nt of the parameters of th_e NJL model. !r\‘/vhere E2=p2+m?, B=1T and y=2N.N; is the degen-
Sec. lll, we examine the pressure as a function of the denSItgrac fgctor The condensate is related o via m
and calculate the complete chiral phase diagram numerically y tactor. ]
from Maxwell constructions. We compare our results with = — 2G(#). The three momentum integrals are understood
that of Ref.[2]. In Sec. IV, we write down the form of the t0 be regulated by a cutoff, and a standard set of param-
gap equation for a superconducting diquark transition, an@ters;A=0.65 GeV and5=5.01 GeV ? are used to fix the
values off .=93 MeV and the condensate density per fla-
vor, (uu)y={dd)=(—250 MeV)®.
*On leave from HAS Research Group for Theoretical Physics, Let us examine first th&=0 limit of Eq. (2). The gap
Eotvos University, Budapest, Hungary. equation for the nontrivial solution is
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2 f/\ q p2 (4) 04 =0
2GN.N: PT=——
2GNN;¢ P VpPTtm o  (dashed)
in terms of the Fermi momentumpg. pg is a decreasing
function of the constituent mass taking its maximum value = '
p. at the chiral phase transition—0:! So2f Pr. (solid)
g
A\/1 772 (5) 0.1
p = _—_—, . I
¢ GAZN N;
Using the numerical values d& and A given above and 0 . . .
fixing N.=3, N;{=2 leads to the numerical valug, 0 0.1 02 0.3 04
=0.307 GeV. We use this relation to eliminaté& in favor [GeV]

of p2. Now, in order to determine the phase transition line, FIG. 1. The gap parameten shown both as a function of
we start with the gap equatig@) and dividem# 0 out. The (tsolid curve and pe. (dotted ling at T=0.

critical values of the temperature and chemical potential thal

lie on the phase transition boundary are determined through

the vanishing chiral condensate and hence:0. Perform- o> 2 function ofpg (solid line) and of u (dashed ling for
ing the usual substitution= B(p= x) as appro.priate and comparison. We note that the behavior found is qualitatively

evaluating the integral on the right hand side, one finds the same as that 'ﬁ]‘].' At the chiral phase transition point,
m—0 andnz—nz. with
77_2-|-2
K=Pem T3 ©) n3e=p(u?+ ). (10

This equation defines the chiral phase transition curve in th&his expression can be used to eliminatérom Eq.(6) and
T-n plane, and in this form contains no explicit model de-the chiral phase transition curve in tiien; plane is deter-
pendence o andA. We would, however, prefer to display mined from the simple analytical expression

the phase transition line as a function of temperature and

quark density. To do so, we express the density through the 478

Fermi momentumpg at zero temperature, >7 T8~ ?p T2+ (n§ .~ pg) =0. (11)
2NNy . o . -
n= pL. 7) The solution of this third order equation iF¢, defining
6’ the critical temperatur@ . at which the phase transition oc-

- L curs for a given ratip =n3 /p, can be written as
At finite temperature, the quark densityis given as g P= N3l Pe

4 V3p, Cos(l ) V3

n=2NCNfJ$[fp—f;]. (8) Te(p)=— 34P|=<"—Pe (12)

The cube root of the density definas asn¥3=cns, where ~ With

c=2/7?, andn; is evaluated to be
) s tan 1\[p®—1] %-1 p<1,
3sin & .Jdp P K= w+tan’1m 1<p<2l6’
T coshiu/T)+coshE,/T)

The trivial solution to the gap equation is the only solution if
Using this transformation, we can display all quantities aghe temperature exceeds the maximum value of the critical
functions ofn; (or density and not of the chemical potential temperature on the transition curve,
w any more. One can take a setfodndu and calculate, for
example,m(T,x) andnz(T,x). The result obtained can be J3p.
seen in Fig. 1 where for fixed, T=0 the massn s plotted Tm=

(13
n3:

9)

~0.169 GeV, (14

ko

or if ng./p.=25 One can now recast the solution fos,
"Here we assume a second order transition where the smooth vajf terms ofT,, yielding a parameter-free normalized relation:
ishing of the order parameter signals the transition. However, for
small temperatures the phase transition is of first order with a jump Na.\3 2
in the order parameter. Nevertheless, the approximation made here ( 3'C) :[2( + 1)
qualitatively gives the proper answef. Fig. 2.

.
rn i 1‘(T:) - U9
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0.2

m*2  NN;

A
€vac— eTHO,#*}O:E_ 772 J;) dppz\/p +m* ’

(18

0.15 |

wherem* =m(T=0,u=0), while an analogous calculation
for the pressure densifyat T—0, u—0 yields

0.1} tricritical

point ~

T[GeV]

Pvac™ ~ €vac- (19
0.05 |

. metastable Pvac @nd €, are independent of temperature and chemical
tixed Phase/T potential and their value i&ip to the sighthe same. For our

choice of parameterss,,.= — (407 MeV)*. Measuring the

0 2 4 6 8

" pressure and energy densities relative to their vacuum values,
0 we have
FIG. 2. The phase diagram calculated from the approximate .
analytical form(11) (dashed ling and as determined numerically €phys— € €vac (20)
(solid lineg as a function of the quark density scaled by normal
nuclear matter densityo=0.17 fm 3. Pphys= P+ €vac- (21)

In Fig. 3, we plot the pressure density as a functiompfor
range of temperatures. Note thaffat 0, p becomesega-

tive and displays a cusplike structure. This is brought about

3by the fact that the two solutions for the gap equation enter

We illustrate this relation in a more usual way in Fig. 2,
plotting the critical value of the temperature as a function o
the quark density divided by normal nuclear matter densit

ne=0.17 fm 3. : : ;
0 into the pressure density on the different arms of the pres-
sure: the rising curve is brought about by the=0 solution,
IIl. PHASE TRANSITION CURVE VIA MAXWELL while the solution that goes down has a valuersf 0. Note

CONSTRUCTION that this situation is similar to that observed in Réf].

We return now to the thermodynamical quantities. From The phase transition curve can now be calculated using a

Eq. (3) for Q(m), it follows that the pressure density is given MOre standard but numerical treatment and compared to the
a3 (m) P yis9 approximate(second ordgrcurve shown as the dashed line

as in Fig. 2. The difference between these two curves lies in the
y [ d% fact that the analytic one is calculated with—, while the
p=—Q= —j In[(1+e PEpt i)y (1+e AEpr)] numerical curve ha4 finite. It is worth noting that the trun-
Bl (2m)® cation of the NJL model to zero modEk3] shows a similar
4° 2 behavior to the one observed in the full model, however,
N 7j P _M (16  lacking the unstable backbending of the phase curve at high
(2m)3 " 4G temperatures. Plotting the pressure instead as a function of
volume allows one to perform Maxwell constructions and
The energy density is found to be obtain the full information of the phase diagram, including
the metastable region. The results of this calculation are
_ d°p s d3p m? shown in Fig. 4 as a function of'”® as the solid curves. Also
€= Vf (zw)sEp[fp +fp]_7f (2m)° Evt1G- shown (dashed curvésare the calculations of Ref2]. We
(17) note that the phase transition curve for the chiral transition
are qualitatively identical. The main difference between
In the limit T—0,u—0, one has these curves lies in the observation that the mixed phase
0.0003 T
0.0002 F E
—
E 0.0001 F Teo.1 J FIG. 3. Pres_sure shown as a function ref
& — T=0.025 =(2/7=?)n (left side and as a function of the vol-
T=0.025 ; ot
ume, normalized by a characteristic volume.
0 T=\\f
-0.0001 . 1 : 1 . L
0 0.1 0.2 0.3 0.5 1 1.5 2
n;(GeV] VIV shar
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FIG. 4. Direct comparison of the NJL phase diagrésolid FIG. 5. The energy per quark shown as a functiomiof,. The

lines) shown as a function ofi¥3 with that of[2] (dashed lines ~ Minimum occurs at approximatety=5n, and not atn=3nj.
The lines to the right oh¥*~0.19 are the superconducting transi-

tion lines. whereé..=E,* u, andA is the color superconducting con-
densate in the diquark channslis a sign function, and
given by Ref.[2] already starts ah=0, similarly to the —=*1 forEy>u or E;<u. Here the expression frof2] has

truncated NJL calculation13]. The equivalence of these beerl modified to remove the form factor—instead a 3D cut-
models is perhaps not simply apparent when one examinexf |p|<A as is usual in the NJL model and which was used
the Lagrangians. However, the thermodynamical potential oin the previous section is to be understodsh, is a new

Ref. [2] is precisely that of Eq(3) in the absence of the coupling strength mediating a four-fermion interaction that is
diguark condensate. Thus the differences observed in Fig. dttractive in the diquark channel. The form f&(m)

can only be attributed to the use of slightly different param-=(m,0) from Eq.(3) thus indicates that the models are the
eters; in addition the different method of implementing same, and the same gap equation for the chiral transition is
regularization—in the NJL model here, a “hard” cutaffis  retained. For the superconducting sector, the gap obtained by
employed, and in the approximate expression for the phasdifferentiating(2(0,A) with respect taA is

curve, is also taken a& — o, while the authors of1,2] use

a soft form factor (p) = A?/(p?+ A?) to regulate their mo- 1 d%p 1
mentum integrals. The physics however cannot and does not —= Ff { t
depend on this and the qualitative results remain unchanged. 2G, VEL+A?

anhg—\/giwLAz

(2m)®

Limitations and difficulties of this model in describing 1 8
thermodynamical quantities are well knowh2,14]. We il- n [e2 A2
lustrate one problem in showing the energy per quark plotted VE +A2tanh§ §-+AT 23

at T=0 as a function of the density in Fig. 5. This quantity

does not posses a minimum at normal nuclear matter denSIt'Vhis expression is a relativistic generalization of the super-

aslexpec[ted], in apposition to recent linear sigma model Calionducting gap equation for electron pditd] in which the
culations[16].

quasiparticle energiegé? + A2 and /&% + A? relative to the
Fermi surface are introduced. Note thafTat O, one recov-
IV. DIQUARK CONDENSATE TRANSITION LINE ers the result of1] for u# 0, assuming that the form factor
of these authors is set to one. The phase transition line in the
The thermodynamic potential for three cofor®(m)  T-4 or T-ng planes can now be obtained quite simply. As-
given in Eq.(3) corresponds precisely to the=0 limit of  suming that the superconducting phase transition can only

the functionQ)(m,A) [2]: occur in the region where chiral symmetry is restored, we
may setE=p. Furthermore we assume the transition to be of
M A2 &p second order, driven by the conditidn—0. Thus theT-u
__ L= _ critical curve satisfies
Q(m,A) 4G+4G1 ZNJ (277)3{(NC 2)
X[Ep+TIn(1+e A1) (1+e At r)] s :JAdppz - 1,8(p+ )
i NG, o IPP pr AP TR
+VEL+H A%+ sE + A%+ 2T N ) .
X In(1+e BVE +4%) + L dppzp_MtanhZ—B(p—M)
< (1+ —Bs\£% +42 22 Iz 1 1
(1+e & (22 + | dpp —anty Bup), (24

2For two colors a massless pionic diquark may form. which, with obvious changes of variables, reduces to
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FIG. 6. The diquark gap paramet&rshown as a function of
andT. The contour values are given in MeV.

2

a2 _ Atp 1
2NfGl_f0 df( §—2,u,+? tanhzﬂg
+fA7”d vout P ) tannt 25
e er2ur S fanhy pe @)

Unlike the case for electron pairing, in whigte wp, with
wp the Debye frequency, we cannot regard the logarithmi
term as being leading, and it is not possible to obtain

simple analytic expression for the right-hand side of Eq.

(25). We thus solve Eq.25) numerically for the critical line.
Clearly this depends on the choice of the strer@thand is
a sensitive function thereof. Arbitrarily demanding that
=40 MeV atu=0.4 GeV close to the values of RdR]
sets G;=3.10861 GeV?, or G;A?=1.31. The resulting

C
a

PHYSICAL REVIEW C 60 055205
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% G~3.1GeV™
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FIG. 7. The functional dependence®f as calculated from Eq.
(23) is plotted as a function of the temperature for different values
of the chemical potential. The curves, taken from the uppermost
one, correspond to the values@f 0, 0.1, 0.2, 0.25, 0.3, 0.35, and
0.5 GeV.

is illustrated in Fig. 7, in which Eq(23) is inverted and
solved forG, and the functional dependence, as well as the
numerical parameter value 3.1 Ge¥/ are plotted as a func-
tion of temperature for several values @f One sees from
this figure that the lin&,;=3.1 GeV 2 cannot intersect the
curve ©u=0.3 GeV, for example, which lies in the broken
phase, and therefore there is no physically attainable solu-
tion. Note however that by adjusting the value of the con-
StantG, to a somewhat smaller value could admit a solution
within this region.

V. CONCLUSIONS

In analyzing the chiral phase transition in the NJL model
at finite temperature and density, we find the same behavior
for the chiral and diquark phases as that reported in Refs.

curve is indicated by the dotted line in Fig. 4. As can be[1,2], which use an instanton motivated interaction that is

seen, the qualitative behavior of the model of R&f] is
confirmed. We found a somewhat lower gaf, being

also four point in nature. That this must occur can be seen
directly from the explicit form of the thermodynamical po-

~35 MeV at the chiral transition point and zero temperaturetential that is well known in our casé,15], and which is

increasing up to~95 MeV at andu=0.53 GeV and zero

obtained from[2] on setting the form factor to one and in-

temperature. The general behavior of the gap parameter agf@ducing a 3D cutoffA. In addition, we are easily able to
function of the chemical potential and temperature is givergive an approximate analytic form for the chiral phase curve

in Fig. 6.

in the T-x andT-n5 planes that is independent of the model

Finally, we comment that although the diquark phaseparameters. We have examined the extended form of the

transition line was investigated here under the expectatiothermodynamic potential that makes provisions for a diquark
that chiral symmetry is restored, this is not necessarily th¢ondensate and obtained the appropriate critical line in the
case: in principle, the diquark phase transition line can exNJL model. Our qualitative results conform with those of

tend into the region in which chiral symmetry is broken, i.e.,[2]. In addition, we find evidence for the appearance of a
where(%p)aﬁo orm+0. In practice, this turns out to be a diquark condensate also within the region where chiral sym-

function of the parameters chosen. If the diquark phase trad€lry iS not restored, but this is strongly parameter depen-
sition line enters into the region of chiral symmetry breakingdem'
at a temperature larger than the tricritical temperature, the
dependence oin(T,u) that enters into Eq(23) is continu-

ous, and a solution to this equation can be found. For our One of us, G.P., thanks Michael Buballa and Maciej A.
choice of G, however, the diquark transition line would Nowak for the discussions and comments. This work has
enter into the region where a first order phase transition takeseen supported by the German Ministry for Education and
place. Thuan(T, ) is discontinuous, and no physically ac- ResearciBMBF) under Contract No. 06 HD 856, and by
cessible solution to this equation can be found. The situatioGrant No. OTKA-F019689.
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