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Nuclear properties at finite temperature in a two-component statistical model
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An exactly solvable model is developed for multifragmentation which is an extension of an earlier model, to
two-component systems. The model is quite versatile. One can use experimental binding energies and excited
states of clusters as inputs to the model and compute, rather easily, many observables. In this paper we pay
particular attention to specific heaflsence the caloric curvg®f certain target projectile combinations. In
idealized cases without Coulomb interactions, large systems show signatures of a first order phase transition.
The caloric curves change significantly when Coulomb energy is incly@&&556-28189)02411-5

PACS numbds): 25.70.Pq, 24.10.Pa, 64.60.My

[. INTRODUCTION event can be very complicated and a dynamic description of

Several experimentdll—5] and theoretica]6—12] inves-  the process is therefore very difficult. However, the number
tigations into heavy-ion collisions at intermediate to highof possible events is so large that such a dynamic calculation
energies have indicated the presence of a liquid-gas-likgay not be necessary. Instead, a statistical treatment, which
phase transition in nuclear matter. There is however muchill analyze the probability of an event can be employed to
debate[13,14) on whether or not this phase transition disap-9ive g_ood resu_lts. Hence, we will set up a statistical model to
pears when isospin degrees of freedom are included, i.élescribe the situation.
when protons and neutrons are distinguished in the models.
To answer this question satisfactorily one needs to study Il. A GENERIC TWO-COMPONENT MODEL
these two-component models elaborately.

However, this poses difficulties. Two-component models In this s;acnotn, we (_jriscnbeda lvery gbeneraldrr]!odel for tw;)-
are generally computationally much more intensive than One(_:ompotnen ?¥S er|(rys.d |fs rgp ? C??h i. u?i. (;)r a;y sfys em
component models. As a result, it is harder to look at larg onsisting of two Kinds ot objects,of the Tirst kind anch o

e second kind. The objects anch objects are distinguish-

two-component systems. In this paper we study a class
two-component models which overcomes these dil‘ficulties‘:ible from each o_ther but not amongst themselves. The gen-
ral model describes clustering in such a system. There are

The models are computationally tractable so that calculation§ ; ) . ;
on a few hundred particles is possible. The models are als%everal ways in which, clustermg. can occur. Each way is
parametrically flexible, admitting a wide range of behaviorsCallecj a p"’?”'.“on Of thez andq ObjfaCtS th?‘.‘ ”?a"e up the
for certain model-independent features to be studied. waystem. T_h|s IS eq!,l_lva!ent to b|part|te par_t|t|0n|ht33,16:| of
used binding energies from experiments as inputs and this, iwtegers, |e partitioning two mtegersﬁsmultaneously. Let
our opinion, makes the calculations quite realistic and allowgach partition be denoted by a “vectori, where the com-
theoretical predictions to be compared directly with experi-ponents of, n;, are labeled by two free indices, one for the
ments. The attractive feature of the model is that only modestumber of objects of the first kind, and one for the second
computing power is needed and the results obtained are ekind, such thatn=(ng;,N10,No2,N11,N%0. - - . ), Where Nik

act. counts the number of clusters witlobjects of the first kind

When the excitgtio_n energy per nucleon in a collision i§ _Ofand k of the second. Clearly them, has to satisfy the fol-
the order of the binding energy of the nucleon, the stabllltyowing two constraints:

of the nucleus is threatened. More importantly, the shel

structure of the nucleus becomes meaningless and the

nucleus behaves as a continuous mass of nucleons which are 2 jnj=z, D

basically indistinguishable from each other on all counts ex- Ik

cept charge. The nucleus gets hotter during the collision and

expands. This expansion causes internal fractures in the > knje=n. 2)

nucleus and eventually the nucleus splits into various other ik

nuclei [6]. The end of this expansion process is called - ) N

“freeze-out” and at this point, the volume of the nucleus is The probability for a particular partition can be calg:ulated

sufficiently large for nuclear interactions between different2s follows. Letx;, be the one particle partition function of

fragments to become negligible. Hence the nuclear fragmerifie jk cluster.(A jk cluster hag objects of the first kind and

composition does not change after “freeze-out.” k of the second.If we assume that the various clustgrs do
The formation of various nuclear fragments from thenot interact, the statistical weight for a particutarf W(n)]

original composite nucleus is called an event. The occurshould be the product of the one-particle partition functions

rence of a specific event is dictated by the conditions of thef all the jk clusters. But taking into account the fact that all

collision. The nuclear interactions leading to this particularjk clusters are indistinguishable,
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z X ik cluster now refers to a nucleus witlprotons and neutrons.
win) =[] [ J—kl (3)  The physics of the situation therefore, liesip. We will do
1=0 k=0 Hijk: all our calculations in the canonical ensemble. So we assume

that at freeze-out, the nucleons participating in the collision

. ' . H 1 H 1 . oy .
where then;,! term introduces a Gibbs’ reduction in the occupy a volume/,, and are in equilibrium at a temperature

phase space volume amongst flkeclusters. The partition
function for the system can then be given by summing the

. . . : Xi, 1S thus, the partition function of a nucleus witlpro-
weights of all the possible partitions, i.e., Ik P it

tons andk neutrons. Quite generally this is given by,

) =[V(2mmT)¥%(j +K)*¥h3]=, exd — BEK(i)], where V is

Zznzz W(n). (4)  the available volume to the participating nucleons. The first
n part inx; is due to the kinetic energy of the center of mass

of the cluster as obtained from integrating over all the pos-

Therefore, oncey is specified, the partition function can ib| ¢ all the ol Th q i th
be calculated. This is facilitated by the fact that the expecta_—SI e momenta of all the clusters. The second part is the

tion value of the number ok clusters is given by internal partition function of thql_< cIus_ter and it is a sum
over all the energy levels of an isolatgkl cluster.

Xjk 0Zzn The versatility of the model lies in the many choices of

(=7 () xj that can be made through different choicesEgf. Val-
zn 77k ues can be taken from experiment or from suitable param-
X etrization. The limitation of the model is that interaction be-
:Z;ZZ*JV“*“' (6)  tween different clusters cannot be included except through a
zn one body mean field approximation. Therefore we use a

Wigner-Seitz approximation to include the effects of the
long range Coulomb field.
1 Properties of this model where no distinction is made be-
Zin=5 > Xk Zaj k- (7)  tween neutrons and protons were studied in IRET]. Fur-
Ik ther studies can be found in R¢28].

From this, the partition function can be calculated recur-
sively starting withZ,,=1.[A similar expression can also be IV. THERMODYNAMICS

obtained fr?”‘ EQ(.Z)'] ) . From the partition function, the various thermodynamic
The basic physics of the above model is the same as i)5japles of interest, such as the free energy, the specific heat
most statistical models. The assumption is that the phasg onstant volume and the average expectation value of the
space is the sole criterion. Given this premise one can use the, o ¢ the largest nucleus can be determined. The free en-
microcanonical ensembl@9] which conserves baryon num- ooy (F) is of interest as its first derivative will show a break

ber, charge number, and energy exactly or use the modgl the event of a first-order phase transitiéhis calculated
here which conserves baryon number, charge number byt

uses a constant temperature rather than constant energy

thereby allowing a fluctuation in energy. The advantage in

our approach is the ease with which calculations can be done F=- E'”(Zzn), (8)
for realistic cases. Also noteworthy is the fact that all parti-

tions (there are millions of thejnare included: no Monte wherep is the inverse temperature.

Carlo is needed to generate these partitions. The model is The specific heatdy) per nucleon should show a peak

quite different from BUU[1] or QMD [29] types of models. that scales with the size of the system. It is calculated from
The last ones do not assume equilibrium, rather they are

Using Eq.(6) in Eq. (1) gives

transport type models. The difficulty there is that for practi- cy (dU

cal purposes, the calculations are either classical or semiclas- k_B T/ ©)
sical. While there are certainly questions that transport mod- v

els can answer but equilibrium models cannot, forwhereU is the internal energy and is given by
calculations of yields of composites the lack of quantum me-

chanics imposes severe limitations on currently available aln(z,,) T? Xk
transport models. All shell effects are lost and the properties T 7, % szj,nfkﬁ_-r- (10

of composites are far removed from reality. Besides, compu-
tation of yields in these types of models are much moren deriving the above equation we used B).and Eq.(4) of
computer intensive. the previous section. It can be shown that Bd) reduces to
a more transparent form given by
. CHOICE OF  x

The application of the above model to nuclear systems is U :E (N » (11
obvious. The two kinds of objects are protons and neutrons
and a partition is nothing but an event in a collisionjlh  whereU;, is the average energy ofja cluster.
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The average expectation value of the size of the larges —10 .
nucleus (amay/A) is of interest because it can play the role
of the order parameter in our system. For each event pos
sible, the largest nucleus is labelag,, and(a,y is calcu-
lated over all possible configurations as follows. If aqyis < _90 | |
set to zero, by virtue of Ed6), (nj) is also zero. Therefore 2
that jk cluster is no longer allowed. So the probabilityaf J= 39 n= 46
being the largest nucleus is proportional to ¥
N ___z= 54 n= 68
Z,n(X1, X0, oo X2,0, . )= Zn(X1, X0, - o Xa1,0, .., S0l e z= 77 n=100 .
........ z=158 n=236
wherex, is a shorthand notation referring to all tile clus-
ters withj +k=a. The first term will allow clusters of size 1
to a to be the largest clusters and the second, those of size ! ! !
to a— 1. Therefore, the difference gives the weight of distri- 0 5 10 15 20
butions witha as the largest nucleus. Summing these weights T(MeV)

over all the possibla@’s gives the normalization factor.

FIG. 1. Free energy per nucleon in a model with no Coulomb
effects. The binding energy is approximated by the liquid drop for-
mula. Excited states are accounted for by a modified Fermi-gas

Before studying a realistic case by incorporating the vari-expression. There appears to be a break in the first derivative of
ous energy terms for eaghk cluster, it is instructive to do F/(z+n). For very large systems this break is much more pro-
parametric calculations as these bring out several interestingpunced.
points. By switching off the Coulomb term one can study the

nuclear matter limit and many studies of phase transitions igple free volume given by =V, — V,, whereV,, is the ex-

this limit exist. In this limit we find close Correspondence cluded volume due to the finite sizes of the clusters. The
with the idealized one-component model that was the predejetails of the excluded volume are complicaf@8] but V,,
cessor to this stud17]. We then incorporate the Coulomb s often approximated to be a constant. Its value is needed in
term and find that there are significant changes to the calorigstimaﬁng the Coulomb interaction in the Wigner-Seitz ap-

curve. . . proximation and we use the Hahn-8ker value[20] of
We approximate the ground state energy of heluster v _ =v,.

using the mass-energy formula, i.&ys=ay(j +k)—as(]

+k)?3—bg(j —k)?/(j + k). The first term is the volume en-

ergy contribution. A value of 16 MeV was used fay. The VI. ROLE OF SURFACE TERM

second term is the surface term. The surface area is propor- In this work we choose to show results for fou,if)

tional to (j +k)“*~ andas=18 MeV is the surface coefficient. combinations: these aré39,46. (54,68, (77,100, and

The by term gets bigger when the difference between the(158,236. They were chosen to represent some typical

numbers of protons and neutrons in a cluster gets bigger. Tr}%rget-projectile combinations, the lowest being+®¢ and

negative sign of the term ensures the suppression of thig,q highest At-Au. The magnitude of the slope of the free
effect._ . . . . energy per particle for all of thed€ig. 1) is much smaller
Excitation energies of the nuclei can be incorporated USyq 09 MeV than above 10 MeV. For one kind of particle
ng a .lOW ‘emper‘?‘“.”e €xpansion of Fhe Fermi-gas r‘nOd(:"lc';md for very large systems an abrupt break in the first deriva-
This y|eI2ds a multiplicative factor exp(j +k)/e], Wh_ereeo tive was established in Rdf17] leading to an unambiguous
=4ee/m°=16 MeV. It has been argued that this factor, gjgnatre of a first order phase transition. Very large systems

monot'onic in T, shouI(_j reach an asymptotic limit Hencen e two-component model have not been studied yet so
following Ref. [19], we introduce a cutoff factor to achieve w4t \ye cannot yet claim that it is the remnant of a first order

V. AN IDEAL CASE

this effect, . . . . transition as will be reflected in finite systems. We do find
_ Therefore, mcorporatmg the various energy levels in the o+ there is a peak in the specific heat between 9 and 10
jk cluster, we obtain MeV indicating a phase transition.
, , 3 Figure 2 is a plot of Y(j) againstj where Y(j)
X; =X(27rm'|')3/2(j + k)3’2exp( av(j +k) _ as(j +k) =N, is proportional to the yield of the isotope of charge
K h3 T T j. Below the temperaturelg) at which the phase transition

occurs, the yieldr(j) falls with j, reaches a minimum, rises,

 b(] —k)2+ TTo(j +k) 12 reaches a maximum after which it falls off very quickly.
T(j+k)  e(T+Ty)/’ Above Tg, the yield Y(j) decreases monotonically wijh
The disappearance of the maximum at hjiglan be regarded
Xjk=V(2rmT)*%h® whenj+k=1. as the signal of the phase change.
Here T, is taken to be 12 MeV and/=2.2V,. V, is The specific heat per nucledhig. 3) shows a strong peak

normal nuclear volum¥, as defined previously, is the avail- which scales with the size of the system. This occurs at the

054616-3



P. BHATTACHARYYA, S. DAS GUPTA, AND A. Z. MEKJIAN PHYSICAL REVIEW C60 054616

T
h — Ty
'\
o Lo T= 90My | g —--"5T5L0n/eT) _
. . 2/3
NN ___T=97Mev | | --- 0,7, (8N /AT (+K) ¥
(N . .
2k N T=104Mev | | e szjk(fﬂ(n,-k)/aT)(J—k)z/ (j+Kk)
S5 A
z X
£ i
_4 B 2 I~ ' \.\ I
Py
[
-6 F ! \
1 \
/ /\\ \'\
A et BT dootnly
-8 —’:L»r"””")_rf:
0 0 PSS L
) 0 5 10 15 20
j
T(MeV)

FIG. 2. Average yields of different isotopes at various tempera-
tures in the same model as in Fig. 1. FIG. 4. Various contributions to the specific heat per nucleon of
Fig. 3 for z=77, n=100. The most dominant term is the surface
same temperature as the break in the free energy, againterm. The text gives more details.
strong indicator of a phase transitiany, can be shown to be
bump as doe§jk(&<njk>/aT)bS(j—k)2/(j+k). In the ab-

3 2(z+n) TTS sence of the surface term, these small peaks are washed out
tv=3 % (nj+ € (T+Ty)? by the translational term. So the only interesting term is
S () dT)ag(j +k)?>. This shows the peak that appears
a(nj) (3 ) o3 (j—k)? in ¢y . This can be explained based on the fact that the infi-
% o7 |5 THasi+k)™ b (7K ) nite cluster no longer exists fa@>Tg. At Tg, ((n;)/dT)

is nonzero for this cluster ang € k)% is appreciablédsince
(13)  j+k=~z+n) and the product is therefore, very large. Hence,
) o ~alarge peak is seen @ . From this, we can conclude that
The various contributions to, are analyzed separately in the surface term is entirely responsible for the phase transi-

Fig. 4. The first term in Eq(13) is the translational term o Indeed the sharpness Bf(n;)/aT is also due to the
(since 2 (njy) is the total number of clustersand it in- gy rface term.

creases sharply around the transition temperature and satu- amay Was calculated and it shows a sharp drop at the
rates. The second term is due to excitations and it drops Offboiling point” (Fig. 5. The larger the system, the sharper

with T. Of the others 2 (d(njc)/dT)T shows a very small s the drop. The case of very large system can be seen in Ref.
[17]. In the thermodynamic limit, this is due to the disap-

10 T T
H 1 T
8 L i 7=39n=46 |
i ___z= 54 n= 68 0.8 \ — 7= 39 n= 46
6L Y _z=77 n=100 — — __z= 54 n= 68
¥ i c
\'%D [ 2=158 n=236 toe k (- z= 77 n=100 J
~ Pl I
Sef :
£0.4 -
2 | S~
0.2 F -
0 T LT
0 5 10 15 20 o ! ! !
0 5 10 15 20

T(MeV)
T(MeV)
FIG. 3. Specific heat per nucleon for the model in Fig. 1. The
peak in specific heat becomes higher and narrower as the size of the FIG. 5. Average value of the size of the largest cluster divided
system increases. In the thermodynamic limit, the peakddunc- by the total number of nucleons in the same model as in the earlier
tion. The Coulomb effect changes this result. figures. The bigger the system, the sharper the drop.
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FIG. 6. Specific heat per nucleon using a parametrized mass |G, 7. For this and the two following figures, the binding en-
formula with Coulomb interaction included via the Wigner-Seitz ergies of the clusters are taken from experimental data and the
approximation. Of significance is the fact that the peak in specificcoyiomb interaction between clusters is included through the
heat per nucleon is now more or less independent of the size of th\ﬁ/igner-Seitz approximation. The yields of isotopes are shown at
system. three different temperatures far= 77, n=100. The characteristics

are the similar to those in Fig. 2 but shell structure effects are
pearance of the infinite cluster. At<Tg, the size of the clearly visible.
largest cluster is of the order aft-n and so{ana/(z+n) is

finite. But at T>Tg, only smaller clusters exist and Vv a2 " av,, TT, .
(ama/(z+n) is very small. Xijﬁ(ZWmT) (J+k)™exp——+ m(l +k)
42 3
VIl. APPROXIMATE INCLUSION OF COULOMB i (je) X) } (14)
INTERACTION SR T 1V,

We now add to this parametric version of binding energywherea,, is the binding energy of thik cluster from Ref.
the effect of the Coulomb interaction via the Wigner-Seitz[21]_ ay Jktherefore encompasses all the terfwslume, sur-
approximation. Apart from an inconsequential term Whichf o arjlla Coulomb self-energy termus the previous rr,1odel
does not change at constant volume and is also independ he'n aik cluster does not e?gi/s{» i set tcl)azero Coulomb
of temperature, incorporation of Wigner-Seitz approximation teractijon between clusters is iﬁcor orated viai the Wigner-
modifies the thermodynamics of the system by adding to th " S Si orp | bindi 9N
internal energy of each composite of chajgeand radiusR eitz approximation. Since experimental binding energies
a term given by[3(je)%/5R][1— (Vo/V,)*°] whereV,/V, arngsed iheklll-effecr:s are mglud.edm . insii at differ-
is the ratio of normal nuclear volume to the volume at the _'9uré 7 shows the isotopic yie (1) againsy at difter
time of dissociation. We have taken this ratio to be 1/3.2. €Nt temperatures. The general characteristics of Fig. 2 can

The Coulomb term has a significant effectap Without still be seen but now there are interesting structures because

Coulomb, the specific heat per particle becomes larger at th f shell effects and the odd-even effects are clearly discern-

boiling point for a larger systertit approaches a delta func- ! .Ie. At high temperaturgnot shown hergthe shell effects .
tion in the thermodynamic limitbut Coulomb interaction disappear and a smooth curve results. Unfortunately one still

inhibits this growth leading to a, per particle that is much cannot compare the isotope yields at this stage to experimen-
less dependent on the size of thve systEig. 6. This means tal data because the yields shown here are at finite tempera-

that the caloric curve is approximately independent of thetures and contain populations of both particle stable and par-

specific target-projectile combination used. This feature re:[ICIe unstable states. To compute the yield of a given nucleus

mains unchanged in the more realistic case considered in o more calculations are necessary. One has.to dlsca(d the
next section. populations of the particle unstable states in the given

nucleus andthis is much harderone has to add contribu-
tions from the decay of higher mass particle unstable states.
Detailed calculations of this nature are currently in progress
[27], for a small selected set of isotopes. Here, we ignore this
complication and assume that the yields obtained can be used
We now report studies of a calculation in which the for determining general characteristics.

ground state binding energies are read from data tables, i.e., It is obvious that there is no power law at any tempera-
Xjix Is now given by ture. (This was also found in the preceding work involving

VIIl. CALCULATION WITH EXPERIMENTAL
BINDING ENERGIES
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T T 2 T
3t s 2= 39 n=46 | z= 39 n= 46
\ __z= 54 n= 68 —__z= 54 n= 68
T . —.—z= 77 n=100 1.5 k\ _____ z= 77 n=100 |
..... z=158 n=236 = ':.; \ 5158 n=236
2 b : t j -
1/ TTTTFEE———
s
. cy/kg(z+n)
1k R o 0.5 —
O | | 1
0 1 ! 0 5 10 15 20
0 5 10 15 T(MeV)
T(MeV) FIG. 10. Specific heat per nucleon when clusters have experi-
FIG. 8. Specific heat per nucleon andor the same model as in Mental binding energyhence Coulomb self-energyCoulomb in-
Fig. 7. teraction between the clusters is ignored.

one-component systerfi57].) Nonetheless we extract an ef- binding energy of a nucleus. The peaks in the specific heat
fective value of 7 by equating Ej223cha,(j)/zj223ycal(j) remain but they are reduced in heigkig. 10.

=3204jj ~132,j " (plotted in Fig. 8. As a function of

temperature a clear minimum in the extracted value & IX. SUMMARY AND DISCUSSION

seen. The minimum of can be below 2. This is not possible o

in the lattice gas and percolation models where a true power We have used a two-component soluble statistical model
law emerges. We also see that the minimunr i achieved o investigate a few properties of nuclear systems at finite
at least approximately at the same temperature as the maxemperature and larger than normal nuclear volume such as
mum in specific heatFig. 8. Also the specific heat per may be applicable to the disintegration of a nuclear system
particle is approximately the same whether the system corformed in intermediate energy heavy ion collisions. In the
sists of 100 particles or say, 300 particles. This means thd@st section we used experimental binding energies as input
the caloric curves(plots of T againstE*/A), should be data in the model and excited states were included in the

roughly independent of the size of the target-projectile comformalism using a modified Fermi-gas formula. Depending
bination. This is shown in Fig. 9 upon the particular feature that is being investigated, differ-

It is also interesting to compute specific heat against tement inputs may be used. For example one might want to
perature without including the Coulomb interaction betweerinclude some excited states from data tables and some from
different clusters as done in the Wigner-Seitz approximationa closed expression such as used here. The model is easy and

The Coulomb Se]f-energy is still present as this is part of the\/ersatile enou_gh to allow such Changes with little extra work
and computation.

We have, in particular, investigated the caloric curve and
7 find that a peak in the specific heat is indeed found and at
. about the right temperature as suggested by experiments. We
10 F 2 . have looked at examples of isotope distributions at different
temperatures. While admitting that this distribution will

¢ change as particle unstable states will decay we find that the
8 7 7 “primary” distribution does not obey a power law at any

12

E temperature. This may be a shortcoming of the model as
= applied to heavy ion collisions.
6 7 The Coulomb interaction changes the specific heat in a
—z= 39 n= 46 significant way. It brings down the peak in specific heat to
4 | ---ZZ: 573;' 2:13% | lower temperature. It also makes the caloric curve much
o more independent of the size of the system than when the
Coulomb interaction was absent. However, there are some
2 ! ! features in Fig. 8 which do not agree with experiment. The
0 5 10 effective r has a minimum as a function of beam eneiag]
E*/(z4n) (MeV) for medium_s?ze systems; however, fc_)r_ very Ia_rge systems
(central collisions of Au on Authe minimum disappears
FIG. 9. Caloric curves for the same model as in Fig. 7. [25]. In Fig. 8 we see the minimum remains whether the
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system is of intermediate size or very large size. made no significant difference. A minimum inas a func-
This apparent contradiction with experiment can be retion of temperature was found and it was close to the value

moved by allowing more flexibility in the two-component predicted by a lattice gas model where Coulomb effect is

model. In plotting Fig. 8 we assumed that the freeze-outotally ignored. Foz=79, n=118 the minimum inr is still

density is independent of the size of the system. Now thyesent but its value is lower than 2 and it is obtained at a

Wigner-Seitz correction depends on the freeze-out density. lfy,ch lower temperaturgabout 2 Me\. For z=158,

the freeze-out density is very low then the Wigner-Seitz cory, = 236 the minimum inr disappears. These predictions are

rection term is small. The only Coulomb interaction that ajn agreement with experimenitg3,25. It may be possible in
cluster has_ls its own seIf-mteracUon._ In th!s limit the mini- this type of hybrid model to investigate if for a larger system
mum of 7 disappears even for a medium size system. If thghe effective freeze-out density is lower. This will be at-
freeze-out density becomes lower as the system size gefsmpted in the future.
bigger, one can have the situation where a minimun ia In summary, the methodology exemplified in this paper
achieved for medium size systems but disappears for a larggi|| allow quick computations of many observables seen in
system. This could result from the fact that big systems reintermediate energy heavy ion collisions. The calculations
quire larger volumeper nucleon to equilibrate because of gjve what is predicted by statistical models which have long
much stronger long range Coulomb field. _ . standing applications in nuclear physics. The calculations are
The disappearance of the minimum inwas studied in  actually easier to implement than grand canonical calcula-
detail in a hyb”d modd24,22 The calculation there used a tions which were done for Bevalac physiﬁsr a summary
lattice gas model followed by classical molecular dynamicsof such calculations see RéR6]).
The lattice gas model is used to generate the initial positions
of the nucleons in the presence of nearest neighbor interac-
tion and the Coulomb interaction. The nucleons are ascribed
momenta from a Maxwell-Boltzmann distribution. They now
propagate according to classical molecular dynamics in the This research was supported in part by the U.S. Depart-
presence of a short range and the Coulomb interactions. Ahent of Energy, Grant No. DE FG02-96ER 40987, and by
asymptotic times one can clearly recognize clusters. For ththe Natural Sciences and Engineering Research Council of
smallest systemz=239, n=46, the Coulomb interaction Canada.
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