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Nuclear properties at finite temperature in a two-component statistical model
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An exactly solvable model is developed for multifragmentation which is an extension of an earlier model, to
two-component systems. The model is quite versatile. One can use experimental binding energies and excited
states of clusters as inputs to the model and compute, rather easily, many observables. In this paper we pay
particular attention to specific heats~hence the caloric curves! of certain target projectile combinations. In
idealized cases without Coulomb interactions, large systems show signatures of a first order phase transition.
The caloric curves change significantly when Coulomb energy is included.@S0556-2813~99!02411-5#

PACS number~s!: 25.70.Pq, 24.10.Pa, 64.60.My
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I. INTRODUCTION

Several experimental@1–5# and theoretical@6–12# inves-
tigations into heavy-ion collisions at intermediate to hi
energies have indicated the presence of a liquid-gas-
phase transition in nuclear matter. There is however m
debate@13,14# on whether or not this phase transition disa
pears when isospin degrees of freedom are included,
when protons and neutrons are distinguished in the mod
To answer this question satisfactorily one needs to st
these two-component models elaborately.

However, this poses difficulties. Two-component mod
are generally computationally much more intensive than o
component models. As a result, it is harder to look at la
two-component systems. In this paper we study a clas
two-component models which overcomes these difficult
The models are computationally tractable so that calculat
on a few hundred particles is possible. The models are
parametrically flexible, admitting a wide range of behavio
for certain model-independent features to be studied.
used binding energies from experiments as inputs and thi
our opinion, makes the calculations quite realistic and allo
theoretical predictions to be compared directly with expe
ments. The attractive feature of the model is that only mod
computing power is needed and the results obtained are
act.

When the excitation energy per nucleon in a collision is
the order of the binding energy of the nucleon, the stabi
of the nucleus is threatened. More importantly, the sh
structure of the nucleus becomes meaningless and
nucleus behaves as a continuous mass of nucleons whic
basically indistinguishable from each other on all counts
cept charge. The nucleus gets hotter during the collision
expands. This expansion causes internal fractures in
nucleus and eventually the nucleus splits into various o
nuclei @6#. The end of this expansion process is call
‘‘freeze-out’’ and at this point, the volume of the nucleus
sufficiently large for nuclear interactions between differe
fragments to become negligible. Hence the nuclear fragm
composition does not change after ‘‘freeze-out.’’

The formation of various nuclear fragments from t
original composite nucleus is called an event. The occ
rence of a specific event is dictated by the conditions of
collision. The nuclear interactions leading to this particu
0556-2813/99/60~5!/054616~7!/$15.00 60 0546
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event can be very complicated and a dynamic description
the process is therefore very difficult. However, the num
of possible events is so large that such a dynamic calcula
may not be necessary. Instead, a statistical treatment, w
will analyze the probability of an event can be employed
give good results. Hence, we will set up a statistical mode
describe the situation.

II. A GENERIC TWO-COMPONENT MODEL

In this section, we describe a very general model for tw
component systems. This model can be used for any sys
consisting of two kinds of objects,z of the first kind andn of
the second kind. Thez objects andn objects are distinguish
able from each other but not amongst themselves. The g
eral model describes clustering in such a system. There
several ways in which, clustering can occur. Each way
called a partition of thez and n objects that make up the
system. This is equivalent to bipartite partitioning@15,16# of
integers, i.e., partitioning two integers simultaneously. L
each partition be denoted by a ‘‘vector’’nW , where the com-
ponents ofnW , njk are labeled by two free indices, one for th
number of objects of the first kind, and one for the seco
kind, such thatnW 5(n01,n10,n02,n11,n20, . . . ), where njk
counts the number of clusters withj objects of the first kind
and k of the second. Clearly then,nW has to satisfy the fol-
lowing two constraints:

(
jk

jn jk5z, ~1!

(
jk

knjk5n. ~2!

The probability for a particular partition can be calculat
as follows. Letxjk be the one particle partition function o
the jk cluster.~A jk cluster hasj objects of the first kind and
k of the second.! If we assume that the various clusters
not interact, the statistical weight for a particularnW @W(nW )#
should be the product of the one-particle partition functio
of all the jk clusters. But taking into account the fact that a
jk clusters are indistinguishable,
©1999 The American Physical Society16-1
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W~nW !5)
j 50

z

)
k50

n xjk
njk

njk!
, ~3!

where thenjk! term introduces a Gibbs’ reduction in th
phase space volume amongst thejk clusters. The partition
function for the system can then be given by summing
weights of all the possible partitions, i.e.,

Zzn5(
nW

W~nW !. ~4!

Therefore, oncexjk is specified, the partition function ca
be calculated. This is facilitated by the fact that the expec
tion value of the number ofjk clusters is given by

^njk&5
xjk

Zzn

]Zzn

]xjk
~5!

5
xjk

Zzn
Zz2 j ,n2k . ~6!

Using Eq.~6! in Eq. ~1! gives

Zzn5
1

z (
jk

jx jkZz2 j ,n2k . ~7!

From this, the partition function can be calculated rec
sively starting withZ0051. @A similar expression can also b
obtained from Eq.~2!.#

The basic physics of the above model is the same a
most statistical models. The assumption is that the ph
space is the sole criterion. Given this premise one can use
microcanonical ensemble@19# which conserves baryon num
ber, charge number, and energy exactly or use the m
here which conserves baryon number, charge number
uses a constant temperature rather than constant en
thereby allowing a fluctuation in energy. The advantage
our approach is the ease with which calculations can be d
for realistic cases. Also noteworthy is the fact that all pa
tions ~there are millions of them! are included: no Monte
Carlo is needed to generate these partitions. The mod
quite different from BUU@1# or QMD @29# types of models.
The last ones do not assume equilibrium, rather they
transport type models. The difficulty there is that for prac
cal purposes, the calculations are either classical or semi
sical. While there are certainly questions that transport m
els can answer but equilibrium models cannot,
calculations of yields of composites the lack of quantum m
chanics imposes severe limitations on currently availa
transport models. All shell effects are lost and the proper
of composites are far removed from reality. Besides, com
tation of yields in these types of models are much m
computer intensive.

III. CHOICE OF xjk

The application of the above model to nuclear system
obvious. The two kinds of objects are protons and neutr
and a partition is nothing but an event in a collision. Ajk
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cluster now refers to a nucleus withj protons andk neutrons.
The physics of the situation therefore, lies inxjk . We will do
all our calculations in the canonical ensemble. So we ass
that at freeze-out, the nucleons participating in the collis
occupy a volumeVn and are in equilibrium at a temperatu
T.

xjk is thus, the partition function of a nucleus withj pro-
tons andk neutrons. Quite generally this is given byxjk
5@V(2pmT)3/2( j 1k)3/2/h3#( i exp@2bEjk(i)#, where V is
the available volume to the participating nucleons. The fi
part in xjk is due to the kinetic energy of the center of ma
of the cluster as obtained from integrating over all the p
sible momenta of all the clusters. The second part is
internal partition function of thejk cluster and it is a sum
over all the energy levels of an isolatedjk cluster.

The versatility of the model lies in the many choices
xjk that can be made through different choices ofEjk . Val-
ues can be taken from experiment or from suitable para
etrization. The limitation of the model is that interaction b
tween different clusters cannot be included except throug
one body mean field approximation. Therefore we use
Wigner-Seitz approximation to include the effects of t
long range Coulomb field.

Properties of this model where no distinction is made
tween neutrons and protons were studied in Ref.@17#. Fur-
ther studies can be found in Ref.@28#.

IV. THERMODYNAMICS

From the partition function, the various thermodynam
variables of interest, such as the free energy, the specific
at constant volume and the average expectation value o
size of the largest nucleus can be determined. The free
ergy ~F! is of interest as its first derivative will show a brea
in the event of a first-order phase transition.F is calculated
from

F52
1

b
ln~Zzn!, ~8!

whereb is the inverse temperature.
The specific heat (cV) per nucleon should show a pea

that scales with the size of the system. It is calculated fr

cV

kB
5S ]U

]T D
V

, ~9!

whereU is the internal energy and is given by

U52
] ln~Zzn!

]b
5

T2

Zzn
(
jk

Zz2 j ,n2k

]xjk

]T
. ~10!

In deriving the above equation we used Eq.~3! and Eq.~4! of
the previous section. It can be shown that Eq.~10! reduces to
a more transparent form given by

U5( ^njk&U jk , ~11!

whereU jk is the average energy of ajk cluster.
6-2



e
le
o

ze
ri-
h

r

ti
h
s
e
d
b
lor

-

p
.
th
T
th

us
de

r,
ce
e

th

l-

he

d in
p-

cal

e

le
iva-
s
ms
so
er

nd
10

e
n
,

y.

the

mb
or-
gas
e of
ro-

NUCLEAR PROPERTIES AT FINITE TEMPERATURE IN . . . PHYSICAL REVIEW C60 054616
The average expectation value of the size of the larg
nucleus (̂amax&/A) is of interest because it can play the ro
of the order parameter in our system. For each event p
sible, the largest nucleus is labeledamax and^amax& is calcu-
lated over all possible configurations as follows. If anyxjk is
set to zero, by virtue of Eq.~6!, ^njk& is also zero. Therefore
that jk cluster is no longer allowed. So the probability ofa
being the largest nucleus is proportional to

Zzn~x1 ,x2 , . . . ,xa,0, . . .!2Zzn~x1 ,x2 , . . . ,xa21,0, . . .!,

wherexa is a shorthand notation referring to all thejk clus-
ters with j 1k5a. The first term will allow clusters of size 1
to a to be the largest clusters and the second, those of si
to a21. Therefore, the difference gives the weight of dist
butions witha as the largest nucleus. Summing these weig
over all the possiblea’s gives the normalization factor.

V. AN IDEAL CASE

Before studying a realistic case by incorporating the va
ous energy terms for eachjk cluster, it is instructive to do
parametric calculations as these bring out several interes
points. By switching off the Coulomb term one can study t
nuclear matter limit and many studies of phase transition
this limit exist. In this limit we find close correspondenc
with the idealized one-component model that was the pre
cessor to this study@17#. We then incorporate the Coulom
term and find that there are significant changes to the ca
curve.

We approximate the ground state energy of thejk cluster
using the mass-energy formula, i.e.,Eg.s.5aV( j 1k)2as( j
1k)2/32bs( j 2k)2/( j 1k). The first term is the volume en
ergy contribution. A value of 16 MeV was used foraV . The
second term is the surface term. The surface area is pro
tional to (j 1k)2/3 andas518 MeV is the surface coefficient
The bs term gets bigger when the difference between
numbers of protons and neutrons in a cluster gets bigger.
negative sign of the term ensures the suppression of
effect.

Excitation energies of the nuclei can be incorporated
ing a low temperature expansion of the Fermi-gas mo
This yields a multiplicative factor exp@T(j1k)/e0#, wheree0
54eF /p2516 MeV. It has been argued that this facto
monotonic in T, should reach an asymptotic limit. Hen
following Ref. @19#, we introduce a cutoff factor to achiev
this effect.

Therefore, incorporating the various energy levels in
jk cluster, we obtain

xjk5
V

h3
~2pmT!3/2~ j 1k!3/2expS aV~ j 1k!

T
2

as~ j 1k!2/3

T

2
bs~ j 2k!2

T~ j 1k!
1

TT0~ j 1k!

e0~T1T0! D . ~12!

xjk5V(2pmT)3/2/h3 when j 1k51.
Here T0 is taken to be 12 MeV andV52.2V0 . V0 is

normal nuclear volumeV, as defined previously, is the avai
05461
st

s-

1

ts

i-

ng
e
in

e-

ic

or-

e
he
is

-
l.

e

able free volume given byV5Vn2Vex whereVex is the ex-
cluded volume due to the finite sizes of the clusters. T
details of the excluded volume are complicated@18# but Vex
is often approximated to be a constant. Its value is neede
estimating the Coulomb interaction in the Wigner-Seitz a
proximation and we use the Hahn-Sto¨cker value @20# of
Vex5V0.

VI. ROLE OF SURFACE TERM

In this work we choose to show results for four (z,n)
combinations: these are~39,46!, ~54,68!, ~77,100!, and
~158,236!. They were chosen to represent some typi
target-projectile combinations, the lowest being Sc1Ar and
the highest Au1Au. The magnitude of the slope of the fre
energy per particle for all of these~Fig. 1! is much smaller
below 9 MeV than above 10 MeV. For one kind of partic
and for very large systems an abrupt break in the first der
tive was established in Ref.@17# leading to an unambiguou
signature of a first order phase transition. Very large syste
in the two-component model have not been studied yet
that we cannot yet claim that it is the remnant of a first ord
transition as will be reflected in finite systems. We do fi
that there is a peak in the specific heat between 9 and
MeV indicating a phase transition.

Figure 2 is a plot of Y( j ) against j where Y( j )
5(k^njk&, is proportional to the yield of the isotope of charg
j. Below the temperature (TB) at which the phase transitio
occurs, the yieldY( j ) falls with j, reaches a minimum, rises
reaches a maximum after which it falls off very quickl
Above TB , the yield Y( j ) decreases monotonically withj.
The disappearance of the maximum at highj can be regarded
as the signal of the phase change.

The specific heat per nucleon~Fig. 3! shows a strong peak
which scales with the size of the system. This occurs at

FIG. 1. Free energy per nucleon in a model with no Coulo
effects. The binding energy is approximated by the liquid drop f
mula. Excited states are accounted for by a modified Fermi-
expression. There appears to be a break in the first derivativ
F/(z1n). For very large systems this break is much more p
nounced.
6-3
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P. BHATTACHARYYA, S. DAS GUPTA, AND A. Z. MEKJIAN PHYSICAL REVIEW C60 054616
same temperature as the break in the free energy, aga
strong indicator of a phase transition.cV can be shown to be

cV5
3

2 (
jk

^njk&1
2~z1n!

e0

TT0
3

~T1T0!3

1(
jk

]^njk&
]T S 3

2
T1as~ j 1k!2/31bs

~ j 2k!2

~ j 1k! D .

~13!

The various contributions tocV are analyzed separately i
Fig. 4. The first term in Eq.~13! is the translational term
~since ( jk^njk& is the total number of clusters! and it in-
creases sharply around the transition temperature and
rates. The second term is due to excitations and it drops
with T. Of the others,( jk(]^njk&/]T)T shows a very smal

FIG. 2. Average yields of different isotopes at various tempe
tures in the same model as in Fig. 1.

FIG. 3. Specific heat per nucleon for the model in Fig. 1. T
peak in specific heat becomes higher and narrower as the size o
system increases. In the thermodynamic limit, the peak is ad func-
tion. The Coulomb effect changes this result.
05461
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bump as does( jk(]^njk&/]T)bs( j 2k)2/( j 1k). In the ab-
sence of the surface term, these small peaks are washe
by the translational term. So the only interesting term
( jk(]^njk&/]T)as( j 1k)2/3. This shows the peak that appea
in cV . This can be explained based on the fact that the i
nite cluster no longer exists forT.TB . At TB , (]^njk&/]T)
is nonzero for this cluster and (j 1k)2/3 is appreciable~since
j 1k'z1n) and the product is therefore, very large. Henc
a large peak is seen atTB . From this, we can conclude tha
the surface term is entirely responsible for the phase tra
tion. Indeed the sharpness of(]^njk&/]T is also due to the
surface term.

^amax& was calculated and it shows a sharp drop at
‘‘boiling point’’ ~Fig. 5!. The larger the system, the sharp
is the drop. The case of very large system can be seen in
@17#. In the thermodynamic limit, this is due to the disa

-

the

FIG. 4. Various contributions to the specific heat per nucleon
Fig. 3 for z577, n5100. The most dominant term is the surfa
term. The text gives more details.

FIG. 5. Average value of the size of the largest cluster divid
by the total number of nucleons in the same model as in the ea
figures. The bigger the system, the sharper the drop.
6-4
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NUCLEAR PROPERTIES AT FINITE TEMPERATURE IN . . . PHYSICAL REVIEW C60 054616
pearance of the infinite cluster. AtT,TB , the size of the
largest cluster is of the order ofz1n and so^amax&/(z1n) is
finite. But at T.TB , only smaller clusters exist an
^amax&/(z1n) is very small.

VII. APPROXIMATE INCLUSION OF COULOMB
INTERACTION

We now add to this parametric version of binding ener
the effect of the Coulomb interaction via the Wigner-Se
approximation. Apart from an inconsequential term whi
does not change at constant volume and is also indepen
of temperature, incorporation of Wigner-Seitz approximat
modifies the thermodynamics of the system by adding to
internal energy of each composite of chargeje and radiusR
a term given by@3( je)2/5R#@12(V0 /Vn)1/3# whereV0 /Vn
is the ratio of normal nuclear volume to the volume at t
time of dissociation. We have taken this ratio to be 1/3.2

The Coulomb term has a significant effect oncV . Without
Coulomb, the specific heat per particle becomes larger a
boiling point for a larger system~it approaches a delta func
tion in the thermodynamic limit! but Coulomb interaction
inhibits this growth leading to acV per particle that is much
less dependent on the size of the system~Fig. 6!. This means
that the caloric curve is approximately independent of
specific target-projectile combination used. This feature
mains unchanged in the more realistic case considered in
next section.

VIII. CALCULATION WITH EXPERIMENTAL
BINDING ENERGIES

We now report studies of a calculation in which th
ground state binding energies are read from data tables,
xjk is now given by

FIG. 6. Specific heat per nucleon using a parametrized m
formula with Coulomb interaction included via the Wigner-Se
approximation. Of significance is the fact that the peak in spec
heat per nucleon is now more or less independent of the size o
system.
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xjk5
V

h3
~2pmT!3/2~ j 1k!3/2expFaVjk

T
1

TT0

e0~T1T0!
~ j 1k!

1
3

5R

~ je!2

T S V

Vn
D 1/3G , ~14!

whereaVjk
is the binding energy of thejk cluster from Ref.

@21#. aVjk
therefore encompasses all the terms~volume, sur-

face, and Coulomb self-energy terms! of the previous model.
When ajk cluster does not existxjk is set to zero. Coulomb
interaction between clusters is incorporated via the Wign
Seitz approximation. Since experimental binding energ
are used shell-effects are included.

Figure 7 shows the isotopic yieldY( j ) againstj at differ-
ent temperatures. The general characteristics of Fig. 2
still be seen but now there are interesting structures bec
of shell effects and the odd-even effects are clearly disce
ible. At high temperature~not shown here! the shell effects
disappear and a smooth curve results. Unfortunately one
cannot compare the isotope yields at this stage to experim
tal data because the yields shown here are at finite temp
tures and contain populations of both particle stable and
ticle unstable states. To compute the yield of a given nucl
two more calculations are necessary. One has to discard
populations of the particle unstable states in the giv
nucleus and~this is much harder! one has to add contribu
tions from the decay of higher mass particle unstable sta
Detailed calculations of this nature are currently in progr
@27#, for a small selected set of isotopes. Here, we ignore
complication and assume that the yields obtained can be
for determining general characteristics.

It is obvious that there is no power law at any tempe
ture. ~This was also found in the preceding work involvin

ss

c
he

FIG. 7. For this and the two following figures, the binding e
ergies of the clusters are taken from experimental data and
Coulomb interaction between clusters is included through
Wigner-Seitz approximation. The yields of isotopes are shown
three different temperatures forz577, n5100. The characteristics
are the similar to those in Fig. 2 but shell structure effects
clearly visible.
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P. BHATTACHARYYA, S. DAS GUPTA, AND A. Z. MEKJIAN PHYSICAL REVIEW C60 054616
one-component systems@17#.! Nonetheless we extract an e
fective value of t by equating ( j 53

20 jYcal( j )/( j 53
20 Ycal( j )

5( j 53
20 j j 2t/( j 53

20 j 2t ~plotted in Fig. 8!. As a function of
temperature a clear minimum in the extracted value oft is
seen. The minimum oft can be below 2. This is not possib
in the lattice gas and percolation models where a true po
law emerges. We also see that the minimum oft is achieved
at least approximately at the same temperature as the m
mum in specific heat~Fig. 8!. Also the specific heat pe
particle is approximately the same whether the system c
sists of 100 particles or say, 300 particles. This means
the caloric curves~plots of T against E* /A), should be
roughly independent of the size of the target-projectile co
bination. This is shown in Fig. 9

It is also interesting to compute specific heat against te
perature without including the Coulomb interaction betwe
different clusters as done in the Wigner-Seitz approximati
The Coulomb self-energy is still present as this is part of

FIG. 8. Specific heat per nucleon andt for the same model as in
Fig. 7.

FIG. 9. Caloric curves for the same model as in Fig. 7.
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binding energy of a nucleus. The peaks in the specific h
remain but they are reduced in height~Fig. 10!.

IX. SUMMARY AND DISCUSSION

We have used a two-component soluble statistical mo
to investigate a few properties of nuclear systems at fin
temperature and larger than normal nuclear volume suc
may be applicable to the disintegration of a nuclear sys
formed in intermediate energy heavy ion collisions. In t
last section we used experimental binding energies as in
data in the model and excited states were included in
formalism using a modified Fermi-gas formula. Dependi
upon the particular feature that is being investigated, diff
ent inputs may be used. For example one might want
include some excited states from data tables and some
a closed expression such as used here. The model is eas
versatile enough to allow such changes with little extra wo
and computation.

We have, in particular, investigated the caloric curve a
find that a peak in the specific heat is indeed found and
about the right temperature as suggested by experiments
have looked at examples of isotope distributions at differ
temperatures. While admitting that this distribution w
change as particle unstable states will decay we find that
‘‘primary’’ distribution does not obey a power law at an
temperature. This may be a shortcoming of the model
applied to heavy ion collisions.

The Coulomb interaction changes the specific heat i
significant way. It brings down the peak in specific heat
lower temperature. It also makes the caloric curve mu
more independent of the size of the system than when
Coulomb interaction was absent. However, there are so
features in Fig. 8 which do not agree with experiment. T
effectivet has a minimum as a function of beam energy@23#
for medium size systems; however, for very large syste
~central collisions of Au on Au! the minimum disappears
@25#. In Fig. 8 we see the minimum remains whether t

FIG. 10. Specific heat per nucleon when clusters have exp
mental binding energy~hence Coulomb self-energy!. Coulomb in-
teraction between the clusters is ignored.
6-6
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NUCLEAR PROPERTIES AT FINITE TEMPERATURE IN . . . PHYSICAL REVIEW C60 054616
system is of intermediate size or very large size.
This apparent contradiction with experiment can be

moved by allowing more flexibility in the two-componen
model. In plotting Fig. 8 we assumed that the freeze-
density is independent of the size of the system. Now
Wigner-Seitz correction depends on the freeze-out densit
the freeze-out density is very low then the Wigner-Seitz c
rection term is small. The only Coulomb interaction tha
cluster has is its own self-interaction. In this limit the min
mum of t disappears even for a medium size system. If
freeze-out density becomes lower as the system size
bigger, one can have the situation where a minimum int is
achieved for medium size systems but disappears for a l
system. This could result from the fact that big systems
quire larger volume~per nucleon! to equilibrate because o
much stronger long range Coulomb field.

The disappearance of the minimum int was studied in
detail in a hybrid model@24,22#. The calculation there used
lattice gas model followed by classical molecular dynami
The lattice gas model is used to generate the initial positi
of the nucleons in the presence of nearest neighbor inte
tion and the Coulomb interaction. The nucleons are ascri
momenta from a Maxwell-Boltzmann distribution. They no
propagate according to classical molecular dynamics in
presence of a short range and the Coulomb interactions
asymptotic times one can clearly recognize clusters. For
smallest systemz539, n546, the Coulomb interaction
d
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made no significant difference. A minimum int as a func-
tion of temperature was found and it was close to the va
predicted by a lattice gas model where Coulomb effec
totally ignored. Forz579, n5118 the minimum int is still
present but its value is lower than 2 and it is obtained a
much lower temperature~about 2 MeV!. For z5158,
n5236 the minimum int disappears. These predictions a
in agreement with experiments@23,25#. It may be possible in
this type of hybrid model to investigate if for a larger syste
the effective freeze-out density is lower. This will be a
tempted in the future.

In summary, the methodology exemplified in this pap
will allow quick computations of many observables seen
intermediate energy heavy ion collisions. The calculatio
give what is predicted by statistical models which have lo
standing applications in nuclear physics. The calculations
actually easier to implement than grand canonical calcu
tions which were done for Bevalac physics~for a summary
of such calculations see Ref.@26#!.
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