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Imaginary deuteron optical potential due to elastic and inelastic breakup
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The contributions to the reaction cross section from elastic and inelastic breakup processes, calculated within
the post-form distorted-wave Born-approximation theory, are used as constraints to determine the contributions
to the imaginary part of the deuteron optical potential~IPDOP! due to the breakup channels. The Coulomb part
of this potential due to the elastic breakup process is seen to account for the long range absorption in the optical
potential. The nuclear parts of the IPDOP due to the elastic and inelastic breakup modes peak in different
regions of the nuclear surface, with the latter being almost an order of magnitude larger than the former. This
makes the IPDOP, due to the breakup channels determined by us, stronger than those calculated earlier
ignoring the inelastic breakup mode.@S0556-2813~99!02111-1#

PACS number~s!: 24.10.Ht, 25.45.De
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I. INTRODUCTION

In collisions between two nuclei the breakup of the p
jectile into two or more fragments is often a strong react
channel, which affects not only the imaginary part but a
the real part of the corresponding optical potential. T
leads to a dynamical polarization potential~DPP! which has
to be added to the real potential calculated by double fold
models~DFMs! ~see, e.g., a recent review in@1#!. Otherwise,
the real part of the DFM potentials for weakly bound proje
tiles ~e.g., 6,7Li and 9Be) require arbitrary renormalizatio
factors in order to fit their elastic scattering data@2#. Whereas
folding model calculations have been performed for both r
and imaginary parts of the nucleon optical potentials@3#, for
the case of light ions they are confined only to the real
tentials which together with a phenomenological imagin
part is used to describe the corresponding elastic scatte

One of the problems associated with the microscopic
culations of the imaginary part of the light ion optical pote
tial has been to include the effects due to breakup of
projectile in the field of the target nucleus, which is a stro
reaction channel for these nuclei. Experimental studies h
shown that even for strongly bound projectiles the proba
ity of breakup increases drastically with increasing beam
ergy @4,5#. For example, the cross section for breakup of
a particle into n13He increases by, at least, an order
magnitude as the beam energy is varied from 65 MeV to
MeV @6,7#. Thus the effects of breakup are important also
tightly bound projectiles for beam energies above 30 Me
nucleon.

The optical potentials due to the breakup channels h
been calculated by several authors in the past@8–11#. Most
of them are based on coupled channel~CC! techniques where
the excitation of the breakup channel and its feedback on
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elastic channel is studied. However, such calculations
rather complicated as one has to find reliable approximati
to include the higher order effects and the complete brea
continuum in the calculations@10,11#. Moreover, the inelas-
tic breakup mode, which dominates the total breakup cr
sections@12#, cannot be included in these calculations.

In this paper we follow a method introduced in@13#,
where it was shown that unitarity of the scattering mat
makes it possible to investigate the influence of the brea
process on the elastic scattering even without introducing
coupling of the breakup channel back to the elastic chan
In this procedure, the elastic scattering and breakup reac
are investigated separately. In the first step, the breaku
the projectile in the nuclear and Coulomb fields of the tar
nucleus is calculated following post-form distorted-wa
Born-approximation ~DWBA! theory. In this first order
theory, which reproduces the experimental breakup d
rather well, only the coupling of the elastic channel to t
breakup channel is considered. The contribution of each
tial wave of the incident projectile to the total breakup cro
section can be explicitly determined within this theory. Wit
out such a partial-wave decomposition, the present appro
would have not been feasible.

In the second step, the elastic scattering of the projectil
calculated from the known optical potential. We determi
the reaction cross section for each partial wave~which are
uniquely determined by the imaginary part of the cor
sponding phase shifts! and split it ~using the unitarity of the
scattering matrix! into two parts, one due to the breaku
channels and the another due to the rest. Since the rea
cross sections out of a specific channel can be related to
expectation value of the imaginary part of the optical pote
tial associated with that channel~which is calculated with the
corresponding optical model wave function in the entran
channel! @14#, we use the breakup cross sections calcula
within post-form DWBA theory as constraints in a fittin
procedure to determine the imaginary part of the poten
due to the breakup channels. We prefer not to call it
©1999 The American Physical Society15-1
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A. INGEMARSSON AND R. SHYAM PHYSICAL REVIEW C60 054615
dynamical polarization potential as this phrase is used
potentials having both real and imaginary parts.

The formalism used in our calculations is discussed in
next section. The results and their discussions are prese
in Sec. III. The summary and conclusions of our work a
given in Sec. IV.

II. METHOD OF CALCULATIONS

We write the phenomenologically determined optical p
tential U(r ) @5V(r )1 iW(r )# as

U~r !5@U~r !2Ubu~r !#1Ubu~r !, ~1!

whereUbu is the dynamical polarization potential due to t
breakup channels. The wave functionsyl(r ) and wl(r ),
corresponding to potentialsU(r ) and @U(r )2Ubu(r )#
@5 Ubare(r ), the bare potential#, respectively, satisfy the fol
lowing radial Schro¨dinger equations:

d2yl~r !

dr2
1Fk22U~r !2

l ~ l 11!

r 2 Gyl~r !50, ~2!

d2wl~r !

dr2
1Fk22Ubare~r !2

l ~ l 11!

r 2 Gwl~r !50, ~3!

wherek is the wave number of the incident deuteron. For
.Rp ~where Rp is the distance beyond which the nucle
interactions can be ignored!, the wave functionsyl(r ) and
wl(r ) are normalized according to

yl~r !;eid l@cosd lFl~kr !1sind lGl~kr !#, ~4!

wl~r !;eid l
0
@cosd l

0Fl~kr !1sind l
0Gl~kr !#, ~5!

whereFl andGl are the regular and irregular Coulomb fun
tions.d l andd l

0 are the scattering phase shifts correspond
to potentialsU(r ) andUbare(r ).

The expressions for the partial-wave amplitudes can
written in either of the following two forms@15#:

f l52
1

kE0

`

Fl~kr !Ubare~r !yl~r !dr

2
1

kE0

`

Fl~kr !Ubu~r !yl~r !dr5 f l
A1 f l

B ~6!

and

f l52
1

kE0

`

Fl~kr !Ubare~r !wl~r !dr

2
1

kE0

`

wl~kr !Ubu~r !yl~r !dr5 f l
C1 f l

D . ~7!

These decompositions of the partial-wave amplitud
were used in an earlier study@16# of the optical potential due
to breakup channels. However, the breakup amplitude
assumed to be obtained from the differencef l2 f l

C instead of
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f l2 f l
A . This neglected the fact that the amplitude from t

bare potential is affected by the presence of the breakup
tential and generated a dependence on the real part o
breakup potential. As will be shown below, a separation
the reaction cross section into contribution of various ch
nels requires knowledge of the real potentialV(r ) only.

Although the reaction cross section~which includes con-
tributions from all the inelastic channels! can be calculated
directly from the partial-wave amplitudes described abo
we use here an expression where it is written in terms of
imaginary part of the optical potential@14,17#. This method
was used earlier@18,17,19# to calculate the contributions to
the imaginary part of the optical potential from the fusio
channels. We can write the reaction cross section (sR) as

sR5
2p

\v
^x i

(1)uWux i
(1)&, ~8!

wherev is the relative velocity in the entrance channel a
x i

(1) the full solution of the Schro¨dinger equation~whose
radial part isyl). We can also write

sR5
p

k2 (
l

~2l 11!Tl , ~9!

where the transmission coefficient (Tl) is given by

Tl5
4

\vE0

`

uyl~r !u2W~r !dr. ~10!

It may be noted thatTl can also be related to the amplitud
f l @Eqs. ~6! and ~7!# by Tl54(u f l u22 f l

I), where f l
I denotes

the imaginary part off l . However, the advantage of Eq.~10!
lies in the fact that it involves a linear dependence ofTl on
the imaginary potential. This allows us to splitTl into terms
corresponding to the contributions from different channe
as will be discussed below.

Using unitarity of theS matrix, the transmission coeffi
cient Tl can be written as

Tl512uSll u25(
cÞ l

uSlcu2, ~11!

where S represents the scattering matrix andl denotes the
elastic channel. For simplicity of notation we take the pr
jectile and target nuclei to be spinless; hencel corresponds to
the total spin, andc describes any other channel with tot
angular momentuml. Thus Eq.~11! enables us to express th
transmission coefficientTl as a sum~or integral for continu-
ous channels! over all the reaction channels. This allows
to write

sR5sR
bare1sbu,d , ~12!

for each partial wavel. In this equationsbu,d represents the
contribution to the reaction cross section from the break
channels, whilesR

bare is the reaction cross section corr
sponding to the remaining channels. Following Refs.@18,19#,
we decompose the total imaginary potentialW(r ) into a bare
5-2
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IMAGINARY DEUTERON OPTICAL POTENTIAL DUE TO . . . PHYSICAL REVIEW C60 054615
component and a component due to breakup asW(r )
5Wbare(r )1Wbu(r ). Then, expressions similar to Eq.~9!
can be written forsR

bare and sbu,d with correspondingTl ’s
given by

Tl
bare5

4

\vE0

`

uyl~r !u2Wbare~r !dr ~13!

and

Tl
bu5

4

\vE0

`

uyl~r !u2Wbu~r !dr, ~14!

where theWbu consists of a part due to the elastic break
Wdiss and a part due to the inelastic breakupWinbu. In our
fitting procedure, potentialsWdiss andWinbu ~with a certaina
priori assumed form! are varied so that the elastic or inelas
breakup cross sections~calculated within post-form DWBA
theory which is described below! are reproduced for eac
partial wave. We impose the constraint thatWbu<W for all r.
Of course, the potentials due to breakup so determined
specific to our breakup cross section and it could be differ
from such potentials defined by other authors.

It may be noted that the dependence on the real pote
entering into the transmission coefficients@Eqs. ~10!, ~13!,
and~14!# is only through that of the phenomenological op
cal potential that is used to calculateyl . In the calculations
presented in this paper we assume that this potentia
known from the description of the elastic scattering. Thus
information about the real part of the potential due to
breakup channels can be extracted. However, had one st
from a real potential calculated within a double foldin
model, it would have been necessary to include a dynam
polarization potential~having a real part! in order to repro-
duce both the elastic scattering and breakup probabilities
multaneously. It is also worthwhile to note that if the ener
dependence of the imaginary potential is known over a s
ficiently large range of energies, the dispersion relations m
be helpful in getting the corresponding real potential@20,21#.

In the post-form DWBA theory of the inclusive breaku
reaction@e.g.,d1A→p1X, to be represented as (d,p)# the
total breakup cross section is defined by@12,13#

sbu(d,p)5E dVpdEp

d2s~d,p!

dVpdEp
, ~15!

where d2s(d,p)/dVpdEp is the double differential cros
section for the reaction (d,p), which is the sum of the elasti
and inelastic breakup modes. The former@where X corre-
sponds ton1A(g.s.)# is given by

d2s~elastic!

dVpdEp
5r~phase! (

l nmn

ub l nmn
u2. ~16!

Using a zero-range approximation, the amplitudeb l nmn
can

be written as
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b l nmn
5D0E d3rxp

(2)* S kp ,
A

A11
r DFl n

~kn ,r !

3Yl nmn
* ~ r̂ !xd

(1)~kd ,r !L~r !P~r !. ~17!

D0 is the zero-range constant for thed→p1n vertex. Its
value has been taken to be 125 MeV fm3/2 which is consis-
tent with the known properties of thep-n system. The func-
tion L(r ) takes into account finite range effects within th
local energy approximation~LEA! @22,23#. We have used
the form of L(r ) as that given in@22# with a finite range
correction parameter of 0.621, a value used in most of
calculations on deuteron-induced transfer and breakup r
tions.P(r ) accounts for the nonlocality of the optical pote
tials. This is calculated by following the method of Perey a
Buck @24,23#, with the nonlocality parameters of 0.85 in th
neutron and proton channels and 0.54 in the deuteron c
nel.

In Eq. ~17!, x6 are the optical model wave functions i
the respective channels withk’s being the corresponding
wave numbers.Fl n

(kn ,r ) is the radial part of the wave func

tion in then1A(g.s.) channel. In Eq.~16!, r(phase) is the
three-body phase-space factor@25,26#. It should be noted
that the integrand in Eq.~17! involves three scattering wav
functions which are asymptotically oscillatory. This mak
the radial integrals involved therein very slowly convergin
However, integrals of this kind can be effectively evaluat
by using a contour integration method@27,28#.

To calculate the cross section for the inelastic break
process, whereX can be any two-body channel of theB5n
1A system, we start from aT matrix

Td,pX5^FBX
(2)xp

(2)uVnpufAfdxd
(1)&, ~18!

wherefA andfd denote the ground state wave functions
the target nucleusA and the projectile~deuteron!, respec-
tively. FBX

(2) represents the complete scattering state of
systemB with the boundary conditionX. The integration
over the internal coordinates offA in Eq. ~18! leads to a
form factor for the inelastic process. The calculation of t
form factor simplifies greatly if we use a surface approxim
tion @29#, where we assume that the main contribution
Td,pX comes from the region outside the range of the nucl
interaction. The validity of this approximation has be
tested by Kasano and Ichimura@30# by evaluating this inte-
gral without recourse to this approximation. These auth
find that the surface approximation is valid for the deutero
induced breakup reaction even at the lower beam energ
25 MeV. Thus we can represent the radial part of the fo
factor (Fl n

X ) by its asymptotic form

Fl n
X 5d l nXj l n

~knr !1
1

2
Amnkn

mXkX
~Sl nX2d l nX!hl n

(1)~knr !,

~19!

where j l n
and hl n

(1) denote the spherical Bessel and Hank

functions, respectively.Sl nl n
are the scattering matrix ele

ments for the elastic channel corresponding to the ang
5-3
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A. INGEMARSSON AND R. SHYAM PHYSICAL REVIEW C60 054615
momentuml n . Now, it is straightforward to carry out th
integrations over the angles of the unobserved particle to
the double differential cross section from the triple differe
tial cross sections. This leads to a reducedT matrix for the
processd1A→p1X,

T̃d,pX5Amnkn

mXkX

Sl nX

Sl nl n
21

D0E d3rxp
(2)*

3S kp ,
A

A11
r D @Fl n

~kn ,r !2 j l n
~knr !#

3Yl nmn
* ~ r̂ !xd

(1)~kd ,r !L~r !P~r !. ~20!

In order to calculate the double differential cross section
the inelastic breakup, one has to sum over all the chan
XÞ l n . Since in Eq.~20! the entire dependence on channeX
rests solely in theS matrix Sl nX , this summation can be
easily carried out using the unitarity of theS matrix:

(
XÞ l n

uSl nXu2512uSl nl n
u2. ~21!

Therefore, we only need to know theS-matrix elements of
the elastic scattering to determine the double differen
cross sections for the inelastic breakup, which can be wri
as

d2s~ inelastic!

dVpdEp
5r~phase!

3 (
l nmn

~s l n
reaction/s l n

elastic!ub l nmn
2b l nmn

0 u2.

~22!

In this equations l n
reactionands l n

elasticare the reaction and elas

tic scattering cross sections for the neutron-target system
responding to the partial wavel n , respectively.b l nmn

0 is de-

fined in the same way as Eq.~17! with the wave functionFl n
being replaced by the spherical Bessel function. More det
of the derivation of the inelastic breakup cross sections
be found in Refs.@12,29#.

The total cross section for the reaction (d,p) can also be
written as

sbu(d,p)5
p

k2 (
l

~2l 11!Tl
bu(d,p) , ~23!

whereTl
bu(d,p) is the transmission coefficient for the (d,p)

breakup reaction, which is also termed as the breakup p
ability in @13#. The total breakup probabilityTl

bu,d is given by

Tl
bu,d5Tl

bu(d,pn)1Tl
bu(d,p)~ inelastic!1Tl

bu(d,n)~ inelastic!.
~24!
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In Eq. ~24!, Tl
bu(d,pn) represents the breakup probability fo

the elastic breakup mode as defined above. The total brea
cross sectionsbu,d is obtained fromTl

bu,d by following an
expression similar to Eq.~9!.

III. RESULTS AND DISCUSSION

Apart from the zero-range constant, finite range, and n
locality parameters described already in Sec. II, we requ
the optical potentials in the deuteron, proton, and neut
channels to calculate the breakup cross sections. These
been taken from the global sets given by Daehnick, Chi
and Vrcelj@31# ~for the deuteron channel! and Becchetti and
Greenlees@32# ~for the proton and neutron channels!, respec-
tively.

In Fig. 1 we show the results for the breakup probabil
for the deuteron incident on a51V target at the beam energ
of 56 MeV, calculated within post-form DWBA theory. In
this figure we have also shown the total transmission coe
cients calculated with the same deuteron optical poten
We can see that the (d,p) and (d,n) breakup probabilities
are similar in shape and absolute magnitude. The ela
breakup probability is much smaller and shows a differ

FIG. 1. Calculated breakup probabilities in the scattering of
MeV deuteron from51V. The open triangles show the transmissio
coefficients calculated with the optical model potential as explai
in the text.
5-4



s-

hi
f

e
-
,
o

-
he

ti
ou
st
in
is
a
n
on
s

th

g
th
ar

th
cia
m
e

w

a-
r
-

ll
e
ar
e
lc
th
c

os

t
ar
2
th

ure

ial
-

.
ffi-
op

ia-
ng
ti-
D
an
co-
ion
gly

ical
ffi-

the

-
the

re-
Fig.
ith

e
BP

ial

he
kup
ou-

d by
ows
the
tri-

ith

IMAGINARY DEUTERON OPTICAL POTENTIAL DUE TO . . . PHYSICAL REVIEW C60 054615
behavior as a function ofl. The cross sections for the inela
tic (d,p), inelastic (d,n) and elastic (d,pn) breakup pro-
cesses are 290 mb, 284 mb, and 122 mb, respectively, w
lead to a total deuteron breakup cross section of 698 mb
this target. The total (d,p) breakup cross section@which is
the sum of inelastic (d,p) and elastic (d,pn) cross sections#
is 412 mb which is in reasonable agreement with the m
sured value of 481 mb@33#. The remaining difference be
tween the experimental and theoretical cross sections
some extent, may be attributed to the likely contributions
quasielastic channels like (d,dp) to the inclusive proton
spectra.

An important feature of Fig. 1 is the fact that forl .21,
the elastic breakup probability~EBP! exceeds the total trans
mission coefficient. This shows the inadequacy of the p
nomenological deuteron optical potential~used to determine
the transmission coefficient! for larger values ofl. The
Woods-Saxon shapes used to obtain such optical poten
are too restricted in their radius dependence. It is obvi
that these potentials do not account correctly for the ela
breakup channel~which we shall refer to as dissociation
the following! at large distances. We also note from th
figure that both elastic and inelastic breakup probabilities
relatively large at very small partial waves. This is the co
sequence of the weak absorption of neutrons and/or prot
For breakup reactions involving heavier projectiles, the
probabilities are quite small at these partial waves@12,13#.

Now we proceed to determine the potential due to
dissociation process. As already pointed out in Ref.@13#, it is
the Coulomb force which is responsible for the long ran
part of the EBP. In case of a pure Coulomb interaction,
eikonal approximation may be used to relate the imagin
phase shifts to an imaginary potential@34,35#. Sincesbu,d
defines uniquely an imaginary phase shift, we can use
method to determine the imaginary pure Coulomb disso
tion potential by fitting the EBP calculated by post-for
DWBA theory with Coulomb interactions only between th
deuteron and proton and the target nucleus.

On the left side of Fig. 2, the Coulomb EBPs are sho
with Coulomb interactions obtained from~1! an uniform
charge distribution@with a radius (RC) of 1.3 fm# ~solid
circles! and ~2! a Woods-Saxon charge distribution with r
dius and diffuseness parameters of 1.3 fm and 0.65 fm,
spectively~open circles!. We observe that the Coulomb dis
sociation is sensitive to the charge distribution for smal
values. For larger partial waves, however, they produce id
tical results which is to be expected. It is explicitly cle
~together with Fig. 1! that the Coulomb force determines th
EBP at higher partial waves. We have used an EBP ca
lated with the Coulomb potentials generated from
Woods-Saxon charge distribution to perform the fits. In fa
this diffuse Coulomb potential has been used in all the p
form DWBA calculations presented in this paper.

We used a two-parameter, (ae2br) as well as a six-
parameter parametrization@(a11a2r 1/21a3r 1a4r 5)/(1
1a4r )#e(2b1r 2b2r 2) in our fitting process. The best fi
breakup probabilities obtained with the two procedures
shown by dotted and solid curves in the left part of Fig.
The corresponding imaginary potentials are shown in
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right side of this figure. The six-parameter search proced
~with b1 andb2 being equal to 0.1118 and 0.0113! provides
a better fit to the EBP. The two-parameter fits had a rad
dependence ofe20.3r . In comparison to this the Woods
Saxon potential behaves approximately ase2r /a'e22.0r

~with a being the diffuseness parameter!, at larger distances
Therefore, it is not surprising that the transmission coe
cients calculated with conventional optical potentials dr
too fast at larger partial waves.

It is clear that the potential due to the Coulomb dissoc
tion ~PCD! is very weak. We found that the elastic scatteri
angular distributions calculated with phenomenological op
cal potential were almost unaffected by inclusion of the PC
to its imaginary part. Also this leads to a change of less th
1% in the total reaction cross section. The transmission
efficients at lower partial waves are affected by the inclus
of the PCD, but the nuclear effects damp them out stron
in this region, as is discussed in the context of Fig. 3.

We therefore added the PCD to the phenomenolog
imaginary potential as it leads to a total transmission coe
cient which is larger than~or equal to! the EBP for all partial
waves as can be seen from the left part of Fig. 3, where
total transmission coefficients obtained with~solid triangles!
and without~open triangles! adding the PCD to the phenom
enological optical potential are shown. It can be seen that
addition of the PCD to the phenomenological potential
moves the anomaly described above. In the right side of
3, we compare the results of the Coulomb EBP obtained w
@by using Eq.~13!# and without nuclear distortion. We not
that nuclear distortion effects suppress the Coulomb E
strongly for lower partial waves. However, for larger part
waves the two calculations produce identical results.

FIG. 2. Results of calculations without nuclear interactions. T
left part of the figure shows the calculated Coulomb elastic brea
probabilities for the same reaction as in Fig. 1 obtained with C
lomb potentials generated with a uniform charge distribution~solid
circles! and a charge distribution with Woods-Saxon shape~open
circles!. The dashed and solid curves show the best fits obtaine
using two and six parameter parametrizations. The right part sh
the corresponding best fit potentials obtained by fitting to
breakup probability calculated with the Woods-Saxon charge dis
bution. The solid~dashed! curve represents the results obtained w
six- ~two-! parameter parametrizations.
5-5
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A. INGEMARSSON AND R. SHYAM PHYSICAL REVIEW C60 054615
In order to find the potentials due to the inelastic break
and nuclear dissociation, we used Eq.~13!. The inelastic and
elastic breakup probabilities calculated within the post fo
DWBA ~Fig. 1! were fitted by using a sum of Gaussia
~SOG! parametrization@36#

Ubu
SOG~r !5(

i
Ai„exp@2$~r 2Ri !/g%2#

1exp@2$~r 1Ri !/g%2#…. ~25!

The value ofg was taken to beA2/3 @36#, and a total of 15
terms were included in the sum. The coefficientsAi and po-
sitions Ri were varied in order to get the best fits to t
elastic, inelastic, and total breakup probabilities, which
shown, in the left, middle, and right parts of Fig. 4, respe
tively. The solid circles show the results of the post-fo
DWBA ~same as that in Fig. 1!, while open circles represen
our fits. In case of the EBP, we also show the results for
pure Coulomb case~open triangles! ~the same as shown i
the right side of Fig. 2!. We can see that the Coulomb EB
agrees very well with that obtained by fitting the total EB
for values ofl . 21. It should be remarked here that in th
study of Christley et al. @19#, who have used a simila
method to determine the fusion potential by fitting to t
fusion cross sections calculated within a coupled-react
channel model, the quality of fits were not as good. Th
attribute this failure to the lack ofl dependence in their fit

FIG. 3. The left part shows the transmission coefficients in
elastic scattering calculated with the phenomenological optical
tential with ~solid triangles! and without~open triangles! the addi-
tion of the imaginary potential due to elastic Coulomb dissociati
The right part shows the breakup probabilities for elastic Coulo
dissociation calculated in the eikonal approximation~same curve as
shown in Fig. 2! ~solid circles! and those obtained in the full ca
culations with nuclear distortions included~open circles!.
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ting potential~which were taken to be of the Woods-Saxo
type!. However, we do not require such a dependence in
fitting procedure.

The potentials giving these breakup probabilities a
shown in the upper part of Fig. 5. The solid, dashed, a
dotted curves show the potentials due to the inelastic brea
~which has been plotted after multiplying the actual valu
by 0.09!, nuclear dissociation, and Coulomb dissociation~al-
ready shown in Fig. 2!, respectively. We note that the inela
tic breakup and nuclear dissociation potentials are stron
concentrated in a region around 6.5 fm and 8 fm, resp
tively. Both potentials have about the same width, 2 fm@full
width at half maximum~FWHM!#, which is very similar to
the rms radius of the deuteron. The difference in the loc
ization of the inelastic and dissociation potentials confir
the fact that inelastic breakup of the projectile occurs in
gions closer to the target nucleus as compared to the el
breakup. It is worthwhile to note that the potential due to t
inelastic breakup is quite large. Therefore, those calculati
@10,11,37,38# where this mode of breakup is not consider
are likely to produce weaker imaginary potentials due to
breakup channels as compared to ours. Because of its
range, the potential due to the Coulomb dissociation is s
of appreciable magnitude at large distances. Coulo
breakup thus can take place even outside the charge d
bution of the target nucleus.

In the middle part of Fig. 5, we compare the imagina
part of the phenomenological optical potential~solid line!
with the bare potential~obtained by subtracting the potenti
due to breakup from it! ~dashed line!. It is clear that breakup
is the dominant absorption effect in the surface region. T
bare potential could be the starting point of double foldi
model calculations.

In the lower part of Fig. 5, we show the radial depe
dences of the neutron, proton, and matter densities for
51V nucleus@39#. We note that breakup potentials peak in
region where the matter and charge densities are m

e
o-

.
b

FIG. 4. The elastic, inelastic, and total breakup probabilit
calculated within the post-form distorted-wave Born approximat
~solid circles! and our best fit values to them~open circles!. Open
triangles, in the left part of the figure, represent the breakup pr
ability for the elastic Coulomb dissociation~same as those shown i
the right part of Fig. 3 by open circles!.
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smaller as compared to the central density of the ta
nucleus. Therefore, the breakup process is really sensitiv
the extreme peripheral regions. This also confirms the sp
tator role of the target nucleus in the breakup process~Serber
picture!. However, the region where the breakup potenti
peak is much larger than the half density radius deduced
Serber@40#. This could be of interest for the reactions
neutron halo nuclei.

It should be stressed that our method of obtaining
imaginary part of the optical potential due to the break
channels is phenomenological in nature. However, it has
eral good features. The distinctly different nature of the to
breakup cross section as a function of the incident pa
waves is automatically taken into account. The Coulo
breakup process which is responsible for the long range
of the elastic breakup probability~and the dissociation po
tential! is included into our calculations. Furthermore, w
include the inelastic breakup mode which makes the larg

FIG. 5. The upper figure shows the imaginary potentials due
inelastic breakup~arbitrarily multiplied by 0.09 to fit in the plot!
~solid line! and the potential due to nuclear dissociation~dashed
line!. The dotted curve shows the Coulomb dissociation poten
The middle part shows the optical potential with~solid curve! and
without ~dotted curve! effects of breakup. In the lower part th
dashed, dotted, and solid curves show the neutron, proton, and
ter densities for51V, respectively, as calculated by Fayans@39#.
05461
et
to
c-

s
y

e
p
v-
l

al
b
rt

st

contribution to the imaginary potential. Both these effe
were ignored in calculations presented in Refs.@10,11#.

IV. SUMMARY AND CONCLUSIONS

In this paper we calculated the imaginary part of the o
tical potential due to the breakup channels by using a p
nomenological method in which contributions to the react
cross sections from the elastic and inelastic breakup c
sections of the projectile in the field of target nuclei, calc
lated in the post-form distorted-wave Born approximatio
are used as constraints in a fitting procedure. In this meth
only the first order breakup process~the coupling of the elas-
tic channel to the breakup channel! is considered. Then uni
tarity of the S matrix is used to determine the influence
breakup on the elastic channel.

The Coulomb part of the imaginary dissociation potent
~obtained from the pure Coulomb elastic breakup probab
ties! accounts for the long range part of the absorption a
removes the anomaly where for partial waves beyond 20
elastic breakup probabilities were found to be even lar
than the transmission coefficients calculated with the us
phenomenological optical potentials. To our knowledge t
is the first calculation where the absorption due to the C
lomb dissociation process has been included in the opt
model. The potentials due to the nuclear dissociation
found to be peaked in the region around 8.0 fm.

The imaginary potential due to inelastic breakup is ab
an order of magnitude larger than that due to the dissocia
process, and is concentrated at somewhat shorter dist
~around 6.5 fm! as compared to the latter. This suggests t
inelastic breakup takes place at distances closer to the ta
nucleus in comparison to elastic breakup. The magnitude
the total imaginary potential, due to the breakup chann
~IPBC!, is, therefore, almost solely due to the inelas
breakup process in the region around 6–8 fm. This is c
sistent with the dominant contribution of this mode to t
total breakup cross section. This is the main reason for
IPBC being stronger than the imaginary part of the dyna
cal polarization potential due to breakup channels calcula
by other authors, who have ignored the inelastic brea
mode.

Our method can be applied to any projectile having
strong breakup channel. Therefore, it would be interesting
use this method to the elastic scattering of halo nuclei~e.g.,
11Li and 11Be) @41#, where the breakup cross sections a
significantly enhanced and the effect of breakup on the e
tic scattering is very strong.
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