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Imaginary deuteron optical potential due to elastic and inelastic breakup
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The contributions to the reaction cross section from elastic and inelastic breakup processes, calculated within
the post-form distorted-wave Born-approximation theory, are used as constraints to determine the contributions
to the imaginary part of the deuteron optical poteniBDOP) due to the breakup channels. The Coulomb part
of this potential due to the elastic breakup process is seen to account for the long range absorption in the optical
potential. The nuclear parts of the IPDOP due to the elastic and inelastic breakup modes peak in different
regions of the nuclear surface, with the latter being almost an order of magnitude larger than the former. This
makes the IPDOP, due to the breakup channels determined by us, stronger than those calculated earlier
ignoring the inelastic breakup mode&0556-28189)02111-1

PACS numbd(s): 24.10.Ht, 25.45.De

I. INTRODUCTION elastic channel is studied. However, such calculations are
rather complicated as one has to find reliable approximations
In collisions between two nuclei the breakup of the pro-to include the higher order effects and the complete breakup
jectile into two or more fragments is often a strong reactioncontinuum in the calculationsl0,11]. Moreover, the inelas-
channel, which affects not only the imaginary part but alsatic breakup mode, which dominates the total breakup cross
the real part of the corresponding optical potential. Thissectiong12], cannot be included in these calculations.
leads to a dynamical polarization potentiBIPP which has In this paper we follow a method introduced ja3],
to be added to the real potential calculated by double foldingvhere it was shown that unitarity of the scattering matrix
models(DFMs) (see, e.g., a recent review[ih]). Otherwise, makes it possible to investigate the influence of the breakup
the real part of the DFM potentials for weakly bound projec-process on the elastic scattering even without introducing the
tiles (e.g., ®'Li and °Be) require arbitrary renormalization coupling of the breakup channel back to the elastic channel.
factors in order to fit their elastic scattering dg2& Whereas In this procedure, the elastic scattering and breakup reaction
folding model calculations have been performed for both reahre investigated separately. In the first step, the breakup of
and imaginary parts of the nucleon optical potentj8ls for  the projectile in the nuclear and Coulomb fields of the target
the case of light ions they are confined only to the real ponucleus is calculated following post-form distorted-wave
tentials which together with a phenomenological imaginaryBorn-approximation(DWBA) theory. In this first order
part is used to describe the corresponding elastic scatteringheory, which reproduces the experimental breakup data
One of the problems associated with the microscopic calrather well, only the coupling of the elastic channel to the
culations of the imaginary part of the light ion optical poten- breakup channel is considered. The contribution of each par-
tial has been to include the effects due to breakup of theial wave of the incident projectile to the total breakup cross
projectile in the field of the target nucleus, which is a strongsection can be explicitly determined within this theory. With-
reaction channel for these nuclei. Experimental studies haveut such a partial-wave decomposition, the present approach
shown that even for strongly bound projectiles the probabilwould have not been feasible.
ity of breakup increases drastically with increasing beam en- In the second step, the elastic scattering of the projectile is
ergy[4,5]. For example, the cross section for breakup of thecalculated from the known optical potential. We determine
a particle inton+3He increases by, at least, an order ofthe reaction cross section for each partial wéwhich are
magnitude as the beam energy is varied from 65 MeV to 14@Qiniquely determined by the imaginary part of the corre-
MeV [6,7]. Thus the effects of breakup are important also forsponding phase shift@ind split it (using the unitarity of the
tightly bound projectiles for beam energies above 30 MeV/scattering matrix into two parts, one due to the breakup
nucleon. channels and the another due to the rest. Since the reaction
The optical potentials due to the breakup channels haveross sections out of a specific channel can be related to the
been calculated by several authors in the p8stll]. Most  expectation value of the imaginary part of the optical poten-
of them are based on coupled chan(@&C) techniques where tial associated with that chann@hich is calculated with the
the excitation of the breakup channel and its feedback on theorresponding optical model wave function in the entrance
channel [14], we use the breakup cross sections calculated
within post-form DWBA theory as constraints in a fitting
*Electronic address: Anders.Ingemarsson@tsl.uu.se procedure to determine the imaginary part of the potential
Electronic address: shyam@tnp.saha.ernet.in due to the breakup channels. We prefer not to call it the
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dynamical polarization potential as this phrase is used fof,— . This neglected the fact that the amplitude from the

potentials having both real and imaginary parts. bare potential is affected by the presence of the breakup po-
The formalism used in our calculations is discussed in theential and generated a dependence on the real part of the

next section. The results and their discussions are presentgfeakup potential. As will be shown below, a separation of

in Sec. Ill. The summary and conclusions of our work arethe reaction cross section into contribution of various chan-
given in Sec. IV. nels requires knowledge of the real potent4t) only.
Although the reaction cross secti@which includes con-
Il. METHOD OF CALCULATIONS tributions from all the inelastic channglsan be calculated

. . . _ directly from the partial-wave amplitudes described above,

We write the phenomenologically determined optical po-ye e here an expression where it is written in terms of the

tential U(r) [=V(r)+iW(r)] as imaginary part of the optical potentifl4,17. This method
_ _ was used earligf18,17,19 to calculate the contributions to
U =[U)=Up)]+ Unir), @ the imaginary part of the optical potential from the fusion

whereUy, is the dynamical polarization potential due to the channels. We can write the reaction cross sectigg) (as
breakup channels. The wave functioggr) and w(r),
corresponding to potentialdJ(r) and [U(r)—Up(r)] o :2_7T<X_(+)|W|X_(+)> (8)
[= Upadr), the bare potentigl respectively, satisfy the fol- kv b

lowing radial Schrdinger equations: ) ) o
wherev is the relative velocity in the entrance channel and

a2y [ I(1+1) x\*) the full solution of the Schidinger equation(whose
———+|K*=U(r)— ® yi(r)=0, (2)  radial part isy;). We can also write

dw(r) [ I(1+1) or= 2 S (24T, )
a2 +|ke=Upadr)— 2 w,(r)=0, 3 G

i o where the transmission coefficient,j is given by
wherek is the wave number of the incident deuteron. For

>R, (whereR, is the distance beyond which the nuclear 4 (= )
interactions can be ignorgdthe wave functiong/(r) and T':Efo lyi(n)[W(r)dr. (10
w,(r) are normalized according to

It may be noted thaf, can also be related to the amplitudes
f, [Egs. (6) and (7)] by T,=4(|f,|?—f|), wheref| denotes
the imaginary part of, . However, the advantage of E4.0)

lies in the fact that it involves a linear dependencel pbn

the imaginary potential. This allows us to split into terms
corresponding to the contributions from different channels,
%s will be discussed below.

Using unitarity of theS matrix, the transmission coeffi-
ntT, can be written as

y,(r)~e'%[coss F|(kr)+sin8G(kr)], (4)

w,(r)~e‘5f)[cosﬁf’F|(kr)+sin5?G|(kr)], (5)

whereF, andG, are the regular and irregular Coulomb func-
tions. andélO are the scattering phase shifts correspondin
to potentialsU(r) andU,{r).

The expressions for the partial-wave amplitudes can b%ie
written in either of the following two form$15]:

1 (e T=1-1S%= 2, 11
fi=— | Fikn Unad Dy mLlse I -
1 (= where S represents the scattering matrix ahdenotes the
— Fl(kr)ubu(r)yl(r)drzf|A+f|B (6) ialas_tic channel. For simplicity qf notation we take the pro-
kJo jectile and target nuclei to be spinless; hehcerresponds to

the total spin, anat describes any other channel with total

and angular momenturh Thus Eq.(11) enables us to express the
1 (= transmission coefficienk; as a sunior integral for continu-
fi=— Ff Fi(KP) U pard D)W (r)dr ous qhanne)sover all the reaction channels. This allows us
0 to write
1 (= ____bare
—;fo wiknUpnyi(ndr=f+1P. (@) TRZOR T Thug, 12

for each partial wavé. In this equationoy, 4 represents the
These decompositions of the partial-wave amplitudesontribution to the reaction cross section from the breakup
were used in an earlier stud¥6] of the optical potential due channels, whilecr?{are is the reaction cross section corre-
to breakup channels. However, the breakup amplitude wasponding to the remaining channels. Following REES, 19,

assumed to be obtained from the differefice f{ instead of ~ we decompose the total imaginary potent(r) into a bare
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component and a component due to breakupV¥s)
=Wpardr) + W (r). Then, expressions similar to E)
can be written foroR"® and oy, 4 with correspondingT,’s

given by
bare 4 * 2
T =iV [Yi(r)|*Whard r)dr (13
0

and

4 o
T [P ar, (14
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Fln(kn!r)

3, (—)* A
Bim,=Do | drxp | Kpiap g T

XY (DX§7 (K, DA(DP(r). (17)
Dy is the zero-range constant for tlde—p+n vertex. Its
value has been taken to be 125 Me\fhwhich is consis-
tent with the known properties of the n system. The func-
tion A(r) takes into account finite range effects within the
local energy approximatiolLEA) [22,23. We have used
the form of A(r) as that given if22] with a finite range
correction parameter of 0.621, a value used in most of the
calculations on deuteron-induced transfer and breakup reac-
tions. P(r) accounts for the nonlocality of the optical poten-

where theW,, consists of a part due to the elastic breakuptia|s- This is calculated by following the method of Perey and

Wgiss @and a part due to the inelastic breakéf,,,. In our
fitting procedure, potential/giss and Wi, (with a certaina

Buck [24,23, with the nonlocality parameters of 0.85 in the
neutron and proton channels and 0.54 in the deuteron chan-

priori assumed formare varied so that the elastic or inelastic nel.

breakup cross sectiorfsalculated within post-form DWBA

In Eq. (17), x~ are the optical model wave functions in

theory which is described belovare reproduced for each the respective channels witkis being the corresponding

partial wave. We impose the constraint thigj,<W for all r.

wave numbersk; (ky,r) is the radial part of the wave func-

Of course, the potentials due to breakup so determined at&n in then+A(g.s.) channel. In Eq16), p(phase) is the
specific to our breakup cross section and it could be differenthree-body phase-space fac{@5,26. It should be noted

from such potentials defined by other authors.

that the integrand in Eq17) involves three scattering wave

It may be noted that the dependence on the real potentidilinctions which are asymptotically oscillatory. This makes

entering into the transmission coefficierisgs. (10), (13),

the radial integrals involved therein very slowly converging.

and(14)] is only through that of the phenomenological opti- However, integrals of this kind can be effectively evaluated

cal potential that is used to calculage. In the calculations

by using a contour integration meth@2i7,2§.

presented in this paper we assume that this potential is To calculate the cross section for the inelastic breakup
known from the description of the elastic scattering. Thus ngrocess, wher& can be any two-body channel of tBe=n
information about the real part of the potential due to the+ A system, we start from & matrix

breakup channels can be extracted. However, had one started

from a real potential calculated within a double folding

Td,pX:<(D(B;<)XE17)|Vnp| ¢A¢dX((j+)>1 (18)

model, it would have been necessary to include a dynamical

polarization potentialhaving a real pajtin order to repro-

where ¢, and ¢4 denote the ground state wave functions of

duce both the elastic scattering and breakup probabilities sfhe target nucleug\ and the projectile(deuterop, respec-

multaneously. It is also worthwhile to note that if the energytively. ®f) represents the complete scattering state of the
dependence of the imaginary potential is known over a sufsystemB with the boundary conditiorX. The integration
ficiently large range of energies, the dispersion relations ma@ver the internal coordinates a@f, in Eq. (18) leads to a

be helpful in getting the corresponding real poterit?4l,21].

form factor for the inelastic process. The calculation of the

In the post-form DWBA theory of the inclusive breakup form factor simplifies greatly if we use a surface approxima-

reaction[e.g.,d+A—p+ X, to be represented ad,p)] the
total breakup cross section is defined[l2,13]

d?o(d,p)

Obud,p) = f ded Epm, (15)

where dzo(d,p)/ded E, is the double differential cross
section for the reactiond(p), which is the sum of the elastic

and inelastic breakup modes. The fornjerhere X corre-
sponds tan+A(g.s.)] is given by

d?o(elastio
—_—= h 2,
dedEp p(p aselz |:3Inmn|

nMn

(16)

Using a zero-range approximation, the ampli'umgmn can
be written as

tion [29], where we assume that the main contribution to
Tq,px comes from the region outside the range of the nuclear
interaction. The validity of this approximation has been
tested by Kasano and Ichimufa0] by evaluating this inte-
gral without recourse to this approximation. These authors
find that the surface approximation is valid for the deuteron-
induced breakup reaction even at the lower beam energy of
25 MeV. Thus we can represent the radial part of the form
factor (Fff1 ) by its asymptotic form

, 1 /myk
=81 xi1,(KaP) + 5V m;k;(s'nx_ 8 ) (kar),
(19

wherej, andh{*) denote the spherical Bessel and Hankel
functions, respectiverS,n,n are the scattering matrix ele-
ments for the elastic channel corresponding to the angular
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momentuml,,. Now, it is straightforward to carry out the | FAAsaRAABEaDA,
integrations over the angles of the unobserved particle to ge C 4 51 \/ + d
the double differential cross section from the triple differen- i 2
tial cross sections. This leads to a reduderhatrix for the - s E, = 56 MeV
processd+A—p+X, i e |
¢ 8 o (d,p) inelastic
! s . .
= MKy St R IR ITIOY “gOA ¢ (d.n) inelastic
Tg,px= — —1 Dof d3r)(f;)* A ae 4 (d,pn) elastic
X XS‘”I” % 4 ‘e 4 Opt. model
¥ R 44
A . E (444, aaaaanr )
X\ Kps a7 R (Ko P) =y (Kar)] = as
O - ®a
. O 10 | C%
XYF o (Dx§7(kg,DA(HP(r). 20 O
o .t
. . . L A A
In order to calculate the double differential cross section for - ., ‘.
the inelastic breakup, one has to sum over all the channel: @ | ot L,
X#1,. Since in Eq(20) the entire dependence on chanKel g L 1
rests solely in theS matrix S x this summation can be © F 8
easily carried out using the unitarity of ti&ematrix: 8 i ee
CD : R
L o0
> s x*=1-Is |~ (1) :
X#1, 4 e°
10 A
E o°
Therefore, we only need to know ttf&matrix elements of i 80
the elastic scattering to determine the double differential i §°
cross sections for the inelastic breakup, which can be writter >. L .(.)?
as 0 5 10 15 20 25 30 35
|
2 . .
M =p(phase FIG. 1. Calculated breakup probabilities in the scattering of 56
ded Ep MeV deuteron fromPV. The open triangles show the transmission
coefficients calculated with the optical model potential as explained
reactiory _elasti _ 0 2 in the text.
XlnEmn (o[ o2 B) = B |2

(220 In Eq. (24), T"@P" represents the breakup probability for
the elastic breakup mode as defined above. The total breakup
In this equations[®*"and 0?2 are the reaction and elas- Cross sectionry,,q is obtained fromTp*¢ by following an

I . o
tic scattering cross sections for the neutron-target system cofXpPression similar to E¢9).

responding to the partial waug, respectivelyﬁ,onmn is de-
fined in the same way as E@L7) with the wave functiorF,_ lll. RESULTS AND DISCUSSION
being replaced by the spherical Bessel function. More details
of the derivation of the inelastic breakup cross sections cap,
be found in Refs[12,29.

The total cross section for the reactioah, ) can also be
written as

Apart from the zero-range constant, finite range, and non-
cality parameters described already in Sec. Il, we require
the optical potentials in the deuteron, proton, and neutron
channels to calculate the breakup cross sections. These have
been taken from the global sets given by Daehnick, Childs,
and Vrcelj[31] (for the deuteron channehnd Becchetti and
Greenlee$32] (for the proton and neutron channelsespec-
tively.

In Fig. 1 we show the results for the breakup probability
bu(d.p) : o o for the deuteron incident on 3V target at the beam energy
where T, is the transmission coefficient for thel,p) o 56 Mev, calculated within post-form DWBA theory. In
breakup reaction, which is also termed as the breakup profpjs figure we have also shown the total transmission coeffi-
ability in [13]. The total breakup probabili};"“ is given by cjents calculated with the same deuteron optical potential.

We can see that thed(p) and (d,n) breakup probabilities

TPUd=TPudPn 4 TOUEP) (nelastio + TP (inelastig. are similar in shape and absolute magnitude. The elastic

(24 breakup probability is much smaller and shows a different

o
Toudp) = 2 El (21+1) TP (23
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behavior as a function df The cross sections for the inelas-

tic (d,p), inelastic @,n) and elastic §,pn) breakup pro- 16"
cesses are 290 mb, 284 mb, and 122 mb, respectively, whicl
lead to a total deuteron breakup cross section of 698 mb fol
this target. The totald,p) breakup cross sectignvhich is '
the sum of inelasticd, p) and elastic ¢,pn) cross sections

is 412 mb which is in reasonable agreement with the mea-
sured value of 481 mp33]. The remaining difference be-
tween the experimental and theoretical cross sections, @
some extent, may be attributed to the likely contributions of ®
guasielastic channels liked(dp) to the inclusive proton

1)
o

LI S AR

kup probabiliti
T T

Imaginary potential (MeV)

spectra. 0, F
An important feature of Fig. 1 is the fact that for 21, ° 10 2 30 0 5 o 5 20
the elastic breakup probabilitfEBP) exceeds the total trans- ! r (fm)

mission coefficient. This shows the inadequacy of the phe-
phoemﬁgﬂlsrgligzliodneu;g;?f?c?e;):'lf?oil ?;rte::(iiﬁgef gﬁtelmlge left part of the figure shows the calculated Coulomb elastic breakup
Wo0ds-S h dt btg' h opti .I tenti ﬁ)robabilities for the same reaction as in Fig. 1 obtained with Cou-
oods-saxon shapes used 1o obtain such optical potentiggg.,, potentials generated with a uniform charge distributsmwiid
are too restricted in their radius dependence. It is 0bV'°”§ircles) and a charge distribution with Woods-Saxon shéggen
that these pOtent'al_S do not account CorreCtIY for t,he, eIaSt'Eircles). The dashed and solid curves show the best fits obtained by
breakup channelwhich we shall refer to as dissociation in sing two and six parameter parametrizations. The right part shows
the following at large distances. We also note from thishe corresponding best fit potentials obtained by fitting to the
figure that both elastic and inelastic breakup probabilities ar@reakup probability calculated with the Woods-Saxon charge distri-

relatively large at very small partial waves. This is the con-pution. The soliddashedicurve represents the results obtained with
sequence of the weak absorption of neutrons and/or protonsix- (two-) parameter parametrizations.

For breakup reactions involving heavier projectiles, these
probabilities are quite small at these partial wapEz, 13

- Now we proceed to determine the potential due to theight side of this figure. The six-parameter search procedure
dissociation process. As already pointed out in RE8], itis (with b, andb, being equal to 0.1118 and 0.0)1@ovides

the Coulomb force which is responsible for the long rangey petter fit to the EBP. The two-parameter fits had a radial
part of the EBP. In case of a pure Coulomb interaction, thgjependence ob °F. In comparison to this the Woods-

eikonal approximation may be used to relate the imaginangayxon potential behaves approximately @s’~e 2
phase shifts to an imaginary potent[@4,35. Sinceayp,y  (with a being the diffuseness parameteat larger distances.
defines uniquely an imaginary phase shift, we can use thignerefore, it is not surprising that the transmission coeffi-

method to determine the imaginary pure Coulomb dissociagjents calculated with conventional optical potentials drop
tion potential by fitting the EBP calculated by post-form ygq fast at larger partial waves.

DWBA theory with Coulomb interactions only between the |t s clear that the potential due to the Coulomb dissocia-
deuteron and proton and the target nucleus. tion (PCD) is very weak. We found that the elastic scattering

_On the left side of Fig. 2, the Coulomb EBPs are showngngylar distributions calculated with phenomenological opti-
with Coulomb interactions obtained frorfi) an uniform | potential were almost unaffected by inclusion of the PCD
charge distributionwith a radius Rc) of 1.3 fm] (solid {9 jts imaginary part. Also this leads to a change of less than
circles and(2) a Woods-Saxon charge distribution with ra- 104 in the total reaction cross section. The transmission co-
dius and diffuseness parameters of 1.3 fm and 0.65 fm, resfficients at lower partial waves are affected by the inclusion
spectively(open circles We observe that the Coulomb dis- of the PCD, but the nuclear effects damp them out strongly
sociation is sensitive to the charge distribution for small j this region, as is discussed in the context of Fig. 3.
V-alues. FOI’ |arg§r pal’tlal waves, hOWeVer,.they pl’_O_duce iden' We therefore added the PCD to the phenomeno'ogica|
tical results which is to be expected. It is explicitly clear jmaginary potential as it leads to a total transmission coeffi-
EBP at higher partial waves. We have used an EBP calcyyayes as can be seen from the left part of Fig. 3, where the
lated with the Coulomb potentials generated from theyotal transmission coefficients obtained witholid triangle
Woods-Saxon charge distribution to perform the fits. In factand without(open trianglesadding the PCD to the phenom-
this diffuse Coulomb potential has been used in all the postanological optical potential are shown. It can be seen that the
form DWBA calculations presented in this paper. ~ addition of the PCD to the phenomenological potential re-

We used a two-parametera¢ ") as well as a six- moves the anomaly described above. In the right side of Fig.
parameter parametrization[ (a;+ar**+asr +a,°)/(1 3, we compare the results of the Coulomb EBP obtained with
+a,r)]et"Prrb2r") in our fitting process. The best fit [by using Eq.(13)] and without nuclear distortion. We note
breakup probabilities obtained with the two procedures ar¢hat nuclear distortion effects suppress the Coulomb EBP
shown by dotted and solid curves in the left part of Fig. 2.strongly for lower partial waves. However, for larger partial
The corresponding imaginary potentials are shown in thevaves the two calculations produce identical results.

FIG. 2. Results of calculations without nuclear interactions. The
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1 g 10 ' ~ c  Elastic E Inelastic  Total
F - - + ~ ~ e ~ .
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L N :. 5 r oargett™  ® ""ﬂo';;a‘s ¢
— C O .1 .
S . -1 * - a 10 e = . = ?
6 10 E_ $ _.? L [e) E :.eo E . F €
= E : E B_ :mo»"'S " : :
L‘q_o_) C R _g o [*o0c0000® 3. - . - .
- - ey - .
o - O o, S 10 TETet - . - .
c 10 E L(5_10 — é F ‘::. E . E .
2k o f O i L oor
n C o] - [l B i o i .
R C é L m _3 s"-.ii‘ %,
g =3 0] B ° 10 ey 0o 1y ey oy ey B
10 & c L
5 E @ s 0 20 0 20 0 20
— E H
~ C . i : .
C Partial wave |
10_ 11 1 1 | 1111 I 1111 l 111 10_ L1l | 111l | | | I 111 . . . gege
0o 10 20 30 o 10 20 30 FIG. 4. The elastic, inelastic, and total breakup probabilities

calculated within the post-form distorted-wave Born approximation

(solid circles and our best fit values to thefopen circles Open

triangles, in the left part of the figure, represent the breakup prob-
FIG. 3. The left part shows the transmission coefficients in theability for the elastic Coulomb dissociati¢gsame as those shown in

elastic scattering calculated with the phenomenological optical pothe right part of Fig. 3 by open circles

tential with (solid triangleg and without(open trianglesthe addi-

tion of the imaginary potential due to elastic Coulomb dissociation.

The right part shows the breakup probabilities for elastic Coulomly; o\ hotential(which were taken to be of the Woods-Saxon
d'ssoc"".‘t'on. calculat_ed n the eikonal appfOX'fT‘ams‘?me curve as type). However, we do not require such a dependence in our
shown in Fig. 2 (solid circles and those obtained in the full cal- fitti d
culations with nuclear distortions includédpen circles itting proce “_re- . e
The potentials giving these breakup probabilities are
shown in the upper part of Fig. 5. The solid, dashed, and
In order to find the potentials due to the inelastic breakupjotted curves show the potentials due to the inelastic breakup
and nuclear dissociation, we used EtB). The inelastic and  (which has been plotted after multiplying the actual values
elastic breakup probabilities calculated within the post formpy 0.09, nuclear dissociation, and Coulomb dissociatiah
DWBA (Fig. 1) were fitted by using a sum of Gaussians ready shown in Fig. 2 respectively. We note that the inelas-
(SOG parametrizatiori36] tic breakup and nuclear dissociation potentials are strongly
concentrated in a region around 6.5 fm and 8 fm, respec-
tively. Both potentials have about the same width, 2[fuil
width at half maximum(FWHM)], which is very similar to
the rms radius of the deuteron. The difference in the local-
ization of the inelastic and dissociation potentials confirms
the fact that inelastic breakup of the projectile occurs in re-
+exd —{(r +Ry)/y}?]). (25  gions closer to the target nucleus as compared to the elastic
breakup. It is worthwhile to note that the potential due to the
inelastic breakup is quite large. Therefore, those calculations
[10,11,37,38 where this mode of breakup is not considered
The value ofy was taken to be/2/3[36], and a total of 15 are likely to produce weaker imaginary potentials due to the
terms were included in the sum. The coefficieAfsand po-  breakup channels as compared to ours. Because of its long
sitions R; were varied in order to get the best fits to therange, the potential due to the Coulomb dissociation is still
elastic, inelastic, and total breakup probabilities, which areof appreciable magnitude at large distances. Coulomb
shown, in the left, middle, and right parts of Fig. 4, respec-breakup thus can take place even outside the charge distri-
tively. The solid circles show the results of the post-formbution of the target nucleus.
DWBA (same as that in Fig.)lwhile open circles represent In the middle part of Fig. 5, we compare the imaginary
our fits. In case of the EBP, we also show the results for thgart of the phenomenological optical potentiablid line)
pure Coulomb caséopen triangles (the same as shown in with the bare potentialobtained by subtracting the potential
the right side of Fig. 2 We can see that the Coulomb EBP due to breakup from jit(dashed ling It is clear that breakup
agrees very well with that obtained by fitting the total EBPis the dominant absorption effect in the surface region. The
for values ofl > 21. It should be remarked here that in the bare potential could be the starting point of double folding
study of Christleyet al. [19], who have used a similar model calculations.
method to determine the fusion potential by fitting to the In the lower part of Fig. 5, we show the radial depen-
fusion cross sections calculated within a coupled-reactiondences of the neutron, proton, and matter densities for the
channel model, the quality of fits were not as good. They®'V nucleus[39]. We note that breakup potentials peak in a
attribute this failure to the lack dfdependence in their fit- region where the matter and charge densities are much

Partial wave |

U?SGm:Ei A (ex —{(r—Rj)/y}?]
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0.2 r contribution to the imaginary potential. Both these effects
W . 7 were ignored in calculations presented in R¢1€,11].
(MeV) r
o1 b IV. SUMMARY AND CONCLUSIONS
0.05 In this paper we calculated the imaginary part of the op-

tical potential due to the breakup channels by using a phe-
nomenological method in which contributions to the reaction
- e L L cross sections from the elastic and inelastic breakup cross
W i sections of the projectile in the field of target nuclei, calcu-
lated in the post-form distorted-wave Born approximation,
are used as constraints in a fitting procedure. In this method,
only the first order breakup procedhe coupling of the elas-
tic channel to the breakup chann&l considered. Then uni-
tarity of the S matrix is used to determine the influence of
breakup on the elastic channel.

The Coulomb part of the imaginary dissociation potential
(obtained from the pure Coulomb elastic breakup probabili-
ties) accounts for the long range part of the absorption and
removes the anomaly where for partial waves beyond 20 the
elastic breakup probabilities were found to be even larger
than the transmission coefficients calculated with the usual
phenomenological optical potentials. To our knowledge this
is the first calculation where the absorption due to the Cou-
lomb dissociation process has been included in the optical
model. The potentials due to the nuclear dissociation are
found to be peaked in the region around 8.0 fm.

ol NN The imaginary potential due to inelastic breakup is about
0 2 4 6 & 10 12 an order of magnitude larger than that due to the dissociation
r(fm) process, and is concentrated at somewhat shorter distance

(around 6.5 fipas compared to the latter. This suggests that
FIG. 5. The upper figure shows the imaginary potentials due tqnelastic breakup takes place at distances closer to the target

inelastic breakup(arbitrarily multiplied by 0.09 to fit in the plot nucleus in Comparison to elastic breakup_ The magnitude of
(solid ling) and the potential due to nuclear dissociatigashed  the total imaginary potential, due to the breakup channels
line). The dotted curve shows the Coulomb dissociation potential(|PBC), is, therefore, almost solely due to the inelastic
The middle part shows the optical potential wigolid curve and breakup process in the region around 6-8 fm. This is con-
without (dotted curv effects of breakup. In the lower part the sistent with the dominant contribution of this mode to the
dashed, dotted, and solid curves show the neutron, proton, and m%ﬁtal breakup cross section. This is the main reason for our
ter densities foPV, respectively, as calculated by FaydB9)]. IPBC being stronger than tflle imaginary part of the dynami-

cal polarization potential due to breakup channels calculated

smaller as compared to the central density of the targedy other authors, who have ignored the inelastic breakup
nucleus. Therefore, the breakup process is really sensitive {H0de. _ o _
the extreme peripheral regions. This also confirms the spec- Our method can be applied to any projectile having a
tator role of the target nucleus in the breakup pro¢essber ~ Strong breakup channel. Therefore, it would be interesting to
picture. However, the region where the breakup potentials!Se this rrl11ethod to the elastic scattering of halo nuele.,
peak is much larger than the half density radius deduced by Li and ~Be) [41], where the breakup cross sections are
Serber[40]. This could be of interest for the reactions of Significantly enhanced and the effect of breakup on the elas-
neutron halo nuclei. tic scattering Is very strong.

It should be stressed that our method of obtaining the
imaginary part of the optical potential due to the breakup
channels is phenomenologi(_:al in ngture. However, it has sev- ACKNOWLEDGMENTS
eral good features. The distinctly different nature of the total
breakup cross section as a function of the incident partial This work has been supported by the Wenner-Gren Center
waves is automatically taken into account. The CoulombFoundation, Stockholm. One of the auth@RsS) would like
breakup process which is responsible for the long range patd acknowledge several useful discussions with Professor I.J.
of the elastic breakup probabilittand the dissociation po- Thompson of the University of Surrey, Guildford. We also
tentia) is included into our calculations. Furthermore, we want to thank Sergei Fayans for providing the densities for
include the inelastic breakup mode which makes the largest'V.
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