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Neutron suppression in polarizeddd fusion reaction
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We report a model-independent partial-wave analysis of poladzefiision reactions at low energies. The
radial transition amplitudes, designated by the central, spin-orbit, and tensor forces, are determined by fitting
angular distributions of the tensor and vector analyzing powge 6), A(6), Axx.yy(6), andAy(0), and
the unpolarized cross sectiary(6). The polarized fusion cross section ;(6) is then predicted from these
radial transition amplitudes. We stress that this is feasible only when these amplitudes are separated according
to the tensor rank of the interaction. This study includesDk&tate components of the deuteron, triton, and
3He, and the partial-wave expansion is done up to dheave for both the entrance and exit channels.
Experimental data a,,,=30, 50, 70, and 90 keV for thd(d,p)t reaction are very well fitted with this
method. It is found that the ratio of polarized to unpolarized cross sections is about 86% at 30 keV and goes
down to 22% at 90 keV. The implication of the suppression of a polarizktlision reaction is discussed in
the context of the neutron-lean fusion reactor with polarideéHe fuel. It turns out that the important range
of energy for suppressing th{d,p)t andd(d,n)3He reactions at the plasma temperatiire 60 keV isEg4
=80-600 keV. More experimental data are needed in this range to make a detailed study of the neutron
suppression.S0556-28139)04409-X]

PACS numbgs): 25.10:+s, 24.10-i, 24.70+s, 28.52.Cx

I. INTRODUCTION lowing twist. Abu-Kameret al.[10] investigated the depen-
dence of the wave function and interaction in a one-step
It has been suggestdd,?] that the spin degree of free- d(d,n)®He reaction calculation and pointed out that the
dom plays a role which allows certain reaction channels irfGaussian-type potential and deuteron wave function used in

plasma fusion reactions to be selectively enhanced or sugoth the DWBA[9] and the RGM[6] calculations are not
pressed. In particular, if the polarized(d,n)He and realistic. In particular, when a consistent deuteron wave

dcd . indeed d by ch _function and deuteroiHe overlap function are used to-
(d.p)t cross sections are indeed suppressed by choosi ther with the Reid potential in a one-step reaction model, it

the deuteron spin to be parallel to each other to reduce thg tond[10] that the unpolarized cross section is overesti-
secondary neutrons and tritons, the idea afeatron-lean  ,5ted by two orders of magnitude, whereas the DWBA re-
fusion reactor based on polariz& °He fuel with a pre-  gyit [9] is reproduced when the afore-mentioned Gaussian
dominant®He(d, p)“He reaction would be appealii@—4.  potential and wave functions are used. This has raised doubts
An early partial-wave analysig5] of the experimental in the theoretical studies at these low energies.
data of thed(d,p)t reaction with a polarized deuteron beam  In view of the above unsatisfactory and unsettling status
in the energy range 100-500 keV suggests that the quinteff the theoretical calculations, we undertake a partial-wave
state °S, in the entrance channel is small compared to theanalysis of thed(d,p)t reaction for the unpolarized, singly
singlet state'S,. This suppression is thought to occur when polarized, and doubly polarized cross sections. What sets our
the deuterons are polarized in paralle¢., S=2) so that at partial-wave analysis formalism apart from previous analyses
low energies where the relativewave dominates, the Pauli [5,11-13 is that the matrix elements are explicitly separated
principle would impede the reaction. However, it wasaccording to the tensor rank of tié¢N interaction. This is
pointed out by Hofmann and Fidl6] that the inclusion of necessary for the prediction of the doubly polarized cross
the D-state probability in°He allows the strong central force section, since these matrix elements appear in different com-
to contribute to thes=2 channel. As a result, they predicted binations in the singly and doubly polarized cross sections.
nonsuppression of the ratio of the polarized to unpolarized The values and relative phases of the radial matrix ele-
cross sectionoy /og in their refined resonating-group ments are determined by fitting the data from the unpolarized
method (RGM) calculation [6]. A similar conclusion is cross sectionoy(6), the three tensor analyzing powers
reached from theR-matrix analysis by Hale and Doolen A,,(6), Axz(0), and Axx.yy(6), and the vector analyzing
[7,8]. On the other hand, the distorted-wave Born approxi-power Ay(6) from the singly polarized cross sectien .
mation (DWBA) calculation performed by the present au- The doubly polarized cross sectian ; is then predicted
thors[9] shows that the ratior; 1/ o is only 8% in the range from these radial matrix elements. Partial waves are ex-
20-150 keV despite the inclusion of tiestate component panded up ta wave which is sufficient for the energy range
in 3He. These conflicting conclusions have left theoreticalwe consider,E ,,=30-90 keV. Furthermore, we have in-
studies in a quandary. Added to the controversy is the foleluded theD-state contributions of the deuteron, triton, and
3He. Since this is a partial-wave analysis which includes all
multistep processes, it should yield model-independent re-
*On leave from Institute of Atomic Energy, Beijing, China. sults as judged by how well the experimental data are fitted.
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We found thato, ; is unsuppressed at very low energy, Unlike the DWBA which approximates thﬁ'(;) by a
i.e., 01 1/00=0.86 atE,;,=30 keV. Indeed, as suggested by distorted wave function due to the optical potential in the
Hofmann and Fick[6], this is mainly due to theD-state  incoming channel and is a one-step process as far as the
component in®He andt which is connected to théS, in-  nucleon transfer reaction is concerned, our present study ex-
coming channel through the central force. However, as enyands the full transition amplitud@b,,|V|¥ (") in the par-
ergy increases, this ratio_de_creases and goes down as lIow @3 \\aves of the incoming and outgoing channels. The
22% atE,=90 keV. This is much lower than those pre- ., honents in the internal wave functions of the deuteton,

dlc_treh(? from t?? R?Mfiiagd thfelﬁ—n\jvatn; ar:?lxsllls[g,?i]r.m th and 3He are also included. Furthermore, we separate out the
IS paper 1S organized as Ioflows. Section 1l 0eliNes &4, clements due to the central, spin-orbit, and tensor
partial-wave expansion of the wave functions in t{e,p)t

reaction and the transition amplitudes associated with diﬁer[nteractmns. As will be shown in Sec. IV, this separation

ent channels and the type BN interaction. The radial tran- according to the tensor rank of theN interaction is essential
sition amplitudes are then fitted to experimental data of uni" €valuating the polarized cross section,. After these

polarized and singly polarized cross sections in Sec. IlI. WithStePS are taken, the only unknowns in the differential cross
these transition amplitudes, we predict, in Sec. IV, the douSections are the radial transition amplitudes due to the poten-

bly polarized cross sectiomr,; in the energy range, tial V. The complex radial transition amplitudes can be ob-
—'30-90 keV. Section V discusses the neutron suppressioidined by fitting the angular distributions of the unpolarized
in the thermal fusion reactor environment with polarizzed ~@nd beam polarized differential cross sections. Finally, the
3He fuel. Finally, we summarize our study in Sec. VI. polarized cross section is calculated_from these rad!al_matr_lx
elements. To the extent that the partial-wave analysis is valid
at the low energy we are concerned with, ifg,=30-90
keV, the present approach is free from the theoretical uncer-
tainties we alluded to in the Introduction. It should give a

The deuteron fusion reactiodgd, p)t andd(d,n)3He are  model-independent prediction of; ;, provided thatoo(6)
typical examples of the re-arrangement collision processandoy () can be reasonably well fitted with the prescribed
where a proton or a neutron is transferred from one deuteropartial waves.
to the other in the nuclear collision process. This process is a In the rest of this section, we derive the partial-wave ex-

subset of the nuclear collision processes that can be label@@nsion of the transition amplitudes of tt¢d, p)t reaction.
as These amplitudes describe the rearrangement collision of the

deuteron beam on the deuteron target, where one deuteron
a+A=b+B, ) (beam or target nucleupicks up the neutron of the other
deuteron to form a triton. All the formulas given in the fol-
wherea andA refer to the incident and target nuclei, while lowing for the d(d,p)t reaction are also valid for the
and B represent the product nuclei after the collision. Thed(d,n)®He reaction provided that one makes appropriate ex-
rearrangement collision process can be described as sorgbanges in the particle labels. In Sec. Il A, we define the
nucleons being transferred fromto A (or A to a). The  particle labels and prescribe the antisymmetrization operator
differential cross section of the rearrangement collision in thdor the wave function of thed+d system. The two-body

Il. PARTIAL-WAVE EXPANSION OF WAVE FUNCTIONS
AND TRANSITION AMPLITUDES

center-of-mass system can be described as interaction potentials are also discussed. In Sec. II B, we de-
fine the relative coordinates and the intrinsic coordinates for
do LattbKp 2 thed(d,p)t reaction, and derive the partial-wave expansion

for the entrance and exit wave functions in these coordinates.
Sec. IIC, we define the transition amplitudes, list all the
possible nuclear interactions within the framework of this
XD (@ Vw2, (2)  study, and then derive a common form for the transition
m,m’ amplitudes that separately describes the contributions of dif-
ferent nuclear interaction forces, total angular momenta, and
where u,, 1, andk,,k, stand for the reduced masses andintrinsic states of the final produétriton or SHe).
wave vectors for the incoming and outgoing channels,&nd
and\Ifg” refer to the channel spin and wave function of the

dQy  (27h)2%k, (282t 1)(2Sx+1)

incoming channel. The incoming wave functiolftg”, a A. Particle labeling, antisymmetrization, and two-body
function of the relative coordinate, betweena and A and interaction potential

the intrinsic coordinates ia and A as labeled by, is the Unless otherwise indicated, this paper assigns particles 1
solution of the Lippmann-Schwinger equation and 3 as protons and particles 2 and 4 as neutrons in the

. _ d(d,p)t reaction channel. The total spins of the incoming
VN ry, &) =@+ (Ea—Hat+in) VI(r,,6), (3 and outgoing channels are denotedsasandS,,,. The mag-
netic quantum numbers of the two deuteronsrarandn in
where E, and H, are the energy and Hamiltonian of the the incident state, whilen’ andn’ denote the coupled spin
incoming channel, an®, is the unperturbed incoming wave magnetic quantum numbers of tfilg2) and(3,4) pairs in the
function. exit channel, i.e.p andt.
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Since we distinguish the protons from the neutrons, the z
antisymmetrization only involves the permutation between
the protons and neutrons separately. This is done with the
antisymmetrization operator on the wave function of the
+d system which can be written as

1 1
A= 5(1_ P13)(1_P24)=§(1_ P13)(1+P13P2y),

1
:§[1+(_)Li”+si"](1_P13)- (4)

The last step reflects the Bose symmetry between the two
deuterons in the incoming channel. The two-body nucleon
interaction potentiaV contains the central force, the spin-

orbit force, and the tensor force. The central force conserves X
both the spins £S=0) and the orbital angular momentum
(AL=0). The spin-orbit force can lead to spian$=1) and
orbital angular momentum flipAL=1). The tensor force
can flip the spin and orbital angular momentum up to two
units, i.e.,AS=2 andAL=2. The two-body transition po-

tential V in Eq. (2) for the d+d rearrangement collision to whereR, is the center-of-mass coordinat, is the relative
the final product of a protoiparticle 3 and a triton(par- ¢ ginate between the two deuterons, arahdr’ are the
ticles 1, 2, and #is described by intrinsic coordinates of the two deuterons. We show these
. e e coordinates in Fig. 1 in the center of mass system wﬁlﬂgre
V=V(1,39+V(2,3+V(3,4—U[rg—(r,+ r2+r4)/3],(5) is constant. Any other relative coordinates can be described
in terms ofR,,, r, andr’. For example, the relative coordi-
nate betweemp and triton(similarly for n and 3He) is

FIG. 1. The relative coordinatéa between the two deutrons
and the deuteron intrinsic coordinateandr’ as defined in Eq(6)
are plotted in the center-of-mass system vﬁ@rconst.

whereV(i,]j) is the interaction potential betweemandj, and
U[rs—(r,+r,+r1,4)/3] is the average potential acting on the
particle 3(proton from particles 1, 2, and 4 in the triton. In o1 . L L .

the present analysis, we have included the contribution of the RB=§(r1+ rotry)— r3=§(Ra—r') (7)
dominant interactiorv(3,4) in the partial-wave analysis but

neglected the contribution 0¥/(1,3)+V(2,3)—U[rs—(r,

+52+F4)/3]. This is usually done in DWBA calculations of and the relative coordinate betweanand d in the triton
stripping and pickup reactions involving heavy targets. The(similarly for p andd in *He) is

same approximation is made here as in the one-step reaction

calculation[10]. We have checked that the neglected inter-

action does not give rise to a dominant polynomials in the - I, >,

Legendre expansion of the experimental analyzing powers. Rn=5(ratra)—ra=R,+5r". ®)
Thus we believe it should be small compared with the con-

tribution fromV(3,4).

In the following, the wave functions for the entrance and exit
B. Partial-wave expansion of wave functions channels of thel(d,p)t reaction are expressed in terms of
. . these coordinates.
The relative coordinates of the four-nucleon system are . . .
) The relative wave function between the deuterons in the
chosen as follows: . .
entrance channel with angular momentuns

.1 . L Lo
RC:Z(r1+r2+r3+r4), R )
X0 (kin' Ra) =X D(R) YL o(Qa), (9)

where we have taken the incoming relative momenﬁmho
be along theZ axis and(}, represent the angles betwelé,m

r=ry—r,, andR,,. x{")(R,) is the radial wave function. The exchange
wave function can be written in terms of the coordinates
r'=rs—ry, (6) andr’
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XL0) (Kin- P1aRa) = x (o[ Kin- (7 '—F)/2]=|§2 X
x ; VaAm(2l+ DYF  (Qin)

xv.lmlmr);z Vam(21,+1)

(Qr’)
LO

YI*zmz(ﬂin)YI

2My

E rr)E C(ly,l5,L;

I

—m,m,0)C(I1,15,L:0,00Y, (0

XY, m (), (10)

where)((+)(r r') is the exchange radial wave function and

PHYSICAL REVIEW (50 054614

channell andl’ are the orbital angular momenta associated
with the solid angle€), and(),, .

The wave functions of the intrinsic states tofsimilarly
for ®He) with S- and D-state components are

e R = 2 @ (Ry,1,1")C(Ip,1p,0imy, = mp,0)

Ih,mh

><Ylh,mh(Qa)YIh,7mh(Qr’)a

e (N R)my= 2 ¢ (Ral,1")
Ih,mh

XC(lh r|h12;mh rmD_mh rmD)

XY, (Y1, mom (), (12)

Whereﬁh is the coordinate betweennandd in the triton as

C(Il,IZ,L,ml,mz,M m;+my) is the Clebsch-Gordon co- shown in Eq.(8). o P (R,.r,r') and ¢| (Ra, ') are the

efficient which reflects the fact thdt,m; andIl,,m, are

coupled toL0. Q, and(),. are the solid angles of the coor-

dinatesr andr’

have used the fact that the incoming relative momeniym
is along theZ axis, and hencé€);, corresponds t@=0.

Thep-t relative wave function with relative coordina®
in the exit channel with angular momentund and M’ is
written as follows:

X(L_r,)M +(Kout' Rﬁ)

2 £|(|7)(koutrRa rr,)

:X(LT,)M (Kout' Ry Kour ') =
1L

X| 2 VAm(2I+1)Yi(Q)Yim(Q,)

X 2 VAT 21"+ 1)Y5 ()Y (Q,)
m L'M’
47

:z 2L/+1£|(|7)(k0utharr’)
I’

x> Cc(,I",L";mM’ —mM’)
m

XC(1,1",L7;0,0,0Y| n(Q,)

XY —m( Q) YL i (Q), (13)

where Q refers to the angle betweek,, and K., and

radial wave functrons of th& andD- state components, re-
spectively, and the subscripby is the magnetic quantum

, respectively. In going to the last step, we number of theD-state component in theor *He. Here we

consider theD wave betweem and deutron as the only
source ofD-state component df The D-state component of
t with the intrinsic deutron in th® state is neglected. The
transition involving intrinsic deutrons in the state for both
the entrance and exit channels is very small. Furthermore,
there is no transition to the triton with its subdeutron inEhe
state from theS-state deutron in the entrance channel, be-
cause interactiol'(3,4) does not involve particles 1 and 2 in
the deutron and the wave functions are orthogonal in this
case.

The exchange term of the product of tBetate(intrinsic
statg wave functions of the two deuterons in the incoming
channel is

@5(2P 1) @3(2P1 ")

=@5(r+r' —2R,) e5(r+r' +2R,)

= 2 2 eituRarr

)L L,,L./
< wbroby
La=eveny 41 ’—even

X 2 (=DMeC(L Ly L iM =M M~ M)

@ r

YE QYL m Q)Y v -m (), (19

Wheregodm(Ra, ,f )L Lo is the product of radial wave
functions with the Legendre expansion rank,L, ,L,, for

”, (kout, «,f") is the radial wave function of the exit the angled},, Q,, and(}, .
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TABLE I. Radial transition amplitudes and the associated channel orbital angular momenta, spin, total
channel angular momentud) and the type oNN interactions are listed. The second and third columns
indicate the intrinsic state of the deutron and the triton, respectively.

E(E,)S(D)(I) d state t state Lin L out Sin Sout J7 Force type
R 50.60) ] S 0 0 0 0 0 C
R5542) 2 0 2 0,1 0,1" T
R3$340,1,2) 1 1 1 1 0 CLST
R3$340,1,2) 1 1 1 0,1 T CLST
R3340,1,2) 1 1 1 1 z CLST
R3541.2) 2 2 2 0,1 2 LS,T
Ro5A42) 0 2 2 0,1 2 T
R35540.1,2) 2 2 0 0,1 2 CLST
R 5540) S D 0 2 2 2 2 C
RooA1) 0 2 2 1.2 2 LS
Ro542) 0 2 2 1.2 z T
R5540.1,2) D S 0 2 0 0,1 2 CLST
R ooA2) 0 0 2 01  0,1" T
Ro5A1.2) 0 2 2 0,1 LST

The direct product of the intrinsic wave functions of the wherem andn refer to the spins of the two deuterons con-
two deuterons with one in th® state and the other in tH2  sisting of nucleong1,2) and (3,4) in the entrance channel,
state is while m" andn’ refer to the spins of the same nucle¢hs?)
and (3,4 in the exit channel op andt.

After the integration over isospin, spin, and angles,
Q,, and(},, are carried out, the transition amplitubede-
pends only on the radial integrals and the scattering aflgle

eard=C(1,18,;n,m, n+m)><2 C(1,2,1m,my,m+myg)

X[ g g (r')Yom,(Q) The allowed radial transition amplitudes can be classified
S D according to thes, p, andd partial waves, th&andD com-
+edlr )‘Pd(r)Yzymd(Qf)]’ (14) ponents of the intrinsic deuteron and triton, and the tensor

rank of theNN interaction. These are listed in Table | to-
where o5 and ¢? stand for the direct intrinsic radial wave gether with 20 complex radial transition amplitudes which
functions. We shall neglect the exchange matrix elementare denoted ang(D)S(D)U) with 1=0,1,2 for the central,

LL'S,
due to theD-state component in the deuteron in this study._ . . . s
This is justifiable since th®-state component of the deu- spin-orbit, and tensor force, respectively. The first super

teron has little effect in the fusion reaction as we will showScrlpt of R denote_s the intrinsic states in the deuteroﬁ_s (
later through the fit of the experimental data. stands forS states in both deuterons abBdstands for one in

Finally, the total wave function is the product of the chan-tn€Sstate and the other one in thestats, while the second

nel wave function and the intrinsic wave function: one stands for that of the tritofor *He). The subscriptt
andL’ denote the orbital angular momenta of the entrance
V(D)= ye (15) and exit channels, an§,, denotes the spin in the incoming

channel. Note that the radial transition amplitudes do not
depend ors,;. We further note that for thB-state compo-

C. Partial-wave expansion of transition amplitudes nents ofd andt only the s incoming wave is considered.
The transition amplitude of the reactiat{d,p)t is de- Furthermore, the transition from the deuteldrstate to the
fined by triton D state is neglected as this involves the product of
D-state probabilities in the deutron and triton which is very
M v nne (Kin » Koup) small.

Using the notation of the radial integrals defined above,
2 g pKy +) the transition amplitudé/l can be written in _the fol_lovying
=1/ m@’pﬂ(n ;M) V(34)| AP g iy(n,m)), form. For the case of aG-state component in the intrinsic
wave functions of both the deuteron and triton, the transition
(16) amplitude is written as
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1
M (o (L Lout:Sin 1) = 2 B Sou5 [1+(= 1)t Sn] 5y, (RS

mm’,

OUt’Sirl( I )
out

X C(Sgut:Loyt:d;n+m’ , m—m’,n+m)C(S;,,L;y,J;n+m,0n+m)
XC(1J],L;m;m'—m,m’")C(L gy, Lin,I;m—m’,0m—m’")

XC(L1S0;n,m" ,n+m")C(L1S,;n,mn+mY,  m-m (). a7

For the case of af$ state component in the deuteron dbestate component in the trito is written as

mm’,nn’

_ 1 .
M(SD)J Z(Lin: O.Lout»Sin=2J )= 5n’,n§[l+ (— l)Lln+Sin]2 ,R'(S)'Ieout’z(I )

out

3 11
X BP(Syu) 2 (—1)MW Z'E’Sh'i;i's"”t C(2,S0t:Sh;Mp,n+m’,n+m’+mp)
Sh-Mp

h,m
X C(SgutsLoyt:d;n+m’,m—m’,n+m)C(S;,,L;y,J;n+m,0n+m)
XC(1,1S,,;n,m ,n+m’")C(1,1,2n,m,n+m)C(1],1;mm' —m,m’)
XC(l1,2Lgy;m—m",—mp,m—m’' —mp)

XC(Sh Low2;n+m' +mp,m=—m"=mp, n+mY, mm—m (). (19

For the case of th®-state component in the deuteron a®dtate component in the trito is written as

1
Mt (Lin=OLouts Sin 1) = 8 05 [1+ (= D)%] X REGE o (1)

mm',n =~ Lout:

XB(Spu) > C(1,1S,,n",m’,n"+m’)C(1,1S,,;n,m,n+m)
My

X C(SgutsLout:J;n" +m’,;m—m’,n+m+my)C(Sy,2J;n+m,myg,n+m—my)

XC(Ll,L;mm'—m,m’)C(l,2Loue;m—m’',myg,m—m’+my)

X C(1,2,1m,my,m+ md)C(2,2J_0ut;O,O,O)YLoutym,m,+md(Q). (19
|
The values oBS(S,,) andBP(S,,) in the above partial  lll. FITTING OF RADIAL TRANSITION AMPLITUDES
amplitudes are given in Table II. TO NUCLEAR DATA

The total transition amplitud®! is simply the sum of the

. . ) This section describes the procedure leading to the fitting
above partial amplitudes:

of radial transition amplitudes to the experimental data on
J d(d,p)t reactions. First, we define thiamatrix description of
M an (Lin s Louts Sin s 1) the unpolarized and beam-polarized cross sections. Next, the
s9J SD)J unpolarized cross section and the vector and tensor analyzing
- Minn?,nn’(l‘i“ Lout S D)+ Msnm’)vnn’(l‘i”’l‘ou“sin D powers are expressed in terms of the Legendre or associated
IVICER (Lo LowsSral) (20) Lege.ndre polynomials. It is shown. that the radial transition
m ,nn’ & =in 2 =out =i » amplitudes are related to the coefficients of these polynomi-
als. Finally, a nonlinen? fit is utilized to fit the radial tran-

S D .. . .
TABLE II. Values of B¥(Sy,) andB™(Sou) sition amplitudes to the experimental data.
Sout 0 1 2
A. T-matrix description of the cross section
S
B(Soud 1 1 0 The transition matrix representation of an unpolarized
V2 V3 cross section is givefil4] as
BD(Sout) 0 % \E dO’O 1
2 =" =_Tr(MM™). 21
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7z i 1
,,r\( in) Pzz=7P2A3 cos B—1),

A . Pxy="75 p,,Si B cos¢ sing,
: kout \,
i o B Z ; =—§ sinB cosB sing
: : Pxz 2 Pz ,
1 N T - N
i \\\ e Y (kinx kout) 3
| o N | Pvz=> P2;Sin B cOSp3 cose,

N

N
X 3 i
Pxxyy= 35 P, SIF B OS24, (23

FIG. 2. The beam directioﬁin is set to be along thg axis. The
spin quantization axis is indicated asThe scattering anglé and ~ Wherep, andp,, are the magnitudes of the vector and tensor
the anglesp and g are defined as shown. polarization.
The analyzing powers are defined in terms of theatrix
The reaction cross section of a polarized beam on an unpd,
larized target can be expresddd!] as

Av) To8) Tr(MSyM™)
3 2 1 v(0)=—=1T(0)=———"7""
o1 0,d)=00(0) 1+ EpYAY+§pXZAXZ+ EpzzAzz V3 Tr(MM?)
- _ TH(MS; M)
+ gpxx-YYAxx-YY , (22 Az(0)=2Tad )= Tr(MMT)
wherepy, Pxz, Pzz, andpxx.yy are the vector and tensor r(MSy;M™)

T
polarizations of the beam, amdl,, Ayxz, Azz, andAyx.yy Axz(6)=— /3T ()=
are the vector and tensor analyzing powers of the transition.
They are Qef|ned in the following. ' THMSyayyM )

A polarized beam can be characterized by the vector and =23 - TRXNYT

- ; s . Axxyy(0)=2~3T25( 0) , (29

tensor polarizations. To define these polarizations, this study Tr(MM™)
adopts the outgoing reactant helicity frame specified by Ohl- _ _ _
son[14]. As shown in Fig. 2, the direction of the incident whereT;; stands for the analyzing powers in the spherical
deuterork,, is taken to be along the axis, and thek, lies ~ coordinate systemSy, Sy, andS; are ordinary Cartesian
in the (X,Z) plane with the scattering angteshown in Fig.  SPin 1 operators given explicitly as
2. TheY axis is then normal to the scattering plane, i.e., in

Tr(MMT)

S 0 1 0 0 -1 0
the direction ofk;, < ky,. The quantization axis of the polar- 1 i
ized beam is taken to be along its spin directomvhich Sx:_z 10 1}, SY:E 1 0 -1/,
makes an angl@ with respect t@, the direction ok;,. The 010 0
angleq is defined to be the angle between the plane contain-
ing ki, andko, [the plane ¥,Z)] and the planeZ,Z). 10 0
In this frame, the beam polarization is characterized by S,=({0 0 0], (25)
0 0 -1

px=—p,SinBsin¢,

_ whereas operatorS; ;,Sx7,Sxx.yy= Sxx— Syy are traceless
Py=p;sinB cosg¢, operators defined as

_ 3 A
Pz= P, COSB, Si=5(S8+58)-215;, 1j=XY.Z. (2

1 . .
pxx:ipZZ(S sir? B sir? ¢-1), B. Polynomial expansion of angular distribution

of the unpolarized cross section and analyzing powers

The angular distribution of the unpolarized cross section

1 :
pYY:EpZZ(s si? B cos’ ¢—1), and the analyzing powers dft+d reactions can be described
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by an expansion in Legendre or associated Legendre polyno- 4
mials. At low energies ;<100 ke\), it has been shown Axz(0)= 4—0) 2 al“Pi(cosb),
experimentally[11-13 that a truncation at. =4 gives a mo(
very good approximation. The polynomial expansion of the
angular distribution of the unpolarized cross section up to
L=4is 4
A a’?P (cos6
NS UoﬁaoP o zz(>4w(9)ELL( )
oo(0) = gTHMM =7~ 2, & Pi(cost),  (27)
where o is the total unpolarizedi+d reaction cross sec- 4
tion. The expansion coefficients® and a;° vanish due to A XX-Y Yp2
)= —— a P<(cos6 28)

the two identical bosons in the entrance channel. o 8)= 4770( 0) 2 - L )

The expansions of the analyzing powers are given in
terms of the Legendre and associated Legendre polynomials

The expansion coefficiema{< (K=0¢,XZ, ZZ, XX-YY,

Ay(6)= 2 a) YPL(cosh), _andY) in Egs.(27) and(28) can be expressed in the follow-
L )
ing form:
1
aEZQ E 2 2 2 R§(L11|lvsa11|l;L21|218a21|Z)FK(lelllSalvl1;L2!|215a21|2;|—1‘])! (29)
00 " Lyl 113 S, Sa, 112

whereR;=Rge for K=XZ,ZZ,XX-YY, ando,, andR;=R,,, whenK=Y. The Rz, andR,, are the real and imaginary parts
of the product of the radial integraf8, | s (Il)R’,_‘2 1,.s, (I2)-
ag T2 ay

To find F¢ in Eq. (29), we first write the product of transition amplitudes with total angular momertasithe product of
the radial transition amplitudg$or both of S and D-state components of the deuteron and tpiton

1 . —|mj—mj|)!
> Mmml (111,80, 1)'V|mm2 an(L2:12,Sa,, ):ERLl,Il,Sal(Il)RLZIZS (2)2

n (L+|m2—mil)!

XG(Ly,l1,S0,115L0,05,S0,015:3,L,m,my,mp) P ™ (cos).

(30

This definesG as a function ofL, I, S,, andl of the two one can usan=1 without losing generality which is the
transition amplitudes, as well ds Note that the interference same for the other analyzing powers,
effect among thes, p, and d waves in analyzing powers
within the same total angular momentum chandet re-
flected in Eq.(30). The F¢ coefficients in Eq(29) are then Fz2(L1,01,S 0 11;L5,05,S,.,15;3,L)
defined as follows. ! 2
(i) Fg,: for the angular distribution of unpolarized cross =G(L1,11,S,:11302.12,S,,,12:3,L,1,1,0)

section (;=m,=m’),
(my=m;=m’) —2G(Ly.11,S,,11iL2.05,8,,,12:3,L,1,0,0

Fg-O(L]_!IllSal!I1;L21|2!Sa21|2;J!L) +G(L1,|1,Sa1,|1;L2,|2,Sa2,|Z;J,L,l,_l,_ 1) .
=G(L1,|1,Sal,|1;L2,|2,Sa2,|2;J,L,m,m’,m'). (32)

(31

(iii) Fxx.yvy: for the analyzing powehyy.yy (m;=1 and
(i) Fzz: for the analyzing poweA;, (m;=m,=m’); my=—1),

054614-8
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TABLE llI. Fitted values of the Legendre coefficients in comparison with those obtained from the experimental groups. The total
unpolarized cross sectian, (mb) is an input.

E (keV) 30 30 50 50 70 70 90 90
Present Expt Present Expt Present Expt Present Expt
az? —0.0861 —0.0843 —-0.1229 -0.1233 —0.1462 —0.1420 -0.1621 —0.1605
a%* 0.0204 0.0205 —0.0576 —0.0556 —-0.1441 —0.1433 —0.1807 -0.1711
az? —0.8747 -0.8791 —0.8835 —0.8621 —0.8003 —0.7986 —0.8148 —0.8157
az? 0.1918 0.1966 0.1549 0.1335 0.0447 0.0431 0.0326 0.0320
aZ? —0.0334 —0.0330 —0.0335 —-0.0414 0.0420 —0.0382 —0.0693 —0.0631
ar? 0.0128 0.0137 —-0.0521 —0.0483 —-0.0726 —0.0823 —0.1245 -0.1212
ay? -0.3923 —0.3965 —0.3882 —0.3861 —0.3801 —0.3793 —0.3613 —0.3620
ay”? 0.0696 0.0532 0.0447 0.0410 0.0303 0.0310 0.0123 0.0159
ay’? —0.0010 —0.0012 —0.0038 —0.0071 —0.0099 —0.0106 —0.0108 —0.0107
az< vy —0.3585 —0.3526 —-0.2941 —0.3041 —-0.2671 —0.2678 —0.2466 —0.2411
ay* Yy 0.0236 0.0284 0.0159 0.0201 0.0197 0.0173 0.0121 0.0125
a vy 0.0073 0.0069 0.0021 0.0014 0.0024 0.0000 0.0048 0.0000
al 0.1677 0.1672 0.1764 0.1739 0.1769 0.1723 0.1770 0.1767
ay —0.0252 —0.0247 —0.0246 —0.0260 —0.0343 —0.0341 —0.0374 —0.0352
ay —0.0009 0.0000 —0.0094 0.0000 —0.0035 0.0000 0.0030 0.0000
ay —0.0016 0.0000 —0.0016 0.0000 —0.0024 0.0000 0.0021 0.0000
ao(mb) 1.190 1.190 4.479 4.479 8.758 8.758 13.22 13.22
a, 0.1295 0.1295 0.2191 0.2186 0.2728 0.2748 0.3169 0.3171
a, —0.0001 0.0000 0.0308 0.0307 0.0128 0.0127 0.0309 0.0308
Fyxyv(La1,Sal15k2,02,S0,,12:3,L) The 20 complex radial transition amplitudes listed in
Table | are parametrized and labeled in the form
6 R(i)exp(#){i=1,20. The 19 coefficientsal in Egs. (27)

and (28) are labeled a$(k){k=1,19. Specifically, b(k
=12.3)=ay5, b(k=4,...8=af” (L=0,...,4); b(k
XG(L1,l1,Supl1iL2,12,80,12:3,L,1,1,-1). =9,...,12=a* (L=1,...,4); b(k=13,14,15)
33 =a*YY (L=2,34); and b(k=16,...,19=a (L

=1,...,4).Thus Eq.(29) can be reexpressed by

T DL (Lr2)

(iv) Fy: for the analyzing poweAy (m;=0 andm;,=
+1), 20

b(k)= 2 F(k,i,j)R(I)R(j)cog 6~ )
FY(Llrl1vsalv|1;L2a|21sa2!|2;\]v|—) hi=1

N7
:_m for k=1,...,15,

X{G(L1.11,Se, 11iL212.S,,.12:3,L.,1,0,0 .

—G(L1,11,S411iL2.12,5,,,12:3,L,1,0- 1)} (34) b(k)= > F(ki,)R(R()sin(6— )

1,]=

(v) Fxz: for the analyzing poweAy,

for k=16,...,19, (36)
sz('—11|1:5a1:|1§L2,|2,Sa2,|2;J,L)

:_EFY(Llallea A1:Loul5,S,,15:d,L). (35)  WhereF(k,i,j) is the F function in Eq.(29). In Eq. (36),
2 ! 2 R(i)R(j) is redefined to absorb the factor &@@in Eq. (29)
so as to mak&(i) dimensionless. Note that only the relative
Notice that the angular momentum constraint1()'1*'2  angles appear in E§36). We take all the phases to be rela-
=(—1)" is enforced via &-G coefficientC(l1,15,L;0,0,0)  tive to that of R 33 (2). To fit to theexperimental data, the
implicit in G. Thusa{°=a;°=0 is ensured. X2 is given by
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FIG. 3. Experimental angular distributions of the vector analyzing pdwefor the d(d p)t reaction atE4= 30, 50, 70, and 90 keV are
plotted as a function of the angles in degrees. The solid curves are the results of our fitting.

1
2_ =

zi

i=1

a%°(exph —a’° 2 of the Legendre coefficients of the analyzing powers and
4 4 ao(6) are given in Table Ill together with those from the
AaZO ‘ experimentally analyzed coefficients. We see that they are
very close to each other, agreeing to two significant figures
in most cases. The experimental data for the analyzing pow-
37) ers Ay, Axz, Azz, andAyx.yy) and the unpolarized(6)

as evaluated from the experimentally fitted Legeraomef-

oo oo - ficients are plotted in Figs. 3—7. Also plotted are our fits
wherea, (expt) andAa, , are the Legendre coefficients and represented by the curves. We see from these figures that the
the correspondrng errors which are experimentally fitted texperrmental results are very well reproduced. Ffeper
:he unpolalrlzed Cross sectr@%%)] [15]. For thet vlector ?ndd degree of freedom as defined in E§7) is 1.15, 2.36, 3.13,
ensor analyzing powers we fit the experimental angular dis;
tributions [16] directly. In Eq. (37), the subscripK in Ag and 2.28 a€4=30, 50, 70, and 90 keV, respectively.

refers toXZ, ZZ, XX-YY, andY. The number of data points We should stress that the fitting is nonlinear. As can be
) P So Al o : ) seen from Eq(36), b(k) depends quadratically on the pa-
is Nyy=17, Nyp=18, Nyx.yy=17, andNy=16. Including a436), b(k) depends g y b

o Z rametersR(i) and the cosine of the angle differencés
a,°(expt) anda,°(expt), there are all together 70 data points _ 0;.

at each energy. As far as the fitting parameters are con- The fitted results of the dimensionless radial transition

cerned, all the theoretical quantities in E87) are expressed amplitudes for the reactiod(d,p)t at E,,,=30, 50, 70, and

in terms ofb(k) in Eq. (36) where there are 20 radial tran- 90 keV are listed in Table IV. The phase angles in degrees

sition amplitudes and 19 relative phase angles Since in thgre shown in parentheses.

process of fitting we flxed"‘)— 1 by expressrngz 0(O) in As we can see from Table IV, the largest radial transition

terms of the other varrables this is a constraint. Thereforeamplitude |s72202(2) This is the transition withL;,=2,

we have totally 38 parameters. This leaves the degrees &f,,=0, andS;,=2 and is induced by the tensor force. How-

freedomN in Eq. (37) to be 32. ever, as we shall see later, this does not contribute to the
The experimental data of the vector and tensor analyzingloubly polarized cross sectian, ;.

powers of the reactioml(d,p)t in the manner of Tagishi

et al. [12] are fitted atE,,,=30, 50, 70, and 90 keV sepa-

rately. The Legendre coeffrcrenaaér (expt) for the unpolar-

ized differential cross section of the same reaction and ener- We shall derive formulas that enable us to calculate the

gies are taken from Brown and Jarnigb]. The fitted results  doubly polarized cross sectian, ; from the radial transition

o (o
a,’(exph —a,°

a0
X

AK(B)expt AK(0)|
AAG) | )

IV. PREDICTION OF POLARIZED CROSS SECTIONS o,
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FIG. 4. The same as Fig. 3 for the tensor analyzing pofger.
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FIG. 5. The same as Fig. 3 for the tensor analyzing poer.
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FIG. 6. The same as Fig. 3 for the tensor analyzing pogtyy -

amplitudes obtained in Sec. Ill. From this, we can determine _ 1 3 1
the ratio ofoy 1/ as a function of the deuteron energy for w(i—f)= 9Tf< MiT+3 E. PiSi+3 4 Pri1Ski
the d(d,p)t reaction.

A. Cross section of a polarized beam on a polarized target (39

The transition ratew(i —f) for a polarized beam on a The gefinitions of all the symbols are given in Sec. Il and
polarized target can be described in the density-matrix formpe superscripT refers to the target. There are 81 terms in
this equation, but the parity conservation forces 29 terms to
20 T T T be zero, which leaves 52 terms with detailed angular infor-
mation. Since we are interested in the polaridedi reaction
Eq (keV) in the fusion reactor environment, where the polarized deu-
teron velocity distribution is isotropic, we integrate the tran-
sition rate over the angles @#=(0,7) and ¢=(0,2m) to
make the angular average. This further reduces the number
of terms in Eq.(38). The transition rate for the perfectly
polarized case,=p,,~1) at a given reaction energy can
then be expressed as

15

1 3
w(i—f)= 5Tr(lvl MT)| 1+ 21(cxyx+ Cyy+Cz2)

||||||1|||||1||||“||

G,(6) (mb/sr)
T T T T l T T T T IOI T T T I T T

5
30 Gyt =C
20 772,22 60 XX=YY,XX-YY
[ J T T N | Lo v by e Iy
0 50 100 150 1
8(deg) +1T:—)(CXY,XY+sz,xz+CYz,Yz) ,

(39
FIG. 7. Angular distribution ofry(6) of thed(d,p)t reaction at
E4=30, 50, 70, and 90 keV. The solid lines are from our fitting andwhere the coefficient’s are the spin correlation coeffi-
the circles are the Legendre function fits of the experimental datacients. They are defined as follows:
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TABLE V. Fitted values of the dimensionless radial transition amplitudes with their phases in degrees
shown in parentheses. All the phases are defined to be relative to ﬂmi%')j(Z).

Ejab (keV) 30 50 70 90
R 5540) 1.130(— 86.40) 0.878¢ 83.07) 0.874(75.76) 0.722¢87.72)
R5542) 6.87864.1]) 7.193721.9)) 7.47072.7) 7.19372.26
R32340) 0.386(—57.40) 0.361¢93.31) 0.137¢169.7) 0.204¢ 134.53)
R334(1) 3.554(— 24.50) 2.945¢11.01) 2.195¢ 6.530) 2.865¢ 19.09)
RI342) 2.387 0.000 2.971(- 135.64) 2.827(117.54) 3.009¢ 138.99)
R35541) 1.291(140.9 1.081(34.79 0.70%73.2)) 2.01284.64
R35342) 3.3430.000 3.6100.000 3.7730.000 3.5720.000
R5542) 1.026(—4.68) 1.066114.59 1.080116.79 1.078(— 33.44)
R353540) 0.686(— 63.08) 0.820¢ 38.23) 0.774¢5.39) 0.884(¢ 12.25)
R3341) 2.502(—24.01) 1.88712.39 2.54335.28 1.38025.17
R3542) 0.624(— 4.82) 0.1378.27) 0.0108.24 0.6474.03
R 5240) 0.603(— 6.63) 1.05610.23 0.88214.79 0.81517.48
R5oA1) 0.321(— 3.45) 0.003¢ 0.290) 0.290¢ 12.24) 0.457¢ 13.49)
R52A2) 0.004(-0.17) 0.0120.360 0.0210.000 0.032(-10.29)
R §540) 0.51327.89 0.1065.80) 0.11511.49 0.20218.33
Ro31) 0.49129.30 0.0945.789 0.07811.98 0.17218.21)
R8542) 0.49027.86 0.10Q 6.07 0.10%11.56 0.22018.18
RooA2) 0.487 2.80 0.1015.72 0.10011.04 0.21818.37
Ro5A1) 0.51% 29.54 0.1035.74 0.09011.57 0.02018.09
Ro3A2) 0.49428.32 0.0305.79 0.10011.45 0.22018.39
T T
Ca,g(a)zwy Cij,k|(9):wa (40
Tr(MMT) Tr(MMT)
Tr(MS,S{M")
Coij(0)= W where all of the operators are defined in Sec. lll. The sub-
scriptsa, B, 1, j, k, andl refer toX, Y, Z and the superscript
Tr(MS, SIM) (39, the reaction 6ro%s secton with a polaized bear and
Cijol)=————= ) polarized beam an

Tr(MMT™) target is obtained as

3
2+ E[|Mml,nfl|2+|Mmfl,n1|2]

. 1 9 5 9 ) 6
Ul,lzj w(|_’f)dQ:_f dQE _|Mm1,n1| +_|Mm71,n71| +tz IVImO,nO
9 mn |5 5 5

9
+ 1_0[| M ml,n0|2+ | M mO,nl|2+ | M mO,n71|2+ | M ml,n0|2]] . (41)
It is interesting to observe that there is Rewave contribution to the polarized deuteron fusion{n=1 andS,,=2, J
=0,1,2) due to the Pauli principle of two identical bosons in the entrance channel. The polarized deuteron fusion cross section
can be written in terms of the radial transition amplitudes:
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o= 2 2 2 2 X RedbingLouy Sy 1iLing Lo, Sy 2)

I-inlyl-out.l |-inzll-omz Sinlysout1 ELPI
9 A 3 A
X gQ (LinlaLoutlaSinlll1;Lin21|-our2asin2a|2;J11)+EQ (LinleoutlusinlaIl;LinvaouTQvSinZvlz;‘]a_l)

9
+ EQA(Linl: I—outlasinla I 1 I-inza Loutzasinza I 2 ;J,O) ’ (42)

where the superscript refers to the superscripts of the two radial transition amplitu&esr(D) from the multiplication of
M andM*. It labels the contribution from the different intrinsic wave functions of the deuteron and tRfgyis defined in
Eqg. (29). For each\, the Q function is defined by

f dOm 1m/,1l(|-in1’|-outivsinlv l l)MIm/’ll(LinzaLoutz;sinzr I 2)

= 2;4 Q(Linleout11$n11 I 11 LinvaoutzvSnzvl 2 ;Jam’)RRe(l—inleoutlaSnla I 11 LinvaoutzvSnza I 2)' (43)

We see from Eq942) and(43) that the imaginary part of the the unpolarized cross section at very low enefgg., Eg4
radial transition amplitudeR,,,, which contributes tdy in =30 keV), but becomes suppressed fairly quicklyE&gin-
o1,0(0), does not contribute to; ;. Furthermore, we should creases. By the timg, reaches 90 keV, the suppression ratio

stress thatr; o #) ando; ; depend on different combinations has become about 22%. Modulo the presence of the Cou-
of the radial transition amplitudes with differeNtN interac-  |omb potential in the final state interaction of tdéd,p)t

tions, i.e., their dependence drwhich labels the central, reaction, we believe similar results hold for ttéd,n)3He
spin-orbit, and tensor interactions. This is clearly demonyeaction. In the following discussion, we assume that this is
strated by the fact that thé function in Eq.(29) for o1, (6)  the case. Comparing with our earlier DWBA calculati@)

is different from theQ_functio_ns i_n Eq.(42) as far as their_ which predicted a small suppression ratie §%) in this
dependence on theN interaction is concerned. Therefore, it anergy range, it is clear that the DWBA is inadequate at this
is absolutely essential in the partial-wave analysis to separatg,,, energy and has indeed underestimated the importance of

out the radial transition amplitudes according to the tensof,e multistep transfer processdg)] that are included in the
rank of theNN interaction in order to prediat; ;. On the

other hand, one can sum Upandl, (the dependence on the

tensor rank of theNN interaction in Eq. (29) before fitting bl A AR . ofrmann ond Fick ]
the experiments as has commonly been done before. But by 12F X X Hale and Doolen ]
so doing, one loses the ability to predief ;. . o= present fitting ]
Plugging the fitted radial integrals from Table IV into 1.1E x 3
Egs.(42) and(43), the fusion cross section of the polarized . ]
d(d,p)t reaction is obtained d&4= 30, 50, 70, and 90 keV. 1.0 X
Since the unpolarized cross-sectioy is well reproduced L :
(see Table lll and Fig.)7 we only give the predicted sup- ~ o8} -
pression ratioo, ;/ 0 for the d(d,p)t reaction in Table V. o= .
The suppression ratio, ;/ o is also plotted in Fig. 8. 06— E
B. Discussion of results 0.4 -
We see from Table V and Fig. 8 that the polarized 02 F E
d(d,p)t reaction is essentially unsuppressed as compared to . ]
Ll | 11 1 ¢ I L3 1 1 I 111 1 I 111 I-
TABLE V. Suppression rati@; /o of thed(d,p)t reaction at 0.0™-53 20 50 80 100
E4=30, 50, 70, and 90 keV. Eq4 (keV)
E\an (keV) 30 50 70 90 FIG. 8. The suppression rati®, /0 as a function ofe;. @
o1l 0.866 0.564 0.331 0.219 are our predictions. The dashed curve is the result of Hofmann and

Fick[6] and X are theR-matrix predictions of Hale and DoolgB].
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TABLE VI. The breakdown ofr, ;/ 0 for thed(d,p)t reaction TABLE VIII. Contribution to the ratioo; ;/ oy from the central
according to the intrinsic states of the deuteron and tritoEat force withL;,=0, Ly,=2, Sji1=Sin2=2.
=30, 50, 70, and 90 keV. The, is taken as a whole; i.e., there is

no breakdown inr. Eap (keV) 30 50 70 90

Ep.y (keV) 30 50 70 20 SD-SD 0.910 0.695 0.356 0.093
total oy 1/ 0 0.856 0.554 0.331 0217 % 106 124 107 417
SSSS 0.172 0.201 0.234 0.188

% 20.2 35.9 71.3 86.2  swave incoming andd-wave outgoing channels with the
SD-SD 0.645 0.356 0.101 0.025  tensor force. We show its contribution to the ratio in Table
% 75.8 63.6 30.8 11.5 VII.

DS-DS 0.020 0.002 0.001 0.002 (i) The contribution from theSD-SD-state component
% 2.35 0.36 0.31 0.92 (both amplitudes are witB-state component in the deuteron
SSSD+SSDS 0.014 0.001 -0.008 0.003 and D-state component in the tritprdominates(76%) the

% 1.65 017 241 1.38 suppression ratio & 4= 30 keV, but quickly diminishes to

only 10% atEy=90 keV. The dominant term here is from
the sswave incoming andl-wave outgoing channels with the
central force and;,; = S;,,=2. This agrees completely with
e finding of the RGM calculatiof6] at E;= 30 keV. How-

A . ._ever, we find that the contribution from this transition ampli-
plotted in Fig. 8, we see that their result on the suppressiony 4o’ dies down quickly a&, increases, as illustrated in

ratio agrees with the present calculatiorgt=30 keV, but  r4p16 /|, This apparently is in contradiction with the RGM
becomes 3 times larger By=90 keV. As will be discussed  cajculation[6] which finds this transition amplitude not to
later, despite the apparent difference at higier the RGM  change much fronk 4= 40 to 280 keV. Shown in Table VIII
calculation has captured the dominant mechanism of the pgs the contribution from the major term, i.e., thavave in-
larized reaction. But by either overestimating; or under-  coming andd-wave outgoing channels with the central force
estimatingoy, it results in a mucher larger ratio at higher andS,,; =S;,,=2. Note that the contributions from this term
Ey. The R-matrix prediction for thed(d,p)t reaction by alone atEy4=30, 50, and 70 keV are larger than the total
Hale and Dooleif8] is also plotted in Fig. 8 for comparison. oy /0. It is the interference terms which reduce the contri-
We see that their result shows no suppression at all in thibution from this term and lead to the to&D-SD contribu-
energy range and is about 5 times larger than the presetibn to the suppression ratio in Table VI.

result atE4~90-100 keV. It is not clear where the discrep-  (iii) The smallness of the contribution from tHeS-
ancy comes from, since both approaches fit the experiment@l S-state component shows that thestate in the deuteron is
data onoo(6) and o g. not nearly as important as tiiestate in the tritoriand *He).

To examine the prediction of the suppression ratio furtherThis justifies our neglect of the exchange matrix element of
we consider the breakdown of its contribution from differentthe D-state deuteron as described in Sec. II.
partial waves and different intrinsic states of the deuteron (iv) The interference effect between ti$e and D-state
and triton. Listed in Table VI is the breakdown of /oo  components are small as demonstrated by the small contri-
according to the intrinsic wave functions of the deuteron andution from theSSSD+SSDS state component in Table
triton which are indicated as in Eq. (42). For exampleSD- VL.

SD denotes the product of two transition amplitudes. One is

with Sstate component in the deuteron dbestate compo- V. SUPPRESSION OF THE SPIN-POLARIZED d-d
nent in the triton, while the other is with-state component REACTION RATE IN THERMAL FUSION

in the deuteron an&-state component in the triton. i . )

Some comments on the results in Table VI are in order.  Since the present study is prompted by the interest of a

(i) The SSSS (both the deuteron and triton are in the [:3)OSS|bIe neutron-lean fusion rgactor based on polalfz_ed _
S-state componentsomponent contributes only 20% to the ~He fuel, we explore the question of neutron suppression in
suppression ratier; 1/ o at Eq=30 keV, but grows to 86% the thermal fusion reactor environment as a function of the
at E4=90 keV. The dominant contribution here is from the deuteron energy. _

The major source of neutrons in tiie 3He reactor con-
sists of the primary reactiod(d,n)*He and the secondary
reactiond(t,n)« where the tritons are produced from the
d(d,p)t reaction. The reaction rate of the(d,p)t [or
d(d,n)3He] reaction of the plasma is defined R?%nﬁs,

present partial-wave analysis. As compared to the resonati
group calculation ofi(d,n)®He by Hofmann and Fickalso

TABLE VII. Contribution to o 1/ from the tensor force term
Wlth I—in: O, LOUt: 2, Sin1: 0, Snzz 1

Eap (keV 30 50 70 90 - :

ab (keV) whereS stands for the reaction raterv) for the dd fusion
SSSS 0.152 0.126 0.094 0.074 reaction,ng refers to the deuteron density in the plasma, and
% 17.7 227 28.3 358 the 1/2 factor takes care of the double countings due to iden-

tical particles in the reacting pairs. The reaction Kate) of
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5000 —————————————— the beam-polarized(d,p)t cross section will become avail-
I~ C ] able in the laboratory energy rang=100-600 keV. Of
@ i . course it would be better still to have the both beam and
o 4000 - target polarized reaction cross section. We can use it directly
E [ ] in the reactor study of neutron suppression and, furthermore,
w i d+Heopta 1 it would be useful to check the prediction of our partial-wave
W 3000~ ] analysis.
© - ]
(o) L 4
s 2000 - VI. CONCLUSION
@ C d+ton+d ] In summary, we have initiated a partial-wave analysis of
'x’oz\ i thedd fusion reactiord(d,p)t which separates out the radial
1000 / d+d->p+t — " . .
S N s . transition amplitudes according to the tensor rank ofi\in
YN °°°°°>§T\d+d_’"+ He 1 interaction, i.e., the central, spin-orbit, and tensor interac-
ok AR T tions. This way, it becomes feasible to extract the relevant
Y 200 400 radial transition amplitudes by fitting the angular distribu-

€ (keV) tions of the tensor and vector analyzing powés,(6),
Az7(0), Axxyv(6), and Ay(0), and the unpolarized cross
sectionoy( ). We have done so for thaé(d,p)t reaction at
E4=30, 50, 70, and 90 keV. The partial wave is expanded to
g waves in both the entrance and exit channels. Dkstate
components in the triton and the deuteron are also included.
The doubly polarized fusion cross section ; is predicted
the reacting particles with an isotropic and Maxwellian Ve_frqm_these radial transition amplit_udes. V\(g should stress that
locity distribution at temperatur® can be expressed as this is possible only when the radial transition amplitudes are
separated out according to the tensor rank ofNié inter-
) 5 actions. We found that the suppression ratio,/ o is close
_c — /KT to unity atEy=30 keV and goes down to about 20%HEt
{ov)= KT rrKT,uf © so(e)de, “4 =90 keV. We verified that little or no suppressidiarge
suppression ratjoof the polarized reaction at very o is

wherep ande stand for the reduced mass and the center-of€@useéd mainly by the central force in tavave incoming
mass energy of the reaction pairs, whiteis the effective ~2ndd-wave outgoing channels with the outgoing triton in the
reaction cross section. intrinsic D-state component. However, the polarized cross

In order to study the question of neutron suppression, w ection from this transition amplitude is quickly canceled out

first plot the unpolarized fusion reaction ratésv) as a 0Y the interference terms from other amplitudesEgsin-
function of the center of mass energy of the reaction pairs®'€2S€s- , _ o
We have studied the issue of neutron suppression in the

As shown in a conceptual design oDa®He fueled tandem ) _ _ 3
mirror reactor{3,4], the optimal temperature is found to be fusion rector context with the polarizda- "He fuel. In plot-
ting out the reaction ratéov) for the unpolarizedi(d,p)t

~75 keV. Here we shall usg& at 60 keV as an illustration. 3 ) 4 X

Hence, the reaction rates of the unpolarized reactions 2ndd(d.n)°He reactions af =60 keV as a function of the

+3Hep+a, d+d—p+t, d+d—n+3He, and the sec- deuteron energy, we realize that the important range for sup-

ondary reactiond+t—n+a are plotted in Fig. 9 forT pressing the dd fusion reaction is actually frétg=80 keV

—60 keV. First we notice that the reaction rade-t—n  © 60.0 keV. We hope that e>.<per|.mental data on th.e beam-

+a is muchlarger than the others. However, since the tritorP©larized ross sectiom; () in this energy range will be-

in this secondary reaction comes from the reactibhd come available in the future so that we can make a prediction
of the suppression ratio; /0 in this energy range. This

—p+t, it would be sufficient to suppress thi€d,p)t and . ST : . .
d(d,n)®He reactions in order to reduce the neutron yield ASmformatlon is essential to answering the question about neu-
: ___tron suppression in a fusion reactor setting.

we turn our attention to the latter reactions, it is clearly seert
in Fig. 9 that the dominant reaction rates for the neutron
production lie roughly between 40 keV and 300 keV for the
dd center-of-mass energy. Thus, in order to reliably predict
the neutron suppression in a polariZzBd®He reactor oper- This work was partially supported by DOE Grant Nos.
ating atT=60 keV, one needs to know the suppression ratiDE-FG05-84ER40154 and DE-FC02-91ER5661. The au-
011/ 0 in this energy range. Since our present study covershors would like to thank H. Paetz gen. Schieck, Edward J.
the range between 15 keV and 45 keEy4E30-90 ke Ludwig, and Y. Tagishi for providing us their experimental
only, we are not in a position to make a prediction until theredata. We are grateful to M. McEllistrem for reading over the
are more accurate experimental data available in this energyanuscript. One of the authof& S.Z) is indebted to Prof. Z.
range. In this regard, we hope that the experimental data foX. Sun for introducing the subject of polarization to him.

FIG. 9. The integrands of the reaction ratev) in Eq.(44), i.e.,
e *KTeg(e) for the unpolarized reactiond+*He—p+«, d+d
—p+t, d+d—n+3He, and the secondary reaction-t—n+ «
are plotted as a function of the center-of-mass energy of the rea
tion pairs.
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