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Neutron suppression in polarizeddd fusion reaction
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We report a model-independent partial-wave analysis of polarizeddd fusion reactions at low energies. The
radial transition amplitudes, designated by the central, spin-orbit, and tensor forces, are determined by fitting
angular distributions of the tensor and vector analyzing powersAXZ(u), AZZ(u), AXX-YY(u), andAY(u), and
the unpolarized cross sections0(u). The polarized fusion cross sections1,1(u) is then predicted from these
radial transition amplitudes. We stress that this is feasible only when these amplitudes are separated according
to the tensor rank of the interaction. This study includes theD-state components of the deuteron, triton, and
3He, and the partial-wave expansion is done up to thed wave for both the entrance and exit channels.
Experimental data atElab530, 50, 70, and 90 keV for thed(d,p)t reaction are very well fitted with this
method. It is found that the ratio of polarized to unpolarized cross sections is about 86% at 30 keV and goes
down to 22% at 90 keV. The implication of the suppression of a polarizeddd fusion reaction is discussed in
the context of the neutron-lean fusion reactor with polarizedD- 3He fuel. It turns out that the important range
of energy for suppressing thed(d,p)t andd(d,n)3He reactions at the plasma temperatureT560 keV isEd

580–600 keV. More experimental data are needed in this range to make a detailed study of the neutron
suppression.@S0556-2813~99!04409-X#

PACS number~s!: 25.10.1s, 24.10.2i, 24.70.1s, 28.52.Cx
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I. INTRODUCTION

It has been suggested@1,2# that the spin degree of free
dom plays a role which allows certain reaction channels
plasma fusion reactions to be selectively enhanced or

pressed. In particular, if the polarizeddW (dW ,n)3He and

dW (dW ,p)t cross sections are indeed suppressed by choo
the deuteron spin to be parallel to each other to reduce
secondary neutrons and tritons, the idea of aneutron-lean
fusion reactor based on polarizedD- 3He fuel with a pre-
dominant 3He(d,p)4He reaction would be appealing@1–4#.

An early partial-wave analysis@5# of the experimental
data of thed(d,p)t reaction with a polarized deuteron bea
in the energy range 100–500 keV suggests that the qu
state 5S2 in the entrance channel is small compared to
singlet state1S0. This suppression is thought to occur wh
the deuterons are polarized in parallel~i.e., S52) so that at
low energies where the relatives wave dominates, the Pau
principle would impede the reaction. However, it w
pointed out by Hofmann and Fick@6# that the inclusion of
theD-state probability in3He allows the strong central forc
to contribute to theS52 channel. As a result, they predicte
nonsuppression of the ratio of the polarized to unpolari
cross sections1,1/s0 in their refined resonating-grou
method ~RGM! calculation @6#. A similar conclusion is
reached from theR-matrix analysis by Hale and Doole
@7,8#. On the other hand, the distorted-wave Born appro
mation ~DWBA! calculation performed by the present a
thors@9# shows that the ratios1,1/s0 is only 8% in the range
20–150 keV despite the inclusion of theD-state componen
in 3He. These conflicting conclusions have left theoreti
studies in a quandary. Added to the controversy is the
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lowing twist. Abu-Kameret al. @10# investigated the depen
dence of the wave function and interaction in a one-s
d(d,n)3He reaction calculation and pointed out that t
Gaussian-type potential and deuteron wave function use
both the DWBA @9# and the RGM@6# calculations are not
realistic. In particular, when a consistent deuteron wa
function and deuteron-3He overlap function are used to
gether with the Reid potential in a one-step reaction mode
is found @10# that the unpolarized cross section is overes
mated by two orders of magnitude, whereas the DWBA
sult @9# is reproduced when the afore-mentioned Gauss
potential and wave functions are used. This has raised do
in the theoretical studies at these low energies.

In view of the above unsatisfactory and unsettling sta
of the theoretical calculations, we undertake a partial-wa
analysis of thed(d,p)t reaction for the unpolarized, singl
polarized, and doubly polarized cross sections. What sets
partial-wave analysis formalism apart from previous analy
@5,11–13# is that the matrix elements are explicitly separat
according to the tensor rank of theNN interaction. This is
necessary for the prediction of the doubly polarized cr
section, since these matrix elements appear in different c
binations in the singly and doubly polarized cross section

The values and relative phases of the radial matrix e
ments are determined by fitting the data from the unpolari
cross sections0(u), the three tensor analyzing powe
AZZ(u), AXZ(u), and AXX-YY(u), and the vector analyzing
power AY(u) from the singly polarized cross sections1,0.
The doubly polarized cross sections1,1 is then predicted
from these radial matrix elements. Partial waves are
panded up tod wave which is sufficient for the energy rang
we consider,Elab530–90 keV. Furthermore, we have in
cluded theD-state contributions of the deuteron, triton, a
3He. Since this is a partial-wave analysis which includes
multistep processes, it should yield model-independent
sults as judged by how well the experimental data are fitt
©1999 The American Physical Society14-1



y,
y

e
w

e-

th

fe
-
un
it
ou

si

s
ro
is
e

he
o

th

nd

he

e
e

he
the
ex-

,
the
sor
on
l

oss
ten-
b-

ed
the
trix
alid

cer-
a

ed

x-

f the
eron
r
l-

ex-
the
ator

de-
for
on
tes.
he
is
on
dif-
and

s 1
the

ng

J. S. ZHANG, K. F. LIU, AND G. W. SHUY PHYSICAL REVIEW C60 054614
We found thats1,1 is unsuppressed at very low energ
i.e., s1,1/s050.86 atElab530 keV. Indeed, as suggested b
Hofmann and Fick@6#, this is mainly due to theD-state
component in3He andt which is connected to the5S2 in-
coming channel through the central force. However, as
ergy increases, this ratio decreases and goes down as lo
22% at Elab590 keV. This is much lower than those pr
dicted from the RGM@6# and theR-matrix analysis@7,8#.

This paper is organized as follows. Section II defines
partial-wave expansion of the wave functions in thed(d,p)t
reaction and the transition amplitudes associated with dif
ent channels and the type ofNN interaction. The radial tran
sition amplitudes are then fitted to experimental data of
polarized and singly polarized cross sections in Sec. III. W
these transition amplitudes, we predict, in Sec. IV, the d
bly polarized cross sections1,1 in the energy rangeElab
530–90 keV. Section V discusses the neutron suppres
in the thermal fusion reactor environment with polarizedD-
3He fuel. Finally, we summarize our study in Sec. VI.

II. PARTIAL-WAVE EXPANSION OF WAVE FUNCTIONS
AND TRANSITION AMPLITUDES

The deuteron fusion reactionsd(d,p)t andd(d,n)3He are
typical examples of the re-arrangement collision proce
where a proton or a neutron is transferred from one deute
to the other in the nuclear collision process. This process
subset of the nuclear collision processes that can be lab
as

a1A5b1B, ~1!

wherea andA refer to the incident and target nuclei, whileb
and B represent the product nuclei after the collision. T
rearrangement collision process can be described as s
nucleons being transferred froma to A ~or A to a). The
differential cross section of the rearrangement collision in
center-of-mass system can be described as

ds

dVb
5

mambkb

~2p\!2ka

2

~2Sa11!~2SA11!

3 (
m,m8, . . .

u^FbuVuCa
(1)&u2, ~2!

wherema ,mb and ka ,kb stand for the reduced masses a
wave vectors for the incoming and outgoing channels, andSa

andCa
(1) refer to the channel spin and wave function of t

incoming channel. The incoming wave functionCa
(1) , a

function of the relative coordinaterWa betweena and A and
the intrinsic coordinates ina and A as labeled byj, is the
solution of the Lippmann-Schwinger equation

Ca
(1)~rWa ,j!5Fa1~Ea2Ha1 ih!21VCa

(1)~rWa ,j!, ~3!

where Ea and Ha are the energy and Hamiltonian of th
incoming channel, andFa is the unperturbed incoming wav
function.
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Unlike the DWBA which approximates theCa
(1) by a

distorted wave function due to the optical potential in t
incoming channel and is a one-step process as far as
nucleon transfer reaction is concerned, our present study
pands the full transition amplitudêFbuVuCa

(1)& in the par-
tial waves of the incoming and outgoing channels. TheD
components in the internal wave functions of the deuteront,
and 3He are also included. Furthermore, we separate out
matrix elements due to the central, spin-orbit, and ten
interactions. As will be shown in Sec. IV, this separati
according to the tensor rank of theNN interaction is essentia
in evaluating the polarized cross sections1,1. After these
steps are taken, the only unknowns in the differential cr
sections are the radial transition amplitudes due to the po
tial V. The complex radial transition amplitudes can be o
tained by fitting the angular distributions of the unpolariz
and beam polarized differential cross sections. Finally,
polarized cross section is calculated from these radial ma
elements. To the extent that the partial-wave analysis is v
at the low energy we are concerned with, i.e.,Elab530–90
keV, the present approach is free from the theoretical un
tainties we alluded to in the Introduction. It should give
model-independent prediction ofs1,1, provided thats0(u)
ands1,0(u) can be reasonably well fitted with the prescrib
partial waves.

In the rest of this section, we derive the partial-wave e
pansion of the transition amplitudes of thed(d,p)t reaction.
These amplitudes describe the rearrangement collision o
deuteron beam on the deuteron target, where one deut
~beam or target nucleus! picks up the neutron of the othe
deuteron to form a triton. All the formulas given in the fo
lowing for the d(d,p)t reaction are also valid for the
d(d,n)3He reaction provided that one makes appropriate
changes in the particle labels. In Sec. II A, we define
particle labels and prescribe the antisymmetrization oper
for the wave function of thed1d system. The two-body
interaction potentials are also discussed. In Sec. II B, we
fine the relative coordinates and the intrinsic coordinates
the d(d,p)t reaction, and derive the partial-wave expansi
for the entrance and exit wave functions in these coordina
Sec. II C, we define the transition amplitudes, list all t
possible nuclear interactions within the framework of th
study, and then derive a common form for the transiti
amplitudes that separately describes the contributions of
ferent nuclear interaction forces, total angular momenta,
intrinsic states of the final product~triton or 3He).

A. Particle labeling, antisymmetrization, and two-body
interaction potential

Unless otherwise indicated, this paper assigns particle
and 3 as protons and particles 2 and 4 as neutrons in
d(d,p)t reaction channel. The total spins of the incomi
and outgoing channels are denoted asSin andSout. The mag-
netic quantum numbers of the two deuterons arem andn in
the incident state, whilem8 andn8 denote the coupled spin
magnetic quantum numbers of the~1,2! and~3,4! pairs in the
exit channel, i.e.,p and t.
4-2
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NEUTRON SUPPRESSION IN POLARIZEDdd FUSION . . . PHYSICAL REVIEW C 60 054614
Since we distinguish the protons from the neutrons,
antisymmetrization only involves the permutation betwe
the protons and neutrons separately. This is done with
antisymmetrization operator on the wave function of thed
1d system which can be written as

A5
1

2
~12P13!~12P24!5

1

2
~12P13!~11P13 P24!,

5
1

2
@11~2 !L in1Sin#~12P13!. ~4!

The last step reflects the Bose symmetry between the
deuterons in the incoming channel. The two-body nucle
interaction potentialV contains the central force, the spin
orbit force, and the tensor force. The central force conse
both the spins (DS50) and the orbital angular momentu
(DL50). The spin-orbit force can lead to spin (DS51) and
orbital angular momentum flip (DL51). The tensor force
can flip the spin and orbital angular momentum up to t
units, i.e.,DS52 andDL52. The two-body transition po
tential V in Eq. ~2! for the d1d rearrangement collision to
the final product of a proton~particle 3! and a triton~par-
ticles 1, 2, and 4! is described by

V5V~1,3!1V~2,3!1V~3,4!2U@rW32~rW11rW21rW4!/3#,
~5!

whereV( i , j ) is the interaction potential betweeni andj, and
U@rW32(rW11rW21rW4)/3# is the average potential acting on th
particle 3~proton! from particles 1, 2, and 4 in the triton. I
the present analysis, we have included the contribution of
dominant interactionV(3,4) in the partial-wave analysis bu
neglected the contribution ofV(1,3)1V(2,3)2U@rW32(rW1

12W 21rW4)/3#. This is usually done in DWBA calculations o
stripping and pickup reactions involving heavy targets. T
same approximation is made here as in the one-step rea
calculation@10#. We have checked that the neglected int
action does not give rise to a dominant polynomials in
Legendre expansion of the experimental analyzing pow
Thus we believe it should be small compared with the c
tribution from V(3,4).

B. Partial-wave expansion of wave functions

The relative coordinates of the four-nucleon system
chosen as follows:

RW c5
1

4
~rW11rW21rW31rW4!,

RW a5
1

2
~rW11rW2!2

1

2
~rW31rW4!,

rW5rW12rW2 ,

rW85rW32rW4 , ~6!
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whereRW c is the center-of-mass coordinate,RW a is the relative
coordinate between the two deuterons, andrW and rW8 are the
intrinsic coordinates of the two deuterons. We show th
coordinates in Fig. 1 in the center of mass system whereRW c
is constant. Any other relative coordinates can be descri
in terms ofRW a , rW, andrW8. For example, the relative coord
nate betweenp and triton~similarly for n and 3He) is

RW b5
1

3
~rW11rW21rW4!2rW35

2

3
~RW a2rW8! ~7!

and the relative coordinate betweenn and d in the triton
~similarly for p andd in 3He) is

RW h5
1

2
~rW11rW2!2rW45RW a1

1

2
rW8. ~8!

In the following, the wave functions for the entrance and e
channels of thed(d,p)t reaction are expressed in terms
these coordinates.

The relative wave function between the deuterons in
entrance channel with angular momentumL is

xL0
(1)~kW in•RW a!5x (1)~Ra!YL,0~Va!, ~9!

where we have taken the incoming relative momentumkW in to
be along theZ axis andVa represent the angles betweenkW in
andRa . x (1)(Ra) is the radial wave function. The exchang
wave function can be written in terms of the coordinatesrW

and rW8

FIG. 1. The relative coordinateRW a between the two deutron

and the deuteron intrinsic coordinatesrW andrW8 as defined in Eq.~6!

are plotted in the center-of-mass system withRW c5const.
4-3
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xL0
(1)~kW in•P13RW a!5xL0

(1)@kW in•~rW82rW !/2#5 (
l 1 ,l 2

x l 1 ,l 2
(1) ~r ,r 8!

3F(
m1

A4p~2l 111!Yl 1m1
* ~V in!

3Yl 1m1
~V r !(

m2

A4p~2l 211!

3Yl 2m2
* ~V in!Yl 2m2

~V r 8!G
L0

5 (
l 1 ,l 2

x l 1l 2
(1)~r ,r 8!(

ml

C~ l 1 ,l 2 ,L;

2ml ,ml ,0!C~ l 1 ,l 2 ,L;0,0,0!Yl 1 ,2ml
~V r !

3Yl 2 ,ml
~V r 8!, ~10!

wherex l 1l 2
(1)(r ,r 8) is the exchange radial wave function an

C( l 1 ,l 2 ,L;m1 ,m2 ,M5m11m2) is the Clebsch-Gordon co
efficient which reflects the fact thatl 1 ,m1 and l 2 ,m2 are
coupled toL0. V r andV r 8 are the solid angles of the coo
dinatesrW and rW8, respectively. In going to the last step, w
have used the fact that the incoming relative momentumkW in
is along theZ axis, and henceV in corresponds tou50.

Thep-t relative wave function with relative coordinateRb
in the exit channel with angular momentumL8 and M 8 is
written as follows:

xL8,M8
(2)

~kWout•RW b!

5xL8,M8
(2)

~kWout•RW a ,kWout•rW8!5(
l ,l 8

L l l 8
(2)

~kout,Ra ,r 8!

3F(m A4p~2l 11!Ylm* ~V!Ylm~Va!

3(
m8

A4p~2l 811!Yl 8m8
* ~V!Yl 8m8~V r 8!G

L8M8

5(
l l 8
A 4p

2L811
L l l 8

(2)
~kout,Ra ,r 8!

3(
m

C~ l ,l 8,L8;m,M 82m,M 8!

3C~ l ,l 8,L8;0,0,0!Yl ,m~Va!

3Yl 8,M82m~V r 8!YL8,M8
* ~V!, ~11!

where V refers to the angle betweenkW in and kWout and
L l l 8

(2)(kout,Ra ,r 8) is the radial wave function of the ex
05461
channel.l and l 8 are the orbital angular momenta associa
with the solid anglesVa andV r 8 .

The wave functions of the intrinsic states oft ~similarly
for 3He) with S- andD-state components are

w t
S~rW,RW h!5 (

l h ,mh

w l h
S ~Ra ,r ,r 8!C~ l h ,l h,0;mh ,2mh,0!

3Yl h ,mh
~Va!Yl h ,2mh

~V r 8!,

w t
D~rW,RW h!mD

5 (
l h ,mh

w l h
D~Ra ,r ,r 8!

3C~ l h ,l h,2;mh ,mD2mh ,mD!

3Yl h ,mh
~Va!Yl h ,mD2mh

~V r 8!, ~12!

whereRW h is the coordinate betweenn andd in the triton as
shown in Eq.~8!. w l h

S (Ra ,r ,r 8) and w l h
D(Ra ,r ,r 8) are the

radial wave functions of theS- andD-state components, re
spectively, and the subscriptmD is the magnetic quantum
number of theD-state component in thet or 3He. Here we
consider theD wave betweenn and deutron as the only
source ofD-state component oft. TheD-state component o
t with the intrinsic deutron in theD state is neglected. The
transition involving intrinsic deutrons in theD state for both
the entrance and exit channels is very small. Furtherm
there is no transition to the triton with its subdeutron in theD
state from theS-state deutron in the entrance channel, b
cause interactionV(3,4) does not involve particles 1 and 2
the deutron and the wave functions are orthogonal in
case.

The exchange term of the product of theS-state~intrinsic
state! wave functions of the two deuterons in the incomi
channel is

wd
S~2P13rW !wd

S~2P13rW8!

5wd
S~rW1rW822RW a!wd

S~rW1rW812RW a!

5 (
La5even

(
Lr1Lr85even

wd1d
SS ~Ra ,r ,r 8!La ,Lr ,Lr 8

3 (
MaMr

~21!MaC~La ,Lr ,Lr 8 ;Ma ,2Mr ,Ma2Mr !

3YLr ,Mr
* ~V r !YLa ,Ma

~Va!YLr 8 ,Mr2Ma
~V r 8!, ~13!

wherewd1d
SS (Ra ,r ,r 8)La ,Lr ,Lr 8

is the product of radial wave

functions with the Legendre expansion rankLa ,Lr ,Lr 8 for
the anglesVa , V r , andV r 8 .
4-4
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TABLE I. Radial transition amplitudes and the associated channel orbital angular momenta, spin
channel angular momentumJ, and the type ofNN interactions are listed. The second and third colum
indicate the intrinsic state of the deutron and the triton, respectively.

R L,L8,Sin

S(D)S(D)(I ) d state t state L in Lout Sin Sout Jp Force type

R 0,0,0
SS (0) S S 0 0 0 0 01 C

R 2,0,2
SS (2) 2 0 2 0,1 01,11 T

R 1,1,1
SS (0,1,2) 1 1 1 1 02 C,LS,T

R 1,1,1
SS (0,1,2) 1 1 1 0,1 12 C,LS,T

R 1,1,1
SS (0,1,2) 1 1 1 1 22 C,LS,T

R 2,2,2
SS (1,2) 2 2 2 0,1 21 LS,T

R 0,2,2
SS (2) 0 2 2 0,1 21 T

R 2,2,0
SS (0,1,2) 2 2 0 0,1 21 C,LS,T

R 0,2,2
SD (0) S D 0 2 2 2 21 C

R 0,2,2
SD (1) 0 2 2 1,2 21 LS

R 0,2,2
SD (2) 0 2 2 1,2 21 T

R 0,2,0
DS (0,1,2) D S 0 2 0 0,1 21 C,LS,T

R 0,0,2
DS (2) 0 0 2 0,1 01,11 T

R 0,2,2
DS (1,2) 0 2 2 0,1 21 LS,T
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The direct product of the intrinsic wave functions of th
two deuterons with one in theS state and the other in theD
state is

wn,m
d1d5C~1,1,Sa ;n,m,n1m!3(

md

C~1,2,1;m,md ,m1md!

3@wd
S~r !wd

D~r 8!Y2,md
~V r 8!

1wd
S~r 8!wd

D~r !Y2,md
~V r !#, ~14!

wherewd
S and wd

D stand for the direct intrinsic radial wav
functions. We shall neglect the exchange matrix eleme
due to theD-state component in the deuteron in this stud
This is justifiable since theD-state component of the deu
teron has little effect in the fusion reaction as we will sho
later through the fit of the experimental data.

Finally, the total wave function is the product of the cha
nel wave function and the intrinsic wave function:

C~F!5xw. ~15!

C. Partial-wave expansion of transition amplitudes

The transition amplitude of the reactiond(d,p)t is de-
fined by

Mmm8,nn8~kW in ,kWout!

5A2mambkb

~2p\!2ka

^Fp1t~n8,m8!uV~34!uACd1d
(1) ~n,m!&,

~16!
05461
ts
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wherem andn refer to the spins of the two deuterons co
sisting of nucleons~1,2! and ~3,4! in the entrance channe
while m8 andn8 refer to the spins of the same nucleons~1,2!
and ~3,4! in the exit channel ofp and t.

After the integration over isospin, spin, and anglesVa ,
V r , andV r 8 are carried out, the transition amplitudeM de-
pends only on the radial integrals and the scattering angleV.
The allowed radial transition amplitudes can be classifi
according to thes, p, andd partial waves, theS andD com-
ponents of the intrinsic deuteron and triton, and the ten
rank of theNN interaction. These are listed in Table I to
gether with 20 complex radial transition amplitudes whi
are denoted asR L,L8,Sin

S(D)S(D)(I ) with I 50,1,2 for the central,

spin-orbit, and tensor force, respectively. The first sup
script of R denotes the intrinsic states in the deuteronsS
stands forS states in both deuterons andD stands for one in
theSstate and the other one in theD state!, while the second
one stands for that of the triton~or 3He). The subscriptsL
and L8 denote the orbital angular momenta of the entran
and exit channels, andSin denotes the spin in the incomin
channel. Note that the radial transition amplitudes do
depend onSout. We further note that for theD-state compo-
nents ofd and t only the s incoming wave is considered
Furthermore, the transition from the deuteronD state to the
triton D state is neglected as this involves the product
D-state probabilities in the deutron and triton which is ve
small.

Using the notation of the radial integrals defined abo
the transition amplitudeM can be written in the following
form. For the case of anS-state component in the intrinsi
wave functions of both the deuteron and triton, the transit
amplitude is written as
4-5
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Mmm8,nn8
(SS)J

~L in ,Lout,Sin ,I !5(
Sout

BS~Sout!
1

2
@11~21!L in1Sin#dn8,nR L in ,Lout ,Sin

SS ~ I !

3C~Sout,Lout,J;n1m8,m2m8,n1m!C~Sin ,L in ,J;n1m,0,n1m!

3C~1,I ,1;m,m82m,m8!C~Lout,L in ,I ;m2m8,0,m2m8!

3C~1,1,Sout;n,m8,n1m8!C~1,1,Sin ;n,m,n1m!YLout ,m2m8~V!. ~17!

For the case of anS state component in the deuteron andD-state component in the triton,M is written as

Mmm8,nn8
(SD)J52

~L in50,Lout,Sin52,I !5dn8,n

1

2
@11~21!L in1Sin#(

Sout

R 0,Lout,2
SD ~ I !

3BD~Sout! (
Sh ,mD

~21!mDWS 2,
3

2
,Sh ,

1

2
;
1

2
,SoutDC~2,Sout,Sh ;mD ,n1m8,n1m81mD!

3C~Sout,Lout,J;n1m8,m2m8,n1m!C~Sin ,L in ,J;n1m,0,n1m!

3C~1,1,Sout;n,m8,n1m8!C~1,1,2;n,m,n1m!C~1,I ,1;m,m82m,m8!

3C~ I ,2,Lout;m2m8,2mD ,m2m82mD!

3C~Sh ,Lout,2;n1m81mD ,m2m82mD ,n1m!YLout ,m2m82mD
~V!. ~18!

For the case of theD-state component in the deuteron andS-state component in the triton,M is written as

Mmm8,nn8
(DS)J

~L in50,Lout,Sin ,I !5dn8,n

1

2
@11~21!Sin#(

Sout

R 0,Lout ,Sin

DS ~ I !

3BS~Sout!(
md

C~1,1,Sout;n8,m8,n81m8!C~1,1,Sin ;n,m,n1m!

3C~Sout,Lout,J;n81m8,m2m8,n1m1md!C~Sin,2,J;n1m,md ,n1m2md!

3C~1,I ,1;m,m82m,m8!C~ I ,2,Lout;m2m8,md ,m2m81md!

3C~1,2,1;m,md ,m1md!C~2,2,Lout;0,0,0!YLout ,m2m81md
~V!. ~19!
ting
on

, the
zing
iated
on
mi-

ed
The values ofBS(Sout) andBD(Sout) in the above partial
amplitudes are given in Table II.

The total transition amplitudeM is simply the sum of the
above partial amplitudes:

Mmm8,nn8
J

~Lin ,Lout,Sin ,I !

5Mmm8,nn8
(SS)J

~L in ,Lout,Sin ,I !1Mmm8,nn8
(SD)J

~L in ,Lout,Sin ,I !

1Mmm8,nn8
(DS)J

~L in ,Lout,Sin ,I !. ~20!

TABLE II. Values of BS(Sout) andBD(Sout)

Sout 0 1 2

BS(Sout) 1

A2

1

A3

0

BD(Sout) 0 1
2 A5

2

05461
III. FITTING OF RADIAL TRANSITION AMPLITUDES
TO NUCLEAR DATA

This section describes the procedure leading to the fit
of radial transition amplitudes to the experimental data
d(d,p)t reactions. First, we define thet-matrix description of
the unpolarized and beam-polarized cross sections. Next
unpolarized cross section and the vector and tensor analy
powers are expressed in terms of the Legendre or assoc
Legendre polynomials. It is shown that the radial transiti
amplitudes are related to the coefficients of these polyno
als. Finally, a nonlinerx2 fit is utilized to fit the radial tran-
sition amplitudes to the experimental data.

A. T-matrix description of the cross section

The transition matrix representation of an unpolariz
cross section is given@14# as

s0~u![
ds0

dV
5

1

9
Tr~MM 1!. ~21!
4-6
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The reaction cross section of a polarized beam on an un
larized target can be expressed@14# as

s1,0~u,f!5s0~u!F11
3

2
pYAY1

2

3
pXZAXZ1

1

2
pZZAZZ

1
1

6
pXX-YYAXX-YYG , ~22!

wherepY , pXZ , pZZ , andpXX-YY are the vector and tenso
polarizations of the beam, andAY , AXZ , AZZ , andAXX-YY
are the vector and tensor analyzing powers of the transit
They are defined in the following.

A polarized beam can be characterized by the vector
tensor polarizations. To define these polarizations, this st
adopts the outgoing reactant helicity frame specified by O
son @14#. As shown in Fig. 2, the direction of the inciden
deuteronkW in is taken to be along theZ axis, and thekWout lies
in the (X,Z) plane with the scattering angleu shown in Fig.
2. TheY axis is then normal to the scattering plane, i.e.,
the direction ofkW in3kWout. The quantization axis of the polar
ized beam is taken to be along its spin directionz which
makes an angleb with respect toZ, the direction ofkW in . The
anglef is defined to be the angle between the plane cont
ing kW in andkWout @the plane (X,Z)] and the plane (z,Z).

In this frame, the beam polarization is characterized b

pX52pz sinb sinf,

pY5pz sinb cosf,

pZ5pz cosb,

pXX5
1

2
pzz~3 sin2 b sin2 f21!,

pYY5
1

2
pzz~3 sin2 b cos2 f21!,

FIG. 2. The beam directionkW in is set to be along theZ axis. The
spin quantization axis is indicated asz. The scattering angleu and
the anglesf andb are defined as shown.
05461
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pZZ5
1

2
pzz~3 cos2 b21!,

pXY52
3

2
pzzsin2 b cosf sinf,

pXZ52
3

2
pzzsinb cosb sinf,

pYZ5
3

2
pzzsinb cosb cosf,

pXX-YY52
3

2
pzzsin2 b cos2f, ~23!

wherepz andpzz are the magnitudes of the vector and tens
polarization.

The analyzing powers are defined in terms of thet matrix
M,

AY~u!5
2

A3
iT11~u!5

Tr~MSYM†!

Tr~MM†!
,

AZZ~u!5A2T20~u!5
Tr~MSZZM†!

Tr~MM†!
,

AXZ~u!52A3T21~u!5
Tr~MSXZM†!

Tr~MM†!
,

AXX-YY~u!52A3T22~u!5
Tr~MSXX-YYM†!

Tr~MM†!
, ~24!

whereTi j stands for the analyzing powers in the spheri
coordinate system.SX , SY , and SZ are ordinary Cartesian
spin 1 operators given explicitly as

SX5
1

A2 S 0 1 0

1 0 1

0 1 0
D , SY5

i

A2 S 0 21 0

1 0 21

0 1 0
D ,

SZ5S 1 0 0

0 0 0

0 0 21
D , ~25!

whereas operatorsSZZ ,SXZ ,SXX-YY5SXX2SYY are traceless
operators defined as

Si j 5
3

2
~SiSj1SjSi !22Îd i j , i , j 5X,Y,Z. ~26!

B. Polynomial expansion of angular distribution
of the unpolarized cross section and analyzing powers

The angular distribution of the unpolarized cross sect
and the analyzing powers ofd1d reactions can be describe
4-7
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by an expansion in Legendre or associated Legendre pol
mials. At low energies (Elab<100 keV!, it has been shown
experimentally@11–13# that a truncation atL54 gives a
very good approximation. The polynomial expansion of t
angular distribution of the unpolarized cross section up
L54 is

s0~u!5
1

9
Tr~MM†!.

s0

4p (
L50

4

aL
s0PL~cosu!, ~27!

wheres0 is the total unpolarizedd1d reaction cross sec
tion. The expansion coefficientsa1

s0 and a3
s0 vanish due to

the two identical bosons in the entrance channel.
The expansions of the analyzing powers are given

terms of the Legendre and associated Legendre polynom

AY~u!5
s0

4ps~u! (
L51

4

aL
YPL

1~cosu!,
s

ss

05461
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AXZ~u!5
s0

4ps~u! (
L51

4

aL
XZPL

1~cosu!,

AZZ~u!5
s0

4ps~u! (
L50

4

aL
ZZPL~cosu!,

AXX-YY~u!5
s0

4ps~u! (
L52

4

aL
XX-YYPL

2~cosu!. ~28!

The expansion coefficientsaL
K (K5s0 ,XZ, ZZ, XX-YY,

andY) in Eqs.~27! and~28! can be expressed in the follow
ing form:
ts
aL
K5

1

9s0
(

J
(

L1 ,L2
(
l 1 ,l 2

(
Sa1

,Sa2

(
I 1 ,I 2

Rj~L1 ,l 1 ,Sa1
,I 1 ;L2 ,l 2 ,Sa2

,I 2!FK~L1 ,l 1 ,Sa1
,I 1 ;L2 ,l 2 ,Sa2

,I 2 ;L,J!, ~29!

whereRj5RRe for K5XZ,ZZ,XX-YY, ands0, andRj5RIm whenK5Y. TheRRe andRIm are the real and imaginary par
of the product of the radial integralsRL1 ,l 1 ,Sa1

(I 1)RL2 ,l 2 ,Sa2

* (I 2).

To find FK in Eq. ~29!, we first write the product of transition amplitudes with total angular momentumJ as the product of
the radial transition amplitudes~for both of S- andD-state components of the deuteron and triton!

(
n

Mmm
18 ,nn

J
~L1 ,l 1 ,Sa1

,I 1!Mmm
28 ,nn

* J
~L2 ,l 2 ,Sa2

,I 2!5
1

4p
RL1 ,l 1 ,Sa1

~ I 1!RL2 ,l 2 ,Sa2

* ~ I 2!(
L
A~L2um282m18u!!

~L1um282m18u!!

3G~L1 ,l 1 ,Sa1
,I 1 ;L2 ,l 2 ,Sa2

,I 2 ;J,L,m,m18 ,m28!PL

um282m18u
~cosu!.

~30!
This definesG as a function ofL, l, Sa , and I of the two
transition amplitudes, as well asJ. Note that the interference
effect among thes, p, and d waves in analyzing power
within the same total angular momentum channelJ is re-
flected in Eq.~30!. The FK coefficients in Eq.~29! are then
defined as follows.

~i! Fs0
: for the angular distribution of unpolarized cro

section (m185m285m8),

Fs0
~L1 ,l 1 ,Sa1

,I 1 ;L2 ,l 2 ,Sa2
,I 2 ;J,L !

5G~L1 ,l 1 ,Sa1
,I 1 ;L2 ,l 2 ,Sa2

,I 2 ;J,L,m,m8,m8!.

~31!

~ii ! FZZ : for the analyzing powerAZZ (m185m285m8);
one can usem51 without losing generality which is the
same for the other analyzing powers,

FZZ~L1 ,l 1 ,Sa1
,I 1 ;L2 ,l 2 ,Sa2

,I 2 ;J,L !

5G~L1 ,l 1 ,Sa1
,I 1 ;L2 ,l 2 ,Sa2

,I 2 ;J,L,1,1,1!

22G~L1 ,l 1 ,Sa1
,I 1 ;L2 ,l 2 ,Sa2

,I 2 ;J,L,1,0,0!

1G~L1 ,l 1 ,Sa1
,I 1 ;L2 ,l 2 ,Sa2

,I 2 ;J,L,1,21,21! .

~32!

~iii ! FXX-YY: for the analyzing powerAXX-YY (m1851 and
m28521),
4-8
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TABLE III. Fitted values of the Legendre coefficients in comparison with those obtained from the experimental groups. Th
unpolarized cross sections0 ~mb! is an input.

E ~keV! 30 30 50 50 70 70 90 90
Present Expt Present Expt Present Expt Present Expt

a0
ZZ 20.0861 20.0843 20.1229 20.1233 20.1462 20.1420 20.1621 20.1605

a1
ZZ 0.0204 0.0205 20.0576 20.0556 20.1441 20.1433 20.1807 20.1711

a2
ZZ 20.8747 20.8791 20.8835 20.8621 20.8003 20.7986 20.8148 20.8157

a3
ZZ 0.1918 0.1966 0.1549 0.1335 0.0447 0.0431 0.0326 0.0320

a4
ZZ 20.0334 20.0330 20.0335 20.0414 0.0420 20.0382 20.0693 20.0631

a1
XZ 0.0128 0.0137 20.0521 20.0483 20.0726 20.0823 20.1245 20.1212

a2
XZ 20.3923 20.3965 20.3882 20.3861 20.3801 20.3793 20.3613 20.3620

a3
XZ 0.0696 0.0532 0.0447 0.0410 0.0303 0.0310 0.0123 0.0159

a4
XZ 20.0010 20.0012 20.0038 20.0071 20.0099 20.0106 20.0108 20.0107

a2
XX2YY 20.3585 20.3526 20.2941 20.3041 20.2671 20.2678 20.2466 20.2411

a3
XX2YY 0.0236 0.0284 0.0159 0.0201 0.0197 0.0173 0.0121 0.0125

a4
XX2YY 0.0073 0.0069 0.0021 0.0014 0.0024 0.0000 0.0048 0.0000

a1
Y 0.1677 0.1672 0.1764 0.1739 0.1769 0.1723 0.1770 0.1767

a2
Y 20.0252 20.0247 20.0246 20.0260 20.0343 20.0341 20.0374 20.0352

a3
Y 20.0009 0.0000 20.0094 0.0000 20.0035 0.0000 0.0030 0.0000

a4
Y 20.0016 0.0000 20.0016 0.0000 20.0024 0.0000 0.0021 0.0000

s0(mb) 1.190 1.190 4.479 4.479 8.758 8.758 13.22 13.22
a2 0.1295 0.1295 0.2191 0.2186 0.2728 0.2748 0.3169 0.3171
a4 20.0001 0.0000 0.0308 0.0307 0.0128 0.0127 0.0309 0.0308
in
rm

e
a-
FXX-YY~L1 ,l 1 ,Sa1
,I 1 ;L2 ,l 2 ,Sa2

,I 2 ;J,L !

5
6

A~L21!L~L11!~L12!

3G~L1 ,l 1 ,Sa1
,I 1 ;L2 ,l 2 ,Sa2

,I 2 ;J,L,1,1,21!.

~33!

~iv! FY : for the analyzing powerAY (m1850 andm285
61),

FY~L1 ,l 1 ,Sa1
,I 1 ;L2 ,l 2 ,Sa2

,I 2 ;J,L !

52
A2

AL~L11!

3$G~L1 ,l 1 ,Sa1
,I 1 ;L2 ,l 2 ,Sa2

,I 2 ;J,L,1,0,1!

2G~L1 ,l 1 ,Sa1
,I 1 ;L2 ,l 2 ,Sa2

,I 2 ;J,L,1,0,21!%. ~34!

~v! FXZ : for the analyzing powerAXZ ,

FXZ~L1 ,l 1 ,Sa1
,I 1 ;L2 ,l 2 ,Sa2

,I 2 ;J,L !

52
3

2
FY~L1 ,l 1 ,Sa1

,I 1 ;L2 ,l 2 ,Sa2
,I 2 ;J,L !. ~35!

Notice that the angular momentum constraint (21)l 11 l 2

5(21)L is enforced via aC-G coefficientC( l 1 ,l 2 ,L;0,0,0)
implicit in G. Thusa1

s05a3
s050 is ensured.
05461
The 20 complex radial transition amplitudes listed
Table I are parametrized and labeled in the fo
R( i )exp(iui)$i51,20%. The 19 coefficientsaL

K in Eqs. ~27!
and ~28! are labeled asb(k)$k51,19%. Specifically, b(k
51,2,3)5a0,2,4

s0 ; b(k54, . . . ,8)5aL
ZZ (L50, . . . ,4); b(k

59, . . . ,12)5aL
XZ (L51, . . . ,4); b(k513,14,15)

5aL
XX-YY (L52,3,4); and b(k516, . . . ,19)5aL

Y (L
51, . . . ,4).Thus Eq.~29! can be reexpressed by

b~k!5 (
i , j 51

20

F~k,i , j !R~ i !R~ j !cos~u i2u j !

for k51, . . .,15,

b~k!5 (
i , j 51

20

F~k,i , j !R~ i !R~ j !sin~u i2u j !

for k516, . . .,19, ~36!

where F(k,i , j ) is the F function in Eq. ~29!. In Eq. ~36!,
R( i )R( j ) is redefined to absorb the factor 1/9s0 in Eq. ~29!
so as to makeR( i ) dimensionless. Note that only the relativ
angles appear in Eq.~36!. We take all the phases to be rel
tive to that ofR 2,2,2

SS (2). To fit to theexperimental data, the
x2 is given by
4-9
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FIG. 3. Experimental angular distributions of the vector analyzing powerAY for thed(dW ,p)t reaction atEd530, 50, 70, and 90 keV are
plotted as a function of the angles in degrees. The solid curves are the results of our fitting.
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x25
1

N S Ua2
s0~expt!2a2

s0

Da2
s0 U2

1Ua4
s0~expt!2a4

s0

Da4
s0 U2

1(
K

(
i 51

Nk UAK~u i !expt2AK~u i !

DAK~u i !
U2D , ~37!

wherea2,4
s0(expt) andDa2,4

s0 are the Legendre coefficients an
the corresponding errors which are experimentally fitted
the unpolarized cross sections0(u) @15#. For the vector and
tensor analyzing powers we fit the experimental angular
tributions @16# directly. In Eq. ~37!, the subscriptK in AK
refers toXZ, ZZ, XX-YY, andY. The number of data point
is NXZ517, NZZ518, NXX-YY517, andNY516. Including
a2

s0(expt) anda4
s0(expt), there are all together 70 data poin

at each energy. As far as the fitting parameters are c
cerned, all the theoretical quantities in Eq.~37! are expressed
in terms ofb(k) in Eq. ~36! where there are 20 radial tran
sition amplitudes and 19 relative phase angles. Since in
process of fitting we fixeda0

s051 by expressingR 0,0,0
SS (0) in

terms of the other variables, this is a constraint. Therefo
we have totally 38 parameters. This leaves the degree
freedomN in Eq. ~37! to be 32.

The experimental data of the vector and tensor analyz
powers of the reactiond(d,p)t in the manner of Tagish
et al. @12# are fitted atElab530, 50, 70, and 90 keV sepa
rately. The Legendre coefficientsa2,4

s0(expt) for the unpolar-
ized differential cross section of the same reaction and e
gies are taken from Brown and Jarmei@15#. The fitted results
05461
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of the Legendre coefficients of the analyzing powers a
s0(u) are given in Table III together with those from th
experimentally analyzeda coefficients. We see that they ar
very close to each other, agreeing to two significant figu
in most cases. The experimental data for the analyzing p
ers (AY , AXZ , AZZ , andAXX-YY) and the unpolarizeds0(u)
as evaluated from the experimentally fitted Legendrea coef-
ficients are plotted in Figs. 3–7. Also plotted are our fi
represented by the curves. We see from these figures tha
experimental results are very well reproduced. Thex2 per
degree of freedom as defined in Eq.~37! is 1.15, 2.36, 3.13,
and 2.28 atEd530, 50, 70, and 90 keV, respectively.

We should stress that the fitting is nonlinear. As can
seen from Eq.~36!, b(k) depends quadratically on the pa
rametersR( i ) and the cosine of the angle differencesu i
2u j .

The fitted results of the dimensionless radial transit
amplitudes for the reactiond(d,p)t at Elab530, 50, 70, and
90 keV are listed in Table IV. The phase angles in degr
are shown in parentheses.

As we can see from Table IV, the largest radial transiti
amplitude isR 2,0,2

SS (2). This is the transition withL in52,
Lout50, andSin52 and is induced by the tensor force. How
ever, as we shall see later, this does not contribute to
doubly polarized cross sections1,1.

IV. PREDICTION OF POLARIZED CROSS SECTIONS s1,1

We shall derive formulas that enable us to calculate
doubly polarized cross sections1,1 from the radial transition
4-10
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FIG. 4. The same as Fig. 3 for the tensor analyzing powerAXZ .

FIG. 5. The same as Fig. 3 for the tensor analyzing powerAZZ .
054614-11
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FIG. 6. The same as Fig. 3 for the tensor analyzing powerAXX-YY .
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amplitudes obtained in Sec. III. From this, we can determ
the ratio ofs1,1/s0 as a function of the deuteron energy f
the d(d,p)t reaction.

A. Cross section of a polarized beam on a polarized target

The transition ratev( i→ f ) for a polarized beam on a
polarized target can be described in the density-matrix fo

FIG. 7. Angular distribution ofs0(u) of thed(d,p)t reaction at
Ed530, 50, 70, and 90 keV. The solid lines are from our fitting a
the circles are the Legendre function fits of the experimental d
05461
e
v~ i→ f !5

1

9
TrS M F Î 1

3

2 (
i

piSi1
1

3 (
kl

pklSklG
3F Î 1

3

2 (
j

pj
TSj

T1
1

3 (
mn

pmn
T Smn

T GM†D .

~38!

The definitions of all the symbols are given in Sec. III a
the superscriptT refers to the target. There are 81 terms
this equation, but the parity conservation forces 29 terms
be zero, which leaves 52 terms with detailed angular inf
mation. Since we are interested in the polarizedd-d reaction
in the fusion reactor environment, where the polarized d
teron velocity distribution is isotropic, we integrate the tra
sition rate over the angles ofb5(0,p) and f5(0,2p) to
make the angular average. This further reduces the num
of terms in Eq.~38!. The transition rate for the perfectl
polarized case (pz5pzz51) at a given reaction energy ca
then be expressed as

v~ i→ f !5
1

9
Tr~MM†!F11

3

4
~CX,X1CY,Y1CZ,Z!

1
1

20
CZZ,ZZ1

1

60
CXX2YY,XX2YY

1
1

15
~CXY,XY1CXZ,XZ1CYZ,YZ!G ,

~39!

where the coefficientsC’s are the spin correlation coeffi
cients. They are defined as follows:.
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TABLE IV. Fitted values of the dimensionless radial transition amplitudes with their phases in de
shown in parentheses. All the phases are defined to be relative to that ofR 2,2,2

SS (2).

Elab ~keV! 30 50 70 90

R 0,0,0
SS (0) 1.130(286.40) 0.878(283.07) 0.874(275.76) 0.722(287.72)

R 2,0,2
SS (2) 6.878~64.11! 7.193~721.91! 7.470~72.71! 7.193~72.26!

R 1,1,1
SS (0) 0.386(257.40) 0.361(293.31) 0.137(2169.7) 0.204(2134.53)

R 1,1,1
SS (1) 3.554(224.50) 2.945(211.01) 2.195(26.530) 2.865(219.09)

R 1,1,1
SS (2) 2.387~ 0.000! 2.971(2135.64) 2.827(2117.54) 3.009(2138.99)

R 2,2,2
SS (1) 1.291~140.9! 1.081~34.79! 0.701~73.21! 2.012~84.64!

R 2,2,2
SS (2) 3.343~0.000! 3.610~0.000! 3.773~0.000! 3.572~0.000!

R 0,2,2
SS (2) 1.026(24.68) 1.066~114.58! 1.080~116.78! 1.078(233.44)

R 2,2,0
SS (0) 0.686(263.08) 0.820(238.23) 0.774(25.39) 0.884(212.25)

R 2,2,0
SS (1) 2.502(224.01) 1.887~12.34! 2.543~35.28! 1.380~25.17!

R 2,2,0
SS (2) 0.624(24.82) 0.137~8.27! 0.010~8.24! 0.647~4.03!

R 0,2,2
SD (0) 0.603(26.63) 1.056~10.23! 0.882~14.79! 0.815~17.48!

R 0,2,2
SD (1) 0.321(23.45) 0.003(20.290) 0.290(212.24) 0.457(213.49)

R 0,2,2
SD (2) 0.004(20.17) 0.012~0.360! 0.021~0.000! 0.032(210.29)

R 0,2,0
DS (0) 0.513~27.84! 0.106~5.81! 0.115~11.45! 0.202~18.33!

R 0,2,0
DS (1) 0.491~29.30! 0.094~5.78! 0.078~11.98! 0.172~18.21!

R 0,2,0
DS (2) 0.490~27.86! 0.100~ 6.07! 0.101~11.56! 0.220~18.18!

R 0,0,2
DS (2) 0.487~ 2.80! 0.101~5.72! 0.100~11.04! 0.218~18.37!

R 0,2,2
DS (1) 0.511~ 29.54! 0.103~5.74! 0.090~11.57! 0.020~18.09!

R 0,2,2
DS (2) 0.494~28.32! 0.030~5.79! 0.100~11.45! 0.220~18.39!
ub-
t

nd
Ca,b~u!5
Tr~MSaSb

TM†!

Tr~MM†!
,

Ca,i j ~u!5
Tr~MSaSi j

T M†!

Tr~MM†!
,

Ci j ,a~u!5
Tr~MSi j Sa

TM†!

Tr~MM†!
,

05461
Ci j ,kl~u!5
Tr~MSi j Skl

T M†!

Tr~MM†!
, ~40!

where all of the operators are defined in Sec. III. The s
scriptsa, b, i, j, k, andl refer toX, Y, Z and the superscrip
T denotes the target particle. Substituting Eq.~40! into Eq.
~39!, the reaction cross section with a polarized beam a
target is obtained as
s section
s1,15E v~ i→ f !dV5
1

9E dV(
m,n

H 9

5
uMm1,n1u21

9

5
uMm21,n21u21

6

5 UMm0,n0U21
3

10
@ uMm1,n21u21uMm21,n1u2#

1
9

10
@ uMm1,n0u21uMm0,n1u21uMm0,n21u21uMm21,n0u2#J . ~41!

It is interesting to observe that there is noP-wave contribution to the polarized deuteron fusion (m5n51 andSin52, J
50,1,2) due to the Pauli principle of two identical bosons in the entrance channel. The polarized deuteron fusion cros
can be written in terms of the radial transition amplitudes:
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s1,15(
J

(
L in1

,Lout1

(
L in2

,Lout2

(
Sin1

,Sout1

(
I 1I 2

(
l

RRe
l ~L in1

,Lout2
,Sin1

,I 1;L in2
,Lout2

,Sin2
,I 2!

3F9

5
Ql~L in1

,Lout1
,Sin1

,I 1 ;L in2
,Lout2

,Sin2
,I 2 ;J,1!1

3

10
Ql~L in1

,Lout1
,Sin1

,I 1 ;L in2
,Lout2

,Sin2
,I 2 ;J,21!

1
9

10
Ql~L in1

,Lout1
,Sin1

,I 1 ;L in2
,Lout2

,Sin2
,I 2 ;J,0!G , ~42!

where the superscriptl refers to the superscripts of the two radial transition amplitudes (S or D) from the multiplication of
M andM* . It labels the contribution from the different intrinsic wave functions of the deuteron and triton.RRe

l is defined in
Eq. ~29!. For eachl, theQ function is defined by

E dVM1m8,11~L in1
,Lout1

,Sin1
,I 1!M1m8,11

* ~L in2
,Lout2

;Sin2
,I 2!

[(
J

Q~L in1
,Lout1

,Sin1
,I 1 ;L in2

,Lout2
,Sin2

,I 2 ;J,m8!RRe~L in1
,Lout1

,Sin1
,I 1 ;L in2

,Lout2
,Sin2

,I 2!. ~43!
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We see from Eqs.~42! and~43! that the imaginary part of the
radial transition amplitude,RIm , which contributes toAY in
s1,0(u), does not contribute tos1,1. Furthermore, we should
stress thats1,0(u) ands1,1 depend on different combination
of the radial transition amplitudes with differentNN interac-
tions, i.e., their dependence onI which labels the central
spin-orbit, and tensor interactions. This is clearly dem
strated by the fact that theF function in Eq.~29! for s1,0(u)
is different from theQ functions in Eq.~42! as far as their
dependence on theNN interaction is concerned. Therefore,
is absolutely essential in the partial-wave analysis to sepa
out the radial transition amplitudes according to the ten
rank of theNN interaction in order to predicts1,1. On the
other hand, one can sum upI 1 andI 2 ~the dependence on th
tensor rank of theNN interaction! in Eq. ~29! before fitting
the experiments as has commonly been done before. Bu
so doing, one loses the ability to predicts1,1.

Plugging the fitted radial integrals from Table IV int
Eqs.~42! and ~43!, the fusion cross section of the polarize
d(d,p)t reaction is obtained atEd530, 50, 70, and 90 keV
Since the unpolarized cross-sections0 is well reproduced
~see Table III and Fig. 7!, we only give the predicted sup
pression ratios1,1/s0 for the d(d,p)t reaction in Table V.
The suppression ratios1,1/s0 is also plotted in Fig. 8.

B. Discussion of results

We see from Table V and Fig. 8 that the polariz
d(d,p)t reaction is essentially unsuppressed as compare

TABLE V. Suppression ratios1,1/s0 of thed(d,p)t reaction at
Ed530, 50, 70, and 90 keV.

Elab ~keV! 30 50 70 90
s1,1/s0 0.866 0.564 0.331 0.219
05461
-

te
r

by

to

the unpolarized cross section at very low energy~i.e., Ed
530 keV!, but becomes suppressed fairly quickly asEd in-
creases. By the timeEd reaches 90 keV, the suppression ra
has become about 22%. Modulo the presence of the C
lomb potential in the final state interaction of thed(d,p)t
reaction, we believe similar results hold for thed(d,n)3He
reaction. In the following discussion, we assume that this
the case. Comparing with our earlier DWBA calculation@9#
which predicted a small suppression ratio (;8%) in this
energy range, it is clear that the DWBA is inadequate at t
low energy and has indeed underestimated the importanc
the multistep transfer processes@10# that are included in the

FIG. 8. The suppression ratios1,1/s0 as a function ofEd . d

are our predictions. The dashed curve is the result of Hofmann
Fick @6# and3 are theR-matrix predictions of Hale and Doolen@8#.
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present partial-wave analysis. As compared to the resona
group calculation ofd(d,n)3He by Hofmann and Fick~also
plotted in Fig. 8!, we see that their result on the suppress
ratio agrees with the present calculation atEd530 keV, but
becomes 3 times larger atEd590 keV. As will be discussed
later, despite the apparent difference at higherEd , the RGM
calculation has captured the dominant mechanism of the
larized reaction. But by either overestimatings1,1 or under-
estimatings0, it results in a mucher larger ratio at high
Ed . The R-matrix prediction for thed(d,p)t reaction by
Hale and Doolen@8# is also plotted in Fig. 8 for comparison
We see that their result shows no suppression at all in
energy range and is about 5 times larger than the pre
result atEd;90–100 keV. It is not clear where the discre
ancy comes from, since both approaches fit the experime
data ons0(u) ands1,0.

To examine the prediction of the suppression ratio furth
we consider the breakdown of its contribution from differe
partial waves and different intrinsic states of the deute
and triton. Listed in Table VI is the breakdown ofs1,1/s0
according to the intrinsic wave functions of the deuteron a
triton which are indicated asl in Eq. ~42!. For example,SD-
SD denotes the product of two transition amplitudes. One
with S-state component in the deuteron andD-state compo-
nent in the triton, while the other is withD-state componen
in the deuteron andS-state component in the triton.

Some comments on the results in Table VI are in orde
~i! The SS-SS ~both the deuteron and triton are in th

S-state components! component contributes only 20% to th
suppression ratios1,1/s0 at Ed530 keV, but grows to 86%
at Ed590 keV. The dominant contribution here is from th

TABLE VII. Contribution tos1,1/s0 from the tensor force term
with L in50, Lout52, Sin150, Sin251.

Elab ~keV! 30 50 70 90

SS-SS 0.152 0.126 0.094 0.074

% 17.7 22.7 28.3 35.8

TABLE VI. The breakdown ofs1,1/s0 for thed(d,p)t reaction
according to the intrinsic states of the deuteron and triton atEd

530, 50, 70, and 90 keV. Thes0 is taken as a whole; i.e., there
no breakdown ins0.

Elab ~keV! 30 50 70 90

total s1,1/s0 0.856 0.554 0.331 0.217

SS-SS 0.172 0.201 0.234 0.188

% 20.2 35.9 71.3 86.2

SD-SD 0.645 0.356 0.101 0.025

% 75.8 63.6 30.8 11.5

DS-DS 0.020 0.002 0.001 0.002

% 2.35 0.36 0.31 0.92

SS-SD1SS-DS 0.014 0.001 -0.008 0.003

% 1.65 0.17 -2.41 1.38
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s-wave incoming andd-wave outgoing channels with th
tensor force. We show its contribution to the ratio in Tab
VII.

~ii ! The contribution from theSD-SD–state componen
~both amplitudes are withS-state component in the deutero
and D-state component in the triton! dominates~76%! the
suppression ratio atEd530 keV, but quickly diminishes to
only 10% atEd590 keV. The dominant term here is from
thes-wave incoming andd-wave outgoing channels with th
central force andSin15Sin252. This agrees completely with
the finding of the RGM calculation@6# at Ed530 keV. How-
ever, we find that the contribution from this transition amp
tude dies down quickly asEd increases, as illustrated i
Table VI. This apparently is in contradiction with the RGM
calculation@6# which finds this transition amplitude not t
change much fromEd540 to 280 keV. Shown in Table VIII
is the contribution from the major term, i.e., thes-wave in-
coming andd-wave outgoing channels with the central for
andSin15Sin252. Note that the contributions from this term
alone atEd530, 50, and 70 keV are larger than the to
s1,1/s0. It is the interference terms which reduce the con
bution from this term and lead to the totalSD-SD contribu-
tion to the suppression ratio in Table VI.

~iii ! The smallness of the contribution from theDS-
DS-state component shows that theD state in the deuteron is
not nearly as important as theD state in the triton~and 3He).
This justifies our neglect of the exchange matrix elemen
the D-state deuteron as described in Sec. II.

~iv! The interference effect between theS- and D-state
components are small as demonstrated by the small co
bution from theSS-SD1SS-DS state component in Table
VI.

V. SUPPRESSION OF THE SPIN-POLARIZED d-d
REACTION RATE IN THERMAL FUSION

Since the present study is prompted by the interest o
possible neutron-lean fusion reactor based on polarizedD-
3He fuel, we explore the question of neutron suppression
the thermal fusion reactor environment as a function of
deuteron energy.

The major source of neutrons in theD- 3He reactor con-
sists of the primary reactiond(d,n)3He and the secondar
reactiond(t,n)a where the tritons are produced from th
d(d,p)t reaction. The reaction rate of thed(d,p)t @or
d(d,n)3He] reaction of the plasma is defined asR5 1

2 nd
2S,

whereS stands for the reaction rate^sv& for the dd fusion
reaction,nd refers to the deuteron density in the plasma, a
the 1/2 factor takes care of the double countings due to id
tical particles in the reacting pairs. The reaction rate^sv& of

TABLE VIII. Contribution to the ratios1,1/s0 from the central
force with L in50, Lout52, Sin15Sin252.

Elab ~keV! 30 50 70 90

SD-SD 0.910 0.695 0.356 0.093

% 106 124 107 41.7
4-15
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the reacting particles with an isotropic and Maxwellian v
locity distribution at temperatureT can be expressed as

^sv&5
2

KT
A 2

pKTmE e2«/KT«s~«!d«, ~44!

wherem and« stand for the reduced mass and the center
mass energy of the reaction pairs, whiles is the effective
reaction cross section.

In order to study the question of neutron suppression,
first plot the unpolarized fusion reaction rates^sv& as a
function of the center of mass energy of the reaction pa
As shown in a conceptual design of aD- 3He fueled tandem
mirror reactor@3,4#, the optimal temperature is found to b
;75 keV. Here we shall useT at 60 keV as an illustration
Hence, the reaction rates of the unpolarized reactiond
13He→p1a, d1d→p1t, d1d→n13He, and the sec-
ondary reactiond1t→n1a are plotted in Fig. 9 forT
560 keV. First we notice that the reaction rated1t→n
1a is muchlarger than the others. However, since the tri
in this secondary reaction comes from the reactiond1d
→p1t, it would be sufficient to suppress thed(d,p)t and
d(d,n)3He reactions in order to reduce the neutron yield.
we turn our attention to the latter reactions, it is clearly se
in Fig. 9 that the dominant reaction rates for the neut
production lie roughly between 40 keV and 300 keV for t
dd center-of-mass energy. Thus, in order to reliably pred
the neutron suppression in a polarizedD- 3He reactor oper-
ating atT560 keV, one needs to know the suppression ra
s1,1/s0 in this energy range. Since our present study cov
the range between 15 keV and 45 keV (Ed530–90 keV!
only, we are not in a position to make a prediction until the
are more accurate experimental data available in this en
range. In this regard, we hope that the experimental data

FIG. 9. The integrands of the reaction rate^sv& in Eq. ~44!, i.e.,
e2«/KT«s(«) for the unpolarized reactionsd13He→p1a, d1d
→p1t, d1d→n13He, and the secondary reactiond1t→n1a
are plotted as a function of the center-of-mass energy of the r
tion pairs.
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the beam-polarizedd(d,p)t cross section will become avail
able in the laboratory energy rangeEd5100–600 keV. Of
course it would be better still to have the both beam a
target polarized reaction cross section. We can use it dire
in the reactor study of neutron suppression and, furtherm
it would be useful to check the prediction of our partial-wa
analysis.

VI. CONCLUSION

In summary, we have initiated a partial-wave analysis
thedd fusion reactiond(d,p)t which separates out the radia
transition amplitudes according to the tensor rank of theNN
interaction, i.e., the central, spin-orbit, and tensor inter
tions. This way, it becomes feasible to extract the relev
radial transition amplitudes by fitting the angular distrib
tions of the tensor and vector analyzing powersAXZ(u),
AZZ(u), AXX-YY(u), and AY(u), and the unpolarized cros
sections0(u). We have done so for thed(d,p)t reaction at
Ed530, 50, 70, and 90 keV. The partial wave is expanded
d waves in both the entrance and exit channels. TheD-state
components in the triton and the deuteron are also includ
The doubly polarized fusion cross sections1,1 is predicted
from these radial transition amplitudes. We should stress
this is possible only when the radial transition amplitudes
separated out according to the tensor rank of theNN inter-
actions. We found that the suppression ratios1,1/s0 is close
to unity atEd530 keV and goes down to about 20% atEd
590 keV. We verified that little or no suppression~large
suppression ratio! of the polarized reaction at very lowEd is
caused mainly by the central force in thes-wave incoming
andd-wave outgoing channels with the outgoing triton in t
intrinsic D-state component. However, the polarized cro
section from this transition amplitude is quickly canceled o
by the interference terms from other amplitudes asEd in-
creases.

We have studied the issue of neutron suppression in
fusion rector context with the polarizedD- 3He fuel. In plot-
ting out the reaction ratêsv& for the unpolarizedd(d,p)t
andd(d,n)3He reactions atT560 keV as a function of the
deuteron energy, we realize that the important range for s
pressing the dd fusion reaction is actually fromEd580 keV
to 600 keV. We hope that experimental data on the bea
polarized cross sections1,0(u) in this energy range will be-
come available in the future so that we can make a predic
of the suppression ratios1,1/s0 in this energy range. This
information is essential to answering the question about n
tron suppression in a fusion reactor setting.
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