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Bremsstrahlung in a decay and ‘‘interference of space regions’’

Eugene V. Tkalya*
Institute of Nuclear Physics of the Moscow State University, Ru-119899 Moscow, Russia
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The spectrum of bremsstrahlung in alpha decay is calculated within the framework of quantum and classical
electrodynamics. The formulas for the spectra ofE1 andE2 radiation are obtained. The bremsstrahlung is
evaluated for the Coulomb barrier and for the spherical symmetry rectangular potential barrier. Experimental
results for the nuclei210,214Po and226Ra are analyzed. A concept of interference of the space regions in the
emission amplitude is discussed.@S0556-2813~99!04910-9#

PACS number~s!: 23.60.1e, 03.65.Sq, 41.60.2m
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Tunneling through a potential barrier is observed exp
mentally by counting particles, which have gone through
barrier. A charged particle emits photons passing through
space region with nonzero gradient of potential. The bar
is absent for the photons. Thus detection of theg radiation
enables one, in principle, to investigate a particle mot
inside a potential barrier.

a decay of atomic nuclei is a well-known example
tunneling. D’Arrigo et al. @1# carried out experiments with
the nuclei 214Po and226Ra and detected a continuumg ra-
diation associated witha decay. The authors explained th
experimental results within the framework of a sudden~in-
stant! acceleration model, in which thea particle is acceler-
ated instantaneously to its final kinetic energy. Kasagiet al.
@2,3# explored thea decay of the nuclei210Po and 244Cm.
They also detected a correspondingg radiation, and tried to
explain a measured spectrum within the framework of
quasiclassical approximation developed for a tunnel
charge by Dyakonov and Gornyi@4#. Both groups reached
conclusion concerning the significant contribution of the b
rier region to the probability of bremsstrahlung, and ha
postulated a destructive interference effect between the s
regions under and outside the Coulomb barrier.

Recently Papenbrock and Bertsch@5# presented a
quantum-mechanical calculation of bremsstrahlung. T
explained the experimental results for210Po partly using a
single-particle barrier model for thea-nucleus wave func-
tion, and the dipole approximation for the coupling of t
photon to the current. They found only a small contributi
to the photon emission from the tunneling wave functi
under the barrier.

The photon emission ‘‘under a barrier’’ is a particul
case of radiation from the region forbidden for classical m
tion. Such processes are well known. An example is li
emission in atomic transitions. The electron wave functio
of bound states in the attractive Coulomb potential have n
zero amplitudes in regions inaccessible to classical mot
In spite of the fast reduction of the wave function in th
region, the corresponding contribution to the emission pr
ability is quite real and may easily be evaluated. The wa
function and the energy of atomic states are calculated
ally by the stationary Schro¨dinger equation. The photo
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emission probability is evaluated within the framework
perturbation theory.a decay can be described by a singl
particle model with stationary wave function@6#. Accord-
ingly, one can try to calculate photon emission in thea de-
cay by analogy with atomic radiation@5#. It is impossible to
locate the space region where the photon was emitte
under or outside the barrier in such an approach. One
only speak about the contributions of different regions to
total integral.

The spectrum of emitted photons is calculated in the c
ter of mass of thea particle and daughter nucleus from Fe
mi’s golden rule dWg /dv52p z^c f uĤ intuc i& z2r f , where
c i , f are thea particle initial and final states,r f is the density
of final states:r f5mK8/(2p)3dVav2/(2p)3dVg, m is the
reduced mass,K85A2mE8 is the wave number of the fina
state with the energyE8 at r→`, v is the photon energy
~the adopted system of units is\5c51).

The Hamiltonian of thea-particle–photon interaction ha
the form ^c f uĤ intuc i&5*d3r j f i(r )Al(r ), where the current
is j f i(r )5Ze f fe/(2mi)$c f* (r )“c i(r )2@“c f* (r )#c i(r )%,
andAl is a photon transverse plane wave with a polarizat
l and a momentq. The effective charges areZe f f

E1 '@2(A
24)24(Z22)#/A, andZe f f

E2 'Za52, whereA andZ are the
atomic number and the charge of the mother nucleus, res
tively @7#.

We will use the standard expansion ofAl with electric
AL,m

E and magnetic AL,m
M multipole fields ~see Ref.

@7#!. The electric multipole field in the Coulomb gaug
is ALm

E (r ;v)5A(L11)/(2L11) j L21(vr )YLL21;m(n)
2AL/(2L11) j L11(vr )YLL11;m(n), whereYJL;M are vec-
tor spherical harmonics, andj L are spherical Bessel func
tions.

Taking into account boundary conditions for the wa
functions atr 50 and r 5`, one finds that the matrix ele
ment ^c f uĤ intuc i& is reduced to a calculation of the expre
sion

E d3r ALm
E ~r !c f* ~r !“c i~r !. ~1!

We consider here thea decay of even-even nuclei with
monoenergetica transition from the 01 ground state of the
mother nucleus to the 01 ground state of the daughte
nucleus. The initiala particle wave function is theS wave
©1999 The American Physical Society12-1
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c i(r )5f i(r )Y00(nr), wheref i is a solution of the Schro¨-
dinger equation for radial wave function with an orbit
quantum numberL50.

There are three approaches to calculate the bremss
lung dWg /dv. The first is a direct calculation of the matri
element in Eq. ~1!. Using the relation “c i(r )
52df i(r )/dr Y01;0(nr), which follows from the gradient
formulas@7#, one obtains

dWg
(E1)

dv
5

8~Ze f f
E1 e!2

3p

K8v

m
F1 , ~2!

where the functionF1 and the corresponding radial matr
elements are F15$uR0(v)u211/5@R0(v)R2* (v)
1R0* (v)R2(v)#13/25uR2(v)u2%, and

Rn~v!5E
0

`

dr r 2 f f 1
* ~r ! j n~vr !

df i~r !

dr
. ~3!

The wave functionf f L
in Eq. ~3! is a solution of the radia

Schrödinger equation for the orbital quantum numberL.
The second approach is similar to the Siegert theo

approximation. The following expression is true@7# in the
low-energy limit for transverse electric multipole
ALm

E (r ;v)'1/vA(L11)/L“ j L(vr )YLm(n). The equation
of continuity for the current is “ j f i(r )
5 iZe f fevc f* (r )c i(r ). Given these two equations, one a
rives, by partial integration in Eq.~1!, at the expression

E d3r j f i~r !ALm
E ~r ;v!

'2 iZe f f eA~L11!/LE d3r c f* ~r ! j L~vr !

3YLm~n! c i~r !.

Then, a final formula for the spectrum of theEL bremsstrah-
lung and for the radial matrix elements takes the form

dWg
(EL)

dv
5

4~2L11!~L11!

Lp
~Ze f f

EL e!2K8mvuR̄L~v!u2,

~4!
e

05461
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R̄L~v!5E
0

`

dr r 2f f L
* ~r ! j L~vr !f i~r !. ~5!

Papenbrock and Bertsch employed a third approa
The formula c f* (r )“c i(r )51/vc f* (r )@“V(r )#c i(r )
51/vc f* (r )@2dV(r )/dr#f i(r )Y01;0(nr) follows from
Heisenberg’s equation of motion with a spherical symme
potentialV(r ) and from the gradient formula. Using this re
sult one obtains for theE1 andE2 spectra of the bremsstrah
lung,

dWg
(EL)

dv
5

8~Ze f f
EL e!2

3p

K8

m

1

v
F̃L, ~6!

where F̃15$uR̃0(v)u211/5@R̃0(v)R̃2* (v)1R̃0* (v)R̃2(v)#

13/25uR̃2(v)u2%, F̃2'9/5uR̃1(v)u2 ~the first summand from
the expression for theA2m

E was taken, because theE2 spectra
were calculated here at low energies only!. The radial matrix
elements in theF̃L are

R̃n~v!5E
0

`

dr r 2 f f L
* ~r ! j n~vr !

dV~r !

dr
f i~r !. ~7!

We consider a spherical symmetry potential barrier of t
kinds—the rectangular potential barrierVR(r )5V1u(R1
2r )1V2u(r 2R1)u(R22r ), and the Coulomb barrie
VC(r )5V1u(R12r )1Zd Za e2/r u(r 2R1), whereZd is the
charge of the daughter nucleus, and the radiusR151.2@(A
24)1/3141/3# fm.

The external radius of the rectangular barrierR2 coincides
here with the classical turning point for the Coulomb pote
tial r E5ZdZae2/E. The height of the barrierV2 is deter-
mined from the equality of quasiclassical transmission co
ficients, i.e., from the equation*R1

R2dr A2m(V22E)

5*R1

r Edr A2m(Zd Za e2/r 2E).

The radial wave function of the initial state for the rec
angular potential barrier is
f i
R~r !5H a0 sin~kr !/r , 0<r ,R1

b0
(1) exp@2k~r 2R1!#/r 1b0

(2) exp@k~r 2R1!#/r , R1<r ,R2

c0 exp@ iK ~r 2R2!#/r , R2<r .
e

r
o-
Here the wave numbers arek5A2m(E2V1), k
5A2m(V22E), andK5A2mE in regions I (0<r ,R1), II
(R1<r ,R2), and III (R2<r ), respectively,E is thea par-
ticle energy in the initial state.c051/Ava, whereva5K/m
because the outgoing flux is normalized to unity. The co
ficientsa0 , b0

(1,2) and the energyE are determined from the

f-

conditions of continuity and differentiability of the wav
function at the boundariesr 5R1 and r 5R2.

The initial radial wave function for the Coulomb barrie
f i

C(r ) is constructed analogously. It coincides up to the c
efficient with the f i

R(r ) in region I, and has the form
f i

C(r )5A1/va@G0(h,r)1 iF 0(h,r)#/r for R1<r . The
2-2
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FIG. 1. The experimental data are taken fro
Refs. @1,9# for 226Ra and214Po, and from Refs.
@2,3# for 210Po. Lines 1~2!, quantumE1 (E2)
spectra for the Coulomb barrier; 3, classical m
tion in the Coulomb potential from the pointr E to
` with acceleration w5ZaZde2/(mr2) ~the
breaking of thea particle in the process of pho
ton emission can be neglected!; 4, quantumE1
spectra for the rectangular potential barrier; 5, i
stant acceleration model.
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regularFL(h,r) and irregularGL(h,r) Coulomb functions
are solutions of the Coulomb wave equation@8#, h
5ZdZae2/va .

The wave function of the final state should have t
asymptotic behavior of a plane wave plus
convergent spherical wave. The functionc f

R(r )
54p(L50

` (m52L
L i LYLm* (nK8)YLm(nr)f f L

R (r ) with the radial

part

f f L

R ~r !5H AL j L~k8r !, 0<r ,R1

BL
(1)hL

(1)~ ik8r !1BL
(2)hL

(2)~ ik8r !, R1<r ,R2

j L~K8r !1CLhL
(2)~K8r !, R2<r

satisfies this condition for the rectangular potential barr
Here hL

(2) denotes a spherical Hankel function. The wa
numbers arek85A2m(E82V1), k85A2m(V22E8). The
coefficientsAL , BL

(1,2) , andCL are determined from match
ing conditions of the wave function.

For the Coulomb barrier one should multiplyc f
R(r ) by

the phase factor exp(isL), wheresL5argG(L111 ih), and
use the functionf f L

C (r )5AL j L(k8r ) in region I, andf f L

C (r )

5@FL(h,K8r )1CL„GL(h,K8r )2 iF L(h,K8r )…#/(K8r ) for
R1<r .

Spectra of bremsstrahlung ina decay were calculated b
the formulas~6! and ~7! with the wave functionsf i

C and
f f L

C . The E1 spectra are in excellent agreement with t

result of Papenbrock and Bertsch. A sequence of calculat
was described in detail in Ref.@5#. One should note that th
calculation of theE2 spectrum has a peculiarity. A reso
nance level withL52 exists and lies not far from the groun
state for all values ofV1 except the first~the maximum!
value permitted by thea particle energyE. The E2 reso-
nances in the spectrum of bremsstrahlung are very w
That is why a potential well in region I should have the le
possible depth. The valuesV154.31 MeV for 226Ra, 4.82
MeV for 210Po, and 7.26 MeV for214Po were used in this
work.

The most reliable experimental data now available are
the nucleus210Po @2,3#. A comparison of these experiment
data with results obtained in this work is displayed in Fig.
which shows that there are no longer reasons to discu
discrepancy between the experimental data and a quan
05461
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calculation for the Coulomb barrier. More precise measu
ments are needed for photon energiesv>0.4 MeV.

In @1# an angle of 90° was chosen between theg detector
and the detector ofa particles. Experimental date for th
nuclei 214Po and 226Ra were displayed without angle ave
aging. The revised data were provided for this publication
Ereminet al. @9#. One can see an appreciable difference
tween theory and experiment for the nuclei214Po and226Ra
in Fig. 1.

It is easy to evaluate bremsstrahlung within the fram
work of classical electrodynamics for the instant accelerat
model. According to@10# the formula describing theE1
bremsstrahlung is dWg

(E1)/dv52/(3pv)(Ze f f
E1 e)2uwvu2,

wherewv is the Fourier transform of the charge accelerat
w(t). The Fourier transform isuwvu5va for instant accelera-
tion up to the velocityva . Corresponding lines in Fig. 1 lie
considerably above the experiment. This result contrad
the statement of@1# that the instant acceleration model d
scribes the experiment well.

Let us briefly consider the concept of interference
space regions, which was discussed by Kasagiet al. in @2,3#.
They explained, in particular, a suppression of the emiss

FIG. 2. The real and imaginary parts of the ‘‘dipole moment
transition’’ d and of the matrix element of ‘‘velocity’’v for the
spherical rectangular potential barrier. SubscriptsII and III mean
the barrier and potential-free regions correspondingly.
2-3
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probability forv,0.4 MeV in comparison with the classica
emission probability by the destructive interference of
radiation amplitudes between the inside and the outside
the barrier.

It should be stated that the same amplitude is meant w
one discusses the interference of radiation amplitudes
tween the different space regions. Such interference of sp
regions should be dealt with in the framework of the mo
developed here as a contribution of integrals calculated
these regions to the total integral.

The rectangular potential barrier is an illustrative exam
of this problem. The quantum emission probability calc
lated with the wave functionsf i

R andf f 1

R ~lines 4 in Fig. 1!

exceeds the classical one~lines 5! over a wide photon-energ
range 0<v<3 MeV for the rectangular barrier reproduce
thea decay of the210Po, for example. Constructive interfe
ence of the regions inside and outside the barrier should
place according to this concept.

We consider firstly the spectrum of bremsstrahlung fr
Eqs.~4! and~5!. This spectrum is derived from the functio
d5Ze f f

E1 e*0
`dr r 2f f 1

R* rf i
R , which looks like a dipole mo-

ment of transition. One can expand this matrix element a
sum of dI}*0

R1dr•••, dII }*R1

R2dr•••, and dIII }*R2

` dr•••.

The dipole momentdI is negligibly small. The momentsdII
anddIII are shown in Fig. 2. Phases of thedII anddIII differ
05461
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by p approximately. They have mostly different signs a
largely compensate each other. Destructive interference t
place contrary to the initial hypothesis.

The spectrum of bremsstrahlung from Eqs.~2! and ~3! is
derived from the matrix element of the velocity operatorv̂
52 i“/m. One can evaluate the radial matrix elementv
}*0

`dr r 2f f 1

R* df i
R/dr in regions I, II, and III by analogy

with the dipole matrix elementd. The result is shown in Fig
2. Phases of thev II and v III differ by p/2, approximately.
Both constructive and destructive interferences take plac
the energy range 0<v<3 MeV.

A further strange conclusion follows from an analysis
Eqs. ~6! and ~7!. The dV/dr operator is localized at the
boundary of regions II and III, i.e., at the pointr 5R2 where
the particle is accelerated. The contributions of the bar
region II and the potential-free region III to the emissio
probability are equal to zero. That is why the interference
the regions cannot explain the spectrum of bremsstrahl
within the framework of Eqs.~6! and ~7!.

These three examples, then, show that the concept
gested in@2# has a very limited range of applicability.
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