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Bremsstrahlung in @ decay and “interference of space regions”
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The spectrum of bremsstrahlung in alpha decay is calculated within the framework of quantum and classical
electrodynamics. The formulas for the spectraEdf andE2 radiation are obtained. The bremsstrahlung is
evaluated for the Coulomb barrier and for the spherical symmetry rectangular potential barrier. Experimental
results for the nucle?'®?*Po and?*®Ra are analyzed. A concept of interference of the space regions in the
emission amplitude is discussg¢&0556-28139)04910-9

PACS numbep): 23.60+¢€, 03.65.Sq, 41.66-m

Tunneling through a potential barrier is observed experiemission probability is evaluated within the framework of
mentally by counting particles, which have gone through theperturbation theorya decay can be described by a single-
barrier. A charged particle emits photons passing through thparticle model with stationary wave functid®]. Accord-
space region with nonzero gradient of potential. The barriemngly, one can try to calculate photon emission in thele-
is absent for the photons. Thus detection of theadiation  cay by analogy with atomic radiatidib]. It is impossible to
enables one, in principle, to investigate a particle motiorlocate the space region where the photon was emitted—
inside a potential barrier. under or outside the barrier in such an approach. One can

a decay of atomic nuclei is a well-known example of only speak about the contributions of different regions to the
tunneling. D’Arrigo et al. [1] carried out experiments with total integral.
the nuclei?*Po and??®Ra and detected a continuumra- The spectrum of emitted photons is calculated in the cen-
diation associated witlwx decay. The authors explained the ter of mass of ther particle and daughter nucleus from Fer-
experimental r(_asults within the_framework_of a sudden  mj's golden rule dWy/de27T|<¢f||:|im|l//i)|zpf, where
stan} acceleration model, in which the particle is acceler- . . are thex particle initial and final stateg is the density
ated instantaneously to its final kinetic energy. Kasg@l.  of final states;ofzmK’/(27-r)3anw2/(21-r)3dQ,y, m s the
[2,3] explored thea decay of the nucle?*%Po and**Cm.  reqyced masds’ = y2mE' is the wave number of the final
They also detected a correspondipgadiation, and tried to  gtate with the energf’ atr—o, w is the photon energy
explain a measured spectrum within the framework of thgine adopted system of unitsis=c=1).
quasiclassical approximation developed for a tunneling The Hamiltonian of thex-particle—photon interaction has

charge by Dyakonov and Gornj4]. Both groups reached a N TN (A3
conclusion concerning the significant contribution of the bar—f[he form (e[ Hindl 1) =/ d°r ji(r)A\(r), where the current

i i * *
rier region to the probability of bremsstrahlung, and have'> in_(r)=Zeffe/(2m|){¢f (NV4i(n) =LV (r)]wi(r)_}, .
postulated a destructive interference effect between the spa@@dA% is a photon transverse plane wave with Ealpolanzatlon
regions under and outside the Coulomb barrier. A and a momeng. Thengfectlve charges aZg~[2(A
Recently Papenbrock and Bertsdfs] presented a —4)~4(Z—2)J/A, andZ¢~2Z,=2, whereA andZ are the
quantum-mechanical calculation of bremsstrahlung. Theytomic number and the charge of the mother nucleus, respec-
explained the experimental results f81%o partly using a  tively [7]. _ _ _
single-particle barrier model for the-nucleus wave func- ~ _We will use the standard expansion Af with electric
tion, and the dipole approximation for the coupling of theALm and magnetic A", multipole fields (see Ref.
photon to the current. They found only a small contribution[7])- The electric multipole field in the Coulomb gauge
to the photon emission from the tunneling wave functionis Afm(r;)=V(L+1)/(2L+1)j—1(@r)Y L~ 1:m(N)
under the barrier. —JL/(2L+1)j +1(@r)Y L+ 1.m(n), WhereY,, . are vec-
The photon emission “under a barrier” is a particular tor spherical harmonics, angd are spherical Bessel func-
case of radiation from the region forbidden for classical mo-ions.
tion. Such processes are well known. An example is light Taking into account boundary conditions for the wave
emission in atomic transitions. The electron wave functiondunctions atr=0 andr=c, one finds that the matrix ele-
of bound states in the attractive Coulomb potential have nonment( y|F;,, ) is reduced to a calculation of the expres-
zero amplitudes in regions inaccessible to classical motiorsjgn
In spite of the fast reduction of the wave function in this
region, the corresponding contribution to the emission prob- 3. nE .
ability is quite real and may easily be evaluated. The wave f d°r ALn(N 5 () Vii(r). (1)
function and the energy of atomic states are calculated usu-
ally by the stationary Schdinger equation. The photon We consider here the decay of even-even nuclei with a
monoenergetier transition from the 0 ground state of the
mother nucleus to the "0 ground state of the daughter
*Electronic address: tkalya@ibrae.ac.ru nucleus. The initiale particle wave function is th& wave
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Ui(r)=i(r)Yoo(n,), where ¢; is a solution of the Schro — °° .
dinger equation for radial wave function with an orbital RL(w):fo d”2¢ﬁ(r)h—(“’r)¢i(r)- (5
guantum numbet =0.

There are three approaches to calculate the bremsstrah-
lung dW, /dw. The first is a direct calculation of the matrix ~ Papenbrock and Bertsch employed a third approach.
element in Eq. (1). Using the relation Vi (r) The  formula  4f (r)Vi(r)= Loyt (r)[VV(r)]gi(r)
=—d¢;(r)/dr Yor.o(n;), which follows from the gradient =21/wyf (r)[—dV(r)/dr]egi(r)Yos.o(n,) follows from

formulas[7], one obtains Heisenberg’s equation of motion with a spherical symmetry
E1) E1 o potentialVV/(r) and from the gradient formula. Using this re-
dVV(y 8(2 i€ K’ o @ sult one obtains for thE1 andE2 spectra of the bremsstrah-
do 37 m L lung,
where the functionF; and the corresponding radial matrix WED 5
elements are F1={|Ro(0)]|?+ L/F Ry(») R} (w) dwj, 8(Zeffe) K’ 1}1 ©6)
+R% (w0)Ry(w) ]+ 3/25R,(w) |2}, and do 3m mo’ "
(P2 dei(n) U
Rn(w)= . drre ¢f (Njn(wr) —5—- (3)  where F;={|Ry(®)|*+ UHRy()R3 (»)+ R (w)Ra(w)]

+3/29R,(w)|?}, F,~9/5R;(w)|? (the first summand from
The wave functiong; in Eq. (3) is a solution of the radial the expression for tha%,, was taken, because th spectra
Schralinger equatlon for the orbital quantum numther were calculated here at low energies 9niyhe radial matrix
The second approach is similar to the Siegert theorenglements in thef, are
approximation. The following expression is tr{i¢] in the
low-energy limit for transverse electric multipoles: ( )
En(r@)~1w\(L+1)/LV]j (wr)Y_ n(n). The equation an(w):J drr¢f (Njn(er) ——¢i(r). (1)
of  continuity for the current is Vjy(r)
=iZetew it (r)¢i(r). Given these two equations, one ar-

rives, by partial integration in Eq1), at the expression We consider a spherical symmetry potential barrier of two
kinds—the rectangular potential barrier’*(r)=V,0(R;
f d3r jfi(r)AEm(r;w) -1 +V,0(r—R;)0(R,—r), and the Coulomb barrier
VE(r)=V,6(R,—1)+2Z4Z,€%lr 6(r —R;), whereZ, is the

charge of the daughter nucleus, and the radlys 1.2 (A

~—iZgsr€ \/(L+1)/Lf A3 ¢F(r) jL(wr) —4)Y34 415 fm,
The external radius of the rectangular barRgrcoincides
XY m(n) ¢i(r). here with the classical turning point for the Coulomb poten-

. tial re=24Z,e%E. The height of the barrie¥, is deter-
Then, a final formula for the spectrum of tk&. bremsstrah- mined from the equality of quasiclassical transmission coef-

lung and for the radial matrix elements takes the form ficients, i.e., from the equationfgidr 2m(V,—E)

dWED 42l +1)(L+1) — =l dr\2m(z4Z, e’lr —E).
do Lar (Zerre)?K'mo[R (o) The radial wave function of the initial state for the rect-
(4) angular potential barrier is

apsin(kr)/r, 0<r<R;
dR(r)=14 b exd — k(r =R 11+ b exd x(r =R 1/r, Ryi<r<R,
CoexdiK(r—Ry)]/r, Ry=<r.

Here the wave numbers arek=+y2m(E—V;), «  conditions of continuity and differentiability of the wave

=2m(V,—E), andK={2mE in regions | (0<r<R;), Il function at the boundaries=R; andr =R,.
(Ri=r<Ry), and Il (Ry=<r), respectivelyE is the « par- The initial radial wave function for the Coulomb barrier

ticle energy in the initial statec,=1/\v,, wherev,=K/m ¢,C(r) is constructed analogously. It coincides up to the co-
because the outgoing flux is normalized to unlty The coefefficient with the d), (r) in region I, and has the form
ficientsagy, b§? and the energ¥ are determined from the dC(r)=VIN [Go(7.p) +iFo(m.p)]/r for Ry<r. The
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FIG. 1. The experimental data are taken from

§‘ . Refs.[1,9] for ®Ra and?**Po, and from Refs.

3 [2,3] for 21%o0. Lines 1(2), quantumE1l (E2)

E spectra for the Coulomb barrier; 3, classical mo-
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regularF (#,p) and irregularG,(7,p) Coulomb functions calculation for the Coulomb barrier. More precise measure-
are solutions of the Coulomb wave equatid8], 7 ments are needed for photon energies 0.4 MeV.
=742V, . In [1] an angle of 90° was chosen between thdetector

The wave function of the final state should have theand the detector ofr particles. Experimental date for the
asymptotic behavior of a plane wave plus anuclei 2*%Po and?*Ra were displayed without angle aver-
convergent spherical wave. The functiony(r) aging. The revised data were provided for this publication by
:47TE°LC=OEL =7LiLY:m(nK’)YLm(nr)QB?(r) with the radial Ereminet al.[9]. One can see an appreciable difference be-

t tween theory and experiment for the nucféfPo and?*Ra
in Fig. 1.

o, It is easy to evaluate bremsstrahlung within the frame-
ALju(k'T),  Osr<R, work of classical electrodynamics for the instant acceleration
R (=4 BMhM (k' 1) +BPhP(ix'r), Ri<r<R, model. According to[10] the formula describing th&1

L o D1 bremsstrahlung is dWEY/dw=2/(37w)(Z5€)?|w,|?,

LK )+ CLh”(K'r), Rs=r . Y :

wherew,, is the Fourier transform of the charge acceleration

w(t). The Fourier transform isv,|=v, for instant accelera-
satisfies this condition for the rectangular potential barriertion up to the velocity,. Corresponding lines in Fig. 1 lie
Here h{®) denotes a spherical Hankel function. The waveconsiderably above the experiment. This result contradicts
numbers arek’=+2m(E’'—V,), «'=v2m(V,—E’). The the statement ofl] that the instant acceleration model de-
coefficientsA, , B{*?, andC, are determined from match- scribes the experiment well.
ing conditions of the wave function. Let us briefly consider the concept of interference of

For the Coulomb barrier one should multiplgf*(r) by ~ space regions, which was discussed by Kasagi.in [2,3].
the phase factor exjef, ), whereo =argl'(L+1+i7), and They explained, in particular, a suppression of the emission
use the functiort;ﬁch(r):A,_j,_(k’r) in region I, and¢$L(r)
=[FL(nK'r)+CLGL(7.K ) ~iF (7K )II(K'T) for e RE
Ri=<r. 1

Spectra of bremsstrahlung i decay were calculated by
the formulas(6) and (7) with the wave functionsd;iC and
¢?L. The E1 spectra are in excellent agreement with the

result of Papenbrock and Bertsch. A sequence of calculations
was described in detail in Rd5]. One should note that the
calculation of theE2 spectrum has a peculiarity. A reso-
nance level with. =2 exists and lies not far from the ground
state for all values ofV; except the firsttthe maximum
value permitted by ther particle energyE. The E2 reso- 0
nances in the spectrum of bremsstrahlung are very wide.
That is why a potential well in region | should have the least
possible depth. The valueg,=4.31 MeV for ?*Ra, 4.82
MeV for 21%o, and 7.26 MeV forr*Po were used in this 0 1 2 30 1 2 3
work. w., MeV

The most reliable experimental data now available are for 4
the nucleus’’%0[2,3]. A comparison of these experimental  FIG. 2. The real and imaginary parts of the “dipole moment of
data with results obtained in this work is displayed in Fig. 1,transition” d and of the matrix element of “velocity’v for the
which shows that there are no longer reasons to discuss spherical rectangular potential barrier. Subscriptand Il mean
discrepancy between the experimental data and a quantutime barrier and potential-free regions correspondingly.

part

(=3
I

d Im

I
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probability for w<<0.4 MeV in comparison with the classical by = approximately. They have mostly different signs and
emission probability by the destructive interference of thelargely compensate each other. Destructive interference takes
radiation amplitudes between the inside and the outside gflace contrary to the initial hypothesis.
the barrier. The spectrum of bremsstrahlung from E¢®). and (3) is

It should be stated that the same amplitude is meant whederived from the matrix element of the velocity operator
one discusses the interference of radiation amplitudes be=—iV/m. One can evaluate the radial matrix element
tween the different space regions. Such interference of spacefgdr r%ﬁ*dqﬁf/dr in regions 1, Il, and Ill by analogy

regions should be dealt with in the framework of the modelyjith the dipole matrix elemert. The result is shown in Fig.

developed here as a contribution of integrals calculated ip. phases of the,, andv,, differ by =/2, approximately.

these regions to the total integral. Both constructive and destructive interferences take place in
The rectangular potential barrier is an illustrative examplethe energy range @ w<3 MeV.

of this problem. The quantum emission probability calcu- A further strange conclusion follows from an analysis of

lated with the wave function$iR and ¢?l (lines 4 in Fig. 2 Egs. (6) and (7). The dV/dr operator is localized at the

exceeds the classical ofimes 5 over a wide photon-energy Poundary of regions Il and Il i.e., at the point R, where
range O<w=3 MeV for the rectangular barrier reproduced the particle is accelerated. The contributions of the barrier

the a decay of the?'%o, for example. Constructive interfer- region Il and the potential-free region Il to the emission

ence of the regions inside and outside the barrier should tak©Pability are equal to zero. That is why the interference of
; . e regions cannot explain the spectrum of bremsstrahlung
place according to this concept.

. . within the framework of Eqs(6) and (7).
£ We4con3|d5er %S.tly the spec_tru(;n (.)f l?jrefmsstrr?hlfung from These three examples, then, show that the concept sug-
qs'(El) ar; ( )'2 R'S spgctrum IS derived from t, e function gested i 2] has a very limited range of applicability.
d=Zgefodrreg:*r¢", which looks like a dipole mo- . )
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