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Chaotic scattering on surfaces and collisional damping of collective modes
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The damping of hot giant dipole resonances is investigated. The contribution of surface scattering is com-
pared with the contribution from interparticle collisions. A unified response function is presented which
includes surface damping as well as collisional damping. The surface damping enters the response via the
Lyapunov exponent and the collisional damping via the relaxation time. The former is calculated for different
shape deformations of quadrupole and octupole type. The surface as well as the collisional contribution each
reproduce almost the experimental value, and therefore we propose a proper weighting between both contri-
butions related to their relative occurrence due to collision frequencies between particles and of particles with
the surface. We find that for low and high temperatures the collisional contribution dominates whereas the
surface damping is dominant around the temperaturesA3/2p of the centroid energy.@S0556-2813~99!00710-4#

PACS number~s!: 24.30.Cz, 24.60.Lz, 05.20.Dd
te

e
a

te
w
a
n

e
Co
ic
s
a
un
b
d

a
c
o

he
ee
e

on
c

ol

n
a

rm
on

ace
a

ic-
this
li-
-

ro-

atio
hy-
e
an

se-
nd
cial
ith
se

on
ed

ed
p-

IV
eri-
ces
e

ch
nal
ry

ntal
tant.

-
st
I. INTRODUCTION

The damping mechanisms of collective motions in exci
nuclei are a topic of continuing debate@1#. Mainly two lines
of thought are pursued. In one line of thought it is assum
that collisions are the physical reason for damping only
developed via a Fermi liquid approach with bulk mat
properties@2–15#. The other line of thought considers ne
features of the finite nucleus, such as surface oscillations
a level density with finite spacing. Partially the investigatio
are performed without inertia@16–24# or by including inertia
@22,25–30#; note that inertia is absent in infinite matter.

Both classes of models predict a comparable degre
damping necessary to reproduce the experimental data.
sequently, it is an open question which is the correct phys
reason for damping. Of course, the correct description ha
assume a finite nucleus consisting of nucleons which
bound via the mean field, through which the nucleons
dergo mutual collisions and where the surface is formed
the particles themselves. These features are usually inclu
in Boltzmann-Uehling-Uhlenbeck~BUU! simulations@31–
33# or in its nonlocal extensions@34,35#. In full simulations,
however, we will not gain a simple insight into the physic
origins of the damping mechanism, in particular, how mu
is due to surface contributions and how much is due to c
lisional contributions.

The aim of this article is to compare both pictures in t
frame of linear response theory. Within the collision-fr
Vlasov equation the linear response of finite systems is w
known @36# and allows one to calculate the strength functi
of finite nuclei. The damping, however, does not reprodu
the experimental damping of giant resonances since c
sions are absent.

To include damping, we can take into account on the o
hand the collisional damping in infinite matter and find
scaling for finite size effects in the sense of a Thomas-Fe
local density approximation. On the other hand we can c
0556-2813/99/60~5!/054601~9!/$15.00 60 0546
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sider the boundary of the finite nucleus as a fixed surf
such that the nucleons simply bounce off this wall as in
billiard-type situation. Provided we accept this simple p
ture, it is possible to compare the damping caused by
chaotic scattering off the wall with the damping from col
sional contributions in infinite matter. We will derive a re
sponse function which includes the additional chaotic p
cess and find a total damping rateG5Gcoll1Gsurf similar to
the Matthiessen rule in metals@37# but with an additional
weight between the different processes according to the r
of the corresponding collision frequencies. Moreover the
potheses by Swiatecki@38# is questioned that negativ
curved surfaces of octupole deformations would induce
additional chaotic mechanism of dissipation and con
quently octupole modes should be overdamped. We will fi
that the octupole deformation does not lead to any spe
enhancement of the Lyapunov exponent in comparison w
the quadrupole mode. Moreover, any deformation will cau
a contribution to the damping of collective modes.

The outline of the paper is as follows. In the next secti
the largest Lyapunov exponent for a nucleon in a deform
nucleus is calculated. Then in Sec. III we derive a unifi
response function which combines both the collisional dam
ing and the contribution from surface scattering. In Sec.
both damping contributions are compared with the exp
mental values of hot isovector giant dipole resonan
~IVGDR!. A proper weighting factor corresponding to th
relative collision frequencies yields a unified picture whi
describes the data rather well. We find that the collisio
contributions dominate for low temperatures and for ve
high temperatures while around the highest experime
achievable temperatures the surface effects are impor
Section V will summarize the results.

II. LARGEST LYAPUNOV EXPONENT
OF DEFORMED NUCLEI

We will consider in the following only classical three
dimensional ~3D! closed billiards and use the large
©1999 The American Physical Society01-1
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Lyapunov exponent as a relevant measure to characte
chaoticity. The surface of these billiards is chosen to
semble the surface deformation of a nucleus undergo
quadrupole or octupole deformations~see Fig. 1!.

The Lyapunov exponent can be given as the deviation
the difference of the trajectories

urW1~ t !2rW2~ t !u5urW1~0!2rW2~0!uelt ~1!

as

l5 lim
t→`

lim
«→0

1

t
ln

urW1~ t !2rW2~ t !u

urW1~0!2rW2~0!u
. ~2!

For l.0 the difference in phase space trajectories gro
exponentially leading to chaotic behavior.

FIG. 1. Overview of the geometry of modes.
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We solve the Hamilton equations for one particle in fin
nuclear matter with an infinite potential1

V~r ,u!5V0Q@r 2R~u!# ~3!

modeling the deformation of an axial symmetric nuclear s
face

Rl~u!5R0$11a001alPl@cos~u!#% ~4!

with the nuclear radiusR051.13A1/3 fm, and wherel52
corresponds to the quadrupole andl53 to the octupole de-
formation @39#. The coefficienta00 is adjusted to conserve
the volume corresponding to incompressible nuclear mat

The Lyapunov exponent is calculated by considering
time evolution of small deviations from a reference traje
tory due to infinitesimal initial changes. We have used
Brandstaetter method resetting the deviations of the re
ence trajectory repeatedly after a certain time to the ini
infinitesimal difference. This corresponds to an averag
and the largest mean Lyapunov exponent is obtained.

Figure 2 shows the Lyapunov exponent for different o
tupole and quadrupole deformations according to Eq.~4!.
The error bars are taken from averaging 50 runs of differ
initial conditions indicating 95% confidence level. We s
that the quadrupole deformation leads to an immediate
crease of the Lyapunov exponent while the Lyapunov ex
nent for the octupole deformation increases at larger de

1The numerical implementation is performed with@V0→` and
s→0]

V~r,u!'V0FarctanSr2R~u!

s D1 p

2G
resembling an infinite step function.

FIG. 2. The largest Lyapunov exponent of a spherical deform
billiard versus deformation parameter~4!. The regions ofa where
the surface starts to become negatively curved (k,0) via Eq. ~5!
are indicated by dotted linesak50 for octupole and quadrupole
deformation, respectively.
1-2
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CHAOTIC SCATTERING ON SURFACES AND . . . PHYSICAL REVIEW C60 054601
mation parameters and proceeds more slowly with increa
deformation. Let us note that the characteristic time sca
from the Lyapunov exponent are similar to the damping r
of the IVGDR which will be presented in Fig. 4. This mot
vates us to consider a unified response from collisions
surface contributions.

Following Ref. @38# a surface with negative curvatur
should induce a new chaotic mechanism analogous to
Sinai billiard. We discuss therefore the curvature of a ro
ing body given by the curvature of the boundary curveR(u)
of Eq. ~4! via

k5
R212R822RR9

~R21R82!3/2
, ~5!

whereR8 andR9 denote the derivatives with respect tou. In
Fig. 2 we see that the octupole deformation shows parts w
negative curvature at smaller deformation parameter than
quadrupole deformation shows. However, the Lyapunov
ponent of octupole deformation remains always smaller.
therefore conclude that the octupole deformation compa
with the quadrupole deformation leads to no significant
hancement of chaotization.

III. DAMPING OF COLLECTIVE OSCILLATIONS

We would like to focus on a unified description of th
linear response including collisional contributions and c
otic scattering with the surfaces. Therefore let us brie
sketch the response function formalism starting from app
priate kinetic equations. For infinite matter this procedu
will result in the known Mermin response function which h
been used to describe the IVGDR in symmetric@11# and
asymmetric nuclear matter@13#. Then we derive the respons
function for finite nuclei and show that in a local dens
approximation chaotic scattering from the surface can be
corporated. The result will be a Mermin-like response fun
tion in local density approximation where the large
Lyapunov exponent appears as an imaginary shift in the
quency.

A. Infinite matter response

In order to consider the collisional damping we start fro
the kinetic equation for the quasiclassical distribution fun
tion. For neutrons this kinetic equation reads

ḟ n~p,r ,t !1
p

m
] r f n~p,r ,t !2] r~Vn1Vext!]pf ~p,r ,t !5I

~6!

with the self-consistent mean-field potential given by a sc
matic Skyrme type@40,41#
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Vn~r ,t !5t0H S 11
x0

2 D „nn~r ,t !1np~r ,t !…

2S x01
1

2Dnn~r ,t !J
1

t3

4
$„nn~r ,t !1np~r ,t !…22nn

2~r ,t !%. ~7!

The neutron and proton densities arenn5*@dp/(2p\)3# f n
andnp5*@dp/(2p\)#3f p , respectively. The parameters a
x050.48, t052983.4 MeV fm3 and t3513 106 MeV fm6.
The kinetic equation and mean field for protons are obtai
by interchanging the corresponding densities. We rest
here to symmetric nuclear matter. Generalizations to as
metric nuclear matter can be found in Ref.@13#. First we
sketch the results for the collision free (I 50) or Vlasov
equation and then we will take collisions into account.

1. Collision free

The collective effects without collisions (I 50) can be
obtained from the linearization of the Vlasov equation~6!
with respect to an external potentialVext. In the case of
isovector oscillations, the density variationdn5np2nn is
considered as the difference between proton and neu
densities. The linearization of the difference of kinetic equ
tions for neutrons~6! and protons leads to

dn5P0~dVext1V0dn! ~8!

with @41#

V052~Vn2Vp!52
t0

2 S x01
1

2D2
t3

8
n0 , ~9!

wheren05*@dp/(2p\)3# f 050.16 fm23 is the nuclear satu-
ration density andP0 is the Lindhard-function

P0
inf~q,v!54E dp8

~2p\!3

q]p8 f 0~p8!

~p8q/m!2v2 i0
. ~10!

Here we first consider the homogeneous equilibriumf 0(p)
or infinite matter.

The response functionP connects the induced densit
fluctuationdn with the external potential via

dn5PVext ~11!

and the response function follows from Eq.~8! for infinite
matter

P inf~q,v!5
P0

inf~q,v!

12V0P0
inf~q,v!

[
P0

inf~q,v!

e~q,v!
. ~12!

The zerosv5V1 ig of the dielectric functione(q,v)50 in
Eq. ~12! determine the collective modes with the energyV
and the Landau dampingg of the collective excitation.
1-3
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Within the Steinwedel-Jensen model for IVGDR@42#, the
wave vector scales such asq5(p/2R0), where the nuclear
radius isR051.13A1/3 fm.

2. Collisional model

In order to take collisions into account as a further dam
ing effect beyond Landau damping, we start from a kine
equation analogous to Eq.~6! with an additional collisional
term I @p,r ,t# on the right-hand side. In Ref.@11# we have
derived a collision integral in a non-Markovian relaxatio
time approximation

I ~p,r ,t !5E
0

t f̃ ~p,r , t̄ !2 f ~p,r , t̄ !

t~ t2 t̄ !
d t̄ ~13!

with the dynamical non-Markovian relaxation time

1

tm~v!
5

1

tB
F11

3

4 S v

pTD 2G . ~14!

The Markovian relaxation time is given bytB
21

5(8pm/3\3)sT2, where s is the averaged spin-isospi
proton-neutron cross section. This collision integral holds
low temperatures compared to the Fermi energy. The n
Markovian relaxation time arises from the coupling of co
lective modes regarding two-particle scattering and con
quently describes the effect of zero sound damping. T
local equilibrium distributionf̃ is determined through the
conservation of the local current. The linearization of t
kinetic equation leads then to the extended response func
of Mermin @43#

P0
M~q,v!

5

P0
infS q,v1

i

t D
12@ i /~vt1 i !#$12@P0

inf~q,v1 i /t!/P0
inf~q,0!#%

,

~15!

where the self-consistency leads to the replacement ofP0
inf

by P0
M in Eq. ~12!. Generalizations to asymmetric nucle

matter can be found in Ref.@13#.
The energy and damping rates are determined by the

ros of the~Mermin! response function@11#

eM~q,V1 ig!512V0~q!P0
M~q,V1 ig!50. ~16!

Here the damping rate represents Landau and collisio
damping.

B. Finite matter response

In the next step we will present the finite matter respo
function in terms of a memory integral over all trajectories
allows us to introduce the local density approximation a
first order memory effect in the trajectories. For this purpo
we rewrite the Vlasov equation~6! in a slightly different
way. Introducing the Lagrange picture by following the tr
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jectory x(t),p(t) of a particle we linearize the Vlasov equa
tion ~6! according tof (x,p,t)5 f 0(x,p)1d f (x,p,t) as

d

dt
d f @x~ t !,p~ t !,t#5]pf 0]x(t)dV ~17!

and get with one integration

d f ~x,p,t !522mE
2`

0

dt8E
2`

`

dx8
d

dt8

3d@x82x~ t8!#
] f 0~p2,x8!

]p2
dV~x8,t1t8!.

~18!

The density variation caused by the external potential is
tained as

dn~x,v!522msE dx8E dp3

~2p\!3
]p2f 0~p2,x8!

3E
2`

0

dt8e2 i t 8v
d

dt8
d@x82x~ t8!#dV~x8,v!,

~19!

wheres denotes the spin-isospin degeneracy. Comparing
expression with the definition of the polarization functio
P0,

dn~x,v!5E dx8 P0~x,x8,v!dV~x8,v!, ~20!

we are able to identify the polarization of finite systems a

P0~x,x8,v!522msE dp3

~2p\!3
]p2f 0~p2,x8!

3E
2`

0

dt8 e2 i t 8v
d

dt8
d@x82x~ t8!#. ~21!

Further simplifications are possible if we focus on t
ground statef 0(p2)5Q(pf

22p2). The modulus integration
of momentum can be carried out and the Kirzhnitz-formu
@44,45# for the polarization function appears
1-4
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CHAOTIC SCATTERING ON SURFACES AND . . . PHYSICAL REVIEW C60 054601
P0~x,x8,v!52
mspf~x!

4p2\3 F E
2`

0

dt8e2 i t 8v

3
d

dt8
E dVp

4p
d@x82x~ t8!#G

52
mspf~x!

4p2\3 Fd@x82x~0!#

1 ivE
2`

0

dt8e2 i t 8vE dVp

4p
d@x82x~ t8!#G .

~22!

This formula represents the ideal free part and a contribu
which arises by the trajectoriesx(t) averaged over the direc

tion at the present timenW ppf5mxẆ (0). In principle, the
knowledge of the evolution of all trajectories is necessary
evaluate this formula. Avoiding the latter expense, we d
cuss two approximations which will give us an insight in
the physical processes behind. First the most restrictive
shows how the local density approximation emerges. As
extension we consider then the influence of chaotic sca
ing on a surface.

1. Local density approximation

The local density approximation appears from Eq.~22!
when two simplifications are performed. Introducing Wign
coordinatesR5(x1x8)/2, r 5x2x8 one has to assume th
following.

~1! Gradient expansion

pf S R1
r

2D'pf~R!1O~]R!, ~23!

~2! expansion of the trajectories up to first order histor

x82x~ t8!'2r 2t8ẋ52r 2t8
pf

m
nW p1O~ t82!. ~24!

With these two assumptions we obtain from Eq.~22! after
trivial integrations

P0
LDA~q,R,v!52

mspf~R!

4p2\3 H 11 i zE
0

`

dy ei zy
siny

y J ,

~25!

where z5mv/qpf(R). This can be further integrated wit
the help of

E
0

`

dy ei zy
siny

y
5arctan~ Im z2 i Rez!21

52i lnS 11z

12z D1p@sgn~11z!

1sgn~12z!#u Im z→0 ~26!
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leading to the standard Lindhard result for Eq.~25!. We rec-
ognize the ground state result for infinite matter~10! except
that the Fermi momentumpf(R) has to be understood as
local quantity with respect to the density

P0
LDA~q,R,v!5P0

inf@q,pf~R!,v#. ~27!

For extensions beyond the local density approximation
Refs.@45,46#.

C. Influence of chaotic scattering with surface on damping

Now we want to assume an additional chaotic scatter
which will be caused, e.g., by the curved surface. In orde
investigate this effect we add to the regular motion~24! a
small irregular partDx

x82x~ t8!'2r 2t8
pf

m
nW p1Dx. ~28!

This irregular part of the motion has the direction of t
velocity, nW p , and lasts a timeD t . During this time an expo-
nential increase in phase-space occurs controlled by the
est Lyapunov exponentl. Therefore we assume@ t8,0#

Dx'
pfnW p

m
D t exp@2l~ t82D t!#1const. ~29!

Since we are looking for the upper bound of Lyapunov e
ponent we can take Eq.~29! at the maximumD t521/l.
Furthermore, in the case of vanishing Lyapunov expone
the regular motion~24! should be recovered. This determin
the constant. We obtain finally

x82x~ t8!'2r 2
pf

m
nW pF12exp~2lt8!

l G . ~30!

With this ansatz one derives from Eq.~22! the result

P~q,R,v!52
mspf~R!

4p2\3 F11 i zE
0

`

dy
siny

y

3S 11
zy

v
l D iv/l21G , ~31!

which for l→0 resembles Eq.~25!. The further integration
could be given in terms of hypergeometric functions but t
is omitted here.

With formula ~31! we have derived the main result of th
section, i.e., a polarization function due to many particle
fects including the influence of an additional chaotic proc
characterized by the Lyapunov exponentl.

For small values of (m/qpf)l5z(l/v) which corre-
sponds to relative small Lyapunov exponents, we can
limx→`(11a/x)x5exp(a) in the integral of Eq.~31! and the
final integration can be performed with the result of Eq.~27!
and a complex shift in the frequency

P0
surf~q,R,v!5P0

inf@q,pf~R!,v1 il#. ~32!
1-5
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Solving the dispersion relation we obtain in this way t
Matthiessen rule which states that different damping mec
nisms are additive in the total damping. However, the co
sional damping of infinite matter 2g and the largest
Lyapunov exponentl are not yet the appropriate values
finite matter. Instead, these two damping mechanisms h
to be added by a proper relative weight which will take in
account the relative occurrence of the processes, the c
sions with other particles and the collisions with the surfa

IV. COMPARISON OF DAMPING MECHANISMS

A. Connection between surface curvature and temperature

The damping of excited nuclei can be understood by t
different mechanisms. In addition to the collisional dampi
we also have to consider the shape fluctuations. In the
sence of inertia which will be assumed in the following, t
driving force for shape fluctuations is the temperatu
Therefore we link the surface deformationa of Eq. ~4! to the
temperature within a statistical model. We use as a mea
for the mean deformation2

^a&5

E dauauexp@2EB~a!/T#

E da exp@2EB~a!/T#

, ~33!

where the surface dependent energyEB(a) is given by the
Bethe-Weizsa¨cker formula3

EB~a!52a11
a2

A1/3
1

a3Z2

A4/3
1a4d21a5A2/3

S~a!

S~0!
, ~36!

with the volume energya1515.68 MeV, Coulomb energy
a350.717 MeV, the symmetry energya4528.1 MeV, and
the surface energya5518.56 MeV.

The surface of rotational symmetric nuclei~4! is given by

S52pE
21

1

dxRl~x!ARl~x!21~12x2!Rl8~x!2 ~37!

from which we obtain for the quadrupoleS2 and octupoleS3
deformations~35!

2For small deviations we found identical Lyapunov exponents
prolatea.0 and oblatea,0 deformations and therefore we do n
distinguish the sign ofa.

3Please remember that in principle the Coulomb energy chan
with small deformation as well according to the factor@47#

125
~l21!

~2l11!2 al
2 ~34!

while the surface term changes as

11~l21!~l12!/2/~2l11!al
2 . ~35!

Only the correction~35! is considered since Eq.~34! would lead to
corrections of around 0.3% and are neglected here.
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S2~a!

S~0!
511

2

5
a21O~a3!,

S3~a!

S~0!
511

5

7
a21O~a3!. ~38!

This represents the lowest order expansion ina, however,
the next term gives already corrections in fractions of p
cents for the highest deformations considered here. By
way, the statistical model~33! leads to a connection betwee
temperature and deformation as

T5cpa5A2/3^a&2, ~39!

where the constantc is given by the coefficient ofa2 in Eq.
~38! for the corresponding quadrupole or octupole deform
tion.

B. Finite matter scaling for collisional damping

According to the local density approximation~27! we
want to investigate the collisional damping in finite matte
Therefore we have to replace all densities in the dispers
relation ~15! by the local density which are parametrized
a Woods-Saxon potential

n~r !5
n0

exp@~r 2R0!/0.545 fm#11
. ~40!

Solving the dispersion relation~16! within the local density
approximation according to Eq.~27! we obtain a spatial de
pendent damping rateg(r ).

In the following we derive a finite size scaling factorjA
of the damping

jA5
^g~r !&

g
, ~41!

which approximates the local (r -dependent! dispersion rela-
tion by an averaged one

^•••&5
3

R0
3E

0

R0
r 2
•••dr, ~42!

assuming radial symmetry. The factor~41! has to be applied
to the infinite matter bulk collisional damping and is foun
jSn50.9199 andjPb50.9250 for 120Sn and 208Pb, respec-
tively. Therefore, the bulk matter value of damping is dimi
ished by finite size effects.

C. Comparison of collisional damping and surface damping

Using Eq.~39! we can translate the Lyapunov exponentl
calculated as a function of deformation in Fig. 2 into a fun
tion of the temperature. In Fig. 3 the contribution to t
damping of IVGDR for120Sn ~circles! and 208Pb ~squares! is
presented for different shape deformations versus temp
ture. If we add quadrupole and octupole deformations
come up with a damping curve very similar to the paper
Ormand@22#. The damping starts at zero and increases r

r

es
1-6
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idly with increasing temperature. We see that the main c
tribution comes from the quadrupole deformation while t
octupole deformation is only sizeable at higher temperat
Let us note that the qualitative difference between Sn and
is reproduced by surface scattering as well as collisio
damping.

The collisional contribution 2g scaled to finite sizes via
Eq. ~41! are plotted as well~Sn: solid line, Pb: dashed line!.
We recognize that both contributions by itself, collisional
well as surface scattering, account almost for the sa
amount required by the experimental values, see Fig. 4
proper relative weight between both processes is there
necessary which will be introduced in the following.

So far we have not considered that only particles close
the surface can appreciably contribute to the surface cha

FIG. 3. The collisional damping scaled with finite size acco
ing to Eq. ~41! is compared with the damping according to t
chaotic scattering from the surface of quadrupole and octupole
formed shapes for120Sn and208Pb from Fig. 2.

FIG. 4. The effective damping consisting of collisional and s
face damping together with the experimental data~filled symbols!
from Ref. @48# ~Sn! and from Ref.@49# ~Pb!.
05460
-

e.
b

al

s
e
A
re

to
ti-

zation, while particles deep inside the nuclei are screened
of this process. Consequently we consider the correspon
collision frequencies as the measure to compare surface
lisions with interparticle collisions. The collision frequenc
between particles is given by 1/tM of Eq. ~14!. The collision
frequency of particles with the deformed surface beyon
spherensurf is given by the product of the density with th
surface increaseS(a)2S(0)5ca24pR0

2 according to Eq.
~38! and with the mean velocity in radial directionv r
53/8vF . The result is

nsurf51.5Tn0vFr 0
2/a5 , ~43!

where we have used Eq.~39! to replacea. We see that the
frequency~43! is independent of the size of the nucleus a
linearly dependent on the temperature.

We use the ratio of these two frequencies to weight pr
erly the two damping mechanisms, the surface collisional
and interparticle collisional̂ g(r )& contributions. Conse-
quently the full width at half maximum~FWHM! reads

GFWHM52@z^g~r !&1~12z!l#[Gcoll1Gsurf. ~44!

With the help of Eqs.~14! and~43! the weighting factorz is
given by

z~T!5
1/tM~T!

1/tM~T!1nsurf~T!
. ~45!

One sees that for zero and high temperaturesz51 and due to
Eq. ~44! only the collisional contributions matter. Sincensurf
is linear in the temperature and 1/t depends quadratically on
the temperature, the weighting factorz has a minimum at
temperatures aroundTc5(A3/2p)v and the surface contri
butions become important. In the case of the IVGDR t
corresponds to a temperature ofT'3.7 MeV, which is the
upper limit of current experimental achievable temperatur
Therefore we can state that at low and high temperatures
collisional damping is dominant while for temperatur
aroundTc the surface contribution becomes significant.

In Fig. 4 we compare the effective damping according
Eq. ~44! with the experimental data. We find a reasona
quantitative agreement.

While the collisional damping by itself can reproduce t
increase at small temperatures well enough it fails to rep
duce the sharp rise at higher temperatures, see Fig. 3.
surface damping by itself fails at zero temperature and le
to an unphysical shape. Only the connection of both effe
collisional and surface damping seems to be able to re
duce the data correctly.

At this point we would like to stress that we have adopt
a simplified model of finite Fermi liquids and introduced
phenomenological weighting between surface and interp
ticle collision contributions proportional to their relative o
currence. The discussion of damping due to finite size effe
within shell model considerations can be found in the lite
ture, e.g., the review@1# where this problem has been a
dressed from the point of doorway states.
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V. SUMMARY

We have considered the influence of collisional damp
as well as surface scattering for the damping of hot isove
giant dipole resonances~IVGDR!. We find that the relative
importance of both effects is dependent on the tempera
scale. While for low and high temperatures the collision
contribution dominates, the surface scattering is the one
significant importance at temperatures around 28% of
centroid energy.

The surface contribution has been calculated from
Lyapunov exponent of surface scattering for different dev
tions of the nucleus shape. The deviations are related to
temperature by a statistical model.

The influence of both the surface and collisional damp
is described by a generalized response function for fi
nuclear matter which takes into account the chaotic proce
of scattering with the surface. We derive by this way a
sponse function similar to the Lindhard response in lo
density approximation which is now modified by th
ys
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Lyapunov exponent of the surface scattering. In an appro
mative way we show that the total damping is described
the sum of the two contributions to the damping in analo
to the Matthiessen rule.

Comparing the collision frequencies for one particle w
other particles and for one particle with the surface, we
rive a proper relative weight for both processes, the co
sional and the surface damping. The resulting effect
damping reproduces the experimental data rather well in
whole accessible range.
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