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The damping of hot giant dipole resonances is investigated. The contribution of surface scattering is com-
pared with the contribution from interparticle collisions. A unified response function is presented which
includes surface damping as well as collisional damping. The surface damping enters the response via the
Lyapunov exponent and the collisional damping via the relaxation time. The former is calculated for different
shape deformations of quadrupole and octupole type. The surface as well as the collisional contribution each
reproduce almost the experimental value, and therefore we propose a proper weighting between both contri-
butions related to their relative occurrence due to collision frequencies between particles and of particles with
the surface. We find that for low and high temperatures the collisional contribution dominates whereas the
surface damping is dominant around the temperaty8é&w of the centroid energyS0556-28189)00710-4

PACS numbgs): 24.30.Cz, 24.60.Lz, 05.20.Dd

[. INTRODUCTION sider the boundary of the finite nucleus as a fixed surface
such that the nucleons simply bounce off this wall as in a
The damping mechanisms of collective motions in exciteddilliard-type situation. Provided we accept this simple pic-
nuclei are a topic of continuing debdts]. Mainly two lines  ture, it is possible to compare the damping caused by this
of thought are pursued. In one line of thought it is assumedhaotic scattering off the wall with the damping from colli-
that collisions are the physical reason for damping only a§'onal contributions in infinite matter. We will derive a re-
developed via a Fermi liquid approach with bulk matterSPONS€ function which includes the additional chaotic pro-
X . ; cess and find a total damping rdte=I",+ ', Similar to
properties|2—15]. The other line of thought considers new cot ., Su

foat f the finit | h ; lati the Matthiessen rule in meta]87] but with an additional
eatures ot the finite nucleus, such as surtace osciiiations a eight between the different processes according to the ratio
a level density with finite spacing. Partially the investigations

X X ; 4 N ) of the corresponding collision frequencies. Moreover the hy-
are performed WIthOUF |nert|[a'L6—24] or by .|ncl:llj|d|ng inertia potheses by Swiatecki3g] is questioned that negative
[22,25-30; note that inertia is absent in infinite matter.  cyryed surfaces of octupole deformations would induce an
Both classes of models predict a comparable degree qfqditional chaotic mechanism of dissipation and conse-
damping necessary to reproduce the experimental data. Coguently octupole modes should be overdamped. We will find
sequently, itis an open question which is the correct physicahat the octupole deformation does not lead to any special
reason for damping. Of course, the correct description has tenhancement of the Lyapunov exponent in comparison with
assume a finite nucleus consisting of nucleons which aréhe quadrupole mode. Moreover, any deformation will cause
bound via the mean field, through which the nucleons una contribution to the damping of collective modes.
dergo mutual collisions and where the surface is formed by The outline of the paper is as follows. In the next section
the particles themselves. These features are usually includébe largest Lyapunov exponent for a nucleon in a deformed
in Boltzmann-Uehling-UhlenbeckBUU) simulations[31—  nucleus is calculated. Then in Sec. Il we derive a unified
33] or in its nonlocal extensiorf84,35. In full simulations, ~ response function which combines both the collisional damp-
however, we will not gain a simple insight into the physical ing and the contribution from surface scattering. In Sec. IV
origins of the damping mechanism, in particular, how muchPoth damping contributions are compared with the experi-

is due to surface contributions and how much is due to colmental values of hot isovector giant dipole resonances
lisional contributions. (IVGDR). A proper weighting factor corresponding to the

The aim of this article is to compare both pictures in thefelative collision frequencies yields a unified picture which
frame of linear response theory. Within the collision-freedescribes the data rather well. We find that the collisional
Vlasov equation the linear response of finite systems is Welﬁpnr;[n?utmns ?omlnatﬁ_lfor low (;er:;]perr?tur:est and fo.r vertyl
known[36] and allows one to calculate the strength function 'gh temperatures whiie aroun € highest experimenta
of finite nuclei. The damping, however, does not reproduc chievable temperatures the surface effects are important.

the experimental damping of giant resonances since colli= ection V will summarize the results.
sions are absent. _ Il. LARGEST LYAPUNOV EXPONENT
To include _damplng, we can ta_ke_lr_1to account on the one OF DEFORMED NUCLEI
hand the collisional damping in infinite matter and find a
scaling for finite size effects in the sense of a Thomas-Fermi We will consider in the following only classical three-
local density approximation. On the other hand we can condimensional (3D) closed billiards and use the largest
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FIG. 1. Overview of the geometry of modes.

PHYSICAL REVIEW C 60 054601

0.10
L
0.08 T TTETTIFIIIE 8
— —Tm 1 = " *
k>0 TIal] “et T3]
_ [T ] L T L
it
— 0.06 | T-le%e® *| L] 1
£ iy gttt
& _l.L 77.—*7 N
= 004 | It -
i ol
= -t
= o+ = quadrupole Y,,
0.02 -1 :E—* o e octupole Y,
) T
,;.!7
0.00 tee=® P ‘
0.0 0.2 0.4 0.6

deformation parameter o

FIG. 2. The largest Lyapunov exponent of a spherical deformed
billiard versus deformation paramet@l). The regions ofx where
the surface starts to become negatively curved @) via Eq.(5)
are indicated by dotted linea,_, for octupole and quadrupole
deformation, respectively.

We solve the Hamilton equations for one particle in finite
nuclear matter with an infinite potenttal

V(r,0)=VoO[r—R(0)] 3)

modeling the deformation of an axial symmetric nuclear sur-
face

R\(0) =Ro{1+ agot a\P\[cog )]} 4

with the nuclear radiuRy,=1.13A"3 fm, and wherex=2
corresponds to the quadrupole and 3 to the octupole de-

Lyapunov exponent as a relevant measure to characteriZ@rmation[39]. The coefficientaq is adjusted to conserve
chaoticity. The surface of these billiards is chosen to refhe volume corresponding to incompressible nuclear matter.

semble the surface deformation of a nucleus undergoin

quadrupole or octupole deformatiofsee Fig. 1

The Lyapunov exponent is calculated by considering the
gme evolution of small deviations from a reference trajec-

the difference of the trajectories

F1 (D)= o(t)|=|r1(0)—r,(0)|eM

as

L () —ry()
A=Ilim Iim -In—/———5——.
o e0 b |F1(0)—r(0)]

For A>0 the difference in phase space trajectories grows

exponentially leading to chaotic behavior.

Brandstaetter method resetting the deviations of the refer-
ence trajectory repeatedly after a certain time to the initial
infinitesimal difference. This corresponds to an averaging
and the largest mean Lyapunov exponent is obtained.
Figure 2 shows the Lyapunov exponent for different oc-
tupole and quadrupole deformations according to &J.
The error bars are taken from averaging 50 runs of different
initial conditions indicating 95% confidence level. We see
that the quadrupole deformation leads to an immediate in-
crease of the Lyapunov exponent while the Lyapunov expo-
nent for the octupole deformation increases at larger defor-

The numerical implementation is performed wit;—o and

o—0]
r—R(0)\ =
arCta’E = )"r E

V(r,0)~V,

resembling an infinite step function.
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mation parameters and proceeds more slowly with increasing
deformation. Let us note that the characteristic time scales Vi(r, ) =to
from the Lyapunov exponent are similar to the damping rate
of the IVGDR which will be presented in Fig. 4. This moti-
vates us to consider a unified response from collisions and
surface contributions. .
Following Ref.[38] a surface with negative curvature 3 2_ .2
should induce a new chaotic mechanism analogous to the +4{(nn(r,t)+np(r,t)) Ma(r. 0} ™
Sinai billiard. We discuss therefore the curvature of a rotat-
ing body given by the curvature of the boundary cuR(@)  The neutron and proton densities ave=[[dp/(27#)3]f,
of Eq. (4) via andn,=f[d p/(27-rh)]3fp, respectively. The parameters are
Xo=0.48, to;=—983.4 MeV fn? andt;=13 106 MeV fnf.
The kinetic equation and mean field for protons are obtained
by interchanging the corresponding densities. We restrict
, (5)  here to symmetric nuclear matter. Generalizations to asym-
(R?+R'%)32 metric nuclear matter can be found in RgE3]. First we
sketch the results for the collision fre¢=0) or Vlasov
equation and then we will take collisions into account.

Xo
1+ E) (Np(r,t) +ny(r,t)

!
Xo E

n,(r ,t)]

_ R*+2R’’-RR’

whereR’ andR” denote the derivatives with respectéoln
Fig. 2 we see that the octupole deformation shows parts with 1. Collision free
negative curvature at smaller deformation parameter than the The collective effects without collisions! £0) can be

quadrupole deformation shows. However, the Lyapunov exphtained from the linearization of the Viasov equati@

ponent Of OCtup0|e defOI’matiOI’l I’emains aIWayS Sma”er. WQ\”th respect to an externa| potentimext' In the case Of

therefore conclude that the octupole deformation comparegovector oscillations, the density variatiain=n,—n,, is

with the quadrupole deformation leads to no significant enconsidered as the difference between proton and neutron

hancement of chaotization. densities. The linearization of the difference of kinetic equa-
tions for neutrong6) and protons leads to

1. DAMPING OF COLLECTIVE OSCILLATIONS on=11o(6VeytVodn) €)

We would like to focus on a unified description of the with [41]
linear response including collisional contributions and cha-
otic scattering with the surfaces. Therefore let us briefly o
sketch the response function formalism starting from appro- Vo=2(Vy=Vp)=— P
priate kinetic equations. For infinite matter this procedure
will result in the known Mermin response function which has\yheren,= [[dp/(27#)3]f,=0.16 fm 3 is the nuclear satu-
been used to describe the IVGDR in symmefdd] and  ration density andl, is the Lindhard-function
asymmetric nuclear mattgt3]. Then we derive the response
function for finite nuclei and show that in a local density '
approximation chaotic scattering from the surface can be in- H'(;‘f(q,w)=4f
corporated. The result will be a Mermin-like response func-
tion in local density approximation where the largest

Lyapunov exponent appears as an imaginary shift in the freHer€ We first consider the homogeneous equilibrittp)
quency. or infinite matter.

The response functiohl connects the induced density
fluctuation n with the external potential via

1)t .
XO+§ _gnO! ()

dp’ Adp fo(p")
(27h)3 (p'g/m)—w—i0

(10

A. Infinite matter response
. . . on=11Vegy (11
In order to consider the collisional damping we start from

tion. For neutrons this kinetic equation reads matter

inf inf
R L L AL G P

i:n([)-ra':)—+_ %arfn(parat)_ar(vn+vext)‘9pf(prrat):I
(6) 1-VoIlg'(qw)  €(dw)

The zerosv= ) +iy of the dielectric functiore(q,w)=0 in
with the self-consistent mean-field potential given by a scheEq. (12) determine the collective modes with the enefgy
matic Skyrme typd40,41] and the Landau damping of the collective excitation.
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Within the Steinwedel-Jensen model for IVGOR2], the jectoryx(t),p(t) of a particle we linearize the Vlasov equa-
wave vector scales such gs= (7/2R,), where the nuclear tion (6) according tof (x,p,t) = fy(x,p) + 6f(x,p,t) as
radius isRy=1.13AY2 fm.

d
2. Collisional model gr OTIX(1),p(1),t] = dpfody OV (17)

In order to take collisions into account as a further damp-
ing effect beyond Landau damping, we start from a kinetic . . .
equation analogous to E¢6) with an additional collisional and get with one integration
term I[p,r,t] on the right-hand side. In Refl11] we have
derived a collision integral in a non-Markovian relaxation
time approximation

'(Pw,t):J‘f(p’r’t)_ﬁp'r't)(ﬁ 13

t—t dfo(p?,x’
° oty ><5[x’—x(t’)]%5wx’,t+t’).
p

0 o d
5f(x,p,t)=—2mf dt’f dx’ﬁ

with the dynamical non-Markovian relaxation time
® 2
aT
The Markovian relaxation time is given byf,gl The density variation caused by the external potential is ob-
= (87m/3%3) T2, where o is the averaged spin-isospin tained as
proton-neutron cross section. This collision integral holds for

low temperatures compared to the Fermi energy. The non-
Markovian relaxation time arises from the coupling of col-

lective modes regarding two-particle scattering and conse- 5n(x,w)=—2msf dx’f
quently describes the effect of zero sound damping. The

local equilibrium distributionf is determined through the 0 d
conservation of the local current. The linearization of the xf dt’e "o — §[x’ —x(t")]8V(X, ),
kinetic equation leads then to the extended response function — dt’

of Mermin [43]

(18)
1 1

Tm(®) a 7'_B

3

*2

. (14

dp®
(23 0P

(19
(g, )

wheres denotes the spin-isospin degeneracy. Comparing this
expression with the definition of the polarization function
I,

. i
Hgﬁ(q,w-{— ;

1=+ {1- [T (q,0+ 1/ D)/ (.01}
(15
where the self-consistency leads to the replacement f 5n(x,w)=f dx’ (X, X", @) V(X' @), (20)
by II§ in Eq. (12). Generalizations to asymmetric nuclear
matter can be found in Ref13]. ) ) o .
The energy and damping rates are determined by the z&/€ aré able to identify the polarization of finite systems as
ros of the(Mermin) response functiofil1]
3

(0, Q+iy)=1-Vo(q)I15(q,Q+iy)=0. (16)

Ho(x,x", @)= —2msf Ip2fo(p?x")

. . (2mh)®
Here the damping rate represents Landau and collisional

damping. 0 ., d
XJ dt’ e "t “’Eé[x’—x(t’)]. (21
B. Finite matter response -

In the next step we will present the finite matter response
function in terms of a memory integral over all trajectories. It
allows us to introduce the local density approximation as a Further simplifications are possible if we focus on the
first order memory effect in the trajectories. For this purposeground statef o(p?) = ®(pf2— p?). The modulus integration
we rewrite the Vlasov equatiof6) in a slightly different of momentum can be carried out and the Kirzhnitz-formula
way. Introducing the Lagrange picture by following the tra- [44,45 for the polarization function appears
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msp(x)| (o _ leading to the standard Lindhard result for E25). We rec-
My(X, X", w)=— 3 f dt’e it'e ognize the ground state result for infinite matt#@) except
Amh - that the Fermi momentum;(R) has to be understood as a
d do local quantity with respect to the density
P ’ ’
X— [ ——=8[x" —x(t i
av ) am X ”] I3 (q,R,0) =15 q,py(R), o], @7
msp(x) o[x' — x(0)] Fo:c extensions beyond the local density approximation see
== X =X Refs.[45,44.
47°h3 [ §
0 - de C. Influence of chaotic scattering with surface on damping
+iwf dt’e “’j — [ x' = x(t")]]. " . .
—w A7 Now we want to assume an additional chaotic scattering

which will be caused, e.g., by the curved surface. In order to
investigate this effect we add to the regular moti@4) a
gmall irregular partAx

(22

This formula represents the ideal free part and a contributio
which arises by the trajectoriegt) averaged over the direc-

’ ’ /pf -
tion at the present timen,p;=mx(0). In principle, the X =x(t)~=—r—t' onp+Ax. (28)
knowledge of the evolution of all trajectories is necessary to
evaluate this formula. Avoiding the latter expense, we dis-This irregular part of the motion has the direction of the
cuss two approximations which will give us an insight into yelocity, ﬁp, and lasts a tim@,. During this time an expo-
the physical processes behind. First the most restrictive ongential increase in phase-space occurs controlled by the larg-

shows how the local density approximation emerges. As aggt Lyapunov exponent. Therefore we assunfe’ <0]
extension we consider then the influence of chaotic scatter-

ing on a surface. p¢n
A~—LA exd —N(t'—A,)]+const. (29)
1. Local density approximation m

The local density approximation appears from E2R) Since we are looking for the upper bound of Lyapunov ex-
when two simplifications are performed. Introducing Wignerponent we can take Eq29) at the maximumA,=—1/\.
coordinatesR=(x+x')/2, r=x—x’" one has to assume the Furthermore, in the case of vanishing Lyapunov exponent,

following. the regular motiori24) should be recovered. This determines
(1) Gradient expansion the constant. We obtain finally
r Pi- | 1—exp(—At")
Ps R+§ ~p:(R)+0(dRr), (23 x’—x(t’)w—r—anp — (30)

(2) expansion of the trajectories up to first order history With this ansatz one derives from E@?2) the result

: P - msp(R)|, (=, siny
X'=x(t")=~—r—t'x=—r—t'—n,+0(t'?). (24 II(g,R,w)=— —————| 1+i J dy——
L (aR.©) 4mh3 to @ y
With these two assumptions we obtain from E22) after Ly e
trivial integrations X1+ ;k , (32)
LDA __msp(R) (7 gy SINY which for \—0 resembles Eq25). The further integration
I (a,.R,w) = 42h3 1+ig o dye y |’ could be given in terms of hypergeometric functions but this

(25)  is omitted here.

With formula(31) we have derived the main result of this
where Z=mw/qp¢(R). This can be further integrated with Section, i.e., a polarization function due to many particle ef-
the help of fects including the influence of an additional chaotic process

characterized by the Lyapunov exponant
o izy siny ) . For small values of f/qp;)\= (N w) which corre-
fo dy € T—arctamlmg“—l Re{) sponds to relative small Lyapunov exponents, we can use
lim,_..(1+a/x)*=exp@) in the integral of Eq(31) and the

) final integration can be performed with the result of EZ)
=2iln =) m[sgn(1+{) and a complex shift in the frequency
+5gM(1—)]lim 0 (26) 113"(a,R, @) =11g"[a,ps(R), 0 +i)]. (32)
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Solving the dispersion relation we obtain in this way the Sy(a) ) 5
Matthiessen rule which states that different damping mecha- S(0) =1+ 5 +0(a”),
nisms are additive in the total damping. However, the colli-
sional damping of infinite matter ¥ and the largest Sy(a) 5
Lyapunov exponenk are not yet the appropriate values of =1+ =a?+0(ad). (39
finite matter. Instead, these two damping mechanisms have S(0) 7

to be added by a proper relative weight which will take 'ntoThis represents the lowest order expansionrjnhowever,
account the relative occurrence of the processes, the coll

: . . - ; the next term gives already corrections in fractions of per-
sions with other particles and the collisions with the surfaceCents for the highest deformations considered here. By this

way, the statistical modé€B3) leads to a connection between
IV. COMPARISON OF DAMPING MECHANISMS temperature and deformation as

A. Connection between surface curvature and temperature T=cmragA?¥a)?, (39)

The damping of excited nuclei can be understood by two
different mechanisms. In addition to the collisional dampinghere the constarttis given by the coefficient o&” in Eq.
we also have to consider the shape fluctuations. In the ati38) for the corresponding quadrupole or octupole deforma-
sence of inertia which will be assumed in the following, thetion.
driving force for shape fluctuations is the temperature.
Therefore we link the surface deformatiarof Eq. (4) to the B. Finite matter scaling for collisional damping
temperature within a statistical model. We use as a measure

. A i he local i imatiai2
for the mean deformatidn ccording to the local density approximatigq27) we

want to investigate the collisional damping in finite matter.
Therefore we have to replace all densities in the dispersion

f da|a|exd —Eg(a)/T] relation(15) by the local density which are parametrized by
(a)= , (33 & Woods-Saxon potential
f daexd —Eg(a)/T] o
n(r) (40

" exf(r—Ry)/0.545 fml+1°
where the surface dependent eneEp(«) is given by the

Bethe-Weizseker formuld Solving the dispersion relatiofi6) within the local density
approximation according to E¢27) we obtain a spatial de-
a, W4 , o S(@) pendent dampipg rat@(r).. - _
Eg(a)=—a;+ —5t m+a45 +asA“ ==, (36) In the following we derive a finite size scaling factéx
A A S(0) -
of the damping
with the volume energya;=15.68 MeV, Coulomb energy (y(r))
a;=0.717 MeV, the symmetry energy,=28.1 MeV, and En= : (41)

the surface energgi;=18.56 MeV. Y

The surface of rotational symmetric nucld is given by \hich approximates the locat {dependentdispersion rela-
) tion by an averaged one
szzwf dxR,(X) VRy(X)2+ (1—x))R](x)%  (37) 3 (R
-1
()= = f
0

r2...dr, (42
0

from which we obtain for the quadrupo® and octupoles,

deformationg35) assuming radial symmetry. The faci@rl) has to be applied
to the infinite matter bulk collisional damping and is found
£57=0.9199 andép,=0.9250 for 2°Sn and?°%b, respec-

2For small deviations we found identical Lyapunov exponents fori“VEIy' Therefore, the bulk matter value of damping is dimin-

prolatea>0 and oblater<<0 deformations and therefore we do not ished by finite size effects.
distinguish the sign of. ) o . .
3please remember that in principle the Coulomb energy changesC. Comparison of collisional damping and surface damping

with small deformation as well according to the factdr] Using Eq.(39) we can translate the Lyapunov expongnt
a-1 calculated as a function of deformation in Fig. 2 into a func-
1_5(2>\+1)2le 34 tion of the temperature. In Fig. 3 the contribution to the

damping of IVGDR for*?°Sn (circles and 2°%Pb (squaresis

while the surface term changes as - .
presented for different shape deformations versus tempera-

+(\-D(\+2)/2/(2h + 1) ey . (39 ture. If we add quadrupole and octupole deformations we
Only the correctior(35) is considered since E¢34) would lead to  come up with a damping curve very similar to the paper of
corrections of around 0.3% and are neglected here. Ormand[22]. The damping starts at zero and increases rap-
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10 - - zation, while particles deep inside the nuclei are screened out
S ;:Sn, coll. damping of this process. Consequently we consider the corresponding
——— ""Pb, coll. damping collision frequencies as the measure to compare surface col-
lisions with interparticle collisions. The collision frequency
between particles is given by of Eq. (14). The collision
frequency of particles with the deformed surface beyond a
spherevg, is given by the product of the density with the
surface inCI‘eaSS(a/)—S(O)ICa{247TR(2) according to Eq.
vz (38) and with the mean velocity in radial direction,
ar T ] =3/8vg. The result is

quadrupole deformation

—
—
—
—

damping I" [MeV]

Veur=1.5T NoVer3/as, (43)

where we have used E(39) to replacea. We see that the

frequency(43) is independent of the size of the nucleus and

; 2 linearly dependent on the temperature.

temperature T [MeV] We use the ratio of these two frequencies to weight prop-
erly the two damping mechanisms, the surface collisianal

FIG. 3. The collisional damping scaled with finite size accord-gn(g interparticle collisionak y(r)) contributions. Conse-

ing to Eq. (41) is compared with the damping according to the quently the full width at half maximunFWHM) reads
chaotic scattering from the surface of quadrupole and octupole de-

formed shapes fot?°Sn and?°%b from Fig. 2.

FFWHM:2[§<7(r)>+(1_g))\]zrcoll+rsurf- (44)

idly with increasing temperature. We see that the main con;, . N .
tribution comes from the quadrupole deformation while theWIth the help of Eqs(14) and(43) the weighting factog is
octupole deformation is only sizeable at higher temperatureg'ven by
Let us note that the qualitative difference between Sn and Pb
is reproduced by surface scattering as well as collisional {(T)= LUry(T)
damping. Ury(T) +vgu(T)
The collisional contribution 2 scaled to finite sizes via
Eq. (41) are plotted as wellSn: solid line, Pb: dashed line  one sees that for zero and high temperatyred and due to
We recognize that both contributions by itself, collisional asgq. (44) only the collisional contributions matter. Sineg,
well as surface scattering, account almost for the samg jinear in the temperature andridepends quadratically on
amount required by the experimental values, see Fig. 4. Ane temperature, the weighting factgrhas a minimum at
proper relativg weight bgtween both processes is therefort%mperatures arourit, = ( J3/2m)® and the surface contri-
necessary which will be introduced in the following. butions become important. In the case of the IVGDR this
So far we have not considered that only particles close t%orresponds to a temperature B&3.7 MeV, which is the
the surface can appreciably contribute to the surface chaolijyser |imit of current experimental achievable temperatures.

Therefore we can state that at low and high temperatures the
collisional damping is dominant while for temperatures
aroundT_ the surface contribution becomes significant.

In Fig. 4 we compare the effective damping according to
Eq. (44) with the experimental data. We find a reasonable
guantitative agreement.

While the collisional damping by itself can reproduce the
increase at small temperatures well enough it fails to repro-
duce the sharp rise at higher temperatures, see Fig. 3. The
surface damping by itself fails at zero temperature and leads
to an unphysical shape. Only the connection of both effects,
collisional and surface damping seems to be able to repro-
duce the data correctly.

(45

damping T [MeV]

am — g,
r 208 } surf.+coll. damping At this point we would like to stress that we have adopted
_____ Pb . ape . . qe . .
a simplified model of finite Fermi liquids and introduced a
5 i j phenomenological weighting between surface and interpar-
0 ” o 3 : o I . ) .
temperature T [MeV] ticle collision contributions proportional to their relative oc-

currence. The discussion of damping due to finite size effects
FIG. 4. The effective damping consisting of collisional and sur- Within shell model considerations can be found in the litera-
face damping together with the experimental ddileed symbols ture, e.g., the revieyl] where this problem has been ad-
from Ref.[48] (Sn) and from Ref[49] (Pb). dressed from the point of doorway states.
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V. SUMMARY Lyapunov exponent of the surface scattering. In an approxi-
mative way we show that the total damping is described by
g&he sum of the two contributions to the damping in analogy
{o the Matthiessen rule.

Comparing the collision frequencies for one particle with

We have considered the influence of collisional dampin
as well as surface scattering for the damping of hot isovect
giant dipole resonancd$VGDR). We find that the relative

importanC(_a of both effects _is dependent on the tempe_raturgther particles and for one particle with the surface, we de-
zgilt?i.bx\tliglllwe dfc?rrnilr?:\;\;ezn?hzl%Tjr:%?gigtutgisn thg fﬁg'igga(l)r've a proper relative weight for both processes, the colli-
' 9 ional and the surface damping. The resulting effective

o ) 0
significant importance at temperatures around 28% of th'aamping reproduces the experimental data rather well in the

centroid energy. ;
The surface contribution has been calculated from the\zl\/hoIe accessible range.

Lyapunov exponent of surface scattering for different devia-
tions of the nucleus sha_pe. The deviations are related to the ACKNOWLEDGMENTS
temperature by a statistical model.
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