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Exact calculation of proton decay rates from excited states in spherical nuclei
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An exactapproach for the determination of proton-decay widths in spherical nuclei is presented. It consists
of solving numerically the one-dimensional time-dependent Schro¨dinger equation for initial proton quasista-
tionary states obtained in the framework of a single-particle model. From the time dependence of the meta-
stable state one can infer the dynamics of the decay and calculate the lifetime. The validity of this approach is
demonstrated and quantitative comparisons with existing approximate, stationary methods are reviewed. Fi-
nally, the advantages and perspectives of this new method are discussed.@S0556-2813~99!04111-4#

PACS number~s!: 23.50.1z, 21.60.2n, 24.10.2i
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I. INTRODUCTION

Since the first observation of proton radioactivity from
isomeric state in53Co in 1970@1#, much experimental@2–4#
and theoretical@5–9# effort has been devoted to the study
this rare decay phenomenon. It has been stressed that p
emission from ground states of exotic nuclei limits the ran
of possible isospin values on the proton-rich side of the v
ley of stability. Moreover, the single-particle character of t
resonances in nuclei far from stability can provide valua
nuclear structure information that complements other exp
mental measurements@3#.

From the theoretical perspective it is believed that
calculation of proton-decay rates can be done throug
straightforward application of thea-decay theory albeit with
the simplification that there is no need to calculate the p
formation factor. The physical picture is that of a single p
ton tunneling through the average, spherical Coulomb,
centrifugal barrier created by its interaction with the~core!
daughter nucleus. Historically, the lifetime for this proce
was calculated using a time-independent approach, e.g.
WKB approximation. In addition to the intrinsic limitation
imposed by this simple picture, unavoidable errors are
pected because of the approximations involved in the u
stationary approaches.

In this paper the proton-decay rate is calculated via
alternate method, namely, through the numerical solution
the time-dependent Schro¨dinger equation~TDSE! for pre-
pared initial quasistationary proton states. The purpose
this paper is to demonstrate the validity of this new meth
and to use it to estimate the ‘‘errors’’ of the usual stationa
approaches. A simple model of spherical proton decay
introduced in Sec. II. We then compare several method
compute the decay widthGp in Sec. III: the two most com-
monly used stationary approaches@WKB and distorted wave
Born approximation~DWBA!# and our new time-dependen
method. Finally, Sec. IV gathers results obtained with
TDSE approach and compares them with WKB and DWB
results. A summary and discussion end this paper.

*Electronic address: talou@lanl.gov
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Although this paper is concerned with the presentation
this new method applied to the simple model mention
above, it will be argued that it can be extended, unlike m
of the approximate schemes, to encompass much more d
cult problems~deformed interacting potential@10#, dynami-
cal deformation of the nuclear surface during proton em
sion @11#, etc.!.

II. PROTON DECAY: A SIMPLE MODEL

Following the literature@8#, the interaction between th
proton and the rest of the nucleus is described by a sin
particle spherical potential as

V~r !5Vn~r !1Vc~r !1
\2

2m

l ~ l 11!

r 2
. ~1!

The nuclear termVn(r ) is given by the sum of a Woods
Saxon part and a related Thomas spin-orbit term

Vn~r !52V0f 0~r !1Vso~sW • lW !lp
2 1

r

d

dr
f so~r !, ~2!

with

f i~r !5
1

11exp@~r 2Ri !/ai #
. ~3!

The quantityVc is the usual Coulomb potential that describ
the interaction of a pointlike proton with a uniformly charge
spherical nucleus of radiusRc . The parameters used in ou
calculations have been taken from@12# and are gathered in
Table I. However, the depthV0 of the nuclear Woods-Saxo
potential has not been taken from@12# but rather adjusted
according to our needs as explained in Sec. III C.

TABLE I. Single-particle potential parameters.

R051.173A1/3 fm a05aso50.75 fm Rc51.213A1/3 fm
Rso51.013A1/3 fm Vso56.2 MeV lp

2 .2.0 fm2
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III. ESCAPE RATE

In this section, we summarize two widely used station
approaches to compute the proton-decay width, namely,
WKB and DWBA approximations. In a third part, we wi
introduce our numerical method dedicated to the same p
lem.

A. WKB approximation

In this semiclassical approximation, the width of a low
lying metastable state is given by

GWKB5N\2

4m
expF22E

r 1

r 2
k~r !drG , ~4!

where

\k~r !5A2muE02V~r !u ~5!

is the classical momentum of the emitted particle. The n
malization factor is

N 215E
r 0

r 1
dr

1

k~r !
cos2F E

r 0

r

k~r 8!dr82p/4G , ~6!

where (r 0 ,r 1 ,r 2) are the classical turning points ordered
increasing distance from the origin.

Very often, the cos2 term in this last equation is approx
mated by its average value of1

2 ; then,

N 215
1

2Er 0

r 1 dr

k~r !
. ~7!

Following @8#, we will denote this approximation as WKB
to differentiate it from the WKB approximation given by Eq
~6!.

B. Distorted wave Born approximation

The calculation of the proton-decay width can also
carried out through the distorted wave Born approximat
used in direct reaction theory@13#. In this case, the proton
decay is treated as a resonance, the proton being trapp
the target nucleus for a certain length of time.1 The heart of
this approach relies on the transition amplitudeT(A11,Z
11→A,Z) which is related to the proton-decay width by

G52puT~A11,Z11→A,Z!u2. ~8!

In the DWBA, this transition amplitude reads

T~A11,Z11→A,Z!5^xAp ,fAfpuVApufA11&, ~9!

wherexAp represents the relative motion of the proton w
respect to the daughter nucleus,fA and fp represent the

1It has been argued in Ref.@13# that this two-step process can st
be seen as a ‘‘direct reaction’’ since it does not imply the format
of an equilibrated compound nucleus.
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intrinsic wave functions of the daughter nucleus and prot
and fA11 represents the quasistationary state of the pa
nucleus. Of course,VAp represents the interaction betwee
the proton and daughter nucleus, represented by the sim
fied one-body potential of Eq.~1!.

Assuming that the proton is in its ground state and c
sidering the daughter nucleus as an inert core, one can s
that the decay width is given by

GDWBA5
4m

\2k
U E

0

`

dr Fl~r !~VN1dVc!fnl j~r !U2

. ~10!

Fl(r ) is the regular Coulomb wave function andfnl j (r ) is
the radial wave function representing the quasistationary p
ton state.dVc5Vc2(Ze2)/r is the correction from a point-
like charge distribution. In our work,fnl j (r ) has been ob-
tained within the two-potential approach~TPA! developed
by Gurvitz and Kalbermann@14#. This method will be pre-
sented and discussed in the next section.2

C. Numerical approach

Within the same simple model of a quasibound state le
ing by the tunneling effect through a one-body potential,
most straightforward~and intuitive! way to compute the de
cay rate~or decay width! of this state is to perform a numer
cal integration of the time-dependent Schro¨dinger equation
describing this process. This method has already been
plied to a decay@15# and nuclear fission@16#.

The TDSE describing the interaction between the pro
and the spherical daughter nucleus has the form

i\
]

]t
cp~r ,t !5F2

\2

2m

d2

dr2
1V~r !Gcp~r ,t !, ~11!

in which cp(r ,t) represents the quasistationary proton st
andV(r ) the interacting potential described in Eq.~1!.

The integration of TDSE has been achieved through
space and time discretization and with the use of a ti
propagator method called MSD2@17#. Obviously, we are
dealing with an initial-value problem, hence requirin
knowledge of the state at timet50. As mentioned above
the initial state is obtained through the scheme of Gurv
and Kalbermann@14#; i.e., we define a quasistationary sta
cqs as an eigenstate of a modified Hamiltonian

@H~r !1e~r !#cqs5Eqscqs. ~12!

n

2To be totally rigorous,fnl j (r ) should be obtained by joining
continuously the quasistationary ‘‘TPA’’ wave function with th
irregular Coulomb wave functionGl(r ) describing the behavior o
the proton asr→`. Nevertheless, it has been shown in Ref.@8# that
the contribution of the integrand in Eq.~10! to the decay widthG is
mainly due to the region around the nuclear surface, allowing u
safely neglect the influence ofGl(r ) on the lifetime of not-very-
high-lying quasistationary states.
8-2
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EXACT CALCULATION OF PROTON DECAY RATES . . . PHYSICAL REVIEW C 60 054318
In most of our calculations, the modificatione(r ) has been
defined by

e~r !5H VB2V~r ! if r>r B

0 elsewhere ,
~13!

wherer B denotes the position of the top of the barrier, a
VB5V(r B). We will see that the arbitrary choice of th
modificatione(r ) does not influence the computation of th
decay width.

Following the proton wave function in time, one can com
pute the following quantities.

~i! The tunneling probabilitydefined by

Ptun~ t,r B!5E
r B

`

druc~r ,t !u2, ~14!

which represents the probability that the proton is outside
nuclear surface~i.e., has been emitted! by the timet.

~ii ! Thedecay ratewhich is related to the tunneling prob
ability through

l~ t,r B!5
1

12r~ t,r B!

dr~ t,r B!

dt
. ~15!

This quantity can then be directly compared to the station
valueslWKB and lDWBA related to the decay width by th
simple expression

G5\l.

IV. RESULTS

We have computed proton-decay widths for hypotheti
excited states in the~spherical! 109I nucleus, and then com
pared the values obtained with the usual stationary ones

A. Quasistationary proton states

Before going further, we mention here the main difficu
of our numerical approach. For very-low-lying states~low
energy1large potential barrier!, the tunneling rates can b
very small~very narrow decay widths!, making difficult their
numerical computation. In order to avoid this problem b
without losing any interest in this approach, we will consid
here only proton-excited states for which the computation
their decay rates is made easier. Nevertheless, it is w
noting that this concession is not too harmful: first, with
this method, one can still study~time dependently! processes
like bp, b2p, etc., for which semiclassical methods are n
well suited; second, one can still study the ‘‘errors’’ of the
latter approaches through a wide range of energies and
gular momenta; finally, numerical improvements of o
method have indeed proved that one can reach experim
tally observable ground-state proton emitters@18#.

High-energy levels can easily be obtained by varying
depthV0 of the nuclear Woods-Saxon potential. In Fig.
such an hypothetical quasistationary proton state in109I,
with angular momentuml p52, has been represented, alo
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with the total interacting potentialVpA(r ) of depth V0

551 MeV.

B. Time evolution

Performing the numerical integration of the TDSE for th
particular state allows us to followc in time. The square roo
of this wave function in the vicinity of the potential well i
represented at four times in Fig. 2. At the observed times
is interesting to note that the shape of the wave funct
inside the potential well is retained. This is related to t
onset of exponential decay@19#.

As observed earlier@15#, the time behavior of the deca
ratel(t) ~see Fig. 3! can be split into two distinct stages: a
initial one during which the decay rate strongly varies~i.e.,
there are deviations from an exponential decay! and corre-
sponding to the ‘‘acclimation’’ of the quasistationary state
its new environment at timet50, and a second stage durin
which the decay is exponential. From the ‘‘asymptotic
value of the decay rate,l(`), it is possible to infer a decay
width through the simple relation

GTDSE5\l~`! ~16!

FIG. 1. The wave function of a quasistationary proton state
109I ~solid line! and potentialVpA(r ) ~dashed line!.

FIG. 2. Time evolution of the quasistationary state from Fig.
Times are in 10222 sec.
8-3
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P. TALOU, D. STROTTMAN, AND N. CARJAN PHYSICAL REVIEW C60 054318
and compare it to the values obtained using the usual sta
ary approaches.

C. Validity of the TDSE approach

Our goal here is to show the validity of such an approa
in allowing the severalarbitrarily chosenparameters to vary
freely. First of all, is the ‘‘asymptotic’’ decay ratel(`)
sensitive to the choice of the potential modification in t
Gurvitz procedure? To answer this question, we have c
sidered three different modifications of the ‘‘true’’ potenti
V(r ), namely,

e~r !5H VB1~r 2r B!tan~u!2V~r ! if r>r B

0 elsewhere ,
~17!

with u50 ° ~modification used previously!, u580 °, and
without any modification. In this last case, the quasistati
ary state is obtained through a numerical integration of
stationarySchrödinger equation on a discretized spacer :0
→30 fm, while the numerical integration of the TDSE
performed on a much larger grid, let us sayr :0→400 fm.
This fact along with the unavoidable numerical errors, ma
the eigenstatea true quasistationary state for our problem

The three different wave functions corresponding to
‘‘same’’ quasistationary state are represented in Fig. 4.

Note that for the ‘‘unmodified’’ potential, the proto
wave function exhibits nonvanishing values outside the w
which are due to the presence of an artificial infinite poten
wall at the end of the numerical discretized grid (r max
530 fm). Obviously, this state is not really suited to o
problem since the wave function is not initially confined i
side the well. Nevertheless, we will see that even in t
‘‘dramatic’’ situation, our numerical approach still gives
reliable value for the half-life of the state.

FIG. 3. Time-dependent decay ratel(t) obtained with the initial
quasistationary state of Fig. 1.
05431
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The time-dependent decay ratesl(t) obtained consider-
ing the three initial wave functions represented in Fig. 4
plotted in Fig. 5. One can clearly see that the first transit
stage strongly depends on the way of constructing the q
sistationary state. On the other hand, the following~exponen-
tial! stage is independent of the particular choice made
the modification of the initial potential, though noisy osc
lations appear on the third curve but without modifying t
‘‘mean asymptotic’’ valuel(`). This result confirms the
hypothesis suggested by Goldberger and Watson@20# that
the long time behavior of a metastable state is independen
its particular formation.

FIG. 4. Three ‘‘different’’ wave functions representing th
‘‘same’’ initial quasistationary state.

FIG. 5. Time-dependent decay rates corresponding to the t
‘‘different’’ initial states represented in Fig. 4.
8-4
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EXACT CALCULATION OF PROTON DECAY RATES . . . PHYSICAL REVIEW C 60 054318
As noted above, from this unambiguous ‘‘asymptotic
valuel(`) one can easily calculate the lifetime of the sta
which in turn can be compared to semiclassical estimatio
Nevertheless, because the form of the potential was diffe
in each of the three cases, one has to pay attention tha
three ‘‘different’’ states do not have the same energy wh
introduced in the TDSE, as shown in Fig. 4. But this ene
is an important ingredient in stationary recipes. This ques
is actually solved in looking at the energy of the state tru
cated~and renormalized! inside the potential well. This ‘‘in-
ternal’’ energy is given by

Ein~r B ,t !5E
0

r B
c* ~r ,t !H~r !c~r ,t !dr

Y E
0

r B
c* ~r ,t !c~r ,t !dr ~18!

and is represented in Fig. 6 for the three wave functio
considered. Like the decay rate time behavior, this quan
shows two clearly distinguished stages. The first one wh
again depends on the formation of the state and the se
one which is common to all three wave functions. Th
‘‘asymptotic’’ internal energyEin(`) corresponds to the ex
perimental proton energyQp corrected from electron screen
ing and recoil energies, and is the one that should be use
the stationary approaches. Finally, Fig. 7 shows that
quantityEin(r B ,`) does not depend on the particular val
of the arbitrary ridger B .3 Only the tunneling probability

3Of course, an infinite value forr B would imply an infinite time to
reach the valueEin(`).

FIG. 6. ‘‘Internal’’ energy of the quasistationary states
Fig. 4.
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Ptun(t,r B) is actually affected by the chosen valuer B . The
decay ratel(`), and so the lifetime of the state, is indepe
dent of this particular value.

A last question remains: how can one determinea priori
the energyEin(`) of the quasistationary state without havin
to solve the TDSE? This question can be answered in
following way: Figure 8 displays the difference between t
initial energyEin(t50) and the ‘‘asymptotic’’ oneEin(`).
This difference clearly decreases with decreasing the en
of the metastable state. Hence, for ground-state proton e
gies ~of the order of 1 MeV!, Ein(`)5Ein(t50).

FIG. 7. Dependence ofEin on the ridge parameterr B .

FIG. 8. Initial minus ‘‘asymptotic’’ internal energies for differ
ent quasistationary states obtained in varying the potential d
V0.
8-5
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D. Comparison with stationary approaches

We have repeated the same time-dependent calcula
for several hypothetical initial quasistationary states in or
to map the two-dimensional space (Ep ,l p) and to compare
the lifetimes obtained with the usual WKB and DWBA com
putations.

In Fig. 9 the time evolution of the decay rates for seve
relatively low-lying states is represented. For the lowest s
at Ep51.25 MeV, the decay rate reaches an asymptotic
havior much later because its outer turning point lies mu
further (r out.60 fm).

Finally, Fig. 10 gathers the comparison between the us
WKB and DWBA half-life estimates and our numerical a
proach.

All the used approximations provide us with the corre
order of magnitude of the lifetime of the hypothetical prot
metastable states studied. Nevertheless, the WKB lifeti
can overestimate~or underestimate! the numerical~exact!
ones by more than 50%. These errors appear also to
strongly influenced by the angular momentuml p . Interest-
ingly, the somewhat less sophisticated WKB1 approximat
reduces the computed errors. Finally, the DWBA sche
seems very well suited to this kind of analysis since, for
low-lying states, errors are contained within less th
5–10 %. The discrepancies observed between the TDSE
DWBA for higher energy levels might be due to the fa

FIG. 9. Time evolution of the decay ratel for several proton
states. The lowest state studied lies at 1.25 MeV, with zero ang
momentum. The corresponding half-life isT1/25(2.860.1)
310211 sec.
d J
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that we did not treat correctly in our DWBA calculations th
connection between the quasistationary state inside
well and the irregular Coulomb functionGl(r ) at larger
distancesr.

V. SUMMARY AND DISCUSSION

In summary, the one-dimensional time-dependent Sch¨-
dinger equation has been solved numerically for initial p
ton quasistationary states in spherical nuclei. Following
proton metastable wave functioncp(r ,t) in time, one has
access to the proton decay widthGTDSE. We have demon-
strated the validity of this exact approach and compared
results to the ones from widely used stationary metho
namely, WKB and DWBA, for a large range of energies a
angular momenta.

Although providing the correct order of magnitude for th
proton lifetimes studied, the WKB approach can give rise
errors as high as 50%. Contrarily, the DWBA scheme
found to be reliable through a large range of proton energ
and angular momenta. In addition to proton lifetimes, the f
dynamics of the decay is made accessible thanks to our
merical approach, hence allowing the study of more com
cated problems. One of them is doubtlessly the phenome
of proton emission from a parent-deformed nucleus, lead
to a spherical daughter one@11#. As mentioned in this paper
the current numerical limitation of our code constrains us
study only proton-excited states. Nevertheless, we beli
that this drawback will be overcome in the near future a
that the TDSE scheme is the right approach to treat all pr
lems encountered inp, n, and a decays of nuclei in their
ground states.

ar

FIG. 10. Comparisons between the lifetimes obtained thank
the TDSE numerical solution and the ones computed within
stationary approaches WKB and DWBA.
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