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Exact calculation of proton decay rates from excited states in spherical nuclei
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An exactapproach for the determination of proton-decay widths in spherical nuclei is presented. It consists
of solving numerically the one-dimensional time-dependent Stthger equation for initial proton quasista-
tionary states obtained in the framework of a single-particle model. From the time dependence of the meta-
stable state one can infer the dynamics of the decay and calculate the lifetime. The validity of this approach is
demonstrated and quantitative comparisons with existing approximate, stationary methods are reviewed. Fi-
nally, the advantages and perspectives of this new method are disci338686-281®9)04111-4

PACS numbd(s): 23.50+z, 21.60-—n, 24.10-i

[. INTRODUCTION Although this paper is concerned with the presentation of
this new method applied to the simple model mentioned
Since the first observation of proton radioactivity from anabove, it will be argued that it can be extended, unlike most
isomeric state irP°Co in 1970[1], much experimentdg2—4]  of the approximate schemes, to encompass much more diffi-
and theoretical5-9] effort has been devoted to the study of cult problems(deformed interacting potenti§l0], dynami-
this rare decay phenomenon. It has been stressed that proté@l deformation of the nuclear surface during proton emis-
emission from ground states of exotic nuclei limits the rangesion[11], etc).
of possible isospin values on the proton-rich side of the val-
ley of stability. Moreover, the single-particle character of the Il. PROTON DECAY: A SIMPLE MODEL
resonances in nuclei far from stability can provide valuable
nuclear structure information that complements other experi- Following the literature[8], the interaction between the
mental measuremenis]. proton and the rest of the nucleus is described by a single-
From the theoretical perspective it is believed that theparticle spherical potential as
calculation of proton-decay rates can be done through a
straightforward application of the-decay theory albeit with #2 1(1+1)
the simplification that there is no need to calculate the pre- V(r)=Vn(r)+Ve(r)+ 2n 2 )
formation factor. The physical picture is that of a single pro-
ton tunneling through the average, spherical Coulomb, an
centrifugal barrier created by its interaction with tfeore
daughter nucleus. Historically, the lifetime for this process
was calculated using a time-independent approach, e.g., the 1d
WKB approximation. In addition to the intrinsic limitations V()= —Vofo(r)+ Ve a- D2 = —f 1), 2
imposed by this simple picture, unavoidable errors are ex- rdr
pected because of the approximations involved in the usual

cf’he nuclear ternV,(r) is given by the sum of a Woods-
Saxon part and a related Thomas spin-orbit term

stationary approaches. with

In this paper the proton-decay rate is calculated via an
alternate method, namely, through the numerical solution of f )= 1 3
the time-dependent Schtinger equation(TDSE) for pre- i(n= 1+exd(r—R)/a]’ &)

pared initial quasistationary proton states. The purpose of

this paper is to demonstrate the validity of this new methodrhe quantityv, is the usual Coulomb potential that describes
and to use it to estimate the “errors” of the usual stationarythe interaction of a pointlike proton with a uniformly charged
approaches. A simple model of spherical proton decay igpherical nucleus of radiu,. The parameters used in our
introduced in Sec. Il. We then compare several methods tgg|culations have been taken frdim2] and are gathered in
compute the decay width,, in Sec. lll: the two most com-  Taple |. However, the depttf, of the nuclear Woods-Saxon
monly used stationary approact&8KB and distorted wave potential has not been taken frofh2] but rather adjusted

Born approximatiofDWBA)] and our new time-dependent according to our needs as explained in Sec. lI C.
method. Finally, Sec. IV gathers results obtained with the

TDSE approach and compares them with WKB and DWBA TABLE |. Single-particle potential parameters.
results. A summary and discussion end this paper.

Ro=1.17X A3 fm ag=2a,=0.75 fm  R,=1.21XAY® fm
Rsg=1.01X A% fm V=6.2 MeV A2=2.0 fn?
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Ill. ESCAPE RATE intrinsic wave functions of the daughter nucleus and proton,

In this section, we summarize two widely used stationaryand ¢a+1 represents the quasistationary state of the parent

: nucleus. Of courseY,, represents the interaction between
approaches to compute the proton-decay width, namely, th p S
LR . ;7 the proton and daughter nucleus, represented by the simpli-
WKB and DWBA approximations. In a third part, we will _. .
. . , fied one-body potential of Eq1).
introduce our numerical method dedicated to the same prob- . A
Assuming that the proton is in its ground state and con-

lem. sidering the daughter nucleus as an inert core, one can show
o that the decay width is given by
A. WKB approximation
In this semiclassical approximation, the width of a low- 4u| (= 2
lying metastable state is given by FDWBA=ﬁ f dr Fy(r)(Vn+6Ve) énij(r)| . (10)
0
/\/ﬁz 2
r =N-—ex —ZJkrdr, 4 , . .
W A ;{ r ) } @ Fi(r) is the regular Coulomb wave function awg;(r) is
the radial wave function representing the quasistationary pro-
where ton state.5V.=V,.— (Z€?)/r is the correction from a point-
like charge distribution. In our workg,;(r) has been ob-
Ak(r)=2u[Eo—V(r)| (S tained within the two-potential approadfiPA) developed

is the classical momentum of the emitted particle. The nor-by Gurvitz an_d Kalbermanﬁl4]. This ”_‘eth"d will be pre-
o . sented and discussed in the next section.
malization factor is

C. Numerical approach

r 1
J\/’lzf drmcos2 , (6)
"o

;
f k(r"ydr'— /4
"o

Within the same simple model of a quasibound state leak-
, ) , ing by the tunneling effect through a one-body potential, the
where (o.ry,r2) are the classical turning points ordered by most straightforwardand intuitive way to compute the de-

increasing distance from the origin. o _ cay rate(or decay width of this state is to perform a numeri-
Very often, the coSterm in this last equation is approxi- 4| integration of the time-dependent Satirmer equation
mated by its average value of then, describing this process. This method has already been ap-
1 d plied to o decay[15] and nuclear fissiof16].
Nfl:_f 1_r. 7) The TDSE describing the interaction between the proton
2 )y k(1) and the spherical daughter nucleus has the form
Following [8], we will denote this approximation as WKB1 9 2 g2
to differentiate it from the WKB approximation given by Eq. 1= p(r)=| = 24 ar? +V(r) | dp(r,), (11
(6).
B. Distorted wave Born approximation in which ¢,(r,t) represents the quasistationary proton state

) ) andV/(r) the interacting potential described in Hd).

T_he calculation of the_ proton-decay width can also _be The integration of TDSE has been achieved through a
carried out through the distorted wave Born approximationspace and time discretization and with the use of a time
used in direct reaction theofyL3]. In this case, the pProton  nronagator method called MSDA7]. Obviously, we are
decay is treated as a resonance, the proton being trapped d@ajing with an initial-value problem, hence requiring
the target nucleus for a certain length of tifm&he heart of knowledge of the state at time=0. As mentioned above
this approach relies on the transition amplitieA+1.Z  he injtial state is obtained through the scheme of Gurvitz
+1—A,Z) which is related to the proton-decay width by 5nq Kalbermanih14]: i.e., we define a quasistationary state

I=2a|T(A+1Z+1—A,Z)|2 ®) 4s @s an eigenstate of a modified Hamiltonian

In the DWBA, this transition amplitude reads [H(r)+ e(r)]sqs= Eqstigs- (12

T(A+1Z+1-AZ2)=(xXap: daPp|VaplPas1), (9

To be totally rigorous,¢,;(r) should be obtained by joining
continuously the quasistationary “TPA” wave function with the
irregular Coulomb wave functio®,(r) describing the behavior of
the proton ag—c. Nevertheless, it has been shown in Réf.that
the contribution of the integrand in E(LO) to the decay width' is

%1t has been argued in RdfL3] that this two-step process can still mainly due to the region around the nuclear surface, allowing us to
be seen as a “direct reaction” since it does not imply the formationsafely neglect the influence @,(r) on the lifetime of not-very-
of an equilibrated compound nucleus. high-lying quasistationary states.

where x5, represents the relative motion of the proton with
respect to the daughter nucleus, and ¢, represent the
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In most of our calculations, the modificatiafr) has been
defined by

Vg—V(r) ifr=rg 05

e(r)= 0 elsewhere, (13

whererg denotes the position of the top of the barrier, and 3
Vg=V(rg). We will see that the arbitrary choice of the
modificatione(r) does not influence the computation of the
decay width.
Following the proton wave function in time, one can com- -
pute the following quantities. N
(i) The tunneling probabilitydefined by E, = 7.00 MeV

(AN VA

-10

20

Ptun(trrB):frmdr|¢(rat)|21 (14) 05

N R 30

—
<
[
(=1
[3%)
<

which represents the probability that the proton is outside the
nuclear surfacéi.e., has been emitte¢dy the timet. r (fm)
(ii) Thedecay ratewhich is related to the tunneling prob-

o FIG. 1. The wave function of a quasistationary proton state in
ability through q yp

199 (solid ling) and potentiaV,A(r) (dashed ling

1 dp(tvrB)
A(t,rg)= 1-p(trg dt - (19 with the total interacting potentiaWya(r) of depth Vg
=51 MeV.
This quantity can then be directly compared to the stationary
values\ kg and Apwea related to the decay width by the B. Time evolution

simple expression . o . :
P P Performing the numerical integration of the TDSE for this

T=#4\. particular state allows us to follow in time. The square root
of this wave function in the vicinity of the potential well is
represented at four times in Fig. 2. At the observed times, it
is interesting to note that the shape of the wave function

We have computed proton-decay widths for hypotheticafnSide the potential well is retained. This is related to the
excited states in théspherical 1% nucleus, and then com- ©NnSet of exponential decaf.9].

pared the values obtained with the usual stationary ones.  AS observed earlief15], the time behavior of the decay
rate\ (t) (see Fig. 3 can be split into two distinct stages: an

initial one during which the decay rate strongly varies.,
there are deviations from an exponential decayd corre-
Before going further, we mention here the main difficulty sponding to the “acclimation” of the quasistationary state to
of our numerical approach. For very-low-lying statésw  its new environment at time=0, and a second stage during
energyrlarge potential barrigr the tunneling rates can be which the decay is exponential. From the *“asymptotic”
very small(very narrow decay widthsmaking difficult their ~ value of the decay rate,(=), it is possible to infer a decay
numerical computation. In order to avoid this problem butwidth through the simple relation
without losing any interest in this approach, we will consider

IV. RESULTS

A. Quasistationary proton states

here only proton-excited states for which the computation of F'rpse=fA () (16)
their decay rates is made easier. Nevertheless, it is worth
noting that this concession is not too harmful: first, within 03 ; ; . ; 03
this method, one can still studtime dependentlyprocesses 025 E i i i 1025
like Bp, B2p, etc., for which semiclassical methods are not o 02: =0 i t=10 i t=20 1 t=30 .,
well suited; second, one can still study the “errors” of these = = & 1 1 i 1 os
latter approaches through a wide range of energies and ar & '
gular momenta; finally, numerical improvements of our — %!} T 1 T jot
method have indeed proved that one can reach experimer 005 | T 3 1 1005
tally observable ground-state proton emittgt8]. 0 ‘ 0
High-energy levels can easily be obtained by varying the 0 r (fig) 0 00 00 20

depthV, of the nuclear Woods-Saxon potential. In Fig. 1,

such an hypothetical quasistationary proton state', FIG. 2. Time evolution of the quasistationary state from Fig. 1.
with angular momenturh,=2, has been represented, along Times are in 102 sec.
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0 10 20 30 0 10 20 30
3 T T ‘ T T ‘ T T 3 [ T I T l T |
| i 05 | 1@9‘| Qd y — 05
I | L 5/2 1
MOO) =1.9488 x 107 5™ — 1
I (00) X s I =51 MeV |
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025 | - 025
2 - = 2 i ]
éw r i B 0 I : 0
” I | " 1
= "1, 2ds ] i ]
< 1 — 11! 0.25 i ] 0.25
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| ] L ¥ 0 =80deg,E=7.144 MeV |
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| 05 | 0
0 | | | | | ‘ . . 0 | L | 1 | . —
0 10 20 30
0 10 20 30 r (fm)
. -22
Time (10™s) FIG. 4. Three “different” wave functions representing the

. . . “ ” initial istati tate.
FIG. 3. Time-dependent decay ratét) obtained with the initial same™ intal quasistationary state

quasistationary state of Fig. 1. _ _ .
The time-dependent decay rateét) obtained consider-

and compare it to the values obtained using the usual statiof?g the three initial wave functions represented in Fig. 4 are

ary approaches. plotted in Fig. 5. One can clearly see that the first transition
stage strongly depends on the way of constructing the qua-
C. Validity of the TDSE approach sistationary state. On the other hand, the follow(@gponen-

tial) stage is independent of the particular choice made for
Our goal here is to show the validity of such an approachhe modification of the initial potential, though noisy oscil-
in allowing the severadrbitrarily chosenparameters to vary |ations appear on the third curve but without modifying the
freely. First of all, is the “asymptotic” decay rat&(«)  “mean asymptotic” valuex (). This result confirms the
sensitive to the choice of the potential modification in thenypothesis suggested by Goldberger and Waf@f} that

Gurvitz procedure? To answer this question, we have conte long time behavior of a metastable state is independent of
sidered three different modifications of the “true” potential its particular formation.

V(r), namely,

<

VB+(r_rB)tar(0)_V(r) Ifr;rB 5 T T T \5‘\ T T |1‘0| T T \1|5\ T T \2‘0\ T T |2‘5| T T \305

e(r)= 7

n
o

0 elsewhere,

with #=0 ° (modification used previously #=80°, and
without any modification. In this last case, the quasistation-
ary state is obtained through a numerical integration of the
stationary Schralinger equation on a discretized spac@

—30 fm, while the numerical integration of the TDSE is -
performed on a much larger grid, let us sap— 400 fm. ) 2
This fact along with the unavoidable numerical errors, make
the eigenstatea true quasistationary state for our problem.

The three different wave functions corresponding to the 1
“same” quasistationary state are represented in Fig. 4.

Note that for the “unmodified” potential, the proton :
wave function exhibits nonvanishing values outside the well, 0
which are due to the presence of an artificial infinite potential
wall at the end of the numerical discretized grid,4« T A
=30 fm). Obviously, this state is not really suited to our 1o 5 10 15 20 25 307!
problem since the wave function is not initially confined in- Time (10‘228)
side the well. Nevertheless, we will see that even in this
“dramatic” situation, our numerical approach still gives a  FIG. 5. Time-dependent decay rates corresponding to the three
reliable value for the half-life of the state. “different” initial states represented in Fig. 4.

1, 2ds,

Vo =51 MeV, rg= 10 fm

,_
[\S]

— 0=0deg
----- 0=80 deg
- not modified

-\-I-r-..l..x__l__\__L_\ L L L

[T RRE RN AR R R
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FIG. 6. “Internal” energy of the quasistationary states of FIG. 7. Dependence (Ein on the ridge paramete% i
Fig. 4.

Pun(t,rg) is actually affected by the chosen valug. The

As noted above, from this unambiguous “asymptotic” jecay rate\ (), and so the lifetime of the state, is indepen-
value\ () one can easily calculate the lifetime of the state,jent of this particular value.

which in turn can be compared to semiclassical estimations. A |ast question remains: how can one deterrangriori

Nevertheless, because the form of the potential was different,q energyE; (=) of the quasistationary state without having

in each of the three cases, one has to pay attention that thg sojve the TDSE? This question can be answered in the
three “different” states do not have the same energy when|o\ing way: Figure 8 displays the difference between the
introduced in the TDSE, as shown in Fig. 4. But this energyitig| energyE, (t=0) and the “asymptotic” oneE, ().

is an important ingredient in stationary recipes. This questioRrhjg gifference clearly decreases with decreasing the energy

is actually solved in looking at the energy of the state trun-u¢ the metastable state. Hence, for ground-state proton ener-
cated(and renormalizedinside the potential well. This “in- gies (of the order of 1 MeV), E; (=) =E(t=0).

ternal” energy is given by

s 4 ¢ 8
s [
Em(rs,t)=f P (r HH() ¢(r,tdr ~ ]
0 > 30 - 1 30
()
'B = L 1
/JO Y*(r,0g(r dr 18 st i
R ,
A 20 [ - 20
and is represented in Fig. 6 for the three wave functions/'\ r ]
considered. Like the decay rate time behavior, this quantitys C b
shows two clearly distinguished stages. The first one Whichal-l; 5T 715
again depends on the formation of the state and the secon g B ]
one which is common to all three wave functions. This M 10 [- - 10
“asymptotic” internal energyE;,(e°) corresponds to the ex- .
perimental proton energ®,, corrected from electron screen- sL 15
ing and recoil energies, and is the one that should be used i C ]
the stationary approaches. Finally, Fig. 7 shows that the i 1
quantity E;(rg,*) does got depend on the particular value 0 e 0
of the arbitrary ridgerg.® Only the tunneling probabilit
y ridgerg y gp y Ein () (MeV)

FIG. 8. Initial minus “asymptotic” internal energies for differ-
30f course, an infinite value fat; would imply an infinite time to  ent quasistationary states obtained in varying the potential depth
reach the valué;, (). V.
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L L N a 4+ - coteped T~
< : a Fagemso L4 =
P — 0 - o g - N
g NEH ] Hg bh=2. R ‘ A
= 107 E S & - =
3 o L
O = ] L —_
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Ep MeV)
7
10°F | ‘ | ‘ 7 FIG. 10. Comparisons between the lifetimes obtained thanks to
0 20 20 60 20 100 the TDSE numerical solution and the ones computed within the
Time (1 0'22s) stationary approaches WKB and DWBA.

that we did not treat correctly in our DWBA calculations the

o , connection between the quasistationary state inside the
states. The lowest state studied lies at 1.25 MeV, with zero angul

momentum. The corresponding half-life i§,,=(2.8=0.1) E‘é’ggggggthe irregular Coulomb functio®,(r) at larger
x 10 ! sec. '

FIG. 9. Time evolution of the decay rate for several proton

D. Comparison with stationary approaches V. SUMMARY AND DISCUSSION

We have repeated the same time-dependent calculations In summary, the one-dimensional time-dependent Schro
for several hypothetical initial quasistationary states in ordedinger equation has been solved numerically for initial pro-
to map the two-dimensional spackj,l,) and to compare ton quasistationary states in spherical nuclei. Following the
the lifetimes obtained with the usual WKB and DWBA com- proton metastable wave functiop,(r,t) in time, one has
putations. access to the proton decay widihpse. We have demon-

In Fig. 9 the time evolution of the decay rates for severalstrated the validity of this exact approach and compared its
relatively low-lying states is represented. For the lowest stateesults to the ones from widely used stationary methods,
atE,=1.25 MeV, the decay rate reaches an asymptotic benamely, WKB and DWBA, for a large range of energies and
havior much later because its outer turning point lies muctangular momenta.
further (r o, =60 fm). Although providing the correct order of magnitude for the

Finally, Fig. 10 gathers the comparison between the usuglroton lifetimes studied, the WKB approach can give rise to
WKB and DWBA half-life estimates and our numerical ap- errors as high as 50%. Contrarily, the DWBA scheme is
proach. found to be reliable through a large range of proton energies

All the used approximations provide us with the correctand angular momenta. In addition to proton lifetimes, the full
order of magnitude of the lifetime of the hypothetical proton dynamics of the decay is made accessible thanks to our nu-
metastable states studied. Nevertheless, the WKB lifetimesierical approach, hence allowing the study of more compli-
can overestimatéor underestimajethe numerical(exac) cated problems. One of them is doubtlessly the phenomenon
ones by more than 50%. These errors appear also to ks proton emission from a parent-deformed nucleus, leading
strongly influenced by the angular momentlign Interest-  to a spherical daughter ofi#l]. As mentioned in this paper,
ingly, the somewhat less sophisticated WKB1 approximatiorthe current numerical limitation of our code constrains us to
reduces the computed errors. Finally, the DWBA schemestudy only proton-excited states. Nevertheless, we believe
seems very well suited to this kind of analysis since, for allthat this drawback will be overcome in the near future and
low-lying states, errors are contained within less thanthat the TDSE scheme is the right approach to treat all prob-
5-10 %. The discrepancies observed between the TDSE aeins encountered ip, n, and o decays of nuclei in their
DWBA for higher energy levels might be due to the fact ground states.
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