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Neutron matter model

George A. Baker, Jr.
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~Received 6 May 1999; published 1 October 1999!

The Bertsch, nonparametric model of neutron matter is analyzed and strong indications are found that, in the
infinite system limit, the ground state is a Fermi liquid with an effective mass, except for a set of measure zero.
@S0556-2813~99!05510-7#

PACS number~s!: 05.30.Fk, 21.65.1f, 67.40.Db, 71.10.Ay
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As a challenge, Bertsch@1# proposed the following model
inspired as a parameter-free model of neutron matter at
nuclear density. The model is described as follows:

What are the ground state properties of the many-bo
system composed of spin-1/2 fermions interacting via a z
range, infinite scattering-length contact interaction.

It may be assumed that the interaction has no two-b
bound states. Also, the zero range is approached with fin
ranged forces and finite particle number by first taking t
range to zero and then the particle number to infinity.

This problem is tricky in the following sense: if one re
verses the limit order and takes the particle number to in
ity before the range goes to zero, one obtains the well-kno
nuclear collapse result@2# where the whole system collapse
into a region of the order of the range of the potential in si
Likewise, if the particles were bosons, collapse would occ

To solve this problem as stated, I employed the formali
in @3#. Here we continue to use the summations over state
described therein, before the limit as the particle num
tends to infinity converts those sums into integrals. T
method involves series expansions in powers of the Fe
momentum or alternatively in powers of the strength of
potential.

For ease of illustration, I will use the following potentia

V~r !5H 2V0 if r ,c

0 if r .c.
~1!

In point of fact, the shape of the potential will not matter,
we will see later. It is useful to note the dimensionle
strength or well-depth parameter of this potential is@2#

s5
4

p2

MV0

\2
c2. ~2!

The strength is defined in such a way thats51 corresponds
exactly to the case of an infinite scattering length, as ca
for in this model. The range of this potential is justc, of
course. For the limit asc→0 one may compute, using th
standard equations@4#, that the phase shift vanishes for a
l .0. That is to say, this interaction is only effective inS
states. This result should not be surprising as the angu
momentum barrier excludes the wave function from the o
gin where the potential is effective. For the current case,
may put two neutrons in the lowest state~one with spin up
and the other with spin down!. This creates a potential for
possible third neutron of strengths52; however, it must go
0556-2813/99/60~5!/054311~6!/$15.00 60 0543
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into the first excitedS state, which requires a strength ofs
59 to bind.@See Eq.~13! below.# If we put ~somehow! two
neutrons in this state, we get a potential well ofs54 to
attract a fifth neutron, but now we need a strength ofs525
to put it in the third excitedS state. And so the argumen
goes that anl 50 only potential of strengths51 cannot bind
fermions into a collapsed state, as would be the case if
interaction were effective in all angular momentum states

It is worthwhile to mention that this type of model i
closely related to the theory of Feshbach resonance sca
ing. This theory is very relevant to the study of atomic Bos
Einstein condensates@5#.

The next useful step is to compute the Fourier transfo
of V(r ). We will express things in terms of the dimensio
less variablesrW 5rW/c andkW 5ckW . We will write this expres-
sion as an intergal, but remember that, for the time being
should really have been a sum because of the finite-sized
in which the finite number of particles are confined:

Ṽ~kW !5
1

~2p!3E drW V~r !exp~2 ikW•rW !

5
c3

~2p!3EurW u<1
drW V~cr!exp~2 ikW •rW !5c3ṽ~k!.

~3!

Evaluating the integrals we obtain

ṽ~k!52
1

2p2k3
@sink2k cosk# →

k→0
2

1

6p2
. ~4!

Baker @3# @Eq. ~4.21!# gives the following expansion fo
the many-body energy:

E

N
5

3\2kF
2

10M
1

p2\2

4Mc2
A1s1

p4\2

16Mc2
A2s21•••, ~5!

as an expansion in the strength of the potential, wherekF is
the Fermi momentum. The first term for neutrons is

A15
3

4pkF
3V0

E
umW u<kF , unW u<kF

3dmW dnW F Ṽ~0!2
1

2
Ṽ~ umW 2nW u!G . ~6!
©1999 The American Physical Society11-1
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This equation may be rewritten as

A15
3

4pkF
3V0

E
umW u<kF , unW u<kF

3dmW dnW F ṽ~0!2
1

2
ṽ~ umW 2nW u!G . ~7!

Since we are concerned with the limit asc→0, and finite
Fermi momentum,kF→0, thus we only need the value o

ṽ(l) at l50. Hence, for this case we get

A152
p

3
kF

3 . ~8!

Thus, substituting into Eq.~5! we get

E

N
5

3

10

\2kF
2

M
2

p3\2kF
2

12M
kFs1

p4\2

16Mc2
A2s21•••. ~9!

The next step is to examine the higher-order terms of
expansion. The basic organizing principle will be the num
of holes in the Fermi sea created for each term. The poin
that for each new hole there is a factord3kW and a denomina-
tor proportional tok2, which works out to an additional over
all factor of kF for the term. Note that here there is a maj
distinction between a finite and an infinite system. In a fin
system ofN particles, there can never be more thatN such
holes in the Fermi sea, whereas there is no such limita
for an infinite system. We start with all the two hole-line~in
the diagrammatic representation! terms. These are just th
so-called ladder graphs as only the filled-state–filled-s
interactions do not generate additional holes in the Fe
sea. Baker@3# has carried forward this analysis and also co
sidered the ladder-type insertions in the other terms, and
gives ~spin-12 fermions! for the expansion in powers of th
Fermi momentum the results@3# @Eq. ~4.88!#,

EM

N\2
5kF

2F 3

10
1

1

3p
kFa10.055 661~kFa!2

1
1

20p
~kFa!2~kFr 0!1

9

10p
A1~0!kF

3

10.009 14~kFa!310.024 631~kFa!3~r 0a!

10.015 680~kFa!kF
3A09~0!20.018 604~kFa!41•••G ,

~10!

wherea is the scattering length,r 0 is the effective range, and
some numerical infelicities that have been noticed since p
lication are corrected. To this order for spin-1

2 and a pure
isospin state, terms likekF

6a4 logkF do not occur. Such term
arise from true three-body scattering, when the numbe
spin and isospin states is three or more. The Pauli exclu
principle prevents their occurrence here. The other quant
are, for the square-well case@3#,
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A1~0!5
1

3
c3F113

u cotu21

u2 G5
1

3
c3F11

3a

u2~c2a!
G ,

~11!

and

A09~0!5
1

3
c3H F3

u
2

6

u3G tanu211
6

u2J
5

1

3
c3H F32

6

u2G S 12
a

cD211
6

u2J , ~12!

where use has been made of the equations foru,

u5
p

2
As,

tanu

u
512

a

c
. ~13!

For the time being we will hold the scattering length fixe
and finite, and letc→0. Thus,r 0 , A1(0), A09(0)→0. What
remains is

EM

N\2
5kF

2F 3

10
1

1

3p
kFa10.055 661~kFa!210.00 914~kFa!3

20.018 604~kFa!41•••G , ~14!

which just depends on the scattering lengtha and not on the
shape of the potential.

It is to be noticed that to extract the desired result fro
Eq. ~14!, we need to sum the series for an infinite value
the argument. Before attempting to do this, we will ta
some guidance from the ladder approximation. Unfor
nately, it is well known that for an attractive potential, th
ladder approximation is beset with Emery singularities@6#. It
has been argued that these singularities may be the resu
an unfortunate choice of a summation method for
asymptotic series. We will instead use theR-matrix formu-
lation @3#, where the Emery singularities do not occur. I w
use the usual approximations in solving for theR matrix,
involving angular averaging and center of mass averag
For this application we will not need to consider theR matrix
in the presence of an excited Fermi sea. TheR-matrix equa-
tion is very similar to the usualK-matrix equation in ladder
approximation, except it has been regularized at the Fe
surface to avoid the Emery singularities. It is

Rl~k!5
2

pE0

`

j l~kr !V~r !ũ~r !r 2 dr, ~15!

ũk,l~r !5 j l~kr !2
2

pE0

`

G̃k,l~r ,r 8!V~r 8!ũk,l~r 8!r 82 dr8,

~16!
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NEUTRON MATTER MODEL PHYSICAL REVIEW C60 054311
G̃k,l~r ,r 8 !

5E
0

`@k92 j l~k9r ! j l~k9r 8 !2k2 j l~kr ! j l~kr8 !#

k922k2

3F~p,k9!dk91ã~p,k! j l~kr ! j l~kr8!, ~17!

F~p,k9!55
1, 1

2 p2kF.k9

0, ~k925 1
4 p2!1/2,kF

1, k92 1
2 p>kF

~k921 1
4 p22kF

2 !/k9p, otherwise,

~18!

ã5k2/kF , ~19!

1

4
p̄25

3

5
kF

2 S 12
k

kF
D

3H F S 11
1

2

k

kF
1

1

6

k2

kF
2 D Y S 11

1

2

k

kF
D G , k,kF

0, k.kF,

~20!

where p̄ is used to replacep, in order to change the depen
dence on (k,p) to that onk alone. The single particle ene
gies are then given by

E~m!5
1

2
m214F E

0

(kF2m)/2

2k2 dk I1E
(kF2m)/2

(kF1m)/2

3S 12
m214k22kF

2

4km D k2 dk IGm,kF

5
1

2
m214F E

(kF2m)/2

(kF1m)/2S 12
m214k22kF

2

4km D k2 dk IG
3m>kF , ~21!

where

I 5(
l

~2l 11!S n21, l even

n11, l oddD Rl~k!, ~22!

wheren is the number of spin and isospin states and is ju
in the case of neutron matter. The contribution of t
R-matrix terms to the total energy is then given by

ER5
3

2kF
3E0

kF
@E~m!2 1

2 m2#m2 dm. ~23!

For the potential under current consideration there is the c
siderable simplification thatV acts only in thel 50 states so
that Rl50 ; l .0.
05431
2

n-

The difference between theK matrix in ladder approxima-
tion and theR matrix is in the Green’s function. For theK
matrix the Green’s function is

Gk,l~r ,r 8 !5E
0

` k92 j l~k9r ! j l~k9r 8 !

k922k2
F~p,k9!. ~24!

It has been shown@3# that

Kl~k!5
Rl~k!

11~ 1
2 t12ã!Rl~k!

, ~25!

where

t15~kFp!21H ~k21 1
4 p22kF

2 !ln@~kF
21kFp1 1

4 p22k2!/~kF
2

2 1
4 p22k2!#1S 12

p2

4kF
2 D ln@~kF1 1

2 p!/~kF2 1
2 p!#J

1S k

kF
D ln@~kF1 1

2 p1k!/~kF1 1
2 p2k!#. ~26!

The quantityt1 is lower semibounded, but diverges logarit
mically to 1`. Thus by Eq.~25!, any time thatR is negative
there is a singularity inK. One consequence of this result
that although it is expected that the radius of convergenc
R in powers of the strengths is unity, the radius of conver-
gence of theK-matrix series is zero. As a further point in th
regard, if Eq.~25! is expanded in powers ofR, since the
divergence oft1 is only logarithmic, the intergals oft1

j all
exist. However, the values increase likej ! so that this series
is at best an asymptotic one. In the numerical solution of
R-matrix equations, I have found that 59 mesh points inr, 10
mesh points ink, and 20 mesh points ink9 are sufficient for
a few percent accuracy, which is in turn sufficient for o
present needs. The computer code I have used is an ad
tion of that of Ref.@7#. Our numerical results for severa
strengths are plotted in Fig. 1. It is to be noticed that in li
with Eq. ~27!, the slope at the origin is negative and is i
creasing rapidly in size with increasing well depth. Howev
outside a small initial region the curve forERM /N\2kF

2 is
relatively flat. This behavior is strongly suggestive of t
idea that, in the limit as the strength of the potential goes
unity and the scattering length goes to infinity, this curve
discontinuous at the origin, and is some reasonable func
of kF for kF.0.

We cannot use the above method for the complete ene
but there are two other methods that we can use, and are
available for theR-matrix energy.

An examination of the structure of the terms generated
the expansion of theR-matrix expansion in powers of th
potential strength shows that they are all proportional to m
ments of a distribution. For the case of the ladder appro
mation to theK matrix the Green’s function is a positiv
definite operator, but this happy feature is not necessa
true for the Green’s function for theR matrix. Thus even for
the current case of a single-signed potential~for background
1-3
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GEORGE A. BAKER, JR. PHYSICAL REVIEW C60 054311
see@8#!, the distribution can be over a range with two sign
Consequently we have what is called the Hamburger m
ment problem@9# with a finite radius of convergence. In th
case by means of a linear fractional transformation the pr
lem can be converted into2s times a series of Stieltjes
Such a series is the moment generating function for a
ment problem whose distribution has a range that has ju
single sign@9#. It has been shown@9# that in our case of an
attractive potential whose strength is less than the radiu
convergence of theR-matrix expansion, all the Pade´ approxi-
mants form upper bounds to the actualR-matrix energy@9#.
We have deduced the necessary coefficients by using a te
order finite difference method~equivalent to fitting with a
tenth-order polynomial! at several values ofkFc on the nu-
merical solution of theR-matrix equation. We have used
spacing of 1/(4p2) in the strength for this computation. Ou
results are shown in Fig. 2 and some of the numerical s
tions of theR-matrix equation are shown for compariso
The result we seek is for a zero range force,c→0 which is
extrapolated in this figure. It is about20.18\2kF

2/M .
The series analogous to that of Eq.~14! is also available

@3# for the ladder energy. It is, for thec50 limiting case,

DELM

N\2
5kF

2F 1

3p
kFa10.055 661~kFa!210.032 031~kFa!3

10.019 156~kFa!41•••G . ~27!

In this equation the numbers were supplied by numer
integration of some double intergals, and Monte Carlo eva
ation was not required, as was the case in Eq.~14!. The
coefficients are just thegj ’s of Ref. @3#. By the solution of
Eq. ~25! for R as a function ofK we find thatR, in this limit

FIG. 1. The numerical evaluation of theR-matrix energy. The
short dashed curve is fors50.81, the long dashed curve is fors
50.9, the dashed curve is fors50.95, and the solid curve is fors
50.98.
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as c→0, must also be expandable in powers ofkFa. To
derive the coefficients in this expansion, we would ha
needed to use similar analytical methods@3# to those em-
ployed in the case of theK matrix. We can, however, see a
least part of the picture by computing for a series of sm
values ofkFc the results for several fixed values ofkFa. The
determination of the appropriate values of the strength
rameters needed for this exercise is accomplished by exp
ing Eq. ~13! for a/c in powers ofu2. Then this series is
reverted to giveu2 in powers ofa/c. A @3/3# Padéapprox-
imant with the built in asymptotic value ofp2/4 is found to
be quite accurate and to give good results foru25ps/2. I
have again used a tenth-order differencing scheme on
numerical solution of theR-matrix equations. We have cho
sen a mesh spacing ofkFc50.05. The results of the extrapo
lation of theR-matrix energies tokFc50 are displayed in
Fig. 3. These values are not inconsistent with the asympt
extrapolation shown in Fig. 2 fors51 for theR-matrix en-
ergy.

Since the leading coefficient here should also be 1/(3p)
as in Eq.~27!, we find that our extrapolation in Fig. 3 i
about 2% low for this term. Our numerics are insufficient
give good values of the rest of the terms. Merely for ref
ence, we display in Fig. 4 several Pade´ approximant@9# es-
timates from the series@Eq. ~27!# for the Ladder energy ap
proximation. We are interested, as we will be in the analy
of Eq. ~14!, in the asymptotic behavior asa→`. The asymp-
tote for the@2/2# Padéapproximant is about 0.24\2kF

2/M ,
which is not vastly different from our estimates for th
R-matrix energy, and also corresponds to no negative ene
ground state.

For the case of the complete energy for this mode
illustrate this behavior in Fig. 5. Again I use the method
Padéapproximants@9# in order to sum the series inkFa.

FIG. 2. The Pade´ approximant upper bounds on theR-matrix-
approximation energy divided by\2kF

2/M for various potential
strengths. Some of the numerical solutions of theR-matrix equation
are included for reference.
1-4
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NEUTRON MATTER MODEL PHYSICAL REVIEW C60 054311
There is an upper limit of 0.3 for the ratioEM/@N\2kF
2 #,

because the interaction is purely attractive; so the ene
cannot exceed the kinetic energy of the ideal Fermi gas.
the estimates shown agree well to at leastkFa'20.5. The
@2/1# Padéapproximant exceeds the upper bound for2kFa
> 2.5, and so does not give a satisfactory value for the c
of interest,a→2`. This brings us to the@1/1# and the@2/2#
Padéapproximant. They both have finite asymptotes, wh
are of the right order of magnitude. That for the@2/2# is
shown in Fig. 5. Numerically, the asymptotes a
0.0977\2kF

2/M for the @1/1# and 0.1705\2kF
2/M for the

@2/2#. The latter corresponds to a shift in the complete
ergy from the ideal gas energy ofDE520.1295\2kF

2/M .

FIG. 4. The ratio of the ladder terms contribution to the ene
per particle divided by\2kF

2/M .

FIG. 3. The extrapolation of theR-matrix energy tokFc50 as a
function of kFa.
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These results correspond to the effective massesM*
53.07M andM* 51.76M , respectively. Manifestly, neutron
matter is unbound for this potential.

In addition I have analyzed the series in Eq.~9! for vari-
ous densities, using the data given in Ref.@3#. The@3/1# Padé
approximants are the best behaved ones in this case a
have plotted them in Fig. 6. The extrapolated asympto
value is about 20.17\2kF

2/M vs the value of about
20.13\2kF

2/M just quoted for the Fermi momentum seri
value just quoted above. In light of Fig. 2, I estimate a va
of (20.1760.04)\2kF

2/M , which corresponds to an effectiv

y

FIG. 6. The estimates of the many-body energy per part
based on the series expansions in potential strength. The extra
tion to kFc50 is also shown. The error bars reflect only the co
ficient uncertainty.

FIG. 5. The ratio of the many-body energy per particle
\2kF

2/M vs 2akF . For the case of interest,a→2` is expected.
1-5
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mass of about 2.360.5.
These results for the ground-state energy mean that

system is a Fermi liquid, with an effective mass. The wa
function is expected to correspond to that structure, as

from a set of exceptional points whererW i5rW j , the origins of
the set of relative coordinates between all the pairs. Th
points, however, only constitute a set of measure ze
an
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I would mention that relatively simple models of neutro
matter with a potential consisting of a repulsive core and
attractive part beyond have been studied@10# with reason-
able results. The potential used there gives a pretty g
representation of the low to medium energy scattering da

I would like to acknowledge helpful discussions with A
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