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Neutron matter model
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The Bertsch, nonparametric model of neutron matter is analyzed and strong indications are found that, in the
infinite system limit, the ground state is a Fermi liquid with an effective mass, except for a set of measure zero.
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PACS numbgs): 05.30.Fk, 21.65tf, 67.40.Db, 71.10.Ay

As a challenge, Bertsdi] proposed the following model, into the first excitedS state, which requires a strength of
inspired as a parameter-free model of neutron matter at sub=9 to bind.[See Eq(13) below] If we put (somehow two
nuclear density. The model is described as follows: neutrons in this state, we get a potential well s34 to

What are the ground state properties of the many-bodattract a fifth neutron, but now we need a strengtis-e25
system composed of spin-1/2 fermions interacting via a zerao put it in the third excitedS state. And so the argument
range, infinite scattering-length contact interaction. goes that ah=0 only potential of strengte=1 cannot bind

It may be assumed that the interaction has no two-bodyermions into a collapsed state, as would be the case if the
bound states. Also, the zero range is approached with finiteinteraction were effective in all angular momentum states.
ranged forces and finite particle number by first taking the It is worthwhile to mention that this type of model is
range to zero and then the particle number to infinity. closely related to the theory of Feshbach resonance scatter-

This problem is tricky in the following sense: if one re- ing. This theory is very relevant to the study of atomic Bose-
verses the limit order and takes the particle number to infinEinstein condensatg§].
ity before the range goes to zero, one obtains the well-known The next useful step is to compute the Fourier transform
nuclear collapse resul2] where the whole system collapses of V(r). We will express things in terms of the dimension-
into a region of the order of the range of the potential in sizejggg variablep=r/c and x=ck. We will write this expres-
Likewise, if the particles were bosons, collapse would ocCurgjon as an intergal, but remember that, for the time being, it

_ Tossolve this problem as stated, | employed the formalismypoy|q really have been a sum because of the finite-sized box
in [3]. Here we continue to use the summations over states ag which the finite number of particles are confined:

described therein, before the limit as the particle number

tends to infinity converts those sums into integrals. This 1 . o
method involves series expansions in powers of the Fermi V(K)= —3f dr V(r)exp —ik-r)
momentum or alternatively in powers of the strength of the (2m)

potential. 3

. . . . _ c . .-
For ease of illustration, | will use the following potential: = (277)3f|,5|<1dp V(cp)exp—ik-p)=c3v (k).
_VO if r<c (3)
VIDZlo  ifrsc. W

) ] ] Evaluating the integrals we obtain
In point of fact, the shape of the potential will not matter, as

we will see later. It is useful to note the dimensionless 5 1 1
strength or well-depth parameter of this potentidldé V(k)=———[sink—«kcosk] - ——. (4)
27K k—0 6T
4 MV, . . .
s=— c?. (2) Baker[3] [Eq. (4.21)] gives the following expansion for
7w h the many-body energy:
The strength is defined in such a way tkatl corresponds E Sﬁzk,% w2h2 42

exactly to the case of an infinite scattering length, as called
for in this model. The range of this potential is just of
course. For the limit as—0 one may compute, using the L . .
standard equation@], that the phase shift vanishes for all 3 &N expansion in the strength of the potential, wheres
|>0. That is to say, this interaction is only effective g € Fermi momentum. The first term for neutrons is
states. This result should not be surprising as the angular-

momentum barrier excludes the wave function from the ori- A= 3 f

gin where the potential is effective. For the current case, we 47-rk;3:V0 |m|<kg, [n|<kg

may put two neutrons in the lowest statse with spin up
and the other with spin downThis creates a potential for a
possible third neutron of streng+ 2; however, it must go

—= + As+ A+, (5)
N~ 1M amc2  © 16Mc? -

xdmdn T/(O)—%T/(nﬁ—ﬁp : (6)
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This equation may be rewritten as

AL(0) 1 3 1+3000t0—1 1 3 14 3a
= —C —_— = —C -,
3 ! 3 6? 3 6*(c—a)
A =—f§ ; (11
Y AmkdVo il =xe i< xe
I . . . and
Xdp dv | v(0) = zv(|u—v])|. )
, 1.,](3 6
Since we are concerned with the limit as-0, and finite Ag(0)= 37 = tanf—1+ —
Fermi momentumgg—0, thus we only need the value of
V(\) atA=0. Hence, for this case we get 1 6 a 6
=zC[3-—||1-<|-1+—, (12
T 3 6? c 62

where use has been made of the equation®gfor
Thus, substituting into Eq5) we get

13 tané a
E_iﬁZk,Z:_W%ZkE . A2 s . 9= E[s, — =1 (13
N_ 10 M 1M “Figue 2

The next step is to examine the higher-order terms of thi§0r the time being we will hold the scattering length fixed
expansion. The basic organizing principle will be the numbe@nd finite, and lec—0. Thusrg, A;(0), Ag(0)—0. What
of holes in the Fermi sea created for each term. The point is¢mMains Is

that for each new hole there is a factbik and a denomina-

tor proportional tak?, which works out to an additional over- EM .3 1 ) 5

all factor of kg for the term. Note that here there is a major N_hZ:kF 10+ 3, KFa+0.055661kga)"+0.00 914ka)
distinction between a finite and an infinite system. In a finite

system ofN particles, there can never be more thasuch

holes in the Fermi sea, whereas there is no such limitation —0.018 604kca)*+- - - |, (14

for an infinite system. We start with all the two hole-lifia

the diagrammatic representatjorerms. These are just the

so-called ladder graphs as only the filled-state—filled-stat&hich just depends on the scattering lengtand not on the
interactions do not generate additional holes in the Fermghape of the potential.

sea. Bake[S] has carried forward this ana|ysis and also con- It is to be noticed that to extract the desired result from
sidered the ladder-type insertions in the other terms, and hed. (14), we need to sum the series for an infinite value of
gives (spin+ fermions for the expansion in powers of the the argument. Before attempting to do this, we will take

Fermi momentum the resulf8] [Eq. (4.88)], some guidance from the ladder approximation. Unfortu-
nately, it is well known that for an attractive potential, the
EM 3 1 ladder approximation is beset with Emery singularifié It

—— =k&| =+ 2—kga+0.055 661kga)? has been argued that these singularities may be the result of
N#2 10 3= : :
an unfortunate choice of a summation method for an

asymptotic series. We will instead use tRematrix formu-

1 9
+ 2—(kFa)2(kFr0)+ ——A(0)k3 lation [3], where the Emery singularities do not occur. | will
Om 10w use the usual approximations in solving for tRematrix,
+0.009 14kga)3+0.024 631k:a)3(r pa) involving angular averaging and center of mass averaging.

For this application we will not need to consider fRenatrix

in the presence of an excited Fermi sea. Ramatrix equa-
tion is very similar to the usuadl-matrix equation in ladder
approximation, except it has been regularized at the Fermi
surface to avoid the Emery singularities. It is

+0.015 680kra)k2AL(0) —0.018 604kea)*+ - - - |,

(10

wherea is the scattering length, is the effective range, and

some numerical infelicities that have been noticed since pub- 2 (= ~ 9

lication are corrected. To this order for spginand a pure Ri(k)= ;fo h(kn)V(rju(r)redr, (15
isospin state, terms Iikleﬁa4 log ke do not occur. Such terms

arise from true three-body scattering, when the number of 5 (e

spin fand isospin state_s is three or more. The Pauli exclu_s!on ﬁk,|(r)=j|(kr)— _f "GkJ(r,r’)V(r’)ﬁm(r’)r’zdr’,
principle prevents their occurrence here. The other quantities mJo

are, for the square-well ca$8], (16)
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Gi(r,r’)
:f“[k”zju(k”r)h(k”r’)—kzh(kr)h(kr’)]
0 k//2_k2
XF(p,K")dk"+a(p,k)ji(kr)ji(kr"), (17
(1, 3p—ke>K’
0’ (k//2: %pZ) 1/2< kF
F(p,k") =1 1, K'—lp=ke (18
(k"2+ 3 p?—k2)/K"p, otherwise,
\
a=k?/ke, (19
1. 3 k
Th2— 21— —
i 5"F<1 kF)
L 1k 1k L 1k K
0, k>Kg,
(20

whereais used to replace, in order to change the depen-
dence on K,p) to that onk alone. The single particle ener-
gies are then given by

1 (kg—m)/2 (kp+m)/2
E(m)=-m?+4 J 2k2dk|+f
2 0 (kg —m)/2
m?+4k?— kZ 2k ’
X 1_T dk Im< F
1 ketmiz[  mP+4k>—k2
=_—m?+4 f 1- —|Kk?dk |
2 (ke—m)/2 4km
xm=Kke, (21)
where
v—1, | even
|=Z 21+1D)| y+1, | odd |RI(K), (22

wherev is the number of spin and isospin states and is just %u

in the case of neutron matter. The contribution of the
R-matrix terms to the total energy is then given by

3

E [
RooKd

ko[E(m)—%mz]mzdm. (23)
0
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The difference between thématrix in ladder approxima-
tion and theR matrix is in the Green’s function. For th¢
matrix the Green’s function is

= K"2jy(K"r)ji(K"r")
Gu(rr' )= F(p,k"). (24
N R e A GRCY
It has been showf3] that
R (k
Ky(k)= i (25

1+(3m—a)R(k)’

where

n=(kpp>—1‘(k2+%pz—k§>ln[<ké+kpp+%pz—k%/(ké

p2
1
1- m) In[(kg+ 32 p)/ (kg —

F

1

—ip* =K1+ :p)]

k
In[(ke+2p+K)/(ke+2p—kK)].

e

(26)

The quantityr, is lower semibounded, but diverges logarith-
mically to + . Thus by Eq(25), any time thaR is negative
there is a singularity ifK. One consequence of this result is
that although it is expected that the radius of convergence of
R in powers of the strength is unity, the radius of conver-
gence of th&k-matrix series is zero. As a further point in this
regard, if EQ.(25) is expanded in powers @R, since the
divergence ofr, is only logarithmic, the intergals of} all
exist. However, the values increase liKeso that this series

is at best an asymptotic one. In the numerical solution of the
R-matrix equations, | have found that 59 mesh points, itO
mesh points irk, and 20 mesh points ik” are sufficient for

a few percent accuracy, which is in turn sufficient for our
present needs. The computer code | have used is an adapta-
tion of that of Ref.[7]. Our numerical results for several
strengths are plotted in Fig. 1. It is to be noticed that in line
with Eq. (27), the slope at the origin is negative and is in-
creasing rapidly in size with increasing well depth. However,
outside a small initial region the curve f@xM/N7%2kZ is
relatively flat. This behavior is strongly suggestive of the
idea that, in the limit as the strength of the potential goes to
unity and the scattering length goes to infinity, this curve is
discontinuous at the origin, and is some reasonable function
of kg for ke>0.

We cannot use the above method for the complete energy,
t there are two other methods that we can use, and are also
available for theR-matrix energy.

An examination of the structure of the terms generated in
the expansion of th&-matrix expansion in powers of the
potential strength shows that they are all proportional to mo-
ments of a distribution. For the case of the ladder approxi-
mation to theK matrix the Green’s function is a positive

For the potential under current consideration there is the cordefinite operator, but this happy feature is not necessarily

siderable simplification tha¥ acts only in thd =0 states so
thatR=0 VI>0.

true for the Green'’s function for the matrix. Thus even for
the current case of a single-signed potentiat background
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FIG. 1. The numerical evaluation of tfematrix energy. The FIG. 2. The Padepproximant upper bounds on tiRematrix-

short dashed curve is f@=0.81, the long dashed curve is fer  approximation energy divided byi’k2/M for various potential
=0.9, the dashed curve is fer=0.95, and the solid curve is f@  strengths. Some of the numerical solutions of Raeatrix equation
=0.98. are included for reference.

see[8]), the distribution can be over a range with two signs. .
Consequently we have what is called the Hamburger moz—is ¢—0, must also be expandable in powersigh. To

ment problen{9] with a finite radius of convergence. In this derive the coefficients in this expansion, we would have
P . . gence. needed to use similar analytical methd@} to those em-
case by means of a linear fractional transformation the pro

) . ; e ployed in the case of thik matrix. We can, however, see at
lem can be converted inte-s times a series of Stieltjes. ploy

N . . least part of the picture by computing for a series of small
Such a series is the moment generating function for a mo- b P y puing

ment problem whose distribution h ranae that ha .ustvalues ofkec the results for several fixed valueslgfa. The
. probie 0se distribu asarang S JUSt Getermination of the appropriate values of the strength pa-
single sign[9]. It has been show[®] that in our case of an

attractive potential whose strength is less than the radius qrﬁ\énggrilnsc)eig?daf/%r itrr]l|sp§\>,<v(zrrt:sls§f|;2ac_|(_:k?gr1]pltlsi2eg et;?/etsexip;and-

convergence of thB-matrix expansion, all the Padgproxi- reverted to gives? in powers ofa/c. A [3/3] Padeapprox-

mants form upper bounds to the aCt'HE.“ '|atr|x energy[9]. imant with the built in asymptotic value af?/4 is found to
We have deduced the necessary coefficients by using a tenth- "~ _". ;
e quite accurate and to give good results 68k 7s/2. |

order finite difference metho¢equivalent to fitting with a : : .
: have again used a tenth-order differencing scheme on the
tenth-order polynomialat several values df-c on the nu- : : : .
numerical solution of th&-matrix equations. We have cho-

merical solution of theR-matrix equation. We have used a . -
; o . . sen a mesh spacing kfc=0.05. The results of the extrapo-
spacing of 1/(4r°) in the strength for this computation. Our lation of the R-matrix energies tdkec=0 are displayed in

results are shown in Fig. 2 and some of the numerical solu=. . ; - .
. . . . Fig. 3. These values are not inconsistent with the asymptotic
tions of the R-matrix equation are shown for comparison. extranolation shown in Fid. 2 fas=1 for the R-matrix en-
The result we seek is for a zero range force; 0 which is ergy P 9
extrapolated in this figure. It is abott0.181%k2/M. ; . -
i ) . Since the leading coefficient here should also be #)(3
The series analogous to that of E@4) is also available ! ng '°! v I

. YT as in Eq.(27), we find that our extrapolation in Fig. 3 is
3] for the ladder energy. It is, for the=0 limiting case, about 2% low for this term. Our numerics are insufficient to

give good values of the rest of the terms. Merely for refer-

AEM o1 1 2 3 ence, we display in Fig. 4 several Paalgproximan{9] es-
N7 2 =k 3_7-rkFa+0'055 661kra)”+0.032 031kza) timates from the serigEq. (27)] for the Ladder energy ap-
proximation. We are interested, as we will be in the analysis
+0.019 156kza) + - - - |. @7 of Eq. (14), in the asymptotic behavior @— . The asymp-

tote for the[2/2] Padeapproximant is about O.MkﬁlM,
which is not vastly different from our estimates for the
In this equation the numbers were supplied by numericaR-matrix energy, and also corresponds to no negative energy
integration of some double intergals, and Monte Carlo evaluground state.

ation was not required, as was the case in &d). The For the case of the complete energy for this model, |
coefficients are just thg;’s of Ref.[3]. By the solution of illustrate this behavior in Fig. 5. Again | use the method of
Eq. (25 for R as a function oK we find thatR, in this limit Padeapproximants[9] in order to sum the series ikqa.
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FIG. 3. The extrapolation of the-matrix energy tkec=0 as a FIG. 5. The ratio of the many-body energy per particle to
function ofkga. hzkﬁlM vs —akg . For the case of interest,— — is expected.

There is an upper limit of 0.3 for the ratiEM/[NﬁZkE], These results correspond to the effective mashbs
because the interaction is purely attractive; so the energy3.0”™M andM* =1.76M, respectively. Manifestly, neutron
cannot exceed the kinetic energy of the ideal Fermi gas. Almatter is unbound for this potential.

the estimates shown agree well to at lelgshi~ —0.5. The In addition | have analyzed the series in E@). for vari-

[2/1] Padeapproximant exceeds the upper bound fck-a  ous densities, using the data given in R8]. The[3/1] Pade

= 2.5, and so does not give a satisfactory value for the casapproximants are the best behaved ones in this case and |
of interest,a— —o0. This brings us to thgl/1] and the 2/2] have plotted them in Fig. 6. The extrapolated asymptotic
Padeapproximant. They both have finite asymptotes, whichvalue is about —0.17¢12k§/M vs the value of about

are of the right order of magnitude. That for th2/2] is  —0.13:%kZ/M just quoted for the Fermi momentum series
shown in Fig. 5. Numerically, the asymptotes areyalue just quoted above. In light of Fig. 2, | estimate a value

0.0977:°kz/M for the [1/1] and 0.170B%kz/M for the  of (—0.17+0.04)12k2/M, which corresponds to an effective
[2/2]. The latter corresponds to a shift in the complete en-

i — 21,2
ergy from the ideal gas energy &fE=—0.129%“ks/M. 00 : : : :
AEnergy
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—k,a FIG. 6. The estimates of the many-body energy per particle

based on the series expansions in potential strength. The extrapola-
FIG. 4. The ratio of the ladder terms contribution to the energytion to kec=0 is also shown. The error bars reflect only the coef-
per particle divided by’zzkﬁ/M. ficient uncertainty.
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mass of about 2:80.5. | would mention that relatively simple models of neutron
These results for the ground-state energy mean that th@atter with a potential consisting of a repulsive core and an
system is a Fermi liquid, with an effective mass. The waveattractive part beyond have been studjd] with reason-

function is expected to correspond to that structure, asid@ble results. The potential used there gives a pretty good
. . - - . representation of the low to medium energy scattering data.
from a set of exceptional points wherg=r;, the origins of

the set of relative coordinates between all the pairs. These | would like to acknowledge helpful discussions with A.
points, however, only constitute a set of measure zerokerman and J. Gubernatis.
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