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The thermal mean-fiel(Hartree-Bose-Bogoliubgvapproximation is applied to a simple bosonic model that
is related to the phase transition from spherical to deformed nuclei. Similarities and differences with the
time-dependent approach are discussed, in particular, the sensitivity of each method for the detection of the
phase transition.S0556-28189)02710-1
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I. INTRODUCTION transitions described using the time dependent treatment
have been discussed in R@d)
The Hartree-Bose-BogoliubovHBB) description of The purpose of the present paper is to apply a thermal

bosonic systemgl,2] provides a single excitation image of mean-field approximation to the abovementioned bosonic
the low energy part of the spectra of many body Systemg_nodel in order to study the phase transitions that occur in the
The therma[3] and time dependent versiof#] contain ba-  System, not only for the ground state but also for higher
sically all the information related with the elementary exci- €xcitation energies and compare the results obtained with the
tations(of the single particle typefor the whole spectrum of ©nes corresponding to the time dependent treatment. These

the Hamiltonian considered. Nevertheless, the complexity ofXCitation energies can be thought as related to the “critical
using each method as well as the information that they prot_emperature at which the phase transition occurs.
In Sec. Il we review the model studied and the results

vide are different. In general, the thermal treatment can b%btained in Ref.[6]. In Sec. Ill we review the time-

gsed for any Hamﬂtoman while the time depepdent Vers'.ondependent mean-field approximation applied to the simple
IS very complicated to apply except for very simple Hamil- model and develop its thermal description. The results ob-
tonians where one can isolate the relevant degrees of fre'?éined are shown and discussed in Sec. IV

dom. It is well known from the fermionic cagé] that both T

types of treatments provide different descriptions of the ex- Il. THE MODEL AND ITS EXACT TREATMENT

citations; the time dependent treatment is more complete )

while the thermal one isolates the excitations that have larger The model consists of two nondegenerate shells of degen-
degeneracies. eracies 2 and R and single boson energiesD/2 andD/2.

In the present paper we apply the thermal treatment to %‘he two ,I,ower levels simL_JIate the proton anc_JI neutron pe_liring
very simple bosonic model that has already been studied in?Sons” that are used in the usual description of pairing
its time dependent version. This simple two-level bosonic/iPrations. A condensate of this type of bosons can be de-
model has been usd@] for studying the competition be- SCribed as a superconductive system. Tiie upper levels
tween a condensate of pairs of like particles and a condensaténulate two-particle excitations formed by a proton and a

of a-like clusters. The former has been traditionally related?€Utron. If these proton-neutron excitations interact via a
to a superconductive description of nuclei as pairs of nuclePairinglike residual Hamiltonian, one obtains collective pairs

ons coupled td=0, T=1, have been used in nuclear Super_of proton-neutron pairs that may have the same quantum

fluidity [7,8] as well as in pairing vibrationg]. A conden- nuUmbers as particles. It has been showi2] that this type
sate of a-like clusters, instead, may be associated withof residual Hamiltonian has some resemblance with the ef-

deformed state$10—13. fective interaction for thé*2Po nucleus.

This simple two-level bosonic modg#] presents a phase We will s_tudy the thermal desc_ription of a generali;ed
transition between a condensate of pairs of bosons and rsion of this model, that was studied before using the time-
condensate of bosons that strongly depends on the relatiof§Pendent version. In this extended model the level degen-
between the number of bosons and the degeneracies of tRE2Cies are By and Ry, respectively. The Hamiltonian is

two levels. Details related with the selection of the appropri- Dl R Ro
ate parameters to scale this problem as well as the phase H= > mE:l (Y Ymt Y%ya)_mzl (B Bm+ ﬁ%ﬂa)
hisioaci f toH
A:é(?nnicgaave of absence from the ComisitNacional de Energi -G 2>0 yLyaﬁm,ﬁmmLH.c., (2.7)
. m,m
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Wherey;‘n(,BrTn) are boson creation operators in the levil)1 Although all calculations could be performed in terms of

andG is the interaction strength. the variablesZ; ,Z;, it is more convenient to introduce new
The exact solution may be found by diagonalizatiéh variables which are canonicfl7,18:

An important point when studying a simple model such as

this is the selection of appropriate scaling parameters. In Ref. R;
[6], whereR, was equal to one, it has been shown that it is w;= —=Z;. (3.3
convenient to scale the energies with the parameter 1-7iZ;

GM{MR; whereM is half the number of bosons whereas .
the appropriate dimensionless interaction parameteg is The dynamlcal problem has two degrees of freedom, the
—D/(GJMRy). As the interaction has only off-diagonal complex variableswy, and w,. Therefore, the existence of

matrix elements all the physical results are independent %?Z%gogisgéstﬁé r:OstLer]T’] ;{Efeerna%rlgy .?Qg rt]:]gs?:?fel: a(;fae/zgr-i-
the sign ofG. It is also possible to change the signé&by ' y 9 ' q

changing the sign db. In what follows negative values d&f ables for the integration are

will correspond to a change in the sign Bf — —
When the interaction is negligible the ground state of the m= @owo+ w104

system will be approximately described by a condensate of M ’

single bosons in the lower shell. As the interaction strength

increases one expects a ground state phase transition to a

condensate of a coherent combination of pairs of conjugate ¢= 5(‘P0+ ¢1),

bosons. This phase transition has been fd@dut only for

negative values of the interaction parameferat {=—1, — —

and in the limitR;—o,M—» M/R,<1. For positive val- _ @191 @oWo

ues of¢ the ground state is always a condensate of pairs of M '
bosons, no matter how large(i.e., how small the interac-
tion) may be.
The most striking result obtained in R¢6] was that the @=5(e1~ ¢o), 34

number ofa-like clusters was very high. Even for values of
¢ as large as 2. one obtains a few percentage-bke clus-  \here g, =arg(w;). Noting thatw; w; is the mean number of

tering in the approximate wave function. As the modelpairs in leveli one gets tham is conservedm=1, and that
Hamiltonian has similarities with the effective one obtainedine range o is —1<n=<1. The mean value of the Hamil-

for the 2°®Pb region[12], this may help to understand the tonian becomes
high values of the preformation factor far particles in this

region[14,15. M
H=DMn—-GM~\/R;+ ?(m+n)

Ill. APPROXIMATE TREATMENTS

M
A. Time-dependent Hartree-Bose-Bogoliubov treatment X \/Ro+ ?(m— n)ym?—n?cog2a). (3.5
We will make a short review of the time-dependent varia-
tional approach following closely Ref]. It is convenient to The TDHBB results are obtained solving the dynamical

introduce the boson pair creation operatorE]  equations and the trajectories are best represented implicitly
:Ziigymfz%’ ngEEiOﬁTmﬁTa Smd tThe numPer operators in the tpf;tase ?Iancé;[r;], tat)h as constantt enerl_gy c;ur\t/)é’s’. .
Ny=3R 3yt yoym, No==F0 gl g+ B85, With =const. It is clear that the appropriate scaling to be use
these definitions the Hamiltonig@.1) is written as depends on the relation bgtween the number of paurs of
bosonsM and the degeneraci€¥, andR;. We have consid-

; ered three different regimes in which it is convenient to scale

H=Z (N~ No) = G(I'{To+T'Ty) (3.1)  the energies and interaction parameters in different ways.

(8 WhenRy=1;M <Ry, it is convenient to scale the en-

ergies with the paramete8MMR; and consider as the
To obtain the time-dependentTD) Hartree-Bose- corresponding interaction parametérD/(GVMR;). The

Bogoliubov equations, one has to use the time-depender‘?lnergy function(3.5) becomesfixing m=1)
variational principle appropriate for non-normalized states

and the total number of bosonsNs=Ny+N;=2M.

[16] with an action defined as P H
o GM MR,
B 1 (W)=l (plHI)
S_Jdt{z' (4l ) (1) 32 —én— \/1+%(1+n)\/$+%(1—n)\/1—n2
1
and us¢ ¢>=|ZOZI)=eZOFg+21FI|O). X cog2a). (3.6)
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(b) WhenRy=R;=R (symmetric modglandM <R. The  which, as usual, is approximated by a one-body Hamiltonian
appropriate energy scaling @MR with an interaction pa- describing noninteracting quasiparticles, i.e.,

rameter defined as=D/GR. Equation(3.5 becomes
2
) V1-n?cog2a).
whereF is the free energy, the chemical potentials fixed

R
E= m =en—
37 by imposing the condition that the mean number of particles
(c) M greater than the degeneraciBs and R,. In the is well defined. Eyq is _the energy of. the quasiparticle
limit M>R,,M> R, the appropriate energy scalingGM?2  Vacuum,E; are the quasiparticles energies yvhmlé creates
with an interaction parametére=D/GM and an energy func- ©One quasi-particle and is defined by the unitary transforma-

, F=H-uN~Hyge=Eoot 2 Eialei,  (3.10

M
2R

Mn
2R

1+

tion tion
GM?
To obtain a thermal HBB description the density operator
“in- \/% 1;” \/% 1'*2‘ n\/Tnz and the partition function that are defined as
D=2z le AH-rN) (3.12
Xcog22a). 3.8
= =9 Z= Trfe ), (313

Comparing the exact ground state results obtained by di- . Lo
agonalizing the Hamiltoniat2.1) with the TDHBB energies on applying the HBB approximation, become

it was concluded4] that the latter tend to the exact energies 1
for large number of bosons and large degeneracies. Analyz- Zuygg=Il; ———, (3.19
. .. . (1_e_BEi)
ing the minimum value of the scaled ener§yas a function
of the interaction parametég, , or { depending on the case _ _BEn.
P ¢ ¢ dep J DHBB:ZHBlBHie PEin, (3.1

considereylit was determined if there existed a phase tran-
sition from a condensate of single bosons in the lower levelyheren, is the quasiparticle number operator corresponding
(normal statgto a condensate of a coherent combination ofig the staté and

pairs of conjugate bosor{superconductive state

In case(a) a ground state phase transition is found:at 1 1
=—1+M/R; for M—»,R;—%,M<R;. For positive val- fi:eﬁEi_l; B:ﬁ- (3.18

ues of the interaction parameter no ground state phase tran-

sition occurs. In the symmetric cagb) in which R,=R;  The usual density and pairing matrices are

=R no ground state phase transition is found ¥b=R. On ot ey Tl v N

the other hand, when the number of bosons is greater than Pii_<bj bi>_Tr{Dbj bi}=[U fU*+V(1+H)V];,
the degeneracies of the levétzase(c)], analyzing Eq(3.8) (3.17
one finds two ground state phase transitions, one for positive . _ . \_ Pl —rTev*x oyt -~
values of the interaction parameternd the other for nega- tij = (bjby) =Tr{Dbjbi} = ~[UTIV* +V (1+f)U]23' 18
tive values. The positive critical strength js= J1+Ry/M '
and it is obtained in the limiR, /M — 0 whereas for negative The energy is evaluated using Wick’s theorg2hfor T+0.
values one getg.=—+1+R,/M in the limit Ry/M—0.  One then obtains
Therefore, in the symmetric modd,=R;=R, the ground

state phase transition only occursNf>R. Performing a Eer=Tr{DyggH}=Tr
similar analysis in the symmetric fermionic modske Ref.

[17)) the result obtained is quite different. In this case theyhere the HB Hamiltonian as well as the self-consistent and
ground state phase transition only occurs in the middle of thgairing potentials are defined as usual as

shell, i.e., forM=R.

T 1F 1AT 3.1
+5T | pt 5At , (3.19

Hug=T—pn+T, (3.20
B. The thermal treatment

We will now develop the thermal treatment for a boson L :kz;‘q Vik jmPmic (3.2

system following closely the description done in REf9] '

for a fermion system. We start by considering a general two- 1
body Hamiltonian Aij=5 ;n Vij kmikm- (3.22

H=> T.bib + 1 > Vi ybibibb (3.9 The coefficientdJ andV are obtained by solving the ei-
T T g g TR e ' genvalue equations

054308-3



M. C. CAMBIAGGIO, G. G. DUSSEL, AND A. M. SZYFERMAN

| : R0=1
R,=1000
: M=50

o
>
1

I
«
1

Critical temperature
=3 =3
n n

g
_- R,=50
R,=50
5 M=50
T 20
g
EE’ 151 (b)
ISR ’ .
- €
R,=50
R,=50
] M=2000

2.0

Critical Temperature

FIG. 1. Critical temperatures as a function of the different
strength parameters in the three different regimes:Ry=1, R,
=500, andM =50; (b) Ry=50, R;=50, andM =50; and(c) R,
=50, R;=50, andM =2000.

SedlEly) e

HHB
A*

These equations are the FTHBB equations and, of course for

T=0, they provide the usual HBB description.
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case.(a) The order parameteky; (b) the order parametek,; and
(c) the ground state energy. All the magnitudes are multiplied.by

We will now consider the equations obtained for the BCS

HZEj Sibi-rbi_ijzo G”blTblibJ—bJ y

limit, i.e., when the Hamiltonian can be written as

(3.29
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wherei is related toi by the time reversal operation asgd

includes the HB and chemical potentials.

1
Ai:i 2

G, 2 cotgh
i = CO
J>0 1] EJ g

)
5,

whereE;= \/siz—A? are the quasiparticle energies. The
andV; satisfy now the normalization conditidd?—V?=1

(3.29

(3.2

the specific heat, obtained through the numerical derivative

of Ex1 with respect tdl. In order to display the results it will
In this case the FTHBB equations have a trivial structureb€ convenient to scale the gap parameters properly, depend-

They are equivalent to gap and number equations that can #@g on the values oRg, R;, andM.
written as

IV. RESULTS AND DISCUSSION

In this work we have two main points of interest, one is
the study of the temperature dependence of the different or-

der parameters describing the system, the other one is the
comparison between the description provided by the time
dependent version and the one provided by the present treat-
ment. It is well known that both approaches provide a com-
plete description of the system under consideration but each

3 one emphasizes different aspects and can explain in simple
and can be defined in terms of and A; as U’=3

+&/2E;, V?=—1+¢&,/2E;.

energies+ D/2 and degeneracié¢¥, andR,, respectively, we
must determine, for a given number of particdsthe un-
knownsA, andA 4, as well as the chemical potentjal With
them we can evaluate the total energy of the sysfemand

2

terms some of the properties of the system but have prob-

lems to describe, in a simple way, another ones. For ex-
In the simple model that we are considering, that has ample, in the previous world] it was found in a very natural

constant pairing interaction acting only on two levels withway a boundary between the different types of behavior of
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the system: it was possible to obtain the energies at which for
a given strength the system changed from normal to a con-
densate of pairs of bosons. On the other hand it was quite
complicated to obtain the value of the order parameter as
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function of the interaction strength.

(a) We consider the cafe,=1, R;=500, andM =50. In
To analyze the temperature dependent description we wilFig. 2 we show the order parameteXg andA; as well as

use the experience obtained from the time dependent versiothe ground state energy multiplied Gy in order to scale
such as the fact that it is convenient to analyze the resultgyem proper|y as discussed in Sec. IllA. For Studying in
obtained in each one of the three different regions discussegktail the features of the phase transition we display in Fig. 3
in the previous section. To find the boundary between thgne different order parameters and thermodynamical func-
region where th_e system can be described as a normal oR@ns obtained at a fixed temperature. We chobse.4 be-
and that where it behaves as a condensate of pairs of b0Sogg,,se at this temperature the phase transition is clearly seen
we solved the numbéEq. (3.25)]_and gaf Eq. (.3'26)]. €qua-  \we show not only the order parameterg and A, but also
tions when the gaps just vanish. Fo_r a given mter:_:\ctlor}:l" the relevant thermodynamical quantities properly scaled:
strength, the lowest temperature at which the gaps vanish ‘e chemical potential, the ground state energy, the free en-
be defined as the critical temperature. In Fig. 1 we display d th S | B dE. | - o
these critical temperatures as functions of the correspondin fay, an _t € qua5|pgrt|c € energies andrt; tis ngtlce
strength parameters for the three different regimes. Whe ble that it was possible to find metastable solutions. The

trying to solve the gap and number equations as function ofifferent solutions were obtained following the different

the temperature we found that they are not as well behave@fanches. For doing so we increased or decreased the

as in the fermionic cas], i.e., they turn out to be unstable Strength parameter by a small amount and use as initial guess
unless the initial guess for the parameters is close to thfor the parameters the results obtained with the old strenght
solution of the equations. This fact is due to the particulaParameter, being able in this way to follow the branch into
dependence of the quasiparticle energies on the gap paraihe metastable region, even if it has not the smallest energy.
eter (the minus sigh that makes the quasiparticle energiesThis is clearly seen by comparing FigaBor 3(b) with Fig.
small when the gap is different from zero but small. 3(d).

We have also analyzed the behavior of the order param- (b) We consider the cag®,=R; =50 andM =50. In Fig.
eters and other thermodynamical functions in each of thé we show the order parametekg andA 4, the ground state
three abovementioned regimes. energy as well as the specific heat multiplied byt is

054308-7



M. C. CAMBIAGGIO, G. G. DUSSEL, AND A. M. SZYFERMAN PHYSICAL REVIEW G50 054308

noticeable that the order parameters approach zero in a mudhbtention of the boundaries between the different types of
milder way while the ground state energy has a richer strucbehavior is much more complicated. In the TDHBB ap-
ture than in the previous case. The specific heat shows proach these boundaries are obtained in a simple way as
broad peak that corresponds to the phase transition as can aealytical functions of the strength parameter while in the
seen by comparing Fig.(d) with Fig. 1(b). thermal treatment the gap and number equation are difficult

(c) We consider the cas®y=R;=50 andM =2000. In  to handle when the order parameters are close to zero be-
Fig. 5 we show the order parametkg [it must be noted that cause the convergence is not good.
due to the symmetry of the modal,({)=Aq(—¢) making
unnecessary to display]jtthe ground state energy, the free ACKNOWLEDGMENTS
energy and the quasiparticle energy, multiplied by ¢.
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