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Comparison between a thermal and a time-dependent mean-field description
of a two level bosonic model
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The thermal mean-field~Hartree-Bose-Bogoliubov! approximation is applied to a simple bosonic model that
is related to the phase transition from spherical to deformed nuclei. Similarities and differences with the
time-dependent approach are discussed, in particular, the sensitivity of each method for the detection of the
phase transition.@S0556-2813~99!02710-7#

PACS number~s!: 21.60.Jz
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I. INTRODUCTION

The Hartree-Bose-Bogoliubov~HBB! description of
bosonic systems@1,2# provides a single excitation image o
the low energy part of the spectra of many body syste
The thermal@3# and time dependent versions@4# contain ba-
sically all the information related with the elementary ex
tations~of the single particle type! for the whole spectrum o
the Hamiltonian considered. Nevertheless, the complexity
using each method as well as the information that they p
vide are different. In general, the thermal treatment can
used for any Hamiltonian while the time dependent vers
is very complicated to apply except for very simple Ham
tonians where one can isolate the relevant degrees of
dom. It is well known from the fermionic case@5# that both
types of treatments provide different descriptions of the
citations; the time dependent treatment is more comp
while the thermal one isolates the excitations that have la
degeneracies.

In the present paper we apply the thermal treatment
very simple bosonic model that has already been studie
its time dependent version. This simple two-level boso
model has been used@6# for studying the competition be
tween a condensate of pairs of like particles and a conden
of a-like clusters. The former has been traditionally relat
to a superconductive description of nuclei as pairs of nu
ons coupled toJ50, T51, have been used in nuclear supe
fluidity @7,8# as well as in pairing vibrations@9#. A conden-
sate of a-like clusters, instead, may be associated w
deformed states.@10–13#.

This simple two-level bosonic model@6# presents a phas
transition between a condensate of pairs of bosons an
condensate of bosons that strongly depends on the rela
between the number of bosons and the degeneracies o
two levels. Details related with the selection of the approp
ate parameters to scale this problem as well as the p
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transitions described using the time dependent treatm
have been discussed in Ref.@4#

The purpose of the present paper is to apply a ther
mean-field approximation to the abovementioned boso
model in order to study the phase transitions that occur in
system, not only for the ground state but also for high
excitation energies and compare the results obtained with
ones corresponding to the time dependent treatment. T
excitation energies can be thought as related to the ‘‘crit
temperature’’ at which the phase transition occurs.

In Sec. II we review the model studied and the resu
obtained in Ref. @6#. In Sec. III we review the time-
dependent mean-field approximation applied to the sim
model and develop its thermal description. The results
tained are shown and discussed in Sec. IV.

II. THE MODEL AND ITS EXACT TREATMENT

The model consists of two nondegenerate shells of deg
eracies 2 and 2R and single boson energies2D/2 andD/2.
The two lower levels simulate the proton and neutron pair
‘‘bosons’’ that are used in the usual description of pairi
vibrations. A condensate of this type of bosons can be
scribed as a superconductive system. The 2R upper levels
simulate two-particle excitations formed by a proton and
neutron. If these proton-neutron excitations interact via
pairinglike residual Hamiltonian, one obtains collective pa
of proton-neutron pairs that may have the same quan
numbers asa particles. It has been shown@12# that this type
of residual Hamiltonian has some resemblance with the
fective interaction for the212Po nucleus.

We will study the thermal description of a generaliz
version of this model, that was studied before using the tim
dependent version. In this extended model the level deg
eracies are 2R0 and 2R1, respectively. The Hamiltonian is

H5
D

2 F (
m51

R1

~gm
† gm1gm̄

†
gm̄!2 (

m51

R0

~bm
† bm1bm̄

†
bm̄!G

2G (
m,m8.0

gm
† gm̄

†
bm̄8bm81H.c., ~2.1!
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wheregm
† (bm

† ) are boson creation operators in the level 1~0!
andG is the interaction strength.

The exact solution may be found by diagonalization@6#.
An important point when studying a simple model such
this is the selection of appropriate scaling parameters. In
@6#, whereR0 was equal to one, it has been shown that it
convenient to scale the energies with the param
GMAMR1 whereM is half the number of bosons where
the appropriate dimensionless interaction parameter ij
5D/(GAMR1). As the interaction has only off-diagona
matrix elements all the physical results are independen
the sign ofG. It is also possible to change the sign ofj by
changing the sign ofD. In what follows negative values ofj
will correspond to a change in the sign ofD.

When the interaction is negligible the ground state of
system will be approximately described by a condensate
single bosons in the lower shell. As the interaction stren
increases one expects a ground state phase transition
condensate of a coherent combination of pairs of conjug
bosons. This phase transition has been found@6# but only for
negative values of the interaction parameterj, at j521,
and in the limitR1→`,M→`,M /R1!1. For positive val-
ues ofj the ground state is always a condensate of pair
bosons, no matter how largej ~i.e., how small the interac
tion! may be.

The most striking result obtained in Ref.@6# was that the
number ofa-like clusters was very high. Even for values
j as large as 2. one obtains a few percentage ofa-like clus-
tering in the approximate wave function. As the mod
Hamiltonian has similarities with the effective one obtain
for the 208Pb region@12#, this may help to understand th
high values of the preformation factor fora particles in this
region @14,15#.

III. APPROXIMATE TREATMENTS

A. Time-dependent Hartree-Bose-Bogoliubov treatment

We will make a short review of the time-dependent var
tional approach following closely Ref.@4#. It is convenient to
introduce the boson pair creation operatorsG1

†

5(m.0
R1 gm

†gm̄
† , G0

†5(m.0
R0 bm

† bm̄
† and the number operator

N15(m.0
R1 gm

† gm1gm̄
†

gm̄ , N05(m.0
R0 bm

† bm1bm̄
†

bm̄ . With
these definitions the Hamiltonian~2.1! is written as

H5
D

2
~N12N0!2G~G1

†G01G0
†G1! ~3.1!

and the total number of bosons isN5N01N152M .
To obtain the time-dependent~TD! Hartree-Bose-

Bogoliubov equations, one has to use the time-depen
variational principle appropriate for non-normalized sta
@16# with an action defined as

S5E dtF1

2
i
^cuċ&2^ċuc&

^cuc&
2

^cuHuc&

^cuc&
G ~3.2!

and useuc&5uZ0Z1&5eZ̄0G0
†
1Z̄1G1

†
u0&.
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Although all calculations could be performed in terms
the variablesZi ,Z̄i , it is more convenient to introduce new
variables which are canonical@17,18#:

v i5A Ri

12ZiZ̄i

Zi . ~3.3!

The dynamical problem has two degrees of freedom,
complex variablesv0 and v1. Therefore, the existence o
two constants of motion, the energy and the number of p
ticles, makes the system integrable. The most adequate
ables for the integration are

m5
v0v̄01v1v̄1

M
,

w5
1

2
~w01w1!,

n5
v1v̄12v0v̄0

M
,

a5
1

2
~w12w0!, ~3.4!

wherew i5arg(v i). Noting thatv iv̄ i is the mean number o
pairs in leveli one gets thatm is conserved,m51, and that
the range ofn is 21<n<1. The mean value of the Hamil
tonian becomes

H5DMn2GMAR11
M

2
~m1n!

3AR01
M

2
~m2n!Am22n2 cos~2a!. ~3.5!

The TDHBB results are obtained solving the dynamic
equations and the trajectories are best represented impli
in the phase plane~n, a) as constant energy curvesH
5const. It is clear that the appropriate scaling to be u
depends on the relation between the number of pairs
bosonsM and the degeneraciesR0 andR1. We have consid-
ered three different regimes in which it is convenient to sc
the energies and interaction parameters in different ways

~a! WhenR051;M,R1, it is convenient to scale the en
ergies with the parameterGMAMR1 and consider as the
corresponding interaction parameter,j5D/(GAMR1). The
energy function~3.5! becomes~fixing m51)

E5
H

GMAMR1

5jn2A11
M

2R1
~11n!A 1

M
1

1

2
~12n!A12n2

3cos~2a!. ~3.6!
8-2
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~b! WhenR05R15R ~symmetric model! andM<R. The
appropriate energy scaling isGMR with an interaction pa-
rameter defined as«5D/GR. Equation~3.5! becomes

E5
H

GMR
5«n2AS 11

M

2RD 2

2S Mn

2R D 2

A12n2 cos~2a!.

~3.7!

~c! M greater than the degeneraciesR0 and R1. In the
limit M@R0 ,M@R1, the appropriate energy scaling isGM2

with an interaction parameterz5D/GM and an energy func
tion

E5
H

GM2

5zn2AR0

M
1

12n

2
AR1

M
1

11n

2
A12n2

3cos~2a!. ~3.8!

Comparing the exact ground state results obtained by
agonalizing the Hamiltonian~2.1! with the TDHBB energies
it was concluded@4# that the latter tend to the exact energi
for large number of bosons and large degeneracies. Ana
ing the minimum value of the scaled energyE as a function
of the interaction parameter~j, «, or z depending on the cas
considered! it was determined if there existed a phase tra
sition from a condensate of single bosons in the lower le
~normal state! to a condensate of a coherent combination
pairs of conjugate bosons~superconductive state!.

In case~a! a ground state phase transition is found atjc

52A11M /R1 for M→`,R1→`,M,R1. For positive val-
ues of the interaction parameter no ground state phase
sition occurs. In the symmetric case~b! in which R05R1
5R no ground state phase transition is found forM<R. On
the other hand, when the number of bosons is greater
the degeneracies of the levels@case~c!#, analyzing Eq.~3.8!
one finds two ground state phase transitions, one for pos
values of the interaction parameterz and the other for nega
tive values. The positive critical strength iszc5A11R0 /M
and it is obtained in the limitR1 /M→0 whereas for negative
values one getszc52A11R1 /M in the limit R0 /M→0.
Therefore, in the symmetric model,R05R15R, the ground
state phase transition only occurs ifM@R. Performing a
similar analysis in the symmetric fermionic model~see Ref.
@17#! the result obtained is quite different. In this case t
ground state phase transition only occurs in the middle of
shell, i.e., forM5R.

B. The thermal treatment

We will now develop the thermal treatment for a bos
system following closely the description done in Ref.@19#
for a fermion system. We start by considering a general tw
body Hamiltonian

H5(
i j

Ti j bi
†bj1

1

4 (
i jkl

Vi j ,klbi
†bj

†blbk , ~3.9!
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which, as usual, is approximated by a one-body Hamilton
describing noninteracting quasiparticles, i.e.,

F5H2mN'HHBB5E001(
i

Eia i
†a i , ~3.10!

whereF is the free energy, the chemical potentialm is fixed
by imposing the condition that the mean number of partic
is well defined. E00 is the energy of the quasiparticl
vacuum,Ei are the quasiparticles energies whilea i

† creates
one quasi-particle and is defined by the unitary transform
tion

a i
†5(

j
$Ui j bj

†1Vi j bj%. ~3.11!

To obtain a thermal HBB description the density opera
and the partition function that are defined as

D5Z21e2b(H2mN), ~3.12!

Z5 Tr$e2b(H2mN)%, ~3.13!

on applying the HBB approximation, become

ZHBB5P i

1

~12e2bEi !
, ~3.14!

DHBB5ZHBB
21 P ie

2bEini, ~3.15!

whereni is the quasiparticle number operator correspond
to the statei and

f i5
1

ebEi21
; b5

1

KT
. ~3.16!

The usual density and pairing matrices are

r i j 5^bj
†bi&5Tr$Dbj

†bi%5@UTf U* 1V†~11 f !V# i j ,
~3.17!

t i j 5^bjbi&5Tr$Dbjbi%52@UTf V* 1V†~11 f !U# i j .
~3.18!

The energy is evaluated using Wick’s theorem@2# for TÞ0.
One then obtains

EFT5Tr$DHBBH%5TrH S T1
1

2
G D r1

1

2
Dt†J , ~3.19!

where the HB Hamiltonian as well as the self-consistent a
pairing potentials are defined as usual as

HHB5T2m1G, ~3.20!

G i j 5(
k,m

Vik, jmrmk , ~3.21!

D i j 5
1

2 (
k,m

Vi j ,kmtkm . ~3.22!

The coefficientsU andV are obtained by solving the ei
genvalue equations
8-3
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S HHB 2D

D* 2HHB* D S Ui

Vi
D 5Ei S Ui

Vi
D . ~3.23!

These equations are the FTHBB equations and, of course
T50, they provide the usual HBB description.

FIG. 1. Critical temperatures as a function of the differe
strength parameters in the three different regimes:~a! R051, R1

5500, andM550; ~b! R0550, R1550, andM550; and~c! R0

550, R1550, andM52000.
05430
for

We will now consider the equations obtained for the BC
limit, i.e., when the Hamiltonian can be written as

H5(
i

« ibi
†bi2 (

i , j .0
Gi j bi

†bī
†
bj̄bj , ~3.24!

t
FIG. 2. Results obtained for theR051, R15500, andM550

case.~a! The order parameterD0; ~b! the order parameterD1; and
~c! the ground state energy. All the magnitudes are multiplied byj.
8-4
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FIG. 3. Results obtained withR051, R15500, andM550 for T50.4. ~a! the order parameterD0; ~b! the order parameterD1; ~c! the
chemical potentialm; ~d! the ground state energy;~e! the free energy;~f! the quasiparticle energyE0; and ~g! the quasiparticle energyE1.
All the magnitudes are multiplied byj to be properly scaled.
054308-5
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FIG. 4. Results obtained withR05R1550 andM550. ~a! The order parameterD0; ~b! the order parameterD1; ~c! the ground state
energy; and~d! the specific heat. All the magnitudes are multiplied by«.
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where ī is related toi by the time reversal operation and« i
includes the HB and chemical potentials.

In this case the FTHBB equations have a trivial structu
They are equivalent to gap and number equations that ca
written as

N5(
i

F « i

2Ei
cotghS bEi

2 D2
1

2G , ~3.25!

D i5
1

2 (
j .0

Gi j

D j

Ej
cotghS bEj

2 D , ~3.26!

whereEi5A« i
22D i

2 are the quasiparticle energies. TheUi

and Vi satisfy now the normalization conditionUi
22Vi

251
and can be defined in terms of« i and D i as Ui

25 1
2

1« i /2Ei , Vi
252 1

2 1« i /2Ei .
In the simple model that we are considering, that ha

constant pairing interaction acting only on two levels w
energies7D/2 and degeneraciesR0 andR1, respectively, we
must determine, for a given number of particlesN, the un-
knownsD0 andD1, as well as the chemical potentialm. With
them we can evaluate the total energy of the systemEFT and
05430
.
be

a

the specific heat, obtained through the numerical deriva
of EFT with respect toT. In order to display the results it wil
be convenient to scale the gap parameters properly, dep
ing on the values ofR0 , R1, andM.

IV. RESULTS AND DISCUSSION

In this work we have two main points of interest, one
the study of the temperature dependence of the different
der parameters describing the system, the other one is
comparison between the description provided by the ti
dependent version and the one provided by the present t
ment. It is well known that both approaches provide a co
plete description of the system under consideration but e
one emphasizes different aspects and can explain in sim
terms some of the properties of the system but have p
lems to describe, in a simple way, another ones. For
ample, in the previous work@4# it was found in a very natura
way a boundary between the different types of behavior
the system: it was possible to obtain the energies at which
a given strength the system changed from normal to a c
densate of pairs of bosons. On the other hand it was q
complicated to obtain the value of the order parameter
8-6
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FIG. 5. Results obtained withR05R1550 andM52000.~a! The order parameterD0; ~b! the ground state energy;~c! the free energy;
and ~d! the quasiparticle energyE1. All the magnitudes are multiplied byz.
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function of the interaction strength.
To analyze the temperature dependent description we

use the experience obtained from the time dependent ver
such as the fact that it is convenient to analyze the res
obtained in each one of the three different regions discus
in the previous section. To find the boundary between
region where the system can be described as a normal
and that where it behaves as a condensate of pairs of bo
we solved the number@Eq. ~3.25!# and gap@Eq. ~3.26!# equa-
tions when the gaps just vanish. For a given interact
strength, the lowest temperature at which the gaps vanish
be defined as the critical temperature. In Fig. 1 we disp
these critical temperatures as functions of the correspon
strength parameters for the three different regimes. W
trying to solve the gap and number equations as function
the temperature we found that they are not as well beha
as in the fermionic case@5#, i.e., they turn out to be unstabl
unless the initial guess for the parameters is close to
solution of the equations. This fact is due to the particu
dependence of the quasiparticle energies on the gap pa
eter ~the minus sign!, that makes the quasiparticle energi
small when the gap is different from zero but small.

We have also analyzed the behavior of the order par
eters and other thermodynamical functions in each of
three abovementioned regimes.
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~a! We consider the caseR051, R15500, andM550. In
Fig. 2 we show the order parametersD0 and D1 as well as
the ground state energy multiplied byj, in order to scale
them properly as discussed in Sec. III A. For studying
detail the features of the phase transition we display in Fig
the different order parameters and thermodynamical fu
tions obtained at a fixed temperature. We chooseT50.4 be-
cause at this temperature the phase transition is clearly s
We show not only the order parametersD0 andD1 but also
all the relevant thermodynamical quantities properly scal
the chemical potential, the ground state energy, the free
ergy, and the quasiparticle energiesE0 andE1. It is notice-
able that it was possible to find metastable solutions. T
different solutions were obtained following the differe
branches. For doing so we increased or decreased
strength parameter by a small amount and use as initial g
for the parameters the results obtained with the old stren
parameter, being able in this way to follow the branch in
the metastable region, even if it has not the smallest ene
This is clearly seen by comparing Fig. 3~a! or 3~b! with Fig.
3~d!.

~b! We consider the caseR05R1550 andM550. In Fig.
4 we show the order parametersD0 andD1, the ground state
energy as well as the specific heat multiplied by«. It is
8-7
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noticeable that the order parameters approach zero in a m
milder way while the ground state energy has a richer str
ture than in the previous case. The specific heat show
broad peak that corresponds to the phase transition as ca
seen by comparing Fig. 4~d! with Fig. 1~b!.

~c! We consider the caseR05R1550 andM52000. In
Fig. 5 we show the order parameterD0 @it must be noted tha
due to the symmetry of the modelD1(z)5D0(2z) making
unnecessary to display it#; the ground state energy, the fre
energy and the quasiparticle energyE1, multiplied by z.

Comparing the results obtained in the present work w
the previous TDHBB ones we conclude that in the therm
treatment it is easier to evaluate the matrix elements of
two-particle transfer operators, related with the order para
eters, than in the TDHBB treatment but on the other hand
s

ys

y

rik
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obtention of the boundaries between the different types
behavior is much more complicated. In the TDHBB a
proach these boundaries are obtained in a simple way
analytical functions of the strength parameter while in t
thermal treatment the gap and number equation are diffi
to handle when the order parameters are close to zero
cause the convergence is not good.
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Investigador Cientı´fico y Técnico, by PID Grant No. 4547/96
of the CONICET, Argentina, Grant No. PMT-PICT0109 o
ANPCYT, and Grant No. Ex-072 from the University o
Buenos Aires.
ys.

tt.

nt

cl.
@1# P. Ring and P. Schuck,The Nuclear Many Body Problem
~Springer, New York, 1980!, especially Chap. 6.

@2# A. L. Fetter and J. D. Walecka,Quantum Theory of many
Particle Systems~McGraw-Hill, New York, 1971!, especially
Chap. 7.

@3# D. J. Thouless,The Quantum Mechanics of Many Body Sy
tems~Academic Press, New York, 1972!, especially Chap. III.

@4# M. C. Cambiaggio, G. G. Dussel, and J. A. Ramirez, Ph
Rev. C44, 184 ~1991!.

@5# M. C. Cambiaggio, F. G. Carbone, and G. G. Dussel, Ph
Rev. C49, 194 ~1994!.

@6# P. Curutchet, J. Dukelsky, G. G. Dussel, and A. J. Fend
Phys. Rev. C40, 2361~1989!.

@7# S. Belyaev, Mat. Fys. Medd. K. Dan. Vidensk. Selsk.31, 11
~1959!.

@8# A. Bohr, B. Mottelson, and D. Pines, Phys. Rev.110, 936
~1958!.
-

.

s.

,

@9# D. R. Bes and R. A. Broglia, Nucl. Phys.A80, 289 ~1966!.
@10# G. G. Dussel, R. J. Liotta, and R. P. J. Perazzo, Nucl. Ph

A388, 606 ~1982!.
@11# Y. K. Gambhir, P. Ring, and P. Schuck, Phys. Rev. Lett.51,

1235 ~1983!.
@12# G. G. Dussel, A. J. Fendrik, and C. Pomar, Phys. Rev. C34,

1969 ~1986!.
@13# G. G. Dussel and A. J. Fendrik, Phys. Rev. C34, 1097~1986!.
@14# R. Bonetti and L. Milazzo-Colli, Phys. Lett.49B, 17 ~1974!.
@15# L. Milazzo-Colli and G. M. Braga-Marcazzan, Phys. Le

38B, 155 ~1972!; Nucl. Phys.A210, 297 ~1973!.
@16# P. Kramer and M. Saraceno,Geometry of the Time Depende

Variational Principle in Quantum Mechanics, Vol. 140 ofLec-
ture Notes in Physics~Springer, Berlin, 1981!.

@17# M. C. Cambiaggio, G. G. Dussel, and M. Saraceno, Nu
Phys.A415, 70 ~1984!.

@18# K. K. Kan, Phys. Rev. C24, 279 ~1981!.
@19# A. L. Goodman, Nucl. Phys.A352, 30 ~1981!.
8-8


