β decaying $T_{1/2}$ = 3.4 s isomer in ⁶⁹Ni

J. I. Prisciandaro,^{1,2} P. F. Mantica,^{1,2} A. M. Oros-Peusquens,^{1,*} D. W. Anthony,^{1,2} M. Huhta,¹ P. A. Lofy,^{1,2} and

R. M. Ronningen¹

¹National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824

²Department of Chemistry, Michigan State University, East Lansing, Michigan 48824

(Received 15 March 1999; published 27 September 1999)

A radioactive beam of ⁶⁹Ni was produced by the fragmentation of a 70 MeV/nucleon ⁷⁶Ge beam in a Be target. β -delayed γ -ray studies were performed using two thin plastic scintillators and two large-volume Ge detectors following implantation of the ⁶⁹Ni nuclei into a foil of a collection wheel apparatus. A 1296-keV γ -ray transition with a half-life of 3.4(7) s was identified and has been attributed to the decay of the $\nu p_{1/2}^{-1}$ isomeric state in ⁶⁹Ni. The relative population of the low-spin $J^{\pi} = 1/2^{-1}$ isomer to the known high-spin $J^{\pi} = (17/2^{-1})$ isomer was determined to be 6:1 for the production of ⁶⁹Ni via fragmentation of ⁷⁶Ge, based on an upper limit of 36% extracted for the ⁶⁹Ni^{m1} β -decay branch to the $3/2^{-1}$ ground state of ⁶⁹Cu. The half-life and branching of the ⁶⁹Ni^{m1} β decay is discussed in light of possible two particle–two hole excitations in the low-energy structure of ⁶⁹Cu. [S0556-2813(99)05710-6]

PACS number(s): 21.10.-k, 23.40.-s, 27.50.+e

I. INTRODUCTION

Experimental studies of the low-energy structure of the neutron-rich nickel isotopes provide valuable information for the testing and development of theoretical models to better describe the properties of exotic nuclides at and beyond doubly magic ${}^{78}_{28}$ Ni₅₀. Advances in ion source development [1] and the detection of microsecond isomers [2] have led to new spectroscopic data for the neutron-rich Ni isotopes in the region $40 \le N \le 50$. The focus of this work is the lowenergy structure of ${}^{69}Ni_{41}$, which has a closed-shell number of protons and one neutron outside a semi-magic shell closure at N = 40. Broda *et al.* [3] suggested the existence of a subshell closure at N=40, Z=28 through the measurement of the first excited 2^+ state in ⁶⁸Ni with an energy of 2.033 MeV. Grzywacz et al. [2] identified several new microsecond isomeric states in the neutron-rich nuclides near ⁶⁸Ni, including a 0.439(3) μ s state at 2.70 MeV in ⁶⁹Ni. The depopulation of this isomeric state in ⁶⁹Ni follows mainly a three γ -ray cascade to the ground state. Two weak γ -ray cascades were also observed from this isomer, one terminating at a previously unidentified level at 321 keV in ⁶⁹Ni. The authors proposed the 321-keV state as a second isomer in ⁶⁹Ni with $I^{\pi} = 1/2^{-}$ (based on an assumed spin-parity of I^{π} $=17/2^{-}$ for the 2.70 MeV isomeric state and a cascade of four stretched E2 transitions). They estimated a half-life, based on the Weisskopf estimate, of ≈ 14 days for an M4 transition from the proposed 321-keV isomeric state to the $9/2^+$ ground state of ⁶⁹Ni. The more probable decay path for this isomeric state, as pointed out in [2], is β decay to the $I^{\pi} = 3/2^{-}$ ground state of ⁶⁹Cu. Assuming a log *ft* value similar to that observed for the decay of the $I^{\pi} = 1/2^{-}$ ground state of ⁶⁷Ni to the $I^{\pi} = 3/2^{-}$ ground state of ⁶⁷Cu, a β decay half-life of ≈ 3 s was predicted [2].

Franchoo *et al.* [4] have recently studied the β decay of ⁶⁹Co and its subsequent daughters. The parent nuclei were produced by proton induced fission of ²³⁸U, and the Ion Guide Laser Ion Source [5] at the Leuven Isotope Separator On-Line was used to selectively ionize and efficiently extract the Co isotopes from the production target. They observed a 594-keV β -delayed γ -ray transition, which they attributed to the decay of ⁶⁹Co, and a 1296-keV transition assigned as a β -delayed γ ray following the decay of a 3.5(5) s isomeric state in ⁶⁹Ni. The proposed sequence for the ⁶⁹Co β decay is shown in Fig. 1, along with the states observed following the decay of the 0.439 μ s isomer in ⁶⁹Ni.

The recent improvement in the intensities of metal primary beams at the National Superconducting Cyclotron Laboratory at Michigan State University has allowed access to new regions of the chart of the nuclides for nuclear structure measurements. By fragmenting a ⁷⁶Ge beam in a Be target, nuclides in the range ⁶⁷Co to ⁷⁵Zn have been produced with sufficient intensity to perform β -delayed γ ray spectroscopic studies [6]. In this paper we report on the production and identification of a 3.4(7) s isomeric state in ⁶⁹Ni via projectile fragmentation. Preliminary results from this work have been reported in Ref. [7].

II. EXPERIMENTAL TECHNIQUE

The ⁶⁹Ni nuclides were produced by fragmentation of a 70 MeV/nucleon ⁷⁶Ge beam provided by the K1200 Cyclotron at the National Superconducting Cyclotron Laboratory at Michigan State University in a 202 mg/cm² Be target. The A1200 fragment analyzer, with a 70 mg/cm² Al wedge placed at the second dispersive image of the device, was used to separate the fragments. The fragment momentum acceptance was set to 1% of the central momentum using a slit at the first dispersive image of the A1200. Further *M/q* separation was achieved using the Reaction Product Mass Separator (RPMS). Identification of secondary fragments at both the A1200 and the experimental endstation was accomplished by measuring ΔE of the fragments in a 300 μ m Si

^{*}Permanent address: Institute of Nuclear Physics and Engineering Horia Hulubei, Bucharest-Măgurele, Romania.

FIG. 1. (a) The ⁶⁹Ni levels are those identified by Grzywacz *et al.* [2]. (b) Sequence of ⁶⁹Co-⁶⁹Ni β decay as proposed by Franchoo *et al.* [4].

PIN detector and the fragment time of flight between the PIN detector and a thin plastic detector placed in the beam at the first dispersive image of the A1200.

⁶⁹Ni fragments, along with ⁶⁷Co, ⁶⁸Ni, ^{70,71}Cu, and ⁷²Zn fragments (which were contaminants in the beam), were implanted into one of nine Al catcher foils mounted on a rotating collection wheel. Rotation of the wheel was achieved using a stepper motor, whose controller was interfaced with the data acquisition system. A data collection cycle of 24 s beam implantation, 36 s decay (beam inhibited), and 250 ms wheel rotation was chosen to optimize detection of decays originating from ⁶⁹Ni^g [$T_{1/2}$ =11.4(3) s]. Data were collected during both the implantation and decay periods.

The detector configuration was identical to that used in the elucidation of the low-energy level structure of ⁷³Zn [6]. Two 3 mm plastic scintillators coupled to photomultiplier tubes and two large volume (80% and 120%) Ge detectors were placed around the implantation position for the detection of β and γ emissions, respectively. The β and γ detectors were arranged as scintillator-Ge pairs, with the plastic β detectors placed immediately in front of the Ge detectors. The total β counting efficiency was measured to be 40(2)%, and the Ge detectors had a summed absolute peak γ -ray detection efficiency of 4.3% measured at 1.274 MeV. Experimental β and γ -ray singles and β - γ and γ - γ coincidence data were collected event by event and written to 8 mm magnetic tapes.

III. RESULTS

A portion of the β -delayed γ -spectrum collected when the A1200 was set for the peak production of ⁶⁹Ni is shown in Fig. 2(a). All major transitions in the β -delayed γ spectrum could be attributed to known γ rays from the decay of ⁶⁹Ni or from the decays of ⁶⁷Co, ⁶⁸Ni, ^{70,71}Cu, and ⁷²Zn (the major beam contaminants) except for a peak at 1297 keV. The half-life curve for the 1297-keV transition is shown as an inset in Fig. 2(a). A single component fit to this half-life curve revealed a half-life of ≈ 4 s, which is inconsistent with the known half-lives of the six constituents in the beam. For comparison, the half-life curve for the 1297-keV transition is shown in Fig. 3 along with the half-life curves

FIG. 2. β -delayed γ -ray spectrum obtained when the A1200 separator was tuned for peak production of (a) ⁶⁹Ni and (b) ⁷¹Cu. Known γ -ray transitions are labeled. The half-life curve shown as an inset in each spectrum corresponds to the 1297-keV doublet.

Energy (keV)

for the major γ -ray transitions from five of the six radioactive nuclides comprising the secondary beams. In addition, the full width at half maximum (FWHM) of the 1297-keV peak in the β -gated γ -ray spectrum was found to be $\approx 50\%$ larger when compared to the FWHM of other peaks in this energy region, suggesting this peak is a doublet.

To investigate the origin of the components of the 1297keV doublet, we changed the tune of the A1200 fragment analyzer to implant a different subset of nuclei from the ⁷⁶Ge fragmentation reaction. This second tune was set for the peak production of ⁷¹Cu. In addition to this isotope, the secondary beam contained the radioactive nuclides ⁶⁸Co, ^{69,70}Ni, ⁷²Cu, and ⁷³Zn. A portion of the β -delayed γ spectrum for the A1200 tune set for peak production of ⁷¹Cu is shown in Fig. 2(b). A 1297-keV doublet peak was present in the β -delayed γ spectrum; however, the relative ratio of the two compo-

FIG. 3. Decay time curves for selected γ -ray transitions identified during implantation of ⁶⁷Co, ^{68,69}Ni, ^{70,71}Cu, and ⁷²Zn.

nents of the doublet changed significantly. The half-life curve obtained for the 1297-keV transition when the A1200 was tuned for the peak production of ⁷¹Cu is shown as an inset in Fig. 2(b). A single component fit to this half-life curve revealed a half-life of ≈ 19 s.

Based on our γ - γ coincidence and time-dependent γ -ray singles data we have assigned the higher-energy member of the 1297-keV doublet to the decay of ⁷¹Cu ($T_{1/2}$ =19.5 s). This 1298-keV transition, not previously assigned to the β decay of ⁷¹Cu, is observed to be coincident with the known 489-keV transition in ⁷¹Zn. Several other inconsistencies with the known [8] low-energy level scheme of ⁷¹Zn have been observed, and will be detailed elsewhere [9].

The half-life curve obtained when the A1200 was set for the peak production of ⁶⁹Ni (Fig. 3) was fitted taking into account a contribution from the 1298-keV transition now assigned to the β decay of ⁷¹Cu ($T_{1/2}$ =19.5 s). The twocomponent fit resulted in a deduced half-life of 3.4(7) s for the low-energy member of the 1297-keV doublet. The short half-life of this 1296-keV γ ray cannot be attributed to the ground state decay of any species implanted when the A1200 was tuned for peak production of ⁶⁹Ni. Although the half-life for the 1296-keV transition is only slightly outside the 1σ value of the measured half-life for ${}^{70}Cu^g$, the β decay of this nucleus is known [10] to feed only the ground and first excited (885 keV) states of ⁷⁰Zn. There was no evidence of a 1296–885 coincidence in our γ - γ data, and the relative peak intensities of these transitions would imply a direct β feeding of >10% if the 1296-keV transition directly populated the ground state of ⁷⁰Zn.

Since the 1296-keV transition was observed in the β -delayed γ -ray spectra for both A1200 tunes, it may be attributed to a β -decaying isomer in either ⁶⁹Ni or ⁷¹Cu, which were the only two nuclei present in both radioactive beam implantations. From the difference in the production intensities of ⁶⁹Ni and ⁷¹Cu and the change in the 1296–1298 γ -ray intensities (see Fig. 2), the 1296-keV activity is correlated with the production of ⁶⁹Ni. This suggests that the 1296-keV β -delayed γ -ray transition originates from a 3.4(7) s isomer in ⁶⁹Ni.

We found no evidence in our β -delayed γ -ray data for other transitions having a half-life similar to the 1296-keV transition. This implies that the 1296-keV state in ⁶⁹Cu is the only excited state significantly populated following the β decay of ⁶⁹Ni^{m1}. An upper limit of 36% was extracted for the β branch of the ⁶⁹Ni $1/2^-$ isomer proceeding to the ground state of ⁶⁹Cu by comparing the total number of ⁶⁹Ni nuclei detected in our 300 μ m Si PIN ΔE detector with the intensities of γ rays following the β decay of the $1/2^-$ isomeric state and the ground state of ⁶⁹Ni. Using the measured half-life and branching for the ⁶⁹Ni^{m1} β decay to the two $3/2^-$ states in ⁶⁹Cu, as well as the β -decay Q value from Ref. [10], log *ft* values of 4.48 (upper limit) and 5.24 (lower limit) to the $3/2^-_2$ and $3/2^-_1$ states in ⁶⁹Cu, respectively, have been deduced.

IV. DISCUSSION

The β -decaying $\nu p_{1/2}^{-1}$ isomeric state at 321 keV as proposed by Grzywacz *et al.* [2] has been identified both via

study of the $A = 69 \ \beta$ decay chain ${}^{69}\text{Co} \rightarrow {}^{69}\text{Ni} \rightarrow {}^{69}\text{Cu}$ by Franchoo *et al.* [4] and also by direct production of the isomer via projectile fragmentation as observed in this work. We discuss below the direct production of the low-spin $\nu p_{1/2}$ isomer in ${}^{69}\text{Ni}$, as well as the low-energy structures of ${}^{69}\text{Ni}$ and ${}^{69}\text{Cu}$.

A. Production of the $p_{1/2}$ isomeric state in ⁶⁹Ni via fragmentation

The mechanism for the production of isomeric states in intermediate-energy heavy-ion reactions was first discussed by Young *et al.* [11] when they observed a change in ${}^{26}Al^m$ production when the fragmentation conditions (beam, target, and primary beam energy) were modified. However, little progress has been made in providing quantitative understanding of the variation of isomer population with changing reaction conditions. Daugas et al. [12] have recently explored the variation of isomer ratios as a function of the velocity of the outgoing fragment. Using a primary beam of 60 MeV/nucleon ⁹²Mo on a thin ²⁷Al target, they observed that the formation probability of isomeric states was strongly dependent on the outgoing fragment velocity in a regular way. A minimum (maximum) in the isomeric yield was observed when the fragment velocity v was near the initial beam velocity v_0 for cases when the isomer spin was greater (less) than the spin of the ground state. This suggests that the isomer ratio is influenced by the initial angular momentum transferred in the reaction, which is expected to be minimum at $v = v_0$.

From the measured counting rates (see Fig. 2) of the 1296 and 1213 keV γ -ray transitions from the decay of ⁶⁹Ni^{m1} and ⁶⁹Ni^g, respectively, and using the derived upper limit of 36% for the β branching from the $1/2^-$ isomeric state in ⁶⁹Ni to the ground state of ⁶⁹Cu, we deduce a production rate of 13(2)% for the $1/2^-$ isomeric state relative to the ground state. However, the 439 ns isomeric state at 2.70 MeV in 69 Ni is known to directly populate the lower energy $1/2^{-1}$ isomer [2]. We have weak evidence for a 1959 keV transition in our γ -ray singles spectrum, which would indicate direct production of the 439 ns isomeric state in ⁶⁹Ni produced via fragmentation of ⁷⁶Ge at 70 MeV/nucleon. The relevant portion of this spectrum for both beam-off and beam-on conditions is shown in Fig. 4. Accounting for the time of flight of about 690 ns for ⁶⁹Ni particles to reach the detection endstation and the γ -ray branching in ⁶⁹Ni [2], 5(1)% of the population of the $1/2^-$ isomer can be attributed to the decay of the high-spin, 439 ns isomer identified by Grzywacz et al. [2].

The isomeric ratio *F* is defined as the number of nuclei produced in an isomeric state divided by the total number of detected nuclei for a given *A* and *Z*. The *F* values deduced for ⁶⁹Ni produced by the fragmentation of a ⁷⁶Ge beam at 70 MeV/nucleon in a thick Be target are $F(2701 \text{ keV}, 17/2^-) = 2(1)\%$ and $6\% < F(321 \text{ keV}, 1/2^-) < 12\%$. The upper value for the range of $F(321 \text{ keV}, 1/2^-)$ is derived using the upper limit (36%) for the ground state branch of the ⁶⁹Ni^{m1} β decay. The lower limit of $F(321 \text{ keV}, 1/2^-)$ is attained when

FIG. 4. γ -ray singles spectrum obtained during peak production of ⁶⁹Ni in the region around 2.0 MeV for (a) beam-on and (b) beam-off conditions.

the ground state branch of the ${}^{69}\text{Ni}{}^{m1}\beta$ decay is taken to be zero.

Reports on the relative population of two different isomeric states of the same nucleus via projectile fragmentation have been given for 90 Nb [12], 82 Y [13], and 66 As [14]. The ground state spin of ⁹⁰Nb lies between the spins of the two isomeric states at 1880 keV ($J^{\pi}=11^{-}$) and 122 keV (J^{π} =6⁺), which is similar to the ⁶⁹Ni case. The behavior of F as a function of outgoing fragment velocity is entirely different for the two isomers. The one common feature, as noted earlier, is a minimum in $F(1880 \text{ keV}, 11^{-})$ and a maximum in $F(122 \text{ keV}, 6^+)$ near $v = v_0$. The relative population of the low-spin, low-energy isomer to the high-spin, highenergy isomer in ⁹⁰Nb near $v = v_0$ is about 7:1. The isomer ratio measurements reported here for ⁶⁹Ni were made with the A1200 fragment separator tuned at the peak of the ⁶⁹Ni momentum distribution. Although we did not determine the variability of F as a function of outgoing fragment velocity for ⁶⁹Ni, we note that the low-spin, low-energy to high-spin, high-energy isomer ratio of 6:1 is similar to that observed near $v = v_0$ for ⁹⁰Nb fragments, which were produced using a 92 Mo beam at 60 MeV/nucleon on a thin 27 Al target.

For the other multi-isomer nuclei ⁶⁶As and ⁸²Y, the spin values of the two isomeric states are greater than that of the ground state. For ⁸²Y, the ground state spin is 1⁺ and F = 38(14) for the lower-energy 4⁻ isomer and F = 16(6) for the higher-energy 6⁺ isomeric state. The *F* values are 21(3) and 8(4) for the higher- and lower-spin isomers of ⁶⁶As, which has a ground state spin-parity 0⁺.

B. Configuration mixing in ⁶⁹Cu

From the experimental data, we can conclude that the β decay of the $1/2^-$ isomer in ⁶⁹Ni mainly proceeds through the excited $3/2^-$ state at 1296 keV in ⁶⁹Cu. No other excited

FIG. 5. Schematic of the β decay of ⁶⁹Ni depicting the configurations discussed in the text.

state in ⁶⁹Cu has been observed in the isomer β decay, neither in the present study nor in the data of Franchoo *et al.* [4]. The allowed character of the Gamow-Teller transition from the $1/2^-$ isomer in ⁶⁹Ni to the excited $3/2^-$ in ⁶⁹Cu can be understood schematically assuming the pure configurations indicated in Fig. 5. Taking the ground state of ⁶⁸Ni as the reference state, the initial $1/2^-$ configuration in ⁶⁹Ni can be written as

$$|1/2^{-}\rangle = |\nu 2p_{1/2}^{-1}(\nu 1g_{9/2}^{2})_{0^{+}}\rangle, \qquad (1)$$

and the final $3/2^-$ configurations in ⁶⁹Cu are

$$3/2_{2}^{-}\rangle = |\pi 2 p_{3/2}(\nu 2 p_{1/2}^{-2} \nu 1 g_{9/2}^{2})_{0^{+}}\rangle, \qquad (2)$$

$$|3/2^{-}_{g,s_{1}}\rangle = |\pi 2 p_{3/2}\rangle.$$
 (3)

We can rewrite the configurations given in Eqs. (1)-(3) describing all the excitations in terms of particles instead of particles and holes. This reduces to using the ground state of ⁶⁶Ni as a reference state. The expressions become

$$|1/2^{-}\rangle = |\nu 2p_{1/2}(\nu 1g_{9/2}^{2})_{0^{+}}\rangle$$
(4)

for the $1/2^-$ state in ⁶⁹Ni and

$$|3/2_{2}^{-}\rangle = |\pi 2 p_{3/2}(\nu 1 g_{9/2}^{2})_{0^{+}}\rangle, \tag{5}$$

$$|3/2^{-}_{\text{g.s.}}\rangle = |\pi 2 p_{3/2}(\nu 2 p_{1/2}^{2})_{0^{+}}\rangle \tag{6}$$

for the excited $3/2^-$ state and the ground state of the daughter nucleus 69 Cu.

It is a good approximation to assume that the pair of $1g_{9/2}$ neutrons, present in the wave function of the parent $1/2^-$ state, plays no role in the β decay process. The matrix elements for the Gamow-Teller decay then reduce to

$$\langle 3/2_{2}^{-} || T(\text{GT}) || 1/2^{-} \rangle = \langle \pi 2 p_{3/2} || T(\text{GT}) || \nu 2 p_{1/2} \rangle$$
 (7)

$$\langle 3/2_{g.s.}^{-} || T(GT) || 1/2^{-} \rangle \simeq 0.$$
 (8)

Therefore, assuming the wave functions of the parent and daughter states can be described by pure configurations, the β decay of the $1/2^-$ isomer of ⁶⁹Ni should proceed only to

the excited $3/2^{-}$ state at 1296 keV in ⁶⁹Cu. Some configuration mixing, resulting in a fragment of the $\pi 2p_{3/2}$ $\otimes \nu(1g_{9/2}^22p_{1/2}^{-2})$ configuration in the ground state of ⁶⁹Cu, can produce a branching to the ground state in the decay of ⁶⁹Ni^{m1}.

The upper limit of 4.48 for the $\log ft$ value for the decay of the $1/2^-$ isomer in ⁶⁹Ni to the $3/2_2^-$ state in ⁶⁹Cu compares rather well with the value $\log ft \approx 4.7$ obtained for the decay of 67 Ni 1/2⁻ ground state [$T_{1/2} = 21(1)$ s] to the 3/2⁻ ground state of ⁶⁷Cu [15]. This agreement is only qualitative, since the variation of the reduced transition probability B(GT) is roughly a factor of 1.7 for the log ft values quoted above. The configuration mixing in the $1/2^-$ and $3/2^-$ states connected by the GT transition seems to decrease when going from A = 67 to A = 69. The two particle-two hole (2p-2h) configuration involved in the structure of the $3/2_2^-$ state in ⁶⁹Cu is expected to be mainly concentrated in this state, and some fragmentation is needed to account for branching to the ground state. Using the upper limit of 36% obtained for the β branching to the ground state of ⁶⁹Cu in the decay of ⁶⁹Ni^{*m*1}, the amount of 2p-2h configuration mixing in the ground state is obtained to be 15%.

A similar 2p-2h admixture was calculated for the ground state of ⁶⁷Co, using a QRPA approach, in a recent β -decay study of the ⁶⁷Co \rightarrow ⁶⁷Ni by Weissman *et al.* [16]. In that case, the neutron 2p-2h admixture in the 7/2⁻ ground state of ⁶⁷Co can produce a β branch to a state with mainly a $\nu 1f_{5/2}^{-1} \otimes \nu (1g_{9/2}^2 2p_{1/2}^{-2})$ configuration via the allowed $\nu 1f_{5/2}$ $\rightarrow \pi 1f_{7/2}$ GT transition. Experimental evidence was found for the population of a second $5/2^-$ state at 2.1 MeV with log ft = 5.5. Its interpretation in terms of the above configuration is only tentative. Particle-vibration coupling can give rise to fragmentation of the single-particle strength in nuclei around closed shells (see for example, the study of ⁵⁷Cu \rightarrow ⁵⁷Ni by Trache *et al.* [17]), and a non-negligible fragment of the hole-state $f_{5/2}^{-1}$ in a state with main 2^+ (⁶⁸Ni) $\otimes p_{1/2}^{-1}$ structure can be expected around the energy of 2.1 MeV.

In our case, the 15% 2p-2h mixing deduced for the ground state of ⁶⁹Cu is only an upper limit, derived from the upper limit of 36% on the β branching from the ⁶⁹Ni 1/2⁻ isomer to the ⁶⁹Cu ground state. Taking the β branch for this decay as zero, which would translate to no 2p-2h mixing in the ground state of ⁶⁹Cu, the log *ft* value for the $3/2_2^-$ state in ⁶⁹Cu becomes 4.3. It should be noted that if the branch for the ⁶⁹Ni^{m1} decay to the ground state of ⁶⁹Cu is near the established upper limit, its origin can be readily explained by the configuration mixing arguments presented above. In fact, the 2p-2h configuration is the only low-lying configuration from the 2p-1h $1/2^-$ isomer. Another higher-energy GT transition $\nu 1f_{5/2} \rightarrow \pi 1f_{5/2}$ can lead to the $\pi 1f_{5/2} \otimes (\nu 2p_{1/2}^{-1}\nu 1f_{5/2}^{-1}\nu 1g_{9/2}^{2})$ configuration. This has some overlap with the particle-vibration configuration $\pi 1f_{5/2}$

 $\otimes 2^+$ (⁶⁸Ni) and can give a small admixture in the $3/2^-_{g.s.}$. The quadrupole matrix element for $f_{5/2}$ - $p_{3/2}$ is small, due to the spin-flip involved. The resulting admixture would result in a β branch with a relatively large log ft value.

The degree of 2p-2h correlations in the ground state of ⁶⁸Ni, made on the basis of the configuration mixing derived experimentally in ⁶⁹Cu, can provide a measure of the validity of the N=40 subshell closure. Supposing the $\nu(1g_{9/2}^22p_{1/2}^{-2})$ mixing in the ground state of ⁶⁸Ni is similar to that deduced for ⁶⁷Co and ⁶⁹Cu, such a small value (15%) suggests "double-magic" (proton shell closure and neutron subshell closure) character of this nucleus. However, this interpretation is not substantiated by the present available data (experimental and extrapolated) for two-neutron separation energies in the Ni isotopes [18]. A reduced mixing is also consistent with the predicted deformed character of the 0_2^+ state in ⁶⁸Ni [19].

V. SUMMARY

A 3.4(7) s isomeric state has been directly populated in ⁶⁹Ni following fragmentation of a ⁷⁶Ge beam at 70 MeV/ nucleon in a Be target. This state, proposed to have a configuration $\nu p_{1/2}^{-1} \nu g_{9/2}^2$, was observed to populate a single excited $3/2^-$ state at 1296 keV in the daughter ⁶⁹Cu with an allowed GT transition (log*ft* ≤ 4.48). A β branch to the $3/2^$ ground state of ⁶⁹Cu in the β decay of the ⁶⁹Ni $1/2^-$ isomer can result from a neutron two particle–two hole admixture in the ground state of ⁶⁹Cu. Based on an upper limit of 36% for this β branch, an upper limit of 15% was deduced for this mixing, similar to that deduced for ⁶⁷Co [16].

In addition, we have explored the relative population of the isomeric states in ⁶⁹Ni in the intermediate-energy fragmentation of a ⁷⁶Ge beam. The relative populations of the high-spin and low-spin isomers in ⁶⁹Ni was found to be similar to that observed for the low- and high-spin isomers in ⁹⁰Nb populated following ⁹²Mo fragmentation. Improved understanding of the mechanism behind the production of isomeric states following fragmentation may provide a more practical means for exploiting isomeric radioactive ion beams for nuclear structure and reaction measurements.

ACKNOWLEDGMENTS

This work was supported in part by National Science Foundation Grant No. PHY95-28844. We thank the operations staff of the NSCL for the successful completion of these measurements. We acknowledge J.A. Winger for the design of the collection wheel apparatus, the ECR group at the NSCL for development of the ⁷⁶Ge primary beam, and M. Steiner for identifying and tuning the secondary beams. We also thank V. Zelevinsky and K. Heyde for valuable discussions.

- [1] S. Franchoo, M. Huyse, K. Kruglov, Y. Kudryavtsev, W. F. Mueller, R. Raabe, I. Reusen, P. Van Duppen, J. van Roosbroeck, L. Vermeeren, A. Wöhr, K.-L. Kratz, B. Pfeiffer, and W. B. Walters, Phys. Rev. Lett. 81, 3100 (1998).
- [2] R. Grzywacz, R. Bérand, C. Borcea, A. Emsallem, M. Glogowdki, H. Grawe, D. Guillemaud-Mueller, M. Hjorth-Jensen, M. Houry, M. Lewitowicz, A. C. Mueller, A. Nowak, A. Plochocki, M. Pfützner, K. Rykaczewski, M. G. Saint-Laurent, J. E. Sauvestre, M. Schaefer, O. Sorlin, J. Szerypo, W. Trinder, S. Viteritti, and J. Winfield, Phys. Rev. Lett. 81, 766 (1998).
- [3] R. Broda, B. Fornal, W. Królas, T. Pawlat, D. Bazzacco, S. Lunardi, C. Rossi-Alvarez, R. Menegazzo, G. de Angelis, P. Bednarczyk, J. Rico, D. De Acuña, P. J. Daly, R. H. Mayer, M. Sferrazza, H. Grawe, K. H. Maier, and R. Schubart, Phys. Rev. Lett. **74**, 868 (1995).
- [4] S. Franchoo, B. Bruyneel, M. Huyse, U. Köster, K.-L. Kratz, K. Kruglov, Y. Kudryavtsev, W. F. Mueller, B. Pfeiffer, R. Raabe, I. Reusen, P. Thirolf, P. Van Duppen, J. Van Roosbroeck, L. Vermeeren, W. B. Walters, L. Weissman, and A. Wöhr, in *ENAM98: Exotic Nuclei and Atomic Masses*, edited by B. M. Sherrill, D. J. Morrissey, and Cary N. Davids (AIP, New York, 1998), p. 757.
- [5] Y. Kudryavtsev, J. Andrzejewski, N. Bijnens, S. Franchoo, J. Gentens, M. Huyse, A. Piechaczek, J. Szerypo, H. Reusen, P. Van Duppen, P. Van Den Bergh, L. Vermeeren, J. Wauters, and A. Wöhr, Nucl. Instrum. Methods Phys. Res. B **114**, 350 (1996).
- [6] M. Huhta, P. F. Mantica, D. W. Anthony, P. A. Lofy, J. I. Prisciandaro, R. M. Ronningen, M. Steiner, and W. B. Walters, Phys. Rev. C 58, 3187 (1998).
- [7] J. I. Prisciandaro, P. F. Mantica, D. W. Anthony, M. Huhta, P. A. Lofy, R. M. Ronningen, M. Steiner, and W. B. Walters, in *ENAM98: Exotic Nuclei and Atomic Masses* [4], p. 532.
- [8] E. Runte, W.-D. Schmidt-Ott, P. Tidemand-Petersson, R. Kirchner, O Klepper, W. Kurcewicz, E. Roeckl, N. Kaffrell, P. Peuser, K. Rykaczewski, M. Bernas, P. Dessagne, and M. Langevin, Nucl. Phys. A399, 163 (1983).
- [9] P. F. Mantica *et al.* (unpublished).
- [10] Table of Isotopes, 8th Ed., edited by R. B. Firestone (Wiley, New York, 1996).
- [11] B. M. Young, D. Bazin, W. Benenson, J. H. Kelley, D. J. Morrissey, N. A. Orr, R. Ronningen, B. M. Sherrill, M.

Steiner, M. Thoennessen, J. A. Winger, S. J. Yennello, I. Tanihata, X. X. Bai, N. Inabe, T. Kubo, C.-B. Moon, S. Shimoura, T. Suzuki, R. N. Boyd, and K. Subotic, Phys. Lett. B **311**, 22 (1993).

- [12] J. M. Daugas, M. Lewitowicz, R. Anne, J. C. Angéliquie, L. Axelsson, R. Béraud, C. Borcea, E. Chabannat, Th. Ethvignot, S. Franchoo, M. Glogowski, R. Grzywacz, H. Grawe, D. Guillemaud-Mueller, M. Huyse, Z. Janas, M. Karny, C. Longour, M. J. Lopez-Jiminez, A. C. Mueller, A. Nowak, F. de Oliveira-Santos, N. A. Orr, A. Plochocki, M. Pfützner, K. Rykaczewski, M. G. Saint-Laurent, J. E. Sauvestre, O. Sorlin, P. Van Duppen, and J. S. Winfield, in *ENAM98: Exotic Nuclei and Atomic Masses* [4], p. 494.
- [13] R. Grzywacz, R. Anne, G. Auger, D. Bazin, C. Borcea, V. Borrel, J. M. Corre, T. Dorfler, A. Fomichov, M. Gaelens, D. Guillemaud-Mueller, R. Hue, M. Huyse, Z. Janas, H. Keller, M. Lewitowicz, S. Lukyanov, A. C. Mueller, Yu. Penionzhkevich, M. Pfützner, F. Pougheon, K. Rykaczewski, M. G. Saint-Laurent, K. Schmidt, W-D. Schmidt-Ott, O. Sorlin, J. Szerypo, O. Tarasov, J. Wauters, and J. Zylicz, Phys. Lett. B **355**, 439 (1995).
- [14] R. Grzywacz, S. Andriamonje, B. Blank, F. Boue, S. Czajkowski, F. Davi, R. Del Moral, C. Donzaud, J. P. Dufour, A. Fleury, H. Grawe, A. Heinz, Z. Janas, A. R. Junghans, M. Karny, M. Lewitowicz, A. Musquere, M. Pfützner, M.-G. Porquet, M. S. Pravikoff, J. E. Sauvestre, and K. Summerer, Phys. Lett. B **429**, 247 (1998).
- [15] E. Runte, K.-L. Gippert, W.-D. Schmidt-Ott, P. Tidemand-Petersson, L. Ziegeler, R. Kirchner, O. Klepper, P. O. Larsson, E. Roeckl, D. Schardt, N. Kaffrell, P. Peuser, M. Bernas, P. Dessagne, M. Langevin, and K. Rykaczewski, Nucl. Phys. A441, 237 (1985).
- [16] L. Weissman, A. Andreyev, B. Bruyneel, S. Franchoo, M. Huyse, K. Kruglov, Y. Kudryavtsev, W. F. Mueller, R. Raabe, I. Reusen, P. Van Duppen, J. Van Roosbroeck, L. Vermeeren, U. Koster, K. L. Kratz, B. Pfeiffer, P. Thirolf, and W. B. Walters, Phys. Rev. C 59, 2004 (1999).
- [17] L. Trache, A. Kolomiets, S. Shlomo, K. Heyde, H. Dejbakhsh, C. A. Gagliardi, R. E. Tribble, X. G. Zhou, V. E. Iacob, and A. M. Oros, Phys. Rev. C 54, 2361 (1996).
- [18] G. Audi and A. H. Wapstra, Nucl. Phys. A595, 409 (1995).
- [19] M. Girod, Ph. Dessagne, M. Bernas, M. Langevin, F. Pougheon, and P. Roussel, Phys. Rev. C 37, 2600 (1988).