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Calculation of exciton densities in the shell-model Monte Carlo method
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We develop a shell-model Monte Carlo method to calculate densities of states with varying exciton~particle-
hole! number. We then apply this method to the doubly closed-shell nucleus40Ca in a full 0s-1d-0 f -1p
shell-model space and compare our results to those found using approximate analytic expressions for the partial
densities. We find that the effective one-body level density is reduced by approximately 22% when a residual
two-body interaction is included in the shell-model calculation.@S0556-2813~99!04010-8#

PACS number~s!: 21.10.Ma, 21.60.Ka, 21.60.Cs
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I. INTRODUCTION

Particle-hole, or exciton, level densities enter into the
scription of partial decay rates in nuclear preequilibriu
emission @1–3#. These level densities have been mode
using analytic expressions@4,5# that describe nuclear excita
tions in terms of the number of particles,p, and holesh
measured from the Fermi surface, with the exciton num
Ne5(p1h)/2.

For a single species of particles, Williams@5# derived an
expression for the partial density of states given by

rNe
~E!5g

~gE2G!2Ne21

p!h! ~2Ne21!!
, ~1!

whereE is the excitation energy measured above the grou
state configuration,g is the single-particle density of state
andG/g plays the role of an effective Pauli energy withG
5(p21h2)/41(p2h)/41h/2. There exist more compli
cated expressions that distinguish between protons~with
single-particle densitygp) and neutrons (gn) in a given
nucleus, but we will not quote them here. In the most na
picture, a uniform spacing of single-particle statesd is as-
sumed, in which case the single-particle level density isg
51/d, measured in units of MeV21.

Equation ~1! and its neutron/proton counterpart suff
from several deficiencies including the assumption of an
limited number of single-particle states, an inexact treatm
of the Pauli principle, and the assumption of a unifo
single-particle level spacing. Extensions to the basic mo
that ameliorate some of these effects have also been purs
As examples, we mention Bogiliaet al. @6# in which the
energy dependence of the single-particle level spacing
included in a general way; using the equidistant sing
particle picture, Kalbach@7# and Zhang and Yang@8# con-
sidered Pauli principle corrections to the state densities;
De and Hua@9# considered the effects of pairing in additio
to the Pauli blocking on the state densities. These effe
were combined and extended to nonuniform level spaci
by, for example, Harangozoet al. @10#.
0556-2813/99/60~5!/054306~5!/$15.00 60 0543
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A further difficulty with the simple formula is that the
residual two-body interaction, which is present beyond
nuclear mean field, and which includes important contrib
tions beyondJ50 pairing, is not incorporated. While som
progress has been made to approximate the effects of
residual interaction@11# on the partial level densities, no in
teracting shell-model calculations have been performed
large model spaces that would indicate the effect of the tw
body interaction on the single-body density parameterg, nor
have there been any partial density-of-state calculation
the interacting shell model.

In this paper, we describe calculations that study the
fects of the residual two-body interaction on the partial le
densities, and present results for partial level densities
40Ca. Our approach is to study a related quantityYNe

(b),
which is the ratio of the particle-hole partition function
ZNe

(b) to the full partition function,ZA(b), as a function of

the inverse temperatureb ~measured in MeV21) in the sys-
tem. We perform our calculations in a full 0s-1d-0 f -1p
model space using shell-model Monte Carlo~SMMC! tech-
niques@12,13#, and an interaction that describes reasona
well the low-lying spectral properties of nuclei in thesd- f p
region@14#. We will compare our results with those obtaine
from Eq.~1! and its proton-neutron counterparts. Finally, w
will show partial densities of states for several exciton nu
bers. In Sec. II, we give an overview of our calculation
method. We present results in Sec. III, and conclude wit
brief summary in Sec. IV.

II. CALCULATION OF EXCITONS IN SMMC

Investigations into both ground-state and thermal prop
ties of nuclei have been described using the SMMC te
nique @12#. This method offers an alternative description
nuclear structure properties in the shell-model context tha
complementary to direct diagonalization. SMMC is design
to give thermal or ground-state expectation values for v
ous one- and two-body observables. Indeed, for larger nu
SMMC may be the only way to obtain information on th
thermal properties of the system from a shell-model persp
tive. In this method, we make use of the imaginary tim
©1999 The American Physical Society06-1
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many-body propagatorÛ5exp(2bĤ) to calculate the expec
tation values. For example, the excitation energy of a nuc
is E(b)5^Ĥ(b)&2^Ĥ(`)&, where ^Ĥ(`)& is the ground-
state energy. In order to find the excitation energy o
nucleus with particle numberA, we must then calculate

^Ĥ&5
Tr P̂A ÛĤ

Tr P̂A Û
,
TrA ÛĤ

TrA Û
, ~2!

where P̂A5d(N̂2A) projects the trace over all many-bod
states in the system to those states that have the desired
ticle number.

Two-body terms inĤ are linearized through the Hubbard
Stratonovich transformation, which introduces auxilia
fields over which one must integrate to obtain physical
swers. SinceĤ contains many two-body terms that do n
commute, one must discretizeb5NtDb. The method can be
summarized as

ZA5TrA Û5TrA exp~2bĤ !→TrA@exp~2DbĤ !#Nt

→E D@s#G~s!TrA )
n51

Nt

exp@Dbĥ~sn!#, ~3!

wheresn are the auxiliary fields at a given imaginary tim
step Db ~there is ones-field for each two-body matrix-
element inĤ when the two-body terms are recast in qu
dratic form!, D@s# is the measure of the integrand,G(s) is
a Gaussian ins, andĥ is a one-body Hamiltonian. Thus, th
shell-model problem is transformed from the diagonalizat
of a large matrix to one of large dimensional quadratu
Dimensions of the integral can reach up to 105 for systems of
interest, and it is thus natural to use Metropolis random-w
methods to sample the space. Such integration is most
ciently performed on massively parallel computers. Furt
details are discussed in Kooninet al. @12#.

In order to obtain density-of-state information, we calc
late in SMMC the expectation of the energy and integrate
thermodynamic relationship

E~b!52
d ln ZA~b!

db
~4!

to obtain

ln ZA~b!52E
0

b

db8E~b8!2 ln ZA~0!, ~5!

whereZA(0)5TrA 1 is the total number ofA-particle states
in the system.ZA(b) and r(E) are related by the invers
Laplace transform

ZA~b!5E
2`

`

dE exp~2bE!r~E!, ~6!

which can be solved in a saddle-point approximation to yi
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r~E!5
exp~S!

A2pb22C
,

S5bE1 ln Z~b!; b22C52
dE

db
. ~7!

In this expressionC is the heat capacity of the system.
For our discussion, we study40Ca. The noninteracting

ground state is a filledsd shell with no particles in thef p
shell. Our excitons are then enumerated with respect to
filled sd shell. We may excite both protons (p) and neutrons
(n) so that Ne5(pp1hp1pn1hn)/25Nf p , where Nf p
(Nsd) gives the number of particles in thef p (sd! shell. For
example, Ne52 includes the following particle-hole
excitations: (0pp0hp , 2pn2hn! (1pp1hp , 1pn1hn!
(2pp2hp , 0pn0hn!. Furthermore, 0<Ne<24 since, at most,
24 particles can be excited from thesd shell into the f p
shell.

The ratio of the partition function forNe excitons to the
full partition function for theA-particle system may be foun
by introducing a second number projection operator,

P̂Ne
5d~Nsd2N̂sd!d~Nf p2N̂f p!, ~8!

provided thatA5Nsd1Nf p . In reality we perform this pro-
jection for both protons and neutrons simultaneously, but
only complicates notation and will not be discussed here.
calculate the ratio of partition functions as

YNe
~b!5

ZNe
~b!

ZA~b!
5

Tr P̂Ne
Û

Tr P̂AÛ
. ~9!

Therefore,(Ne
YNe

(b)51 which we use as a convenient n
merical check. We also extract the energy of the particle-h
excitationsENe

as

ENe
~b!52

d ln YNe
~b!

db
1E~b!. ~10!

We may now employ Eq.~7! for the partial density of states

rNe
~E!5

exp~SNe
!

A2pb22CNe

,

SNe
5bNe

ENe
1 ln ZNe

~b!; bNe

22CNe
52

dENe

db
. ~11!

HerebNe
5bNe

(ENe
) is determined by inverting the relatio

ENe
5ENe

(bNe
), andCNe

is the heat capacity for the particu
lar exciton number.

III. RESULTS

We now turn to a description of our40Ca calculation in
the 0s-1d-0 f -1p shell-model space. Our starting point fo
an appropriate interaction is taken from Ref.@14#. In order to
6-2
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CALCULATION OF EXCITON DENSITIES IN THE . . . PHYSICAL REVIEW C 60 054306
obtain a microscopic effective interaction, we begin with
free nucleon-nucleon interaction which is appropriate fo
description of low-energy nuclear structure. The choice m
in Ref. @14# was to work with the charge-dependent versi
of the Bonn nucleon-nucleon potential model as found
Ref. @15#. Standard perturbation techniques, as discusse
Ref. @16#, were employed to obtain an effective interaction
the full sd- f p model space. Finally, the interaction wa
modified in the monopole terms using techniques develo
by Zuker and co-workers@17,18#.

SMMC calculations for realistic interactions typical
have a Monte Carlo sign problem which can be overcome
an extrapolation technique discussed in Ref.@19#, and suc-
cessfully applied to thesd- f p region in @14#. This extrapo-
lation technique was also applied to thermal properties
nuclei @20#, but the statistical error inherent in the ener
upon extrapolation prevents a full description of the dens
of states unless one has good justification to spend the c
putational resources to reduce the statistical error. It was
cently demonstrated that a good reproduction of the exp
mental density of states could be obtained for nuclei in
0 f 1p-0g9/2 shell @21# using a pairing-plus-quadrupole inte
action that was free from the sign problem. In this work,
fit our realistic two-body interaction discussed above to
pairing-plus-multipole interaction given by

Ĥ25g0p P̂00
† P̂0014p(

nm
xn :(

m
~2 !mQ̂nmQ̂n2m :,

~12!

where :: denotes normal ordering andP̂lm
† , Q̂nm are pair

and quadrupole operators given by

P̂lm
† 5(

ab
~2 ! l b~ j aiYni j b!@ â j a

† 3â j b

† #lm ,

Q̂nm52
1

A2n11
(
ac

~ j air nYni j c!@ â j a

† 3 ẫ j c
#nm . ~13!

In Eq. ~13! a[nl j denotes a single-particle orbit andẫ jm

5(2) j 1mâj 2m . We fit g0 and them52,4,6 multipoles to
the realistic interaction from@14#. A least-squares fit gives a
interaction which indeed has a good Monte Carlo sign. Af
some minor adjustments to the pairing strength in orde
obtain a better gap between ground states and first exc
states in several light nuclei, we use the following parame
set: g0520.63 MeV, x2520.047 MeV fm24, x4
520.001 MeV fm28, andx6520.1731023 MeV fm212.
~Large enhancements of the^aur nub& matrix elements asn
increases is the reason for the decrease inxn values, al-
though contributions to two-body matrix elements arisi
from the higher multipoles is significant.! Our single-particle
energies are 0.0, 5.36, 0.64, 8.21, 14.21, 10.14, and 1
MeV for the 0d5/2, 0d3/2, 1s1/2, 0f 7/2, 0f 5/2, 1p3/2, and
1p1/2 orbitals, respectively. We do not correct for center-
mass motion in these calculations, although such a conta
nation to theYNe

should be fairly small in this system. Fu
thermore, we do not include odd multipoles which up
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fitting were found to give coefficients that cause Monte Ca
sign problems. Thus our negative parity states are proba
less well described by this choice of Hamiltonian.

We use the results of the noninteracting case to dem
strate the validity of our technique for finding the parti
partition functions. In order to show this, we calculate
enumeration the total number of many-body states for e
Ne . This can most easily be done by using Eq.~5! to find
ZA(b50). We also findYNe

(0) by an extrapolation from

small, but finite,b. We show in Fig. 1 our results for th
number of states as a function of the exciton number. T
SMMC results are compared to an exact counting of
number of states of a given exciton number. The agreem
is excellent. The total number of calculated SMMC states
3.83431016 as compared to the exact value of 5.09531016.

We show in Fig. 2 a comparison of the noninteractin
~left! and interacting~right! calculation. TheNe50 calcula-
tion gives some indication of the thermal freezeout of t
ground state. The noninteracting calculation requires fa
largeb to fully reach the ground state, since the first excit
state is only 0.64 MeV above the ground state. We purs
these calculations tob54.0 MeV21, for which ^H& is 0.139
MeV from the ground-state value. Since it takes more th
mal energy to overcome the pairing interaction and to ex
nucleons from the ground-state configuration, the interac

FIG. 1. The number of states as a function of the exciton nu
ber for the noninteracting calculation. SMMC results, filled circle
exact, open circles

FIG. 2. A comparison of the interacting~right! and noninteract-
ing ~left! functionsYNe

for Ne50, . . . ,6.
6-3
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D. J. DEAN AND S. E. KOONIN PHYSICAL REVIEW C60 054306
curves representing differentNe excitations are compresse
in b relative to the noninteracting curves.~The excitation
energy of the first excited state is approximately 3.5 Me!
However, the same features remain. Clearly, as thermal
ergy is decreased, andb becomes larger~temperature de-
creases!, it is more difficult to produce large particle-hol
excitations in the system. The converse is also true at hig
temperatures, where it is difficult to obtain onlyNe52, for
example. In the interacting case, the low-temperature ta
theNe52 exciton tends to spread further inb than does the
Ne51 tail. As we shall see, this has direct consequences
the partial densities of states. Furthermore, sin
(Ne

YNe
(b)51, we can interpretYNe

as a measure of likeli-

hood to findNe excitons at a given temperature. Since t
excitation energy is a monotonic function of the temperatu
one expects the density of states to be dominated by exc
of a particular type in a given energy range. As we shall s
this is indeed the case.

We compare our results to those obtained from Eq.~1!
and its proton/neutron equivalent by adjustingg to obtain a
fit to the calculatedYNe

curves. This is demonstrated for th

Ne54 curve in Fig. 3. We fit each of our SMMC curves
Eq. ~1! for an effective one-body density parametergeff
5gp1gn @22#, and the effective level density parameter
a5(p2/6)geff . A uniform Fermi gas yields a'A/15
(52.67 forA540) MeV21, a harmonic oscillator potentia
yields a'A/10 MeV21 ~54.0!, and the empirical value is
A/8 MeV21. We obtaina55.43 (geff53.3) MeV21 for the
noninteracting case, anda54.27 (geff52.6) MeV21 in the
interacting case, rather independent~within 0.02 MeV21) of
Ne>2. For Ne51 the comparison cannot be made as
Blann-Williams formula breaks down. Thus,geff is reduced
by 22% in the presence of an interaction.

The decomposition of theNe54 case into the various
proton-neutron components is also shown in Fig. 3. T
(0pp0hp , 4pn4hn! and its proton counterpart carry ver
little weight here, while the (2pp2hp , 2pn2hn! component

FIG. 3. Decomposition of theYNe54 into its particle hole com-
ponents, and a comparison of the fullYNe54 generated from SMMC
to that obtained from Eq.~1!. The fit corresponds togeff

52.6 MeV21.
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of Y4 carries the most weight. As expected, in allNe cases
the largest component ofYNe

is the one in which the numbe
of excited neutrons equals the number of excited protons

Finally, we present our result for the calculation ofrNe

derived by usingZNe
(b) in Eq. ~5! andENe

from Eq. ~10!.

The natural log ofrNe
is shown in Fig. 4 for theNe51 –6

excitations. We also include in the figure the total state d
sity as a function of the excitation energy in the system. T
saddle-point approximation breaks down in regions wh
there are very few states, which makes it difficult to descr
well-separated states in the low-lying spectrum (E*
,3 MeV) for the full density or for the individual exciton
densities. We also propagated our statistical error b
through the calculation ofrNe

, but, as can be seen, they a

very small except in the case of theNe51 excitons. Note
that the majority of states, for example atE* 525 MeV, are
Ne54 states, while atE* 535 MeV theNe55 states con-
tribute most. This localization in excitation energy of exc
tons was reflected in our earlier discussion of the behavio
YNe

. Interestingly, theNe51 density of states begins in en

ergy slightly above 2p2h state density. Recall that exper
mentally the first excited state of40Ca is a 01 2p2h state~at
3.3 MeV!, and that the first negative parity state~a 32) oc-
curs at a slightly higher energy of 3.7 MeV. Our Hamiltonia
fairly closely gives the correct relative starting energies
these two exciton configurations, although, due to the bre
down of the saddle-point approximation for low state den
ties, we cannot precisely determine the excitation energy
the first excited 01 level. We also note an interesting pairin
effect that shows up in the partial densities. Note that
Ne51 state density starts about 0.6 MeV above theNe52
case. TheNe53 state density begins approximately 2 Me
above theNe54 case. This is a manifestation of pairing
the system. It takes more excitation energy to produce an
particle-hole excitation than it does to produce an ev

FIG. 4. Calculated partial densities of statesrNe
(ENe

) for Ne

51, . . . ,6, using the saddle-point approximation from Eq.~11!.
Also plotted is the total state density calculated from Eq.~7!. Sta-
tistical error bars that are not visible are smaller than the symb
used.
6-4
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CALCULATION OF EXCITON DENSITIES IN THE . . . PHYSICAL REVIEW C 60 054306
particle-hole excitation since energy must be expended
break pairs for odd excitations. This effect was already
parent from the discussion of the low-temperature beha
of the YNe

, as indicated above.

IV. CONCLUSION

We have discussed in this article how one may obt
information on particle-hole excitations using SMMC met
ods for calculations of a nuclear system. Our technique u
the ratio of the particle-hole partition function to the fu
partition function of the system. The method incorpora
exact Pauli blocking, nonequidistant single-particle energ
and gives the exact partial densities for a given nuclear
fective interaction, within statistical errors. It also has a we
defined energy scale. One drawback of the present calc
tion is that the space size is limited to two major oscilla
shells, although this can be rather easily overcome. The
jection operator introduced in this may be applied in a
Monte Carlo technique where ratios of partition functions
needed. Our results also indicate that the effectiveg param-
eter used in Eq.~1! should be reduced by approximately 22
to account for the inclusion of the two-body interactio
.
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which acts to correlate the nucleus beyond the simple me
field or pairing prescription.

The method we have described here could be further
vanced in two ways. One may increase the model space u
thus allowing for a broader range of energies and excita
modes to be explored. The method is also applicable
mp-nh excitations if we extend our studies to open-sh
nuclei such as, e.g.,42Ca. This may be pursued in futur
work.
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