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Calculation of exciton densities in the shell-model Monte Carlo method
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We develop a shell-model Monte Carlo method to calculate densities of states with varying éxaitarte-
hole) number. We then apply this method to the doubly closed-shell nud®s in a full 0s-1d-0f-1p
shell-model space and compare our results to those found using approximate analytic expressions for the partial
densities. We find that the effective one-body level density is reduced by approximately 22% when a residual
two-body interaction is included in the shell-model calculati@®0556-28189)04010-9

PACS numbd(s): 21.10.Ma, 21.60.Ka, 21.60.Cs

[. INTRODUCTION A further difficulty with the simple formula is that the
residual two-body interaction, which is present beyond the
Particle-hole, or exciton, level densities enter into the denuclear mean field, and which includes important contribu-
scription of partial decay rates in nuclear preequilibriumtions beyondJ=0 pairing, is not incorporated. While some
emission[1-3]. These level densities have been modeledporogress has been made to approximate the effects of the
using analytic expressiornid,5] that describe nuclear excita- residual interactioi11] on the partial level densities, no in-
tions in terms of the number of particlep, and holesh  teracting shell-model calculations have been performed in
measured from the Fermi surface, with the exciton numbelarge model spaces that would indicate the effect of the two-

Ne=(p+h)/2. body interaction on the single-body density paramgtaror
For a single species of particles, Williarfts| derived an  have there been any partial density-of-state calculations in
expression for the partial density of states given by the interacting shell model.

In this paper, we describe calculations that study the ef-
fects of the residual two-body interaction on the partial level
(gE—G)2Ne™1 densities, and present results for partial level densities in
pNe(E):gm, (1)~ “%Ca. Our approach is to study a related quantity(B),
ST which is the ratio of the particle-hole partition functions
Zn (B) to the full partition functionZ,(8), as a function of
whereE is the excitation energy measured above the ground,[-hée inverse temperatur@ (measured in MeV?) in the sys-
state configurationg is the single-particle density of states, tem. We perform our calculations in a fullsold-0f-1p

and ?/g 2plays the role of an effective P_auli energy w'(Eh_ model space using shell-model Monte CafBMMC) tech-
=(p*+h%)/4+(p—h)/a+h/2. There exist more compli- i es[12,13, and an interaction that describes reasonably
cated expressions that distinguish between protamith o) the Jow-lying spectral properties of nuclei in tse-fp
single-particle densityg,) and neutrons d,) in & given  raqign[14]. We will compare our results with those obtained
nucleus, but we will not quote them here. In the most naiveqm £q. (1) and its proton-neutron counterparts. Finally, we
picture, a uniform spacing of single-particle statess as- | show partial densities of states for several exciton num-
sumed, in which case the single-particle level densitg i pers |n Sec. II, we give an overview of our calculational

=1/d, measured in units of MeV:. method. We present results in Sec. Ill, and conclude with a
Equation (1) and its neutron/proton counterpart suffer e summary in Sec. IV.

from several deficiencies including the assumption of an un-
limited number of single-particle states, an inexact treatment
of the Pauli principle, and the assumption of a uniform

single-particle level spacing. Extensions to the basic model
that ameliorate some of these effects have also been pursued.Investigations into both ground-state and thermal proper-
As examples, we mention Bogiliat al. [6] in which the ties of nuclei have been described using the SMMC tech-
energy dependence of the single-particle level spacing wasique[12]. This method offers an alternative description of

included in a general way; using the equidistant singlenuclear structure properties in the shell-model context that is
particle picture, Kalbach7] and Zhang and Yang8] con-  complementary to direct diagonalization. SMMC is designed
sidered Pauli principle corrections to the state densities; anth give thermal or ground-state expectation values for vari-
De and Hud9] considered the effects of pairing in addition ous one- and two-body observables. Indeed, for larger nuclei,
to the Pauli blocking on the state densities. These effectSMMC may be the only way to obtain information on the

were combined and extended to nonuniform level spacingthermal properties of the system from a shell-model perspec-
by, for example, Harangozet al.[10]. tive. In this method, we make use of the imaginary time

II. CALCULATION OF EXCITONS IN SMMC
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many-body propagatd}i =exp(— ,BI:|) to calculate the expec- (E)= expS)
f[atlon vaIueAs. For ex?mple, the excrEat|0n gnergy of a nucleus pLE)= \/m
is E(B)=(H(B))—(H(x»)), where{H(«=)) is the ground-
state energy. In order to find the excitation energy of a dE
nucleus with particle numbek, we must then calculate S=BE+InZ(B); B *C=- B’ (7)
.. TrP,UH Tr,UH In this expressiorC is the heat capacity of the system.
(H)= Tre, 0 ' TrAfJ ' 2 For our discussion, we stud§’Ca. The noninteracting

ground state is a filledd shell with no particles in thép
shell. Our excitons are then enumerated with respect to the
fllljed sdshell. We may excite both protons] and neutrons

?) so that Ne=(p,+h,+p,+h,)/2=N;,, where N,

where I5A= 5(N—A) projects the trace over all many-body
states in the system to those states that have the desired p
ticle number. -~ , ) (Nsd) gives the number of particles in the (sd) shell. For
Two-body terms irH are linearized through the Hubbard- xample, No=2 includes the following particle-hole
Stratonovich transformation, which introduces auxmaryexcItatlons (®,0h 2p,2h,) (1p,1lh 1p,1h,)
fields over which one must integrate to obtain physical an 2p.2h_, Op, Ohw) FTJ’rthermVore &N <”24 ;’nce at most,

swers. Sinceéd contains many two-body terms that do not 24 particles can be excited from th{d shell into thefp
commute, one must discretiiz== N;A 8. The method can be ghell.

summarized as The ratio of the partition function foN, excitons to the
R ) R full partition function for theA-particle system may be found
Za=TraU=Traexp — BH)—Tra[exp(— ABH) M by introducing a second number projection operator,
N; ~ N ~
N D[U]G(U)TrArEI EXF[A,BE(O'n)], (3) I:’Ne_ 5(Nsd_ Nsd)E(pr_pr)v (8)

provided thatA=Ng4+ N¢, . In reality we perform this pro-
wherea,, are the auxiliary fields at a given imaginary time- jection for both protons and neutrons simultaneously, but this
step AB (there is oneco-field for each two-body matrix- only complicates notation and will not be discussed here. We

element inH when the two-body terms are recast in qua-c@lculate the ratio of partition functions as
dratic form), D[ o] is the measure of the integrar@d( o) is

a Gaussian i, andh is a one-body Hamiltonian. Thus, the Yy (B)= _
shell-model problem is transformed from the diagonalization Ne Zx(B)  Tr |5AU ’
of a large matrix to one of large dimensional quadrature.

Dimensions of the integral can reach up tS 1@ systems of Therefore,ENeYNe(,B) =1 which we use as a convenient nu-
interest, and it is thus natural to use Metropolis random-walkmerical check. We also extract the energy of the particle-hole
methods to sample the space. Such integration is most efféxcnauonsEN as

ciently performed on massively parallel computers. Further

Zn(B) TPy U

(€)

details are discussed in Koongt al. [12]. dinYy (B)
In order to obtain density-of-state information, we calcu- En (B)=— —————+E(B). (10)
late in SMMC the expectation of the energy and integrate the ¢ ds

thermodynamic relationship We may now employ Eq.7) for the partial density of states:

dIinZa(B)

E(p)=— — 2 @ exXp(Sy,)
dB E)= ————,
pn (E) 276 7Cr,
to obtain
-2 dENe
nZy )=~ s EB)-NZN0. @ T AENHINEINBY P Cnem g (D

_ _ Here,BNe=ﬁNe(ENe) is determined by inverting the relation
yvhereZA(O)=TrAl is the total number oA-particle _states En =En (By), andCy_is the heat capacity for the particu-
in the systemZ,(B) and p(E) are related by the inverse | e .e e e

ar exciton number.
Laplace transform

- Ill. RESULTS
ZA(B)=f_deeXIO(—BE)p(E), (6)

We now turn to a description of out’Ca calculation in
the 0s-1d-0f-1p shell-model space. Our starting point for
which can be solved in a saddle-point approximation to yieldan appropriate interaction is taken from Rgf4]. In order to
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obtain a microscopic effective interaction, we begin with a 10

free nucleon-nucleon interaction which is appropriate for a
description of low-energy nuclear structure. The choice made
in Ref.[14] was to work with the charge-dependent version
of the Bonn nucleon-nucleon potential model as found in
Ref. [15]. Standard perturbation techniques, as discussed ir
Ref.[16], were employed to obtain an effective interaction in s
the full sd-fp model space. Finally, the interaction was gmw L
modified in the monopole terms using techniques developec®

15 |

by Zuker and co-workergl7,18.

SMMC calculations for realistic interactions typically .
have a Monte Carlo sign problem which can be overcome by ' T
an extrapolation technique discussed in R&f], and suc-
cessfully applied to thed-fp region in[14]. This extrapo-
lation technique was also applied to thermal properties of %

nuclei [20], but the statistical error inherent in the energy 6 2 4 6 & 0 12 14 6 18 20 2 24

upon extrapolation prevents a full description of the density

of states unless one has good justification to spend the com- FIG. 1. The number of states as a function of the exciton num-
putational resources to reduce the statistical error. It was reser for the noninteracting calculation. SMMC results, filled circles;
cently demonstrated that a good reproduction of the experiexact, open circles

mental density of states could be obtained for nuclei in the

0f1p-0gg, shell[21] using a pairing-plus-quadrupole inter- fitting were found to give coefficients that cause Monte Carlo
action that was free from the sign problem. In this work, wesign problems. Thus our negative parity states are probably
fit our realistic two-body interaction discussed above to dess well described by this choice of Hamiltonian.
pairing-plus-multipole interaction given by We use the results of the noninteracting case to demon-

H2:gO’n-l’:\)gol’:\)oo_k4’77-2 XV:Z (_)#QI/MQV*M, 5
v 3

strate the validity of our technique for finding the partial
partition functions. In order to show this, we calculate by
enumeration the total number of many-body states for each
(12 N.. This can most easily be done by using Eg). to find
ZA(B=0). We also findYNe(O) by an extrapolation from

where :: denotes normal ordering afy,, Q,, are pair  small, but finite,3. We show in Fig. 1 our results for the
and quadrupole operators given by number of states as a function of the exciton number. The

SMMC results are compared to an exact counting of the

ﬁ{ﬂ:% (—)Ib(ja”vajb)[éLX éjﬁrb]w' number of states of a given exciton number. The agreement

N 1

is excellent. The total number of calculated SMMC states is
3.834x 10'® as compared to the exact value of 5.698)*.
We show in Fig 2 a comparison of the noninteracting

_ R v ; o
Quu=- I ; Ualr"Iliola) xa) 1. (13 (eft) and interactingright) calculation. TheN,=0 calcula-

In Eq. (13) a=nlj denotes a single-particle orbit arii;im

tion gives some indication of the thermal freezeout of the
ground state. The noninteracting calculation requires fairly
large B to fully reach the ground state, since the first excited

=(—)""a_p,. We fit go and thex=2,4,6 multipoles t0  state is only 0.64 MeV above the ground state. We pursued
the realistic interaction frorfil4]. A least-squares fit gives an  these calculations t8=4.0 MeV 2, for which(H) is 0.139

interaction Wh|Ch indeed haS a gOOd Monte Carlo Sign. AfterMeV from the ground-state Va'ue_ Since |t takes more ther-
some minor adjustments to the pairing strength in order tgna| energy to overcome the pairing interaction and to excite
obtain a better gap between ground states and first excitgglicleons from the ground-state configuration, the interacting

states in several light nuclei, we

set: go=-—0.63 MeV, x,=—0.047 MeVfim?* y, 1.0

=—0.001 MeV fm 8, andys=—

(Large enhancements of tda|r”|b) matrix elements as
increases is the reason for the decrease jnvalues, al- 06t
though contributions to two-body matrix elements arising »*
from the higher multipoles is significanOur single-particle

energies are 0.0, 5.36, 0.64, 8.

MeV for the Odg;, 0ds, 1S90,

use the following parameter

0.17x10°% MeV fm~—12

0.8

04 -

21, 14.21, 10.14, and 12.0 o2}
O0f712, Ofs2, 1pgpp, and

0.0

3.0

1p,,, orbitals, respectively. We do not correct for center-of- "o
mass motion in these calculations, although such a contami-

nation to theYy_should be fairly small in this system. Fur- g1 2. A comparison of the interactirigght) and noninteract-

thermore, we do not include odd multipoles which uponing (left) functionsYy_for Ne=0, . .. 6.
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FIG. 3. Decomposition of th¥y__, into its particle hole com-

) FIG. 4. Calculated partial densities of stajgs (Ey ) for Ng
ponents, and a comparison of the Mu,e:4 generated from SMMC AP

‘ ) =1,..., 6, using the saddle-point approximation from E4.l).
to that obt?lned from Eq.(1). The fit corresponds toder  Also plotted is the total state density calculated from &o. Sta-
=2.6 MeV " tistical error bars that are not visible are smaller than the symbols

. . o used.
curves representing differefd, excitations are compressed

in B relative to the noninteracting curve€lhe excitation of Y, carries the most weight. As expected, in |l cases
energy of the first excited state is approximately 3.5 MeV. the largest component CYfN is the one in which the number
However, the same features remain. Clearly, as thermal €15t excited neutrons equals the number of excited protons.

ergy is d_egreased, a\_r}ﬁ becomes Iarge(temperatgre de- Finally, we present our result for the calculation mf§
creasep it is more difficult to produce large particle-hole e

excitations in the system. The converse is also true at highdlerived by usingZy () in Eq. (5) andEy, from Eq. (10).
temperatures, where it is difficult to obtain orf§z=2, for ~ The natural log ofpy_is shown in Fig. 4 for theNe=1-6
example. In the interacting case, the low-temperature tail oéxcitations. We also include in the figure the total state den-
the No=2 exciton tends to spread further ghthan does the sity as a function of the excitation energy in the system. The
Ne=1 tail. As we shall see, this has direct consequences osaddle-point approximation breaks down in regions where
the partial densities of states. Furthermore, sincehere are very few states, which makes it difficult to describe
2N Yn (B)=1, we can interpre¥y_as a measure of likeli- well-separated states in the low-lying spectrunE™ (
hood to findN, excitons at a given temperature. Since the<3 MeV) for the full density or for the individual exciton
excitation energy is a monotonic function of the temperaturedensities. We also propagated our statistical error bars
one expects the density of states to be dominated by excitorigrough the calculation géy , but, as can be seen, they are
of a particular type in a given energy range. As we shall seevery small except in the case of tidy=1 excitons. Note
this is indeed the case. that the majority of states, for exampleEt =25 MeV, are

We compare our results to those obtained from @¢9. N,=4 states, while aE* =35 MeV theN.=5 states con-
and its proton/neutron equivalent by adjustipgo obtain a  tribute most. This localization in excitation energy of exci-
fit to the calculatedry_curves. This is demonstrated for the tons was reflected in our earlier discussion of the behavior of
Ne=4 curve in Fig. 3. We fit each of our SMMC curves to Yn,_. Interestingly, theNe=1 density of states begins in en-
Eq. (1) for an effective one-body density parame@f;  ergy slightly above p2h state density. Recall that experi-

gp+ g, [22], and the effective level density parameter is mentally the first excited state 8fCa is a 0" 2p2h state(at
a=(m?/6)ge. A uniform Fermi gas yieldsa~A/15 3.3 MeV), and that the first negative parity std@3~) oc-
(=2.67 forA=40) MeV %, a harmonic oscillator potential curs at a slightly higher energy of 3.7 MeV. Our Hamiltonian
yields a~A/10 MeV ! (=4.0), and the empirical value is fairly closely gives the correct relative starting energies for
A/8 MeV 1. We obtaina=5.43 (g.s=3.3) MeV !forthe these two exciton configurations, although, due to the break-
noninteracting case, ara=4.27 (g.=2.6) MeV !inthe down of the saddle-point approximation for low state densi-
interacting case, rather independésithin 0.02 MeV 1) of  ties, we cannot precisely determine the excitation energy of
N.=2. For N,=1 the comparison cannot be made as thethe first excited O level. We also note an interesting pairing
Blann-Williams formula breaks down. Thuges is reduced effect that shows up in the partial densities. Note that the
by 22% in the presence of an interaction. N.=1 state density starts about 0.6 MeV above lihe-2

The decomposition of th&l;=4 case into the various case. TheN,=3 state density begins approximately 2 MeV
proton-neutron components is also shown in Fig. 3. Theabove theN.=4 case. This is a manifestation of pairing in
(Op,0Oh,, 4p,4h,) and its proton counterpart carry very the system. It takes more excitation energy to produce an odd
little weight here, while the (8,2h,, 2p,2h,) component particle-hole excitation than it does to produce an even
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particle-hole excitation since energy must be expended tahich acts to correlate the nucleus beyond the simple mean-
break pairs for odd excitations. This effect was already apfield or pairing prescription.

parent from the discussion of the low-temperature behavior The method we have described here could be further ad-

of the Yy, as indicated above. vanced in two ways. One may increase the model space used,
thus allowing for a broader range of energies and excitation
IV. CONCLUSION modes to be explored. The method is also applicable to

mp-nh excitations if we extend our studies to open-shell

We have discussed in this article how one may Obtairhudei such as, eg‘,‘ZCa This may be pursued in future
information on particle-hole excitations using SMMC meth- \york.

ods for calculations of a nuclear system. Our technique uses
the ratio of the particle-hole partition function to the full
partition function of the system. The method incorporates
exact Pauli blocking, nonequidistant single-particle energies,
and gives the exact partial densities for a given nuclear ef- This work was supported in part through Grant No. DE-
fective interaction, within statistical errors. It also has a well-FG02-96ER40963 from the U.S. Department of Energy
defined energy scale. One drawback of the present calcul4dDOE). Oak Ridge National Laboratol RNL) is managed
tion is that the space size is limited to two major oscillatorby Lockheed Martin Energy Research Corp. for the U.S.
shells, although this can be rather easily overcome. The prddepartment of Energy under Contract No. DE-ACO05-
jection operator introduced in this may be applied in any960R22464. We also acknowledge support from the U.S.
Monte Carlo technique where ratios of partition functions areNational Science Foundation under Grant Nos. PHY-
needed. Our results also indicate that the effeagymram- 9722428, PHY94-12818, and PHY94-20470. Computational
eter used in Eq.1) should be reduced by approximately 22% resources were provided by the U.S. DOE National Energy
to account for the inclusion of the two-body interaction Research Scientific Computing Center.
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