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Microscopic descriptions of superdeformed bands with the Gogny force:
Configuration mixing calculations in the A;190 mass region
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A quantal HamiltonianĤcoll expressed in terms of the five collective quadrupole coordinates is built for
eight nuclei (190,192,194Hg, 192,194,196Pb, and196,198Po! which display secondary minima at large elongation in

their potential energy surface. These surfaces as well as the tensor of inertia enteringĤcoll are deduced from
constrained Hartree-Fock-Bogoliubov calculations based on Gogny force. A two-center basis method em-

ployed to solveĤcoll is presented. The stability of predicted collective spectra is discussed. Yrast and vibra-
tional p51 superdeformed~SD! bands are predicted together with collective bands at normal deformation
~ND!. The predicted yrast SD bands at low spin display properties which compare favorably with experimental
information. Quite good agreement is in particular obtained for the isomeric energies of nuclei for which the
link between SD and ND levels is experimentally known. Among the excited SD bands which are here
predicted, those built on top ofb vibrations are lower in energy. Only for the196,198Po isotopes are these
excitation energies falling in the low energy rangeE;0.8–1.0 MeV. These properties should favor an experi-
mental discovery ofb-vibrational SD bands in theA;190 mass region.@S0556-2813~99!03709-7#

PACS number~s!: 21.60.Jz, 21.60.Ev, 21.10.Re, 27.80.1w
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I. INTRODUCTION

The discovery of fission isomers@1# in the early 1960s has
opened a broad field of experimental and theoretical stu
focusing on the structure properties of nuclei at large el
gation. Shell effects stand at the origin of these phenom
as shown by Strutinsky using the celebrated shell correc
method@2#. Since that time, the Strutinsky method has be
used in various related topics, among which are shape is
erism in medium and heavy nuclei@3–6#, and shape coexist
ence and transition@7,8#.

A major success of the shell correction method imp
mented within the Cranking model has been the predic
and interpretation of superdeformation~SD! phenomena in
fast rotating nuclei@9–17#. Since the discovery of SD state
at high spins in152Dy @18#, many yrast and excited SD band
have been observed, not only in theA;150 mass region bu
also forA;60, 80, 130, 140, and 190@19#. These measure
ments reveal many facets of SD nuclear properties at h
rotational frequencies, which are reviewed in Refs.@20–24#.

This database also serves as valuable information
challenging self-consistent mean field predictions, amo
which are quadrupole moments, moments of inertia, and
lective as well as quasiparticle~qp! excitations at superde
formed shapes. In this respect, theA;190 region is of spe-
cial interest since SD states have been observed dow
quite low spin~for instanceI56 for the yrast SD band o
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194Pb @25#!. That I50 shape isomers have so far escap
observation in this mass region is probably related to
specific character of the fusion-evaporation method e
ployed in such experiments. However, nonrotating SD sta
should exist in theA;190 region because the strong sh
effect at major-to-minor axis ratioa : b;1.7 is always pre-
dicted by self-consistent~and phenomenological! mean field
approaches, whether or not the SD shapes are rotating.

Various self-consistent mean-field approaches have b
used for describing and predicting SD state properties. Th
approaches form two distinct families. The first one includ
the constrained HF1BCS and HFB methods implemente
with Skyrme@26–30# or Gogny force@31–33#, as well as the
relativistic mean field~RMF! theory @34,35#. Calculations
based on these approaches provide potential energy sur
from which excitation energies of nonrotating SD states
estimated@6,36–41#. More complete predictions for both
yrast nonrotating states and phonon excitations at SD sh
in the A;190 region are obtained in the context of the ge
erator coordinate method~GCM!. This method has been ap
plied to the case where one collective coordinate is con
ered@42#. The GCM problem for two collective coordinate
has also been solved for octupole modes@43#. Moreover, a
two dimensions GCM approach for quadrupole modes
been applied to superdeformation at no spin in the actini
@44#. This model may be extended to include rotation us
the Gaussian overlap approximation~GOA!. Results of
GCM1GOA calculations for the five collective quadrupo
coordinates are published in Ref.@45# for normal deformed
nuclei and in@46,47# for SD properties of mercury isotopes
The second family includes all the HFB cranking approac
which treat self-consistently rotational motion but igno
©1999 The American Physical Society01-1
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coupling to other collective modes of excitation. Se
consistent cranking calculations have been performed in
A;190 SD region using Skyrme forces complemented w
various treatments of the pairing field@48–50#, as well as
with Gogny force@51–53#. Cranked RMF calculations hav
also been carried out in theA;150 SD region@54#.

Our GCM1GOA calculations@46,47,52# based on the fi-
nite range, density dependent D1S Gogny force@31–33#
have been extended to cover even-even nuclei of thA
5190– 200 region and predict systematic properties of th
yrast and collective quadrupole SD bands. To render
study as complete as possible, here we also present a de
account of the microscopic ingredients and original meth
used to produce our predictions. Furthermore, these sys
atic predictions now cover the spin rangeI 50–22 for all
nuclei but194Pb for which this range is extended toI max530.
New numerical methods as well as moments of inertia n
determined with a level of approximation superior to th
conveyed by the Inglis-Belyaev formula@55,56# are em-
ployed, which leads to an improvement over our previo
predictions@46,47#. First, a linear relationship between elo
gation coordinateb and mass quadrupole moments is im
posed. This brings in no new physics, but leads to a scale
b which significantly differs from that shown for example
Fig. 1 of Ref.@46#. With this new definition, the SD potentia
minima of Hg isotopes get shifted forb;0.55 to the presen
value b;0.65 ~see text!. The main advantage of adoptin
the above-mentioned linear relationship is to release
small deformation approximation employed previously in t
calculation of vibrational collective masses. As a result,
relative excitation energies of predicted SD bands get lo
ered at most by a few hundred of keV. Finally, significa
improvements in our collective model are obtained throu
scaling the Inglis-Belyaev moments of inertia to those cal
lated in the manner of Thouless-Valatin@57#, as explained in
the main text. For all these reasons, the present calcula
are brand new. They deal not only with the190,192,194Hg but
also with the192,194,196Pb and196,198Po isotopes.

The present work is organized as follows. In Sec. II
presentation of our configuration mixing method is offere
It includes a discussion on the collective masses, momen
inertia, zero-point energies and overlap kernels used as
puts to a collective HamiltonianĤcoll in five dimensions. In
Sec. III ~and the Appendix!, we present a two-center bas
method to solveĤcoll , discuss the numerical stability o
eigenstates predicted for spins up toI530, and explain how
E2 reduced transition probabilities are calculated for int
and inter-SD band transitions. Section IV is devoted to
single particle, pairing, and potential properties in the vic
ity of SD potential minima. Section V includes an analysis
the SD level geometric properties, which leads to the ide
fication in our spectra of yrast and one-quadrupole-phon
b andg SD bands. Finally, the predicted excitation energi
transition quadrupole moments, and kinematic moments
inertia for yrast SD bands are compared with available m
surements in Sec. VI. Here are also discussed dynam
properties of theb andg SD bands, and implications of ou
predictions regarding whether or not these excited ba
05430
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might be observed. Large scale cranked HFB calculati
have also been performed to high rotational frequency
kinematic and dynamic moments of inertia relevant to
Hg, Pb, and Po SD nuclei. These results will be presente
a forthcoming paper.

II. CONFIGURATION MIXING METHOD

The GCM method has been used extensively to treat v
ous aspects of dynamical phenomena ever since the pion
ing work of Griffin, Hill, and Wheeler@58#. This method
complemented with the GOA assumption is subject to
tailed discussions in@59#. Here, we only give the main step
to establish our notations.

A. Building a collective Hamiltonian Ĥcoll in five dimensions

The correlated statesuC i& ~i.e., the ground state as well a
excited states! of a nucleus are sought as

uC i&5E f i~q!uFq&dq, ~1!

where uFq& is the quasiparticle~qp! vacuum of the many-
body nuclear HamiltonianĤ,q a set of collective coordi-
nates, andf i(q) the superposition amplitude for thei th
eigenstate. This amplitude is solution of the Griffin, Hill, an
Wheeler equation

E @H~q,q8!2EiN~q,q8!# f i~q8!dq850, ~2!

in which N(q,q8)5^FquFq8& is the overlap kernel,
H(q,q8)5^FquĤuFq8& the Hamiltonian kernel, andEi the
expectation value

Ei5
^C i uĤuC i&

^C i uC i&
. ~3!

Solving Eq. ~2! has been accomplished recently in o
dimension (q05r 2Y20) and two dimensions „(q0
5r 2Y20, q35r 3Y30) and @q05r 2Y20, q25r 2(Y22
1Y222)#… using Skyrme forces@42,44#. In the present work,
our aim is to treat theq0 , q2 and rotational degrees of free
dom. We therefore have to deal with the five quadrup
collective coordinates. In this context, solving Eq.~2! is a
formidable task which has been alleviated by using
Gaussian overlap approximation. In the GCM1GOA method
@60–62#, it is assumed that the overlap kernelN(q,q8) is a
Gaussian shape. A second order expansion over the no
cality in the coordinates (q2q8) leads to transforming Eq
~2! into a second order differential equation which has
character of a collective HamiltonianĤcoll . The eigenvalue
problem to solve now reads

Ĥcollgi~q!5Eigi~q!, ~4!

where
1-2
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MICROSCOPIC DESCRIPTIONS OF SUPERDEFORMED . . . PHYSICAL REVIEW C60 054301
g~q!5E @N~q,q8!#1/2f ~q8!dq8 ~5!

and

Ĥcoll52
\2

2 (
i , j

]

]qi
@M 21~q!# i j

]

]qj
1V~q!. ~6!

In Eq. ~6!, V(q) is the potential energy surface~PES!

V~q!5V~q!2DV~q!, ~7!

where

V~q!5H~q,q!, ~8!

and whereDV(q) is the zero point energy~ZPE! stemming
from the expansion ofH(q,q8) over nonlocality. Further-
more,Mi , j (q) is the tensor of inertia.

Going a step further, we reexpressĤcoll in terms of the
intrinsic quadrupole coordinatesq0 andq2, and Euler angles
V5(u1 ,u2 ,u3). Assuming a local approximation in thes
angular coordinates, the tensorMi j now can be defined
through its components:~i! the collective massesBi j (q0 ,q2)
with ( i , j )5(0 and 2) and ~ii ! the moments of inertia
Jk(q0 ,q2) wherek refers to the principal axes (k51, 2, and
3!. In this context, the physical content ofĤcoll is clear:Ĥcoll
describes rotation, quadrupole vibrations, and coupling
tween these collective modes. This Hamiltonian is quanta
nature. Its structure is formally identical to that consider
years ago by Kumar and Baranger@63#.

For the kinetic energy term, the expansion over nonloc
ity leads to mass parameters which we call GCM1GOA
masses. Whether or not to use these masses inĤcoll, known
to be systematically too weak, has been for years a con
versial debate running among the community@62,64–66#.
This issue is related to that Eq.~1! is too restrictive a defi-
nition of physical states, which therefore should also be
tended to includep, the conjugate coordinate ofq, as sug-
gested in particular by Villars@65#. We did not perform this
extension. Instead, we have adopted the view@59# that the
collective Hamiltonian~6! is formally identical to a quan-
tized adiabatic time dependent Hartree-Fock-Bogoliub
~ATDHFB! Hamiltonian. This semiclassical approach whi
preserves the formal symmetry between the collective co
dinateq and its conjugatep, is known to produce the exac
mass parameter in the particular case of translation.

Here, the ATDHFB theory is employed in its perturbati
limit, i.e., the so-called Cranking approximation, to calcula
the tensor of inertia. However, for the rotational degrees
freedom, the perturbative expression for the moment ine
known as the Inglis-Belyaev cranking formula@55,56#, has
been corrected to include in an approximate way
Thouless-Valatin~TV! dynamical rearrangement@57#. The
TV moments of inertia are calculated in the fully se
consistent dynamical~i.e., cranked HFB! approach to the ro-
tational motion in the vicinity of spin zero. Furthermore, t
treatment of vibrational mass parameters is restricted to
Cranking expressions stemming from the standard linear
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sponse theory@59#. Finally, consistent perturbative expre
sions are naturally used to evaluate the ZPE terms in
potential. The explicit forms of the Cranking series for t
vibrational kinetic energy and the ZPE terms are given
Secs. II B 4 and II B 5.

B. Potential and tensor of inertia

The tensor of inertia and potential enteringĤcoll are cal-
culated using the constrained Hartree-Fock-Bogoliub
~CHFB! method.

1. Constrained HFB method

The CHFB method consists in applying the variation
principle to the energy functional obtained for the qp vacu
Fq , i.e.,

d^FquĤ2l0Q̂02l2Q̂22lZẐ2lNN̂uFq&50. ~9!

In this equation,~i! Ĥ is the nuclear Hamiltonian in which
the potential component is defined using the D1S Gog
effective force@31–33#, ~ii ! Q̂0 and Q̂2 are external field
operators generating axial and triaxial quadrupole deform
tions, respectively, and~iii ! Ẑ andN̂ are the proton and neu
tron numbers operators, respectively. The Lagrange mult
ers$l i% are determined from the constraints

^FquN̂uFq&5N, ^FquẐuFq&5Z, ^FquQ̂i uFq&5qi .
~10!

The system of equations~9!, ~10! is numerically solved at
each deformationqi by expanding the single particle state
into triaxial harmonic oscillator bases as explained in R
@67#. Here, the adopted bases include twelve major shell

2. Deformation energy surface

Once the constrained HFB problem has been solved,
deformation energy surfaceV(q) entering Eq.~7! is calcu-
lated as

V~q!5^FquĤuFq&, ~11!

whereq stands for the set (q0 ,q2). The quadrupole coordi-
natesq0 andq2 are directly related to the polar Bohr defo
mationsb andg through the relations

b5Ap

5

Aq0
213q2

2

A^r 2&
~12!

and

g5arctanA3
q2

q0
. ~13!

Cartesian coordinates are also employed in our work; t
are defined as

a05b cosg, a25b sing. ~14!
1-3
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A and ^r 2& are the nuclear mass and mean square radiu
the mass distribution, respectively. To makeb linearly de-
pendent upon quadrupole moment,^r 2& has not been evalu
ated explicitly in Eq.~12!. In contrast with our earlier works
@46,47#, here we adopt the liquid drop model estimate

^r 2&LD5
3

5
~r 0A1/3!2, ~15!

with r 051.2 fm. With this definition,b gets stretched a
compared with the earlier values in Refs.@46,47# and now
transforms into a scaled mass quadrupole moment. Furt
more, the energy surfaces~7! and ~11! may be expressed in
terms of the coordinates~12!–~14! as either V(b,g)
@V(b,g)] or V(a0 ,a2) @V(a0 ,a2)].

3. Moments of inertia

For nuclei rotating around thek axis, the moment of in-
ertia may be obtained from solving the cranked HFB eq
tion

d^fq
vu Ĥ2lZẐ2lNN̂2v Î kufq

v&50, ~16!

where Î k is the k component of the angular momentum o
erator andv the angular velocity. Introducing the notatio

^ Î k&v5^fq
vu Î kufq

v&, the moment of inertia is obtained as

J k
TV5 lim

v→0

^ Î k&v

v
. ~17!

The label TV in Eq.~17! is intended to mean that the mo
ment of inertia contains the so-called Thouless-Valatin
namical rearrangement contributions@57#. These contribu-
tions are neglected if a perturbative solution of Eq.~16! is
sought. In this approximation, the moment of inertia th
reduces to the standard Inglis-Belyaev~IB! expression
@55,56#

J k
IB52\2(

mn

u^mnu Î kuF&u2

~Em1En!
, ~18!

wherem and n are quasiparticle~qp! states created on th
staticquasiparticle vacuumF5fv50, and whereEm andEn

are qp energies.
As is well known@57#, the IB definition~18! leads toJ k

IB

values which are too small. On the other hand, solving
~16! at low v on a lattice covering the whole deformatio
space represents a considerable numerical task which is
of the scope of the present work. We have therefore reso
to an approximate evaluation of theJ k

TV moments of inertia
by scaling theJ k

IB values calculated all over the (b, g)
plane, namely, assuming

Jk5J k
IB~11a!, ~19!

wherea is a constant number estimated as follows. First,
calculate the moment of inertia defined through Eqs.~17!
and ~18! at a few values in the deformation space and fo
05430
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the ratioRk(q) 5J k
TV(q)/J k

IB(q). An illustration is shown
for 194Pb in Fig. 1 whereJ X

IB ~solid curve!, J X
TV ~dotted

curve!, andRX ~dot-dashed curve! are calculated as function
of the axial deformationb. These calculations cover defo
mation values fromb50.26 tob51.05 where the deforma
tion energyV(b) @see curve labeledEHFB in Fig. 1~a!# shows
an extremum~fission barrier!. As can be seen, the momen
of inertia take on increasing values with growing deform
tion, except near theb values for which the energyEHFB
displays secondary minima~i.e., the superdeformed and hy
perdeformed minima!. These shoulders observed in theJX’s
are directly related to minima in the neutron or proton pa
ing energy. The ratioRX varies slowly with increasing de
formation. Its values@scale shown at the right-hand side
Fig. 1~b!# are in the range 1.34–1.46 and reach a minim
RX51.34 at superdeformation. These results show that
dynamical Thouless-Valatin correction to the perturbat
expressionJX

IB remains almost independent of deformati
and does not introduce significant new structures in the
havior of the moments of inertia. The same calculation h

FIG. 1. 194Pb isotope.~a! HFB energy~MeV! as a function of
axial deformationb; ~b! moments of inertiaJ X

IB ~solid curve! and
J X

TV ~dotted curve!, and ratioRX5J X
IB/J X

TV ~dashed-dotted curve!
as functions ofb. The left-hand side scale is for moments of iner
and that for the ratio is shown as the right-hand side of the figu
The valueRX51.32 is marked by the solid line.
1-4
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been repeated for the other nuclei of present interest.
results shown in Fig. 2~crosses! indicate thatRX is nearly
constant at superdeformed shapes through theA5190– 198
region. On the basis of these studies, the moments of in
Jk(q) entering the collective Hamiltonian~6! are calculated
with the minimal prescription

Jk~q!5~1.0010.32!J k
IB~q!. ~20!

4. Collective masses

For a vibrational degree of freedom associated with a c
lective variable of generic nameq5^Q̂& and collective ve-
locity q., the ATDHFB equation to solve writes

d^fq
q̇u Ĥ2lZẐ2lNN̂2lQ̂2q̇P̂ufq

q̇&50. ~21!

Assuming an adiabatic path made up with the static st

Fq[fq
q̇50 @associated with the generalized density mat

Rq̇50(q) hence from now labeled asR0(q)#, the dynamical
constraintP̂ is defined at each deformationq through a direct
generalization of the Baranger Ve´néroni @64# impulsion op-
erator

P̂5 i\F]R0

]q
,R0G . ~22!

In this framework,^P& q̇5 1
2 Tr Rq̇P̂ is the classical impul-

sion from which the mass parameterBTV(q) is deduced

BTV~q!5 lim
q̇→0

^P& q̇

q̇
.

Solving Eq.~21! is a task which is in progress@68#. Here,
we have resorted to calculations based on the cranking
proximation. In this context, the parametersBi j (q) associ-
ated with the quadrupole collective coordinatesqi and qj
with ( i , j )5~0 and 2!, write @59#

Bi j ~q!5
\2

2

M23
i j ~q!

@M21
i j ~q!#2

, ~23!

FIG. 2. Rx ratio values~asterisks! calculated at SD potentia
minima for the190,192,194Hg, 192,194,196Pb, and196,198Po isotopes. The
solid line Rx 5 1.32 has the same meaning as in Fig. 1.
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M k
i j ~q!5(

mn
~Em1En!kuq̄i

mnq̄ j
mnu ~24!

and

q̄i
mn5^FquhmhnQ̂i uFq&, ~25!

with h as a quasiparticle destruction operator. In Eq.~25!,
the quadrupole operatorsQ̂i are defined as

Q̂052z22x22y2, ~26!

and

Q̂25x22y2, ~27!

and the summation~24! runs over the proton and neutron q
statesm andn.

To appreciate the range of validity of Eq.~23!, it is worth
mentioning that the cranking approximation to the mass
rameters relies upon two simplifying assumptions, name
~i! the variation]R0 /]q of the generalized density matri
along the adiabatic path is treated in a linear response
proximation and~ii ! the impulsion operator~22! thus ob-
tained is used to solve Eq.~21! up to first order inq̇, neglect-
ing the rearrangement~i.e., Thouless-Valatin! terms of the
mean field~see, e.g., Ref.@69#!. The former simplifying as-
sumption has recently been tested and found rather reli
for axial vibrations of normal and superdeformed shapes
the A;190 region@68,70#. However, this would only be a
fair statement if we were to calculate transition rates betw
ND and SD levels, which critically depend upon the tails
initial and final state wave functions. No detailed check
the latter assumption exists so far. However, previous stu
in which Skyrme forces are used without@71# and with pair-
ing field included@72# indicate that the Thouless-Valatin co
rections~i! weakly depend upon deformation and~ii ! should
increase the mass parameters by no more than 10%. S
tivity calculations here performed for194Pb show that in-
creasing the vibrational mass parameters~23! by 10% lowers
the absolute ground state energy by 120 keV and decre
the relative excitation energy of the first two SD bands by
and 18 keV, respectively. This small alteration of the p
dicted SD vibrational energy spectra suggests that the cr
ing approximation~23! is reasonable for calculating the ma
parameters.

5. Overlap kernel and zero point energy

Within the GOA approximation, the actual overlap kern
@see Eq.~2!# for any of the collective variablesqi writes

N~qi ,qj8!5expF2
1

2
Gi j ~q!~qi2qj8!2G , ~28!

whereGi , j (q) presumably displays a slow dependence up
q. Following Ref.@59#, the Gaussian widths i j (q) is
1-5
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Gi j ~q!5
1

s i j ~q!2
5

M22
i j ~q!

M21
i j ~q!2

, ~29!

where the momentsM k
i j are calculated according to Eq

~24!. OnceGi , j (q) andN(qi ,qj8) are obtained, the superpo
sition amplitudef (q) is deduced from Eq.~5! through an
inverse Gauss transform, and used to calculate electrom
netic transition rates~see Sec. III C!.

The zero point energyDV(q) includes terms originating
from the kinetic energies~i.e., rotation and vibrations! and
potential energy. It reads

DV~q!5DVvib~q!1DVrot~q!1DVpot~q!. ~30!

Since we have checked that the termDVpot(q) is small as
compared with the other twoDV components,DVpot(q) is
ignored throughout our study. The vibrational compon
DVvib(q), calculated at the same level of approximation
that for the massesBi j , writes @59#

DVvib~q!5 (
i , j 50,2

DVi j ~q!, ~31!

with

DVi j ~q!5
M22

i j ~q!

M23
i j ~q!

. ~32!

Finally, the rotational termDVrot(q) is made up with three
pieces

DVrot~q!5DV2222~q!1DV2121~q!1DV11~q!. ~33!

Each term is calculated@59# using the momentsM k
i j ~24! in

which the intrinsic components of the quadrupole opera
are

Q̂1522iyz, Q̂21522xz, Q̂2252ixy. ~34!

The potential energyV ~7! and components~31! and~33! of
DV ~30! calculated for194Hg are shown in Figs. 3~a! and
3~b! as functions of axial deformation. As can be seen,DV is
dominated by itsDVrot component~dashed curve! which in-
creases with increasingb. The net effect of consideringDV
~30! is to make deeper the SD potential landscape and
lower its minimum by 1 to 1.7 MeV depending upon th
nucleus under consideration. All the potential energy s
faces used for solvingĤcoll include the ZPE contributions.

III. SOLVING Ĥcoll

A. Expansion of eigenstates on a basis

The collective massesBi j ~23!, moments of inertiaJk

~20!, and potentialV ~7! serve to defineĤcoll ~6!. When
expressed in terms of the coordinatesa0 and a2 ~14! and
Euler anglesV5(u1 ,u2,u3), it has the Bohr Hamiltonian
form @73#
05430
g-

t
s

r

to

r-

Ĥcoll5
1

2 (
k51

3 Î k
2

Jk
2

1

2 (
m,n50 and 2

D2 1/2
]

]am
D1/2Gmn

]

]an

1V. ~35!

In this expression,Î k is thek component of angular momen
tum I in the intrinsic system acting on the Euler angles p
tion of the collective space, and

D5~B00B222B02
2 !)

k
Jk ~36!

is the metric. Furthermore,Gmn is the matrix

Gmn5~Bmn!
21, ~37!

whereBmn is a collective mass~23!. Since the massBmn and
inertia Jk parameters as well as the potentialV which all
depend upon the deformation variables (a0 ,a2) are deduced
numerically from HFB wave functions~see Sec. II!, Ĥcoll
possesses no analytical solutions. The eigenstatesuC i& ful-
filling the norm condition

^C i uC j&5E dVE C i* C jD
1/2da0da25d i j , ~38!

FIG. 3. 194Hg isotope.~a! HFB energy~labeledV) as a function
of axial deformation. The values are shifted so thatV50 at the
normal deformed minimum;~b! Zero point energies:DVrot ~dashed
curve!, DVvib ~dotted curve!, andDV5DVvib1DVrot ~solid curve!.
1-6
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MICROSCOPIC DESCRIPTIONS OF SUPERDEFORMED . . . PHYSICAL REVIEW C60 054301
and the eigenenergiesEi are obtained as numerical solution
of the equation

ĤcolluC i&5Ei uC i&. ~39!

These solutions are sought for through expanding theuC i& ’s
onto an orthonormalized set of two-center basis functions
explained in the Appendix. Briefly, the solutions of Eq.~39!
may be expressed in the (a0 ,a2) coordinates as

C IM a5(
j 51

NI

Cj
Iac j

IM ~a0 ,a2 ,V!, ~40!

where

c j
IM ~a0 ,a2 ,V!5( 8

K
Aj

IK~a0 ,a2!wMK
I ~V! ~41!

is the j th vector of the orthonormalized basis in the subsp
of angular momentumI, and where the symbol(K8 means
that the summation overK is limited to the even positiveK
values, withKÞ0 for oddI. Furthermore,~i! wMK

I (V) is the
standard, normalized linear combination of Wigner rotat
matricesD MK

I (V) and DM2K
I (V) ~see the Appendix!, ~ii !

Aj
IK(a0 ,a2) is a vibrational amplitude,~iii ! a is a label to

distinguish between eigenstates in the block of spinI, ~iv!
Cj

Ia is an expansion coefficient, and~v! NI the dimension of
the subspace of angular momentumI considered in actua
calculations.

B. Stability of collective energy spectra

A detailed presentation of the numerical method e
ployed for solving Eq.~39! is given in the Appendix.

SinceĤcoll is solved on a finite size basis, it is mandato
to check the stability of our predictions. This is performed
increasing step by step the basis size for each spin block.
basis sizeNI is directly related to the ordermmax in the
power expansion of vibrational amplitudes in terms of t
coordinatesa0 and a2. Our numerical results are illustrate
for 192Hg in Fig. 4 wheremmax is gradually increased, from
mmax520 to mmax536, separately for the spin blocksI 50,
10, and 20. In this range ofmmax values, the numberNI

~labeledNI
ortho in the figure! of independent basis states

each spin block roughly increases by a factor of 2. The v
ous lines represent the differences in energy

DEIa,mmax
5EIa,mmax

2EIa,20 ~42!

calculated for the first levels in a given spin block. As can
seen, the differencesDEIa,36 and DEIa,34 never exceed 5
keV, which suggests that the absolute energies predicted
each level are obtained with an accuracy better than 10 k
Similar accuracies are also obtained when solvingĤcoll for
the other nuclei of present interest. The least stable solut
are for eigenstates which are neither purely superdefor
nor normal deformed. All the predictions shown and d
cussed later on are based on calculations in whichmmax536
is used.
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C. E2 reduced transition probabilities

The correlated wave functions~1! in five dimensions read

uIM a&5( 8
K

E f IKa~a0 ,a2!wMK
I ~V!R~V!Fa0 ,a2

3D1/2da0da2dV,

where f IKa is the K component of the superposition amp
tude deduced from the inverse Gauss transform of Eq.~40!
as explained below,R(V) the rotation operator, andFa0 ,a2

the intrinsic state stemming from our constrained HFB c
culations. TheseuIM a& states are directly used to calcula
the reduced transition probability forE2 transitions which is
written using standard notations as

B~E2;aI→a8I 8!5 (
m,M8

u^a8I 8M 8uM~E2,m!uaIM &u2

5~2I 11!21u^a8I 8uuM~E2!uuaI &u2.

~43!

FIG. 4. 192Hg isotope. Differences in energyDEIa,mmax

5EIa,mmax
2EIa,20 @see Eq.~42!# calculated for the first collective

levels ~symbols connected with solid lines! predicted in the spin
blocks I p501 ~bottom!, 101 ~middle!, and 201 ~top!, as functions
of mmax andNI 50

ORTHO, NI 510
ORTHO andNI 520

ORTHO, respectively.
1-7
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J. LIBERT, M. GIROD, AND J.-P. DELAROCHE PHYSICAL REVIEW C60 054301
The electric momentM(E2,m) is obtained from the multi-
pole moments of the charge density operator

r̂5(
i 51

Z

d~rW2rW i !, ~44!

for which the matrix elements are

^I 8M 8a8ur̂uIM a&

5 (
KK8

E E f I 8K8a8~a08 ,a28! f IKa~a0 ,a2!da08da28da0da2

3@wM8K8
I 8 ~V8!^Fa

08 ,a
28
uR~V8!1r̂R~V!uFa0 ,a2

&

3wMK
I ~V!#dVdV8. ~45!

Evaluating this matrix element exactly is a very difficu
task. This is why two approximations have been used
calculations here restricted to transitions between SD sta
The first one is the so-called rotational approximation
which one assumes that the intrinsic wave functions are
formed in such way that their overlap in the (V2V8) Euler
angle coordinates is a delta function, that is setting@74#

R~V!1d~rW2rW i !R~V8!5R~V!1d~rW2rW i !

3R~V!R~V!1R~V8!,

with

R~V!1R~V8!.d~V2V8!. ~46!

The second approximation consists in neglecting the n
local matrix elements of the density operator in deformat
variables@59#. This approximation can be justified for th
case of strong overlaps between vibrational amplitudes.
have checked that this local approximation for the super
sition amplitudes is good for any SD→SD level transition.
This statement would not hold true for SD→ND level tran-
sitions, especially those involved in the decay out of S
bands, which is not treated in the present work.

Following Eqs.~40! and ~41!, the K component of the
vibrational amplitudegIKa is written

gIKa~a0 ,a2!5(
j 51

NI

Cj
IaAj

IK~a0 ,a2!. ~47!

In the GCM1GOA framework, theK-component of the su
perposition amplitudef IKa is then obtained from the invers
Gauss transform ofgIKa , namely,

f IKa~a0 ,a2!5
uGu1/4

A2p
expF2

1

4 (
i , j 50,2

~G21! i j

]2

]ai]aj
G

3gIKa~a0 ,a2!, ~48!

where the matrix G is defined in Eq.~29! and its determinan
labeled asuGu. Finally, theE2 reduced matrix elements i
Eq. ~43! is written
05430
n
s.
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n
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^a8I 8uuM~E2!uuaI &

5~2I 11!1/2~2I 811!1/2E ( 8
K,K8

f I 8K8a8~a0 ,a2!r
2,K82K

a0 ,a2 ~r !

3 f IKa~a0 ,a2!D1/2da0da2S I 8 2 I

K8 m KD , ~49!

with

r
2,K82K

a0 ,a2 ~r !5(
i

K fa0a2U d~r 2xi !

r 2
Y2,K82K

!
~u i ,f i !Ufa0a2L ,

~50!

where (xi ,u i ,f i) are the intrinsic coordinates of HFB wav
functions. TheB(E2) calculations are actually performe
using the first order expansion of the exponential operato
Eq. ~48!, that is,

f IKa~a0 ,a2!5
uGu1/4

A2p
F12

1

4 (
i , j 50,2

~G21! i j

]2

]ai]aj
G

3gIKa~a0 ,a2!. ~51!

Equation ~51! is accurate enough for evaluating transitio
rates between states covering the same portion of
(a0 ,a2) space.

IV. RESULTS FROM HFB CALCULATIONS

Here we discuss the predictions obtained for sing
particle ~sp! energies, potential energy surfaces, and pair
energies.

A. Single particle properties

Proton and neutron sp energies calculated as function
axial deformation are useful for the identification of sh
gaps. These energies are presently deduced from constra
HFB calculations in which the off-diagonal matrix elemen
of the pairing fields in the HF basis are turned off. Negle
ing these matrix elements, which are usually weak@67#, cor-
responds to a BCS treatment of the self-consistent pai
fields deduced from the D1S interaction. In Fig. 5 are sho
the proton and neutron sp energies obtained for194Hg as
functions of axial quadrupole deformation. As can be se
the gaps taking place at very large elongation (b;0.6 and
0.8) correspond to particle numbersN5110 and Z580.
These gaps stand at the origin of SD minima in the deform
tion energy surfaces for theA;190 region. Their magni-
tudes falling in the range 1–2 MeV are significantly larg
than those predicted in separate works@16,38,39,41#.

B. Potential energy surfaces

The potential energy surfacesV(b,g) as defined in Eq.
~7! are shown for190,192,194Hg, 192,194,196Pb, and196,198Po in
Figs. 6, 7, and 8, respectively. In their ground state, the
isotopes display slightly oblate shapes (b;0.15,g;p/3)
while for the Pb and Po isotopes spherical and near sphe
1-8
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MICROSCOPIC DESCRIPTIONS OF SUPERDEFORMED . . . PHYSICAL REVIEW C60 054301
minima are obtained. All these potentials display a second
axial minimum at large elongation (b;0.65 for the Hg and
Pb isotopes, andb;0.75 for the Po isotopes!. Furthermore,
the SD potentials are~i! more rigid against triaxiality than
they are along axial deformation and~ii ! their softness in the
b coordinate is strongest for the Po isotopes. These la
scape properties have important consequences on the e
tion energies ofp51collective vibrations built in the SD
potentials. Furthermore, the SD potential well depths are
the range 3–5 MeV. These values are roughly twice as la
as those predicted in mean field calculations based
Skyrme forces@38,41# and shell correction method@16#. Part
of the observed differences between these predictions
ours stems from that ZPE corrections are included in
present PES calculations.

C. Pairing energies

The proton and neutron pairing energies predicted in
constrained HFB calculations over the sextantS5(b>0,0
<g<p/3) are shown in Fig. 9 for194Hg and 194Pb.
Strengths are expressed in MeV as indicated by the c
codes. The topology of these surfaces is quite complex,
flecting the rich variety of shell effects taking place over t
(b,g) plane. The pairing energies are generally weake
the region of SD potential minima (b;0.65 and;0.67 for
194Hg and194Pb, respectively!. The proton pairing energy, in
the particular case of194Hg ~and otherZ580 nuclei under
study!, is nearly vanishing in the vicinity of the SD potenti
minimum. The fact that it does not vanish at no spin p
serves the validity of the approximation~23! for the mass
parameters, as discussed in Refs.@68,70#.

FIG. 5. 194Hg isotope. Neutron~left! and proton~right! single
particle energies~MeV! as functions of axial deformation. Thes
are deduced from HFB calculations in which the off-diagonal m
trix elements of the pairing fields expressed in the HF basis
ignored. Levels with positive and negative parities are shown
solid and dashed lines, respectively. Codes for spins are give
top of the figure. The Fermi energies are marked with symbols (d)
connected by solid lines.
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V. SD LEVEL PROPERTIES

A. Geometrical properties of SD levels

Solving Ĥcoll ~6! provides a wealth of information on th
topology of the wave functions over the (b,g) plane. In the
following discussions, only a few properties will be used f
the identification of SD levels among all those predicted
our collective model, namely,~i! the meanb and g defor-
mations

^b& Ia5E dVE
S
bdbdgD1/2C IM a* bC IM a ~52!

and

^g& Ia5E dVE
S
bdbdgD1/2C IM a* gC IM a , ~53!

~ii ! the fluctuation parameters

Db Ia5u^b2& Ia2~^b& Ia!2u1/2 ~54!

-
re
s

on

FIG. 6. Right-hand side column: potential energy surfaces~7! as
obtained over the sextantS5(b.0, 0<g<p/3) from constrained
HFB calculations for190,192,194Hg. Equipotential lines are shown in
1 MeV intervals. Left-hand side column: cuts across these surfa
as functions of the axial deformationa0.
1-9
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and

Dg Ia5u^g2& Ia2~^g& Ia!2u1/2, ~55!

which measure the spreading of collective states over co
tive coordinates,~iii ! the K-component probabilities

PIKa5E
S
bdbdgD1/2ugIKa~b,g!u2, ~56!

which, as usual in nuclear spectroscopy, serve to de
which states form a rotational or quasirotational band, a
~iv! the probability densities

r Ia~b,g!5(
K

ugIKa~b,g!u2D1/2~b,g!. ~57!

We show in Figs. 10, 11, and 12 the systematics ofp5
1 collective levels predicted for190,192,194Hg, 192,194,196Pb,
and 196,198Po, respectively. In these~Ex ,I ) plots, the predic-
tions are marked using various symbols depending upon
values taken by the meanb deformations~52!, here labeled
for convenience asbm . Normal deformed~ND! and SD
states are shown as dots (bm,0.2) and squares (bm.0.6),
respectively. Levels with intermediate deformation~ID! are
also predicted, for which 0.2<bm< 0.6. The ID states with

FIG. 7. Same as Fig. 6 for192,194,196Pb.
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mean deformations falling in the intervals 0.2<bm< 0.4 and
0.4,bm< 0.6 are shown as pluses and crosses, respectiv
These excited ID states form the overwhelming major
among all those predicted below 12 MeV. This analysis
tended to the meang deformations shows that the SD stat

FIG. 8. Same as Fig. 6 for196,198Po.

FIG. 9. Proton (p) and neutron (n) pairing energies from con-
strained HFB calculations over the sextant S for194Hg and 194Pb.
Codes are for the strengths expressed in MeV units.
1-10
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FIG. 10. Solutions ofĤcoll ~4! shown up the excitation energyEx512 MeV in each spin block fromI50 to I522 for 190,192,194Hg. The
symbols (j), (d), and (1 and3) mean superdeformed, normal deformed, and intermediate deformed shapes, respectively. From
high excitation energies are shown~solid lines! our predicted yrast,b, andg SD bands. Arrows indicateI c values~see text!. Yrast SD states
deduced from decay out measurements for194Hg @75# are marked with asterisk symbols. The open star symbol is for theI50 shape isomer,
as inferred from extrapolation@75#.
054301-11
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FIG. 11. 192,194,196Pb isotopes. For more details see caption of Fig. 10. The experimental information on yrast SD states and shap
for 192Pb and194Pb are from Refs.@76# and @25,77#, respectively.
054301-12
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FIG. 12. 196,198Po isotopes. For more details see caption of Fig. 10.
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predicted at medium spins (12&I<30) are sharp functions
for g values close tog50°. Furthermore, their mean defo
mations^g& Ia;3° suggest that these SD levels are axia
deformed shapes, as illustrated in Fig. 13 through a sam
of probability densities calculated for194Pb and198Po.

B. SD bands structure

The (Ex , I ! plots show that the predicted SD levels for
regular patterns asI increases. This feature suggests that
SD states are spread over several bands identified as con
ous curves in Figs. 10–12. Whether SD bands may be id
tified as such may be elucidated through a joint analysis
~i! the mean̂ b& Ia and ^g& Ia deformations,~ii ! the fluctua-
tion parametersDb Ia andDg Ia , and~iii ! the K-component
probabilitiesPIKa . This analysis has been conducted for
the nuclei under consideration.

1. Yrast SD bands

The dominantK50 character is shared by all the yrast S
states. However, this property alone does not guarantee
the yrast SD bands actually exist all the way from high sp
down to theI p501 shape isomers~which so far have es
caped experimental identification!. We adopt the empirica
criteria that a band gets broken as soon as a presumed
member is not well localized in the SD potential whenI
decreases from, say,I522. As an illustration, Fig. 14 show
that the194Pb yrast SD band~i.e., SD band 1! displays regu-
lar meanb andg deformation properties~solid lines! when
the spin decreases down toI56. For I54, the predicted SD
05430
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level is no longer dominated by itsK50 component. Further-
more, the fluctuation parametersDb andDg relevant to this
level display values which significantly depart from tho
predicted~spreads around solid lines! for all the SD levels
with I>6. TheI54 SD band 1 member mixes with ND an
ID levels, which suggests that SD band 1 demises below
critical value I c56, prediction marked by an arrow in th
lower panel of Fig. 14. Similar analyses conducted
190Hg, 192Hg, and192Pb lead to the results:I c514, 10 and 6,
respectively~see arrows pointing to the yrast SD lines
Figs. 10 and 11!. In contradistinction, the yrast SD band
predicted for194Hg, 196Pb, 196Po, and198Po display smooth
and regular geometrical properties all the way down to th
heads, theI p501 shape isomers. This implies thatI c5 0.

The I cÞ 0 values here predicted for190,192Hg and
192,194Pb agree to within two units of angular momentu
with experimental information@19,92#. Furthermore, no
agreement is found for194Hg, 196Pb, and198Po. These con-
trasted predictions relevant to the spin windows in which
decay out of yrast SD bands takes place, strongly sug
that our empirical criteria are probably too rough to char
terize the decay out process@78# and that the present theor
should be extended to include qp excitations and/or col
tive modes not treated in the present work.

2. b bands

The first excited band~SD band 2! predicted in the SD
potentials is also dominated by theK50 component. In nor-
mally deformed nuclei, this feature indicates that a rotatio
band is built on top of ab vibration. This physical picture is
1-13
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J. LIBERT, M. GIROD, AND J.-P. DELAROCHE PHYSICAL REVIEW C60 054301
valid in the superdeformation regime. Therefore, SD ban
is interpreted as ab-vibrational band. With the criteria
adopted in the analysis of yrast SD levels, these bands
minate at I c518, 18, 18, 18, 12, 10, 8, and 6 in190Hg,
192Hg, 194Hg, 192Pb, 194Pb, 196Pb, 196Po, and198Po, respec-
tively ~see arrows in Figs.10–12!. For spins lower thanI c ,
states with SD geometrical properties do exist in most ca
In particular, one-b-phonon states are here predicted at n
spin for 194,196Pb and198Po.

A secondK50 vibrational band~SD band 28! located at
an excitation energy approximately twice that of SD ban
is predicted at higher spins (I c*18), except for190,192Hg.
This excited SD band, not marked by continuous curves
Figs. 10–12, can be considered as a two-b-phonon band.
Whether SD band 28 is predicted or not is directly related t
the depth and shape of SD potentials and to the strengt
collective masses at, and in the vicinity of the SD poten
minima.

3. g bands

SD states with a majorK52 component and even spi
values are not predicted. In contrast, we are able to identi
sequence ofI5odd SD levels for which theK52 component
dominates. This is ag-vibrational band, identified as SD
band 3, which never extends down to low spins. The b
termination takes place atI c517, 17, 13, 17, 13, 11, 17, an
13 in 190,192,194Hg, 192,194,196Pb, and 196,198Po, respectively.
TheseI c values are marked by arrows pointing to the high
continuous curves shown in Figs. 10–12.

As a summary of these discussions, the SD states
band retain their density distributions sharply peaked n
the SD potential axial minima until they get weakly
strongly mixed with ID and ND levels when the spin d
creases. The sharp character of SD states in theA;190 is
gained through rotation.

VI. SD BAND PROPERTIES

In this section are presented our model predictions for
level energies, kinematic moments of inertia, quadrup
moments, and strengths for intraband and interband tra
tions. Comparisons with measurements are also offered
yrast SD bands.

A. Yrast bands

1. Excitation energies

The excitation energies calculated for theI 5 0 shape
isomers are gathered in Table I. For each isotopic ch
there is a clear cut trend in these energies to increase
increasing neutron number. This pattern is to be correla
with variations in the shell and pairing properties at super
formed shapes, which lead to a gradual shift of the SD
tential minima to higher excitation energies. These mini
are lowest forN5110, the neutron magic number for S
nuclei in theA;190 region. We also notice that for eac
isotonic chain, the predicted shape isomers lower their e
gies asZ increases. The trends of our predictions over
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rangeZ580– 84 andN5110– 114 are in good agreeme
with the limited experimental information inferred from de
cay out studies pertinent to Hg and Pb isotopes. In Tabl
spins and excitation energies of SD levels measured at
decay out are also compared with our calculations forI .0.
These are able to reproduce fairly well the experimental d
to within 6500 keV. The reliability of our calculations ha
further been assessed for238U, for which the value
Ex52.378 MeV predicted for theI50 shape isomer energ
is in very good agreement withEx52.558 MeV deduced
from experiments@83#.

2. Decay of SD states

The decay out in theA;190 region is dominated byE1
transitions@80,84# which are ignored in our collective pictur
involving only quadrupole collectivity. However, we ma
study the decay mechanism by calculating the inner poten
barriers as functions of spin, and compare our results w
those deduced from the phenomenological compound mix
model @85#. In this scenario, it is suggested that the dec
mechanism implies both mixing between ND and SD sta
and persistence of the inner potential barrier. We procee
follows. First we extract from the collective Hamiltonia
Ĥcoll ~35! the potential energy surfaceV(b,g) ~7!. Since we
predict that theK 5 0 components by far (> 99%! dominate
the yrast SD level wave functions, next we define in the
region an axially symmetric potentialVI(b)

VI~b!5V~b,g50!1
\2

2Jx~b,g50!
I ~ I 11!, ~58!

whereJx is the calculated moment of inertia~20!. VI may be
interpreted as the effective potential sustaining the yrast
state with spinI. This potential calculated over the rang
I50–20 is shown in Fig. 15 for192Hg and 194Pb. As can be
seen, the SD potentials~solid curves! get deeper asI in-

TABLE I. Predicted and measured excitation energies of yr
SD levels at low spin.

I p Etheo(MeV) Eexp ~MeV! References

190Hg 01 4.18
101 4.81

192Hg 01 5.08 ~5.760.5) @79#

~101) 5.72 ~6.860.9) ; ~6.560.9) @80,81#
194Hg 01 6.49 ~6.0!

101 7.13 6.63 @82#
192Pb 01 3.61 ~3.9!

81 4.02 ~4.357! @76#
194Pb 01 4.55 ~4.6!

61 4.80 4.877 @77#
196Pb 01 6.14

101 6.80
196Po 01 3.30

101 3.90
198Po 01 4.78

101 5.39
1-14
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MICROSCOPIC DESCRIPTIONS OF SUPERDEFORMED . . . PHYSICAL REVIEW C60 054301
creases. This property is consistent with that deduced f
cranking model calculations. Finally the inner barrier heig
WI is defined as

WI5VI~bS!2Ex~ I !, ~59!

whereEx(I ) is the excitation energy of the predicted yra
SD level with spinI ~see Figs. 10–12!, and bS the axial
deformation (bS;0.4) calculated at the top of the inner ba
rier. As shown in Fig. 16,WI smoothly increases with in
creasing spin. AroundI510, WI;1.3 MeV for both 192Hg
and 194Pb. This value is in excellent agreement with emp
cal estimates@81,82,86# shown as triangles, crosses, a
open diamonds.WI has also been calculated for the other S
nuclei in our sample. The results, also shown in Fig.
suggest that theWI ’s are stronger for the Po isotopes than f
the Hg and Pb isotopes. This feature of the Po isotopes s
from their very deepVI(b)’s and strong collective masse
which should favor a decay out at low spins.

3. Quadrupole moments

A number of high precision measurements are now av
able for charge quadrupole moments of yrast SD bands@87–
91#, which provide opportunities to further challenge o
predictions. These data are shown as shaded areas or
symbols with error bars in Fig. 17, where they are compa
with our static and dynamic calculations. The first ones p

FIG. 13. 194Pb and 198Po isotopes. Probability densities~57!
over the sextant S for the SD levels with spinI522, 21 and 20 in
the b, g and yrast SD bands, respectively. Contour lines are se
rated by 20 units.
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vide Qpot ~dashed curves!, the charge quadrupole moments
the collective SD potential minima. In the second calcu
tions, Qt ~solid curves! is obtained from ourB(E2) predic-
tions using the rotational model assumption. As can be s
the Qt values slightly decrease through theg-ray cascades
This means that the SD shapes are subject to a minor stre
ing under the influence of rotation. This structure effe
would be difficult to measure, except for the196,198Po iso-
topes and possibly for192Pb where it might be as large a
10% over the spin range under consideration. Although
predictionsQpot;Qt is obtained for most yrast SD bands,
may happen that the static calculations provide only rou
estimates for quadrupole moments.

4. Moments of inertia

For the yrast SD bands, the kinematic moments of ine

J(1)~ I !5
2I 21

E~ I !2E~ I 22!
~60!

have been deduced from our predicted spectra and comp
in Fig. 18 with experimental values inferred from measur
Eg transition energies, and tentative spin assignments@19,92#
unless the linking transitions are observed@76,77,75#. As can
be seen, the calculatedJ(1)’s remain almost constant whenI
increases except for198Po. It is no surprise that constantJ(1)

a-

FIG. 14. 194Pb isotope. Mean deformations^b& and^g& ~lines!
and fluctuation parametersDb andDg ~shaded areas! for the yrast
band~SD1!, andb ~SD2!, bb ~SD28!, andg ~SD3! vibrational SD
bands. Calculations are forI<30. The scale at the left-hand side
for meanb deformation, and that forg deformation is at the right-
hand side. Arrows have the same meaning as in Fig. 10.
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FIG. 15. Effective potentialsVI(b) ~58! for
the yrast SD states with spinsI50, 10, and 20
(192Hg! and I50, 8, 20 (194Pb!, and predicted
yrast SD levels. The horizontal position of eac
level corresponds to its meanb deformation.
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values are predicted because~i! the mean deformation doe
not depend upon angular momentum if potential energy
faces are sharp and deep enough and~ii ! the adiabatic ap-
proximation embedded in our model ignores the influence
rotation on intrinsic states. For198Po, the calculated 5% in
crease of the moment of inertiaJ(1) is here related only to
the stretching effect discussed previously. Our model is
deed unable to predict the rise observed in the experime
J(1) values whenI increases. These systematic trends may
understood by relaxing the adiabatic approximation and
ing instead the self-consistent cranking model~see, e.g., Ref.
@51#!. However, the GCM1GOA approach is valid at low
spins where a comparison between calculated and meas
J(1) values is fully justified. At low spins, the predicted an
measuredJ(1) values overlap quite nicely to within 3% o
the average, the largest differences between these quan
reaching .5% for 194Hg and 198Po. These difference
mainly result from our early decision of adopting the val
Rk51.32 in the prescription~20! for the moments of inertia
enteringĤcoll . Releasing this conservative number~as sug-
gested by the crosses shown in Fig. 2! would lead to improv-
ing our J(1) predictions, except for198Po.

Figure 18 also includes the moments of inertia~17! cal-
culated at superdeformed PES minima in the manner
Thouless-Valatin, that is in a mean field approximation
rotation ignoring all the other collective degrees of freedo
TheseJTV values shown as arrows are systematically 1
20 % larger than the kinematic moments of inertia~60! de-
termined at low spins. These systematic differences obse
betweenJTV andJ(1) show thatvibrational correlationsplay
a key role in the analysis of moments of inertia. Rotation a
vibration are not decoupled modes, at low and mode
spins in theA;190 region of superdeformation. This is on
of the main results of this study.

B. Vibrational SD bands

1. Energies

The relative excitation energies of theb- and
g-vibrational SD bands are shown in Fig. 19. These pred
05430
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tions are based on information inferred from mean deform
tions ~see Sec. V!, solid curves in Figs. 10–12, and strengt
of E2 reduced transition probabilities calculated for intr
band transitions~see below!. As can be seen, theb vibra-
tions predicted in the SD potentials come first above yr
bands. This means that the superdeformed potentials
softer against elongation than against non axial deformat
properties which propagate on the topology of probabi
densities~see Fig. 13!. None of these bands have so far be
observed, partly because they stand~too! high in excitation
energy above yrast levels. However, it is for the196,198Po
isotopes that theb-vibrational bands are lowest~0.8&Ex&
1.1 MeV!. Such ab SD band observed atEx~exp!50.648
MeV for 238U @93# is predicted by the present model
Ex~th!50.97 MeV, in fair agreement with the experiment
value. The relative excitation energies ofg bands are pre-
dicted in the range 2.1–2.6 MeV. This property is interpre
as a direct consequence of the stiffness of SD poten
against triaxiality, which should not favor experimental o
servation. Finally, we notice that the excitation energies h
predicted for theb SD bands in Hg and Pb isotopes a
systematically lower than those predicted in GCM calcu
tions for theKp502 octupole mode@94#.

2. Intraband transitions

The B(E2;I→I 22) values for transitions between S
states in bands 2 and 3 have been calculated for all the nu
under study. Whenever needed, these transition rates ar
plicitly noted asB(E2;SD2→SD2! andB(E2; SD3→SD3!,
respectively, in the present discussion. For the sake of c
pleteness, the predictedB(E2;SD1→SD1!’s relevant to the
yrast SD bands are also considered.

A feature common to all SD nuclei but198Po is that
B(E2; SD1→SD1!, B(E2; SD2→SD2!, and B(E2; SD3
→SD3! display similar patterns asI increases: the transition
rates in a band increase and reach values common to all t
bands as soon asI;22. This increase is related to the pro
erties of the 3-j coupling coefficient in Eq.~49!, and to the
stretching effects discussed previously, which may enha
1-16
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the phenomena. An illustration is shown for194Pb in the
lower panel of Fig. 20 where theB~E2! value common to all
three bands isBc(E2);2400 Weisskopf units~W.u.!. Simi-
lar strengths are obtained for192,196Pb. As a general state
ment, it can be said thatBc(E2) gradually increases from
2000 W.u.~Hg isotopes! to 2800 W.u. (196Po!.

The 198Po nucleus displays rather different properties
superdeformation. In addition to the obvious stretching eff
on the B(E2; SD1→SD1! values, we also observe in th
lower panel of Fig. 20 that the threeB(E2) sets show a
spread of magnitudes which does not reduce significa
when I increases up toI522. This spread ofB(E2) values
can be traced back to the topology of probability densit
shown in Fig. 13. In the vicinity ofI522, we see that the
198Po densities for SD levels with spinsI520 ~SD band 1!,
21 ~SD band 3! and 22~SD band 2! are peaking at differen
deformations. It would be interesting to extend the calcu
tions to check whetherB(E2; SD1→SD1!, B(E2; SD2
→SD2!, and B(E2; SD3→SD3! take on closer values a
higher spins.

3. Interband transitions

The B~E2! values calculated for transitions between S
band n and SD bandm are expressed using the notatio

FIG. 16. Predictions~full squares connected with full lines! for
the inner potential barrier heights~59! in 190,192,194Hg, 192,194,196Pb,
196,198Po. The symbols (L), (.), and (3) are experimental esti
mates from@81,82,86# and @77,86# for 192Hg and 194Pb, respec-
tively.
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B(E2; SDn→SDm!. Their strengths are displayed for194Pb
and 198Po in the upper parts of Fig. 20 where the symb
DI 50, 1, and 2 means spin transfer up to two units of an
lar momentum.

The predictions shown for194Pb are representative of th
interband transition properties of190,192,194Hg, 192,196Pb, and
196Po. First, we observe thatB(E2; SD2→SD1! remains
approximately constant over the spin rangeI<30. This pre-
diction does not depend upon whetherDI 50 ~open circles!
or DI 52 ~dots!. The B(E2) strength is;10 W.u. This
strong value together with excitation energies in the M
range~see Fig. 19! are not favorable to the observation
b-vibrational bands in most SD nuclei of theA;190 region.
Theg-vibrational bands would be even more difficult to o
serve because~i! their excitation energies are high@Ex(g)
'2Ex(b)# and ~ii ! their main decay paths proceedin
through SD3→SD1 transitions involveB(E2) rates approxi-
mately ten times stronger than those for theb-vibrational
band decay~see top of Fig. 19!. This difference between
B(E2) strengths may be understood by considering the
ference in shape between the density probabilities of the
tial b andg SD levels~see Fig. 13!.

Following the same method of reasoning now for198Po,
we deduce that the decay properties predicted for
g-vibrational band do not favor experimental identificatio
In contrast, theB(E2; SD2→SD1! rate predicted for the
stretched~i.e., DI 52! transitions gets weaker asI increases

FIG. 17. Quadrupole moments~eb! of yrast SD bands. The
dashed and solid curves represent our predictions for static
transition moments, respectively. The shaded areas and va
symbols with errors bars are for experimental measurements.
experimental information for190Hg, 192Hg, 194Hg, 194Pb, and196Pb
are from Refs.@87#, @88#, @89#, @90#, and @91#, respectively. For
196Pb the adopted spins are two units of angular momentum hig
than those of Ref.@91#, and therefore consistent with those in Re
@19#. The three individual Qt values@91# ~full circles! have been
renormalized accordingly.
1-17
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J. LIBERT, M. GIROD, AND J.-P. DELAROCHE PHYSICAL REVIEW C60 054301
and reaches the valueB(E2)54 W.u. for I522. This predic-
tion together with the expected low excitation energyEx(b)
; 800 keV ~see Fig. 19! should favor the experimental dis
covery of a low-lyingb-vibrational SD band in198Po.

4. Moments of inertia

Before closing this presentation relevant to the exci
band properties, we now briefly discuss our results for ki
matic moments of inertia. For all nuclei but198Po, theJ(1)

values predicted for excited and yrast SD bands are ne
identical and show no significant variations with increas
spin. In contrast, the kinematic moment of inertia predic
for the excited and yrast SD bands of198Po display a com-
mon pattern: their values increase at the same rate whI
increases. Furthermore,J(1)(b band! @J(1)(g band!# is 5%
~15%! lower thanJ(1)~yrast band!. All these features are no
unexpected. They again reflect the influence of stretch
effects and vibration correlations on the moments of iner

VII. CONCLUSIONS

A general and powerful two-center basis method has b
designed and applied to solve a collective HamiltonianĤcoll

FIG. 18. Kinematic moments of inertia of yrast SD bands. Co
parison between our predictions~full squares! and values inferred
from measurements~circles!. The arrows indicate the moment o
inertia calculatedá la Thouless Valatin~see text!. The ‘‘experimen-
tal’’ J(1) values are deduced from measurements and spin as
ments gathered in Ref.@19#.
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for even-even nuclei showing secondary minima at la
elongation in their potential energy surfaces. The collect
Hamiltonian under present consideration is built from t
GCM1GOA method to describe both rotation and quad
pole vibrations at normal and SD shapes.Ĥcoll is parameter
free since its surface and kinetic energy components are
termined only from the self-consistent HFB method in whi
the Gogny force is used. Here, our treatment of the kine
energy is improved over that adopted earlier@46,47#, by scal-
ing the Inglis-Belyaev moments of inertia to those calcula
in the manner of Thouless-Valatin.

The present study is focusing on the spectroscopic pr
erties of the190,192,194Hg, 192,194,196Pb, and196,198Po isotopes
at large deformation. Among all thep51 collective levels
predicted with our methods, only a few display a SD ch
acter. The geometric properties attached to the SD levels
exploited to show that these states form yrast and excited
bands. One-quadrupole-phonon,b andg SD bands are iden
tified at relatively low excitation energies above the yrast
bands for all nuclei. These excitation energies depend u
the SD potential shapes and depths. Since the SD poten
are softer along axial deformation than they are against
axial coordinate, theb bands are systematically lowest
energy. Only for the196Po and198Po isotopes are the exc
tation energies falling belowEx51 MeV. This low excitation
energy range should favor experimental discovery of s
one-quadrupole-phonon SD bands in theA;190 region. The
weakB(E2) strengths calculated for stretchedE2 transitions
depopulating theb bands enhance this conclusion for198Po.
In contrast, both excitation energies ofg bands (Ex52.1–2.6
MeV! and strongB(E2)’s for g to yrast band transitions ar
not favorable properties.

The main trust in our study has been placed on the y
SD bands for which~i! a wealth of measurements is availab
and ~ii ! a decay scenario based on a tunneling process
been suggested. We predict that the yrast SD bands sh
exist down to theI50 shape isomers. For192Pb, 194Hg, and
194Pb, their excitation energies compare rather well w
those inferred from decay out measurements. Furtherm
the relative excitation energies ofI; 10 levels as estimated
for 192Hg and194Pb above the inner potential barrier invoke

-

n-

FIG. 19. Relative excitation energies of one-phonon,b, andg
SD bands.
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FIG. 20. B(E2) values~in W.u.! predicted for interband and intraband transitions relevant to the yrast,b, andg SD bands of194Pb and
198Po. The arrows have the same meaning as in Fig. 10.
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in the phenomenological tunneling model, are consist
with our predictions. It would be interesting to measureQt

for 198Po, the nucleus for which a 10% stretching in its sha
is predicted when the spin increases up toI522.

When deduced from our predicted energy spectra, the
nematic moments of inertiaJ(1) for SD bands are generall
constant as functions of spin. This feature is consistent w
the adiabatic approximation underlying the GCM1GOA ap-
proach. For198Po, the calculatedJ(1) values are raising with
I, a property which is not correlated with Coriolis couplin
Our J(1) predictions help fixing the spins of observed yra
SD bands. Once the spin assignment has been performed
experimental and predictedJ(1) values overlap within 5% a
low spins, except for198Po. Any other spin assignmen
would destroy this agreement. This detailed discussion s
gests that the two-center basis method together with the
croscopic inputs~potential and tensor of inertia! entering our
collective model lead to reliableJ(1) predictions at low spin.
Therefore, the 10–15 % reduction observed when compa
the moment of inertia calculated in the manner of Thoule
Valatin with those deduced from the predicted energy sp
tra directly stems from quadrupole vibrational correlatio
This sizeable effect of rotation-vibration coupling at sup
deformed shapes is, in our view, one of the most signific
conclusion of the present study. In a forthcoming paper,
rotation-vibration coupling will be discussed again in t
context of the cranking HFB method.
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APPENDIX: ALGEBRAIC AND NUMERICAL METHODS

The eigenstatesuC i& ~39! necessarily possess the spa
symmetries ofĤcoll . To minimize the computational effort
the basis states on which theuC i& ’s are expanded are built to
include the same symmetries. Since these well-known s
metries are more easily expressed in terms of the polar
ordinatesb and g, we forget for a moment thatĤcoll is
actually solved for the variablesa0 anda2. In the first stage
of this appendix, symmetries attached to the wave functi
are briefly defined and applied to the present problem. T
second part is devoted to building a convenient set of b
states which are symmetrized and fulfilling boundary con
tions. Finally, the last portion of this appendix is devoted
more technical aspects: basis truncations, numerical inte
tion method for matrix elements, orthonormalization, and o
timization of the truncated basis.
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1. Symmetries in collective wave functions

As pointed out a long time ago, a functionA expressed in
the variables (b,g,V) able to describe an eigenstate ofĤcoll
with angular momentumI, and therefore obeying the sam
symmetry rules, may be written in full generality as

A a
IM ~b,g,V!5(

K
8 FKa

I ~b,g!wMK
I ~V!, ~A1!

wherewMK
I (V) is the normalized combination ofD MK

I (V)
Wigner rotation matrices for angular momentumI, with pro-
jectionsM and K onto the third axis in the laboratory an
intrinsic systems, respectively, defined as

wMK
I ~V!5F 2I 11

16p2~11dK0!
G 1/2

3@D MK
I ~V!1~21! I 1KDM2K

I ~V!#, ~A2!

and wherea contains any other indexes distinguishing b
tween states with the same (I ,M ) quantum numbers.

a. SymmetriesR1 , R2, andR3

An eigenstate ofĤcoll , and therefore under our prese
hypothesis anA a

IM function, must be invariant under an
transformation which relabels the intrinsic axesj1 , j2 and
j3. The three elementary transformations associated with
relabeling are usually chosen as~i! R1 which reverses thej2
andj3 axes,~ii ! R2 which is thep/2 rotation around thej3
axis, and~iii ! R3 which is thej i→j i 21 (with j05j3) cir-
cular permutation of axes.

As is well known, theR1 invariance establishes a rela
tionship @see Eq.~A2!# between the1K and 2K compo-
nents ofA a

IM and rules out theK50 component whenI is
odd. TheR2 invariance excludes oddK components for any
I value, and implies the following parity condition:

FKa
I ~b,2g!5~21!K/2FKa

I ~b,g!. ~A3!

The invariance ofA a
IM under theR1 andR2 transformations

is secured provided thatFKa
I obeys Eq.~A3!, and that the

summation overK @noted as(8 in Eq. ~A1!# is restricted to
0<K<I if K is even, and toKÞ0 if I is odd. Such condi-
tions exclude the subspace of angular momentumI 5 1.

Let us now consider a componentK5N in Eq. ~A1!, that
we write Fp(N)(b,g) wMN

I (V). The indexp(N) means that
the function Fp(N)(b,g) has to obey the parity conditio
~A3!. As shown in a pioneering work@63#, applying theR3
transformation to any one among such components resul

R3@Fp(N)~b,g!wMN
I ~V!#

5Fp(N)S b,g1
2p

3 D(
K

8~21!K/2MNK
I wMK

I ~V!,

~A4!

whereMNK
I is the symmetric matrix
05430
-
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MNK
I 52~21!N/2~11dN0!21/2~11dK0!21/2DNK

I S p

2
,
p

2
,p D ,

~A5!

in which @95#

D NK
I S p

2
,
p

2
,p D

5
~21!K/2

2I
3(

S
~21! I 2S

3
@~ I 1K !! ~ I 2K !! ~ I 1N!! ~ I 2N!! #1/2

S! ~K1N1S!! ~ I 2K2S!! ~ I 2N2S!!
,

~A6!

where the summation overS runs over values for which fac
torial functions are defined.

These matricesMNK
I obey various relationships deduce

from orthogonality properties of the Wigner rotation mat
ces. Two of them are of special importance for the pres
analysis, namely,

~21!N/2~21!K/2( 8
L

~21!L/2MNL
I MLK

I 5MNK
I , ~A7!

and

~21!N/2~21!K/2( 8
L

MNL
I MLK

I 5dNK . ~A8!

As shown in Eq.~A4!, theR3 transformation mixes theK
components and intricates their relative weights. As a w
known result, anR3 invariant state will necessarily contai
all the availableK components in the considered subspace
angular momentumI.

b. Functions invariant underR1 , R2, andR3

SinceR3 ~i.e., the circular permutation of the three prin
cipal axes in the intrinsic system of coordinates! has the
trivial property (R3)351, we may define the symmetrizatio
operatorP3 as

P3511R31R 3
2 . ~A9!

For any functionf, P3f is obviously invariant underR3 and
fulfills the property

R3~P3f !5R3~ f 1R3f 1R 3
2f !5~R3f 1R 3

2f 1R 3
3f !5P3f .

~A10!

To establish theP3 operator properties for our particula
state functions, we first need to find an explicit form forR3

2.
Applying twice Eq.~A4! to @FKa

I (b,g)wMK
I (V)#, and using

the property~A7! results in
1-20
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R 3
2@Fp(N)~b,g!wMN

I ~V!#

5Fp(N)S b,g1
4p

3 D ~21!N/2( 8
K

MNK
I wMK

I ~V!.

~A11!

Next, using Eq.~A4! three times together with the proper
~A8!, a transformation compatible with the propertyR 3

351
results in

R 3
3@Fp(N)~b,g!wMN

I ~V!#

5Fp(N)~g12p!( 8
K

dNKwMK
I ~V!, ~A12!

which is valid as long as

Fp(N)~b,g12p!5Fp(N)~b,g!. ~A13!

Of course Eq.~A13! holds true for any univalued function i
the deformation space described by the polar variab
(b,g).

Finally, we check thatP3@Fp(N)(b,g)wMN
I (V)# is also

R1 andR2 invariant. Considering the explicit form of theP3
transformation@see Eqs.~A4!, ~A9!, and~A11!#, it is easy to
check thatP3@Fp(N)(b,g)wMN

I (V)# has the properK com-
ponents@i.e., ~0<K<I , K5even! and (KÞ0 for I5odd!#. It
remains to check that theK components

$A N
IM ~b,g,V!%K5$P3@Fp(N)~b,g!wMN

I ~V!#%K
~A14!

of P3@Fp(N)(b,g)wMN
I (V)# fulfill the parity condition~A3!.

Using the relations~A4!, ~A9!, and~A11!, we deduce

$A N
IM ~b,g,V!%K

5dNKFp(N)~b,g!1MNK
I F ~21!K/2Fp(N)S b,g1

2p

3 D
1~21!N/2Fp(N)S b,g2

2p

3 D G , ~A15!

from which it is easy to show that

$A N
IM ~b,2g,V!%K5~21!K/2$A N

IM ~b,g,V!%K .
~A16!

As a result, the functionP3@Fp(N)(b,g)wMN
I (V)# built to be

invariant by theR3 transformation, is alsoR1 and R2 in-
variant.

2. Building a set of symmetrized basis functions

So far, the functionFp(N)(b,g) has been given no clos
form. We only know thatFp(N) should fulfill the parity con-
dition ~A3!, and be an analytic function when expressed
Cartesian coordinates (a0 ,a2). Several ways of adopting
particular close form exist~see, for instance Ref.@96#!. Here,
we have made our choice through the consideration thaP3
operates on the polar coordinateg. This feature together with
05430
s

n

the property~A13! suggest a periodic function in theg co-
ordinate. Therefore, the basis functions we have adop
@46,47# have the following form:

Fp(N)~b,g!wMN
I ~V!5Qm@b2,b3cos~3g!#bmFNn

IM ~g,V!,
~A17!

where

FNn
IM ~g,V!5cos~ng!wMN

I ~V! S N

2
5evenD

and

FNn
IM ~g,V!5sin~ng!wMN

I ~V! S N

2
5oddD , ~A18!

in which n is a non-negative integer. The functionQm does
not depend upon the angular variableV. For such functions,
the R3 transformation is nothing but making the changeg
→g12p/3. The invariants of theR3 transformation for
functions analytic in the (a0 ,a2) coordinates areb2 and
b3cos(3g) @63#. The functionQm which indeed depends onl
upon these two invariants is not changed by theP3 symme-
trization operator. As discussed later on, theP3 invariantQm
function is taken as an exponential weight which secures
fulfillment of boundary conditions at far edge (b→`).

Furthermore, the termbm is subject to the condition

m5n12l, ~A19!

wherel is any non-negative integer. This condition guara
tees that the basis functions~A17! keep their analytic char-
acter when transformed back from the (b,g) to the (a0 ,a2)
coordinates. In numerical applications,m is subject to the
cutoff conditionm<mmax. Therefore, Eq.~A19! implies the
truncationn<mmax.

Next, we build the symmetrized basis functions

A mmNn
IM ~b,g,V!5Qm@b2,b3cos~3g!#bm$P3FNn

IM ~g,V!%,
~A20!

on which the collective wave functionsC IM a ~40! are ex-
panded. These are written

C IM a~b,g,V!

5 (
m51

mmax

(
n51

mmax

(
m5n,n12•••

mmax

( 8
N.

UmmNn
IM a AmmNn

IM ~b,g,V!,

~A21!

wherea is a label index for a state in the spin blockI, and
UmmNn

IM a an expansion coefficient. TheA mmNn
IM states are not

linearly independent. Some of them will be excluded later
using simple algebraic considerations as well as the Gram
Schmidt method.

a.P3 transformation in theFNn
IM (g,V) space

In a subspace with angular momentumI, theP3 transfor-
mation is also written
1-21
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P3FNn
IM 5( 8

K
CNKn

I FKn
IM , ~A22!

where the coefficientsCNKn
I

CNKn
I 5dNK1MNK

I F @~21!N/21~21!K/2#cosS n
2p

3 D
1~21!N/22~21!K/2sinS n

2p

3 D G ~A23!

are deduced from the transformation properties~A9!, ~A4!,
and~A11! and from the definition~A18!. These results mea
that, for a given frequency indexn, the space spanned by th
P3FNn

IM ’s is a subspace of that spanned by theFNn
IM vectors.

The structure of Eq.~A23! has important implications: i
renders possible an important reduction of the configura
space. As an example, let us consider theP3 transformation
in the I50 subspace. We obtainP3FN50,n53k11

I 5M50 50 and/or
P3FN50,n53k12

I 5M50 50, with k as a non-negative integer. Fu
thermore, only the componentsP3FN50,n53k

I 5M50 remain. More
generally, theCNKn

I properties imply that linear relationship
exist between theP3FNn

IM ’s when N is taken as the running
index. For instance,P3F23k11

2M 5P3F03k11
2M in the I52 sub-

space. Furthermore, any component of the formP3F0n53k
2M

vanishes. Finally, only the componentsP3F0n53k11
2M and

P3F0n53k12
2M need to be considered. TheseP3 transformation

properties are therefore of some practical importance, as
cussed in the following paragraph.

b. Exclusion of uselessA µmNn
IM basis states

In each block (I ,n), we define the numberN n
I of inde-

pendent componentsP3FNn
IM as the number of basis elemen

extracted from theN-ordered lists

$P3FNn
IM ,~N50,2,4, . . . I !, I 5even%, ~A24!

and

$P3FNn
IM ,~N52,4,6, . . . I 21!, I 5odd%. ~A25!

TheNn
I values are shown in Fig. 21. These form two famili

of broken lines depending upon whethern53k ~solid line!
or n53k61 ~dashed line!. As an example of the lowering in
the basis size resulting from theP3 transformation, we con-
sider the I510 spin block. For thisI value, Nn

I 52. This
implies that theN50 andN52 components alone survive th
P3 transformation. TheN54, 6, 8, and 10 components a
therefore excluded because they can be expressed as
combinations ofN 5 0 and N52 components, or vanish
identically.

The Nn
I values in each block (I ,n) increase with angula

momentum and display regular patterns, whethern53k or
n53k61. Both lines in Fig. 21 exhibit structures whic
repeat every six units of angular momentum all the way fr
low to high spins.

The total numberNI of basis states in each spin block
obtained after useless components have been excluded
05430
n

is-

ear

de-

pends upon the values taken by the upper limits of the s
mation indexesm andm in Eq. ~A21!. In the present study
we adopt the valuesmmax52 andmmax536 ~see below!, and
thus obtain theNI set identified in Fig. 22 by the symbo
INIT. As can be seen, the total number of basis states

FIG. 21. Number of independent basis components in the bl
(I ,n) as a function of angular momentum andn ~see the Appendix!.
The shaded area means that the truncationN n

I <2 is adopted.

FIG. 22. Number of states considered at different stages lab
INIT, BOUND, and TRUNC while building themmax536 two-
center basis in various spin blocks fromI50 to I522. The symbol
ORTHO refers to orthonormalized basis sizes found for192Hg.
1-22
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creases with spin, fromNI; 250 (I 5 0 and 3! to NI; 2800
(I 5 22!. Including boundary conditions leads to reduci
the NI values still more, as explained below.

c. Basis functions fulfilling boundary conditions

The boundary conditions dictate that the bound state
lutions be vanishing at large elongation~i.e., b→`). These
conditions are fulfilled by taking forQm in Eq. ~A20! the
exponential form

Qm5expH 2
1

2
$a4m~b4!1a3m@b3cos~3g!#1a2mb2%J ,

~A26!

in which the basis parametersa4m , a3m , anda2m are prop-
erly defined. For any value of theg coordinate,Qm vanishes
at far edge provided that either one of the two conditions

a4m5a3m50 and a2m.0 ~A27!

and

a4m.0 ~A28!

is fulfilled. These conditions will serve as constraints in t
numerical method employed later on to optimize the ba
parameter sets.

The boundary conditions at axially symmetric shapes~i.e.,
g50,p/3,2p/3, etc.! have been discussed at length in R
@63#. Here, we discuss their impact on theA mmNn

IM functions
~A20!. The discussion restricted to theg50 andg5p cases
does not alter the results since the functions~A20! are R3
invariant. We write the functions~A20! in the convenient
form

A j
IM ~b,g,V!5( 8

K
Aj

IK~b,g!wMK
I ~V!, ~A29!

where j 5$m,m,N,n%, and repeat the analysisá la Kumar
and Baranger@63# for the^A j

IM uĤcolluA j 8
IM & matrix elements.

After integration over the Euler angles, one is left with int
gral kernels among which only one needs special care. T
kernel is written

( 8
KK8

E Aj
IK~b,g!Aj 8

IK 8~b,g!
K2dKK8
J3~b,g!

dm~b,g!,

~A30!

where dm is the metric anddKK8 the Kronecker symbol.
Problems may arise only for theKÞ0 terms in Eq.~A30!.
First, we notice that theAj

IK amplitudes withK/25odd van-
ish for g50 andg5p since they are proportional to sin(ng).

Next, we discuss the case of amplitudes withKÞ 0 and
K/25even, which exist only in the spin blocksI>4. These
amplitudes@proportional to cos(ng)# do not vanish forg
50 andg5p. When it shows up, this pathology is cured b
introducing new basis functions which are linear combin
tions of the previous ones, namely,
05430
o-

is

.

-
is

-

GmmNn
IM 5A mmNn

IM 1sNnn8
I A mmNn8

IM . ~A31!

The linear combination~A31! is formed in such way that al
the KÞ0 andK/25even components ofG display ag de-
pendence proportional to@cos(ng)2cos(n8g)#. This differ-
ence vanishes forg50 andg5p only if n andn8 have same
parity. To find such properties, we need to reexpressG ~A31!
as

GmmNn
IM 5Qmbm@P3FMNn

I 1sNnn8
I P3FMNn8

I
#. ~A32!

Exploiting properties of theCNKn
I coefficients ~A22! and

~A23! attached to theP3 transformation, a partnerP3FMNn8
I

of P3FMNn
I can always be found provided thatn85n12, or

n14, or n16. The lower possiblen8 value is actually
adopted, which fixessNnn8

I . Of course, the linear combina
tion ~A31! is formed only if bothAmmNn

IM andA mmNn8
IM belong

to the basis set labeled INIT previously.
This discussion was introduced to cure a specific path

ogy. When no pathology exists, that is, for the special c
where theKÞ0 andK/2 even componentsP3FMNn

I vanish
~i.e., for CNKn

I 50! and obviously for components in theI
,4 spin blocks, we also adopt the notationGmmNn

IM for the
basis stateA mmNn

IM .
As a by-product of using the ‘‘paired’’ basis statesGmmNn

IM

~A32! in a given subspace of angular momentum, the nu
ber NG of functions fulfilling the boundary conditions an
built from the originalNI

INIT functionsA mmNn
IM , has the prop-

erty: NG<NI
INIT . The numbers of basis states thus obtain

are identified by the label BOUND in Fig. 22. As can b
seen, the effect of including boundary conditions is a red
tion of the number of basis functions withI>4. This reduc-
tion gets stronger asI increases, and reaches typically 15
for I522.

3. Numerical methods

The physical statesC IM a ~40! now defined in terms of the
basis functionsGmmNn

IM are written

C IM a~b,g,V!5 (
m51

mmax

(
n50,1,2 . . .

mmax9

(
m5n,n12, . . .

mmax9

3 (
N

Nmax8

TmmNn
Ia GmmNn

IM ~b,g,V!,

~A33!

where theTmmNn
Ia ’s are coefficients attached to this expa

sion, and where the summation notation(8 has the same
meaning as before. A new symbol(9 is introduced. This
short notation means that the summation is restricted to
basis functionsGmmNn

IM which were not excluded previously

a. Truncations

The configuration space spanned by the basis functionG
is truncated as follows. First, consider the numbermmax of
1-23
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exponential weight functionsQm . Since we treat on the
same grounds ND and SD collective levels, we adopt
valuemmax52. We have checked that this prescription ge
erates a set of basis vectors which is rich enough to se
the stability of our predictions.

Next, consider the indexm. This number is characteristi
of ~i! the order of the power expansion~A21! and ~ii ! the
number of nodes~A19! in the Fourier components~A18!.
The maximum value adopted form is mmax536. We have
shown earlier in Fig. 22 that this value is large enough
secure the stability in energy of the predicted collective l
els. This specific truncation is relevant to the vibration a
plitudes expanded in terms of the coordinatesb andg. When
expanding the amplitudes now expressed in the Carte
coordinatesa0 and a2, components of the form (a0) i(a2) j

are obtained. These two separate expansions of the vibra
amplitudes are equivalent provided that (i 1 j )<mmax.

Now consider the numberN which bears similarities with
K, the projection of angular momentum on the symme
axis. TheN values exclusively depend upon the values tak
by the numberN n

I of linearly independentP3FMNn
I func-

tions. In the range 0<I<22,N n
I takes on values from 0 to 4

~see Fig. 21!. Here, the truncation (N n
I )max52 is adopted

~and marked by the shaded area in Fig. 21!. This implies that
the basis states with$N54 or 6, I5even% and with$N56 or
8, I5odd% indexes are removed from the summation oveN
in Eq. ~A33!, which fixes Nmax. The total numbersNI of
state vectors in the block of spinI, calculated in the range
I50–22, are shown in Fig. 22 where the label TRUN
means thatN n

I <2. As can be seen, the truncation alters
NI values determined forI>12 and leaves unchangedNI for
I ,12. Although impressive at high spin, this reducti
leaves over complete our vector basis.

The truncationN n
I <2 implies that some levels withI

>12 are ignored. We have checked in the SD region tha
discontinuities show up when comparing the excitation en
gies predicted for the yrast,b, andg bands at spins highe
and lower thanI512. This is the strongest argument to su
port this geometric truncation. Moreover, adoptingN n

I <2 in
our analyses enhances the relative weight of smallK compo-
nents in the predicted wave functions becausedKN is the
leading-order term in the geometric factorsCNKn

I ~A23!. We
therefore consider thatN n

I <2 is a reliable approximation fo
I> 12 because we are dealing only with the first SD ba
which all are strongly dominated by low-K components. The
truncationN n

I <2 may just alter the spectra predicted at hi
excitation energies.

b. Matrix elements

In the representation~A33!, we need to calculate th
Hamiltonian kernel

H cc85^Gc
I uĤcolluGc8

I & ~A34!

and the overlap kernel

O cc85^Gc
I uGc8

I &, ~A35!
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wherec is the channel$m, m, N, n%. In the (b,g) collec-
tive coordinates, these kernels are written

H cc85E dVE
S
~Gc

I ĤcollGc8
I

!1/2bdbdg ~A36!

and

O cc85E dVE
S
~Gc

I Gc8
I

!@D~b,g!#1/2bdbdg, ~A37!

respectively. These kernels are calculated over the sex
S5$b>0,0<g<p/3% using the mesh (Db,Dg)5~1/70,
p/180!. Furthermore, the maximum valuebmax is of the or-
der of 0.92. Precise cutoff values are not given because
actualbmax’s are fixed for each nucleus using the criteria th
the magnitude of the exponential weightsQm should be
lower than 1027 at far edge. Finally, integration over th
domain is performed for bothH cc8 andO cc8 with approxi-
mately 4000 points. Integration over the Euler angles, on
other hand, is straightforward because theGc

I and HcollGc
I

functions are always expressed in terms of Wigner matric

c. Orthonormalization

Next, we proceed to the orthonormalization of the ba
set using the well-known Gramm-Schmidt method. The
cluded basis states have norms weaker than 231024, and the
absolute values of nondiagonalO cc8 matrix elements are al
ways lower than 231027 in the new basis. TheNI values
thus obtained for192Hg are shown at the right hand side
Fig. 22 where the notation ORTHO is used. Approximate
60% of the original of basis states in each spin block
rejected. For instance, theI50 subspace now is spanned b
N(I 50)598 orthonormalized basis states and that forI522
involves onlyN(I 522)5390 vectors. Similar results are ob
tained for the other nuclei. These dimensions are numeric
tractable. SolvingĤcoll now reduces to a simple eigenvalu
problem which is treated through standard matrix diagon
ization.

d. Optimum basis sets

The content of basis states and the numberNI
ORTHO in Fig.

22 depend upon the selected parametersa lm in Eq. ~A26!.
All the NI

ORTHO’s used when solvingĤcoll are determined
after the basis parameters have been optimized. This opt
zation method is described below.

The free parameters are embedded in the expone
weightsQm defined in Eq.~A26!. They are optimized in such
a way that the first 01 levels predicted at normal and supe
deformed shapes take on energies as low as possible. Fo
ground state, this method is nothing but the application of
variational principle. This variational principle might b
adopted in the region of superdeformation as long as the1

SD level component at normal deformation is weak. W
have adopted this view and tested its reliability throu
checking the stability of our predictions upon increasing
basis size. This size is governed by the parametermmax
~A21! which is increased from a starting valuemst .
1-24
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In the numerical optimization process which is repea
for each nucleus, we fixmmax to mmax5mst520. In the first
step, the parameter sets (a l1) and (a l2) in Q1 and Q2, re-
spectively, are guessed separately through solvingĤcoll with
one-center bases. The parameter sets (a l1)(1) and (a l2)(1)

thus obtained are used in calculations involving the tw
center basis. In step 2, the parameter set attached toQ1 is
optimized to minimize the ground state energy. A new
(a l1)(2) is obtained. In step 3, (a l1)(2) is used in a new
s.

er
.

A.

R

s

h

cl

c

c

05430
d
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t

two-center basis calculation to minimize the energy of
first 01 state exhibiting SD character. A new set (a l2)(2) is
obtained. This iterative method is repeated over and o
from step 2 until stability of the predictions at normal an
superdeformed shapes is reached. The last step consis
solving Ĥcoll for spins I .0. Then mmax is increased until
stability of all level predictions is obtained. As shown in Fi
4, stability occurs formmax536. This value is common to al
calculations performed in theA;190 region.
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