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Microscopic descriptions of superdeformed bands with the Gogny force:
Configuration mixing calculations in the A~190 mass region
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A quantal HamiltoniariH,,, expressed in terms of the five collective quadrupole coordinates is built for
eight nuclei ¢90192.19¢g, 19219419 and1%.190) which display secondary minima at large elongation in
their potential energy surface. These surfaces as well as the tensor of inertia eﬂ&nir@ge deduced from
constrained Hartree-Fock-Bogoliubov calculations based on Gogny force. A two-center basis method em-
ployed to solvel, is presented. The stability of predicted collective spectra is discussed. Yrast and vibra-
tional 7=+ superdeformedSD) bands are predicted together with collective bands at normal deformation
(ND). The predicted yrast SD bands at low spin display properties which compare favorably with experimental
information. Quite good agreement is in particular obtained for the isomeric energies of nuclei for which the
link between SD and ND levels is experimentally known. Among the excited SD bands which are here
predicted, those built on top g8 vibrations are lower in energy. Only for th€1%%0 isotopes are these
excitation energies falling in the low energy rarige 0.8—1.0 MeV. These properties should favor an experi-
mental discovery of3-vibrational SD bands in th&~190 mass regior[.S0556-28189)03709-1

PACS numbes): 21.60.Jz, 21.60.Ev, 21.10.Re, 2780

. INTRODUCTION 194pp [25]). That I=0 shape isomers have so far escaped
observation in this mass region is probably related to the
The discovery of fission isomef&] in the early 1960s has specific character of the fusion-evaporation method em-
opened a broad field of experimental and theoretical studiegioyed in such experiments. However, nonrotating SD states
focusing on the structure properties of nuclei at large elongpoyld exist in theA~190 region because the strong shell
gation. Shell effects stand at the origin of these phenomenagect at major-to-minor axis ratia: b~1.7 is always pre-
as shown by Strutinsky using the celebrated shell correctiogjcied by self-consisterfand phenomenologicainean field
method[2]. Since that time, the Strutinsky method has beerhpproaches, whether or not the SD shapes are rotating.
used in various related topics, among which are shape iSOm- v/arious self-consistent mean-field approaches have been
erism in medium and heavy nucl@—6], and shape coexist- ;sed for describing and predicting SD state properties. These
ence and transitiofi7,8]. approaches form two distinct families. The first one includes
A major success of the shell correction method imple-the constrained HFBCS and HFB methods implemented
mented within the Cranking model has been the predictionwith Skyrme[26—30 or Gogny forcg31-33, as well as the
and interpretation of superdeformati¢8D) phenomena in relativistic mean field(RMF) theory [34,35. Calculations
fast rotating nuclej9—-17]. Since the discovery of SD states based on these approaches provide potential energy surfaces
at high spins in**Dy [18], many yrast and excited SD bands from which excitation energies of nonrotating SD states are
have been observed, not only in the- 150 mass region but estimated[6,36—41. More complete predictions for both
also forA~60, 80, 130, 140, and 1909]. These measure- yrast nonrotating states and phonon excitations at SD shapes
ments reveal many facets of SD nuclear properties at higin the A~ 190 region are obtained in the context of the gen-
rotational frequencies, which are reviewed in RE20—-24]. erator coordinate metha@CM). This method has been ap-
This database also serves as valuable information foplied to the case where one collective coordinate is consid-
challenging self-consistent mean field predictions, amongred[42]. The GCM problem for two collective coordinates
which are quadrupole moments, moments of inertia, and colras also been solved for octupole mo¢l43]. Moreover, a
lective as well as quasiparticlgp) excitations at superde- two dimensions GCM approach for quadrupole modes has
formed shapes. In this respect, the-190 region is of spe- been applied to superdeformation at no spin in the actinides
cial interest since SD states have been observed down {d4]. This model may be extended to include rotation using
quite low spin(for instancel=6 for the yrast SD band of the Gaussian overlap approximatidiGOA). Results of
GCM+GOA calculations for the five collective quadrupole
coordinates are published in Ré#5] for normal deformed
*Present address: CommissaridiEmergie Atomique, Service de nuclei and in[46,47] for SD properties of mercury isotopes.
Physique Nuclaire, Bate Postale 12, F-91680 Brusas-le-Chtel,  The second family includes all the HFB cranking approaches
France. which treat self-consistently rotational motion but ignore
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coupling to other collective modes of excitation. Self- might be observed. Large scale cranked HFB calculations
consistent cranking calculations have been performed in theave also been performed to high rotational frequency for
A~190 SD region using Skyrme forces complemented withkinematic and dynamic moments of inertia relevant to the
various treatments of the pairing field8-50, as well as Hg, Pb, and Po SD nuclei. These results will be presented in
with Gogny force[51-53. Cranked RMF calculations have a forthcoming paper.
also been carried out in th®~ 150 SD regior{54].

Our GCM+GOA calculationd46,47,52 based on the fi- Il. CONFIGURATION MIXING METHOD

nite range, density dependent D1S Gogny fof8e-33 The GCM method has been used extensively to treat vari-

have been extended to cover even-even nuclei of Ahe . . )
=190-200 region and predict systematic properties of theiP> aspects of dynamical phenomena ever since the pioneer-
rng work of Griffin, Hill, and Wheeler{58]. This method

yrast and collective quadrupole SD bands. To render th_iéo plemented with the GOA assumption is subject to de-
study as complete as possible, here we also present a detai ed discussions if69]. Here, we only give the main steps
account of the microscopic ingredients and original methods, estaplish our notations.

used to produce our predictions. Furthermore, these system-

atic predictions now cover the spin ranye0-22 for all

nuclei but*®¥Pb for which this range is extendedlig,,~=30.

New numerical methods as well as moments of inertia now The correlated stateé¥;) (i.e., the ground state as well as

determined with a level of approximation superior to thatexcited statgsof a nucleus are sought as

conveyed by the Inglis-Belyaev formuld5,56 are em-

ployed, which leads to an improvement over our previous A | of

predictions46,47). First, a linear relationship between elon- Vi) f fi@l®g)da, @

gation coordinate8 and mass quadrupole moments is im-

posed. This brings in no new physics, but leads to a scale fovhere|®,) is the quasiparticléqp) vacuum of the many-

B which significantly differs from that shown for example in body nuclear HamiltoniarH,q a set of collective coordi-

Fig. 1 of Ref.[46]. With this new definition, the SD potential nates, andf;(q) the superposition amplitude for thith

minima of Hg isotopes get shifted f@~0.55 to the present eigenstate. This amplitude is solution of the Griffin, Hill, and

value 8~0.65 (see text The main advantage of adopting Wheeler equation

the above-mentioned linear relationship is to release the

small deformation approximation employed previously in the

calculation of vibrational collective masses. As a result, the J [H(a.9")—EiN(q,9")]fi(q")dq’=0, @

relative excitation energies of predicted SD bands get low-

ered at most by a few hundred of keV. Finally, significantiy \hich N(q,q')=(®P4/®,) is the overlap kemel,

improvements in our collective model are thamed througm(q'q,):@) ||:||‘b ) the Hamiltonian kernel, an&, the

scaling the Inglis-Belyaev moments of inertia to those Calcu'expectation \?alue d

lated in the manner of Thouless-Valaf®i7], as explained in

the main text. For all these reasons, the present calculations .

are brand new. They deal not only with th&1921%g but _:<Wi|H|q'i>

also with the!®219419pp and1%61%q isotopes. ()
The present work is organized as follows. In Sec. Il, a

presentation of our configuration mixing method is offered. Solving Eq.(2) has been accomplished recently in one

It includes a discussion on the collective masses, moments dimension  ,=r2Y,) and two dimensions ((q

inertia, zero-point energies and overlap kernels used as in=r2Y,y, gs=r3Ygy) and [Ao=Tr?Y50, Qu=T2%(Y5,

puts to a collective Hamiltoniaf(. in five dimensions. In  + Y2-2)]) using Skyrme forcep42,44. In the present work,

Sec. lll (and the Appendix we present a two-center basis OUr aim is to treat thejo, g, and rotational degrees of free-
method to solveﬂco”, discuss the numerical stability of dom. We therefore have to deal with the five quadrupole

eigenstates predicted for spins uplte30, and explain how ?O”e.cdt'vti c?ordklna':]e_sh ";1 thlsbcontexlr, s'o![wgng(Q) IS a th
E2 reduced transition probabilities are calculated for intrgJormiaanie task which has been alleviated Dy using the

and inter-SD band transitions. Section IV is devoted to th Gaussian overlap approximation. In the GEXOA method

single particle, pairing, and potential properties in the vicin—go_‘sg’ I "?‘] assu'r;jed thatdthedoverlap ke_rrlMaQq,q )trl18 a |
ity of SD potential minima. Section V includes an analysis of aussian shape. A second order expansion over theé nonio-

the SD level geometric properties, which leads to the identi-camy in the coordinatesc(.—q ) leads to t(ansfor_ming Eq.
fication in our spectra of yrast and one-quadrupole-phonon(,z) into a second order differential faquatlon which has the
B andy SD bands. Finally, the predicted excitation energiescharacter of a collective Hamiltoniak,,. The eigenvalue
transition quadrupole moments, and kinematic moments dproblem to solve now reads

inertia for yrast SD bands are compared with available mea- R

surements in Sec. VI. Here are also discussed dynamical Heandi(q)=E;gi(q), 4
properties of theg8 andy SD bands, and implications of our

predictions regarding whether or not these excited band&here

A. Building a collective Hamiltonian ’Hco“ in five dimensions

()
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sponse theory59]. Finally, consistent perturbative expres-
g(CI)=J [N(a,9")]"%(q")dq’ (5 sions are naturally used to evaluate the ZPE terms in the
potential. The explicit forms of the Cranking series for the
and vibrational kinetic energy and the ZPE terms are given in
Secs. B4 and Il B 5.

. h? ] ]
Hoon== 75 2 5o M7 @7 +V@.  ©)
J

AL B. Potential and tensor of inertia

The tensor of inertia and potential enterifg,, are cal-
culated using the constrained Hartree-Fock-Bogoliubov

V(Q)=V(q)—AV(q), (7)  (CHFB) method.

In Eq. (6), V(q) is the potential energy surfa¢cPES

where 1. Constrained HFB method

B The CHFB method consists in applying the variational
V(@)=H(a.a), ®  principle to the energy functional obtained for the qp vacuum

and whereAV(q) is the zero point energfZ PE) stemming Pq. le.,
from the expansion oH(q,q’) over nonlocality. Further-

more, M ;(q) is the tensor of inertia.

Going a step further, we reexpreﬁ&on in terms of the
intrinsic quadrupole coordinateg, andq,, and Euler angles

Q0 =(6,6,,63). Assuming a local approximation in these . oA N .
angulalr czoo?dinates, the tensd;; now can be defined effective force[31-33, (i) Qo and Q, are external field

through its components) the collective masseB;(o,d>) operators generating axial and triaxial quadrupole deforma-

with (i,j)=(0 and 2) and (i) the moments of inertia tioNs, respectively, andii) Z andN are the proton and neu-
Ji(do.0,) Wherek refers to the principal axekE1, 2, and  tron numbers operators, respectively. The Lagrange multipli-

3). In this context, the physical content B, is clear: H g ers{\;} are determined from the constraints
describes rotation, quadrupole vibrations, and coupling be-
tween these collective modes. This Hamiltonian is quantal in
nature. Its structure is formally identical to that considered
years ago by Kumar and Barandé8].

S{(DglH=NoQo=12Q2—NzZ—NN|dg)=0.  (9)

In this equationyi) H is the nuclear Hamiltonian in which
the potential component is defined using the D1S Gogny

<¢'q| N|q)q>: N, <<1>q|2|<1>q>=z, <¢q|©i|¢)q> = qi(iO

g . The system of equation®), (10) is numerically solved at

. For the kinetic energy term, the expansion over nonlocal-each deformatiom; by expanding the single particle states
Ity leads to mass parameters which we C?” _GﬁGIOA into triaxial harmonic oscillator bases as explained in Ref.
masses. Whether or not to use these masse&dj) known  [67]. Here, the adopted bases include twelve major shells.
to be systematically too weak, has been for years a contro-

versial debate running among the commurié2,64—-68. 2. Deformation energy surface

This issue is related to that E¢l) is too restrictive a defi- .
nition of physical states, which therefore should also be ex- Once the constrained HFB problem has been solved, the

tended to includep, the conjugate coordinate of as sug- deformation energy surfacé(q) entering Eq.(7) is calcu-

gested in particular by Villarf65]. We did not perform this lated as
extension. Instead, we have adopted the vié8] that the
collective Hamiltonian(6) is formally identical to a quan-
tized adiabatic time dependent Hartree-Fock-Bogoliubov .
(ATDHFB) Hamiltonian. TF;ﬂs semiclassical approacﬁ which Whereq stands for the setgo,q). The quadrupole coordi-
preserves the formal symmetry between the collective Coo.natgsqo andd, are directly relateq to the polar Bohr defor-
dinateq and its conjugate, is known to produce the exact Mationss andy through the relations
mass parameter in the particular case of translation.

Here, the ATDHFB theory is employed in its perturbative B= \/E Vgo+ 303
limit, i.e., the so-called Cranking approximation, to calculate S5 A(r?)
the tensor of inertia. However, for the rotational degrees of
freedom, the perturbative expression for the moment inertiaand
known as the Inglis-Belyaev cranking formylas,56|, has
been corrected to include in an approximate way the dz
Thouless-Valatin(TV) dynamical rearrangemef§7]. The y=arctan/§%. 13
TV moments of inertia are calculated in the fully self-
consistent dynamicdl.e., cranked HFBapproach to the ro- Cartesian coordinates are also employed in our work; they
tational motion in the vicinity of spin zero. Furthermore, the are defined as
treatment of vibrational mass parameters is restricted to the
Cranking expressions stemming from the standard linear re- ap=pBcosy, a,=psiny. (14

V(q)=(D4H| D), (12)

(12
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A and(r?) are the nuclear mass and mean square radius of i
the mass distribution, respectively. To maBdinearly de- -1485%

pendent upon quadrupole momefit?) has not been evalu- 3
ated explicitly in Eq.(12). In contrast with our earlier works ‘E’-14go:— E
[46,47], here we adopt the liquid drop model estimate L} C

-1495[- 1

<r2>LD=§(r0Al/3)2, (15)

with ry=1.2 fm. With this definition,3 gets stretched as
compared with the earlier values in Refd46,47 and now

transforms into a scaled mass quadrupole moment. Further- r ;
more, the energy surfacé€®) and(11) may be expressed in 150 . —11.5
terms of the coordinateg12)—(14) as -either V(8,7) - ST
[V(B,7)] or W(ag,az) [V(ag,az)]. i

3. Moments of inertia % L i -
For nuclei rotating around thie axis, the moment of in- i 100~ -11.0 g-.
ertia may be obtained from solving the cranked HFB equa- = i 7
tion - B 1
¢yl H=AZ= \N-oll¢p)=0, (16 - 1
. 50— —0.5
wherel is thek component of the angular momentum op- - .
erator andw the angular velocity. Introducing the notation - -
(1)w=(dellil %), the moment of inertia is obtained as - .
Py 0 N R L 0.0
TV= lim % (17) 02 04 06 08 10
w—0
B

The Iabe_l v in Eq'(].'7) is intended to mean that the MO- 516, 1. 19%py isotope(a) HFB energy(MeV) as a function of
e 5 et tans e 2l s S g a1 s o S ol
. - TV o 7By £TV )
tions are neglected if a perturbative solution of Etp) is Jx_(dotted curvg and ratioR =7/ 7" (dashed.dotted curye
as functions of3. The left-hand side scale is for moments of inertia

sought. In this approximation, the moment of inertia theNang that for the ratio is shown as the right-hand side of the figure.
reduces to the standard Inglis-BelyadiB) expression The yvalueRy=1.32 is marked by the solid line.

[55,56]

B 2 (|l ®@)|? the ratioR(q) =7;"(q)/72(q). An illustration is shown
Ji'=2h MZ “([E.+E) (18 for 1%pp in Fig. 1 where7® (solid curve, J%¥ (dotted
. curve, andRy (dot-dashed curyeare calculated as functions
where u and v are quasiparticléqp) states created on the of the axial deformatiorB. These calculations cover defor-
staticquasiparticle vacuurd = ¢“=°, and whereE , andE, mation values from3=0.26 to 8=1.05 where the deforma-
are gp energies. tion energyV(B) [see curve labelel, g in Fig. 1(a)] shows
As is well known[57], the IB definition(18) leads tojLB an extremun(fission barrier. As can be seen, the moments
values which are too small. On the other hand, solving Eqof inertia take on increasing values with growing deforma-
(16) at low w on a lattice covering the whole deformation tion, except near thg values for which the energges
space represents a considerable numerical task which is oflisplays secondary minimae., the superdeformed and hy-
of the scope of the present work. We have therefore resortegerdeformed minima These shoulders observed in thig's
to an approximate evaluation of t@v moments of inertia @are direCtIy related to minima in the neutron or proton pair-

by scaling the7\® values calculated all over thed( ) ing energy. The ratidRy varies slowly with increasing_ de-
plane, namely, assuming formation. Its valuegscale shown at the right-hand side of

Fig. 1(b)] are in the range 1.34-1.46 and reach a minimum
jk:JLB(1+a), (19 Rx=1.34 at superdeformation. These results show that the

dynamical Thouless-Valatin correction to the perturbative

wherea is a constant number estimated as follows. First, waaxpressior‘d'xB remains almost independent of deformation
calculate the moment of inertia defined through Ed¥)  and does not introduce significant new structures in the be-
and(18) at a few values in the deformation space and formhavior of the moments of inertia. The same calculation has
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o where
15 Ry =dJx /Jyx i
L4l | MUD=2 (E,+E,)alqf"] (24
o ) % * N * * % *
S 13- 7 and
12— T T YT —v .
Hg Pb Po [7=(Dg| 7,7,Qi| Py, (25
11 B
. . . . . . . with 7 as a quasiparticle destruction operator. In E2p),
1 ~
190 192 194 192 194 196 196 198 the quadrupole operatofg; are defined as
A ~
Qo=27"—x*~y?, (26)
FIG. 2. R, ratio values(asteriskg calculated at SD potential
minima for the%0.192.19¢1g 19219419 andl%.19%bq jsotopes. The gnd
solid line R, = 1.32 has the same meaning as in Fig. 1.
Q=x2—y?, (27)

been repeated for the other nuclei of present interest. The

results shown in Fig. Zcrossepindicate thatRy is nearly 54 the summatiof24) runs over the proton and neutron gp
constant at superdeformed shapes throughAthel 90— 198 statesu and v.

region. On the basis of these studies, the moments of inertia 1, appreciate the range of validity of E@3), it is worth
Ji(q) entering the collective Hamiltoniaf6) are calculated  mentioning that the cranking approximation to the mass pa-
with the minimal prescription rameters relies upon two simplifying assumptions, namely,
_ B (i) the variationdRy/dq of the generalized density matrix
Jd@)=(1.00+0.39 7, (). (20) along the adiabatic path is treated in a linear response ap-
proximation and(ii) the impulsion operatof22) thus ob-

tained is used to solve E¢R1) up to first order irg, neglect-

For a vibrational degree of freedom associated with a coling the rearrangemerit.e., Thouless-Valatinterms of the
lective variable of generic namg=(Q) and collective ve- mean field(see, e.g., Ref69]). The former simplifying as-
locity q., the ATDHFB equation to solve writes sumption has recently been tested and found rather reliable

, ) for axial vibrations of normal and superdeformed shapes in
(Y A-AZ-MN-NQ—qP|¢d)=0. (21)  the A~190 region[68,70. However, this would only be a
fair statement if we were to calculate transition rates between
Assuming an adiabatic path made up with the static stateND and SD levels, which critically depend upon the tails of
q)qz¢g=0 [associated with the generalized density matrixinitial and final state wave functions. No detailed check of

Rq=0(a) hence from now labeled &8,(q)], the dynamical the latter assumption exists so far. However, previous studies

constraint? is defined at each deformatiarthrough a direct @n which_Skyrme forc_es are used withdtl] and with pair—
generalization of the Baranger Neroni [gg impglsion op- ing field included 72] indicate that the Thouless-Valatin cor-

erator rections(i) weakly depend upon deformation aid should
increase the mass parameters by no more than 10%. Sensi-
. IR, tivity calculations here performed fot>Pb show that in-
P=i ﬁ[a— -Ro}- (22)  creasing the vibrational mass paramet@® by 10% lowers
q the absolute ground state energy by 120 keV and decreases
the relative excitation energy of the first two SD bands by 15
and 18 keV, respectively. This small alteration of the pre-
dicted SD vibrational energy spectra suggests that the crank-
(P); ing approximation(23) is reasonable for calculating the mass
B™(q)= lim—-. parameters.
q—0

4. Collective masses

In this framework,(P),=3 Tr qus is the classical impul-
sion from which the mass parame®@lV(q) is deduced

5. Overlap kernel and zero point energy
Solving Eq.(21) is a task which is in progre$68]. Here,
we have resorted to calculations based on the cranking a;E—
proximation. In this context, the parameteég(q) associ- S
ated with the quadrupole collective coordinatgsand g;

Within the GOA approximation, the actual overlap kernel
ee Eq.2)] for any of the collective variableg; writes

AP - 1
with (i,j)=(0 and 3, write [59)] N(g ,q,-’>=exr{— 5Gi(a@—a)?, (28
7? Miq(q) |
Bij(q)= R TVINETL (23)  whereG; j(q) presumably displays a slow dependence upon
[MZ4(a)] g. Following Ref.[59], the Gaussian widtb'i(q) is

054301-5



J. LIBERT, M. GIROD, AND J.-P. DELAROCHE PHYSICAL REVIEW G0 054301

_ Miiz(Q)
ol()? My (q)?

Gjj(q)= (29

where the moments\{}! are calculated according to Eqg.
(24). OnceG,; j(q) andN(q; ,qj’) are obtained, the superpo-
sition amplitudef(q) is deduced from Eq(5) through an
inverse Gauss transform, and used to calculate electromag-
netic transition rategsee Sec. Il ¢

The zero point energAV(q) includes terms originating
from the kinetic energiesi.e., rotation and vibrationsand

potential energy. It reads E
AV(Q)=AV,ip(q) +AVi(@) +AVpe(q).  (30) &
[]
Since we have checked that the teAW,,(q) is small as AT
compared with the other twdV componentsAV,(q) is E
ignored throughout our study. The vibrational component 8_
AV,i,(q), calculated at the same level of approximation as o
that for the masseB;; , writes[59] N
AVyp(a)= ;02 AVj;(9), (3D
0 1 I : 1 i 1 : i i
with -0.4 0.0 0.4 0.8
Miiz(Q) ﬁ
AVii(q)= (32

M)

Finally, the rotational termAV,4(q) is made up with three
pieces

AV (@) =AV_,_5(q)+AV_;_1(q)+AV4(q). (33

Each term is calculateld9] using the moment:MLj (24) in

which the intrinsic components of the quadrupole operator

are

Q.=—2iyz, (34

Q_2= 2ixy.
The potential energy (7) and component&31) and(33) of
AV (30) calculated for!®*Hg are shown in Figs. (8 and
3(b) as functions of axial deformation. As can be sek¥,is
dominated by itsAV,,; componeni{dashed curvewhich in-
creases with increasing. The net effect of consideringV

Q_1=—2xz,

FIG. 3. ®*Hg isotope.(a) HFB energy(labeled)) as a function
of axial deformation. The values are shifted so tat0 at the
normal deformed minimum(b) Zero point energiesAV,,; (dashed
curve, AV,;, (dotted curvg andAV=AV,;,+ AV, (solid curve.

3

12
coII:E I_k_ E D™ UZLD”ZGm”i
2 k=1 jk 2 m,n=0 and 2 aam (9an
+V. (35

In this expressionl is thek component of angular momen-
tum | in the intrinsic system acting on the Euler angles por-
tion of the collective space, and

D=(BgoB22— B(%z)l_k[ N (36)

(30) is to make deeper the SD potential landscape and tis the metric. Furthermoreés™" is the matrix
p p p

lower its minimum by 1 to 1.7 MeV depending upon the
nucleus under consideration. All the potential energy sur-

faces used for solvin(j{co” include the ZPE contributions.

lIl. SOLVING
A. Expansion of eigenstates on a basis

The collective masseB;; (23), moments of inertiaZ

(20), and potentialy (7) serve to definefico" (6). When
expressed in terms of the coordinaigs and a, (14) and
Euler anglesQ)=(6,,6,803), it has the Bohr Hamiltonian
form [73]

Gmn:(an)—l’ 37
whereB,,, is a collective mas&3). Since the masB,,,, and
inertia J, parameters as well as the potentialwhich all
depend upon the deformation variableg (a,) are deduced

numerically from HFB wave functiongsee Sec. )| ﬂw”
possesses no analytical solutions. The eigenstdtgs ful-
filling the norm condition

<\Iri|\1rj>=fde\Ifr\Ier”Zdaodafaij, (39
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and the eigenenergi€s§ are obtained as numerical solutions m 32
max

of the equation 0.0
T~ e

S i
[]

These solutions are sought for through expanding $hg’s 5-0_05_ I=20
onto an orthonormalized set of two-center basis functions a&i -

explained in the Appendix. Briefly, the solutions of £E§9)
may be expressed in thad,a,) coordinates as

Heoll W) =Ei|¥)). (39

N -0.1220 240 260 280 300 320 340 360 380
| : ) P : . PR :

_ la IM
Vima= 2, Cjv" (30.82,2), (40) oo By s -
where = [ \‘\x\iﬁi ]
3 R
S oosl 1=10 .
lﬁ}M(ao,az,Q):%’ Af(a0.adew(Q) (4D 4 T} :

is thejth vector of the orthonormalized basis in the subspace
of angular momentunt, and where the symbadl, means
that the summation ove is limited to the even positiv& 0.0 kg — 8 & —
values, withK # 0 for oddl. Furthermore(i) <p'MK(Q) is the T
standard, normalized linear combination of Wigner rotation
matricesD,(Q) and D},_,(Q) (see the Appendix (i) 5 ¥

Ai"(ag.a,) is a vibrational amplitude(iii) « is a label to 5-0-05— A > < ]
distinguish between eigenstates in the block of dpifiv) < A

C}“ is an expansion coefficient, aitd) N, the dimension of .
the subspace of angular momentunconsidered in actual -
calculations. 01~ a
50 60 70 80 90 100

- . ORTHO
B. Stability of collective energy spectra N,

-0.1220 240 260 280 300 320 340 360 380

A detailed presentation of the numerical method em- Fgig. 4. 1949 isotope. Differences in energAE,, m
ployed fof solving Eq(39) is given in the Appendix. =Ejqm,,~Eiaz0 [s€€ Eq.(42)] calculated for the first collective

SinceH is solved on a finite size basis, it is mandatory levels (symbols connected with solid linepredicted in the spin
to check the stability of our predictions. This is performed byblocksI "=0" (bottom), 10" (middle), and 20 (top), as functions
increasing step by step the basis size for each spin block. Thsf my,,, andNCRTHO, NORTHO and NORTHO  respectively.
basis sizeN, is directly related to the ordem,,,, in the
power expansion of vibrational amplitudes in terms of the
coordinatesay anda,. Our numerical results are illustrated  The correlated wave functior§$) in five dimensions read
for g in Fig. 4 wherem,,,, is gradually increased, from

C. E2 reduced transition probabilities

Mpa=20 to m,.=36, separately for the spin blocks-0, IRNY |

10, and 20. In this range af,,, values, the numbeN, |IM0‘>_§ fika(80,82) ek (Q)R(Q) Py o,
(labeledN°™ in the figurd of independent basis states in

each spin block roughly increases by a factor of 2. The vari- X DY aydaydQ,

ous lines represent the differences in ener . " .
P 9y wheref,«, is the K component of the superposition ampli-

(42) tude deduced from the inverse Gauss transform of(EQ).
as explained belowR({}) the rotation operator, an@ao,az

calculated for the first levels in a given spin block. As can bethe intrinsic state stemming from our constrained HFB cal-
seen, the differencedE,, 35 and AE,, 34 never exceed 5 culations. Thes¢lM «) states are directly used to calculate
keV, which suggests that the absolute energies predicted fehe reduced transition probability f&?2 transitions which is
each level are obtained with an accuracy better than 10 keVvritten using standard notations as

Similar accuracies are also obtained when soIv?Fqg” for

the other nuclei of present interest. The least stable solutions B(E2: ¢l —a'l")= D, [(a'l"M'|M(E2,u)|alM)|?

are for eigenstates which are neither purely superdeformed uM’

nor normal deformed. All the predictions shown and dis- _ T 2
cussed later on are based on calculations in whigh,=36 =@+ (V' [[M(E2)[[al)]*
is used. (43

A Ela,mmaxz E, My Eia20
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The electric momentM(E2,u) is obtained from the multi-
pole moments of the charge density operator

z
p=2, or=ry, (44

for which the matrix elements are
(I'M"a’[p|IM &)

-3

KK’
X[ oy () Par 2RI PRI D o)

X ol (2)]dQdQ’.

J j firkrar(89,89) fika(@0,82)dagdazdagda,

(49)

Evaluating this matrix element exactly is a very difficult
task. This is why two approximations have been used i
calculations here restricted to transitions between SD states.
The first one is the so-called rotational approximation in

which one assumes that the intrinsic wave functions are de-

formed in such way that their overlap in th@ - Q") Euler
angle coordinates is a delta function, that is setfirgj

R(Q)T8(r—r)R(Q")=R(Q) " &(r—ry)
XR(Q)R(Q)TR(Q),
with

R(Q)*RQ)=8Q-0Q"). (46)

PHYSICAL REVIEW G0 054301
(a'l'[|M(E2)|[at)

=1+ DYH21 + )Y | X (0,82 pass (1)
KK’ '

I 2 1
XflKa(aO,az)D“Zdaodaz(K, m K)’ (49
with
, o(r—xp) .,
PZ;LIaiK(r):Zi <¢a0a2 r—zlYZ,K’*K(ei ’¢i)’¢aoaz>a
(50)

where §; , 6;,¢;) are the intrinsic coordinates of HFB wave
functions. TheB(E2) calculations are actually performed
using the first order expansion of the exponential operator in

nEq. (48), that is,

|G|1/4 1 2
fla(@g,80)= —|1— = G Y,
IKa( 0 2) \/ﬂ 4 i,jZO,Z( )|] C7ai(9aj

X0ikal@0,22)- (51)

Equation (51) is accurate enough for evaluating transition
rates between states covering the same portion of the
(ag,a,) space.

IV. RESULTS FROM HFB CALCULATIONS

Here we discuss the predictions obtained for single-
particle (sp energies, potential energy surfaces, and pairing

The second approximation consists in neglecting the nonenergies.
local matrix elements of the density operator in deformation

variables[59]. This approximation can be justified for the
case of strong overlaps between vibrational amplitudes. We
have checked that this local approximation for the superpo-

sition amplitudes is good for any SBSD level transition.
This statement would not hold true for SEND level tran-

sitions, especially those involved in the decay out of S

bands, which is not treated in the present work.
Following Egs.(40) and (41), the K component of the
vibrational amplitudeyk , is written

N

9|Ka(ao:az):j21 Ci“Af(a.,).

(47)

In the GCM+GOA framework, thek-component of the su-

perposition amplitudé, , is then obtained from the inverse

Gauss transform of)k,, hamely,

fika(@0,ay) 'GLM Ly 6 ”
ag,a,)=——exg — — o

IKa\ 4042 2 4i,j:0,2 ij (?aiaaj

X0ikald0,22), (48)

where the matrix G is defined in ER9) and its determinant

labeled agG|. Finally, theE2 reduced matrix elements in

Eq. (43) is written

A. Single particle properties

Proton and neutron sp energies calculated as functions of
axial deformation are useful for the identification of shell
gaps. These energies are presently deduced from constrained

DHFB calculations in which the off-diagonal matrix elements

of the pairing fields in the HF basis are turned off. Neglect-
ing these matrix elements, which are usually wggiK, cor-
responds to a BCS treatment of the self-consistent pairing
fields deduced from the D1S interaction. In Fig. 5 are shown
the proton and neutron sp energies obtained ¥¥Hg as
functions of axial quadrupole deformation. As can be seen,
the gaps taking place at very large elongatigh—(0.6 and
0.8) correspond to particle numbehé=110 and Z=80.
These gaps stand at the origin of SD minima in the deforma-
tion energy surfaces for thA~190 region. Their magni-
tudes falling in the range 1-2 MeV are significantly larger
than those predicted in separate wofks,38,39,41

B. Potential energy surfaces

The potential energy surfacé4 B,vy) as defined in Eq.
(7) are shown fort90:192.19 g 192.194.19pp 4ng196.19%b¢ jn
Figs. 6, 7, and 8, respectively. In their ground state, the Hg
isotopes display slightly oblate shapeg~0.15;y~ 7/3)
while for the Pb and Po isotopes spherical and near spherical

054301-8
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—— U 3T e ST e T2 e O e 1T
— 132 —e— 1572 —e— 172" e 192" e X

v (MeV)

£ (MeV)

1 L | - 1 1
-0.4 0.0 0.4 0.8 00 02 04 06 08

a, B

101
% L
2!
FIG. 5. *%Hg isotope. Neutrorileft) and proton(right) single > 5
particle energiegMeV) as functions of axial deformation. These
are deduced from HFB calculations in which the off-diagonal ma- [
trix elements of the pairing fields expressed in the HF basis are o WU I
ignored. Levels with positive and negative parities are shown as 0400 0408 00 02 04 06 08
solid and dashed lines, respectively. Codes for spins are given on & B

top of the figure. The Fermi energies are marked with symi®I[s (
connected by solid lines.

v (MeV)

minima are obtained. All these potentials display a secondary
axial minimum at large elongatiorB(~0.65 for the Hg and

Pb isotopes, an@g~0.75 for the Po isotopesFurthermore,

the SD potentials aré) more rigid against triaxiality than ol
they are along axial deformation afid) their softness in the a 8
B coordinate is strongest for the Po isotopes. These land- ’

scape properties have important consequences on the excita-F|G. 6. Right-hand side column: potential energy surfaZeas

tion energies ofr=+collective vibrations built in the SD obtained over the sextaBt=(8>0, 0<y=<=/3) from constrained
potentials. Furthermore, the SD potential well depths are iHFB calculations fort®®1921%g. Equipotential lines are shown in
the range 3—-5 MeV. These values are roughly twice as largé MeV intervals. Left-hand side column: cuts across these surfaces
as those predicted in mean field calculations based ofas functions of the axial deformatiaay.

Skyrme force$38,41] and shell correction methdd6]. Part

of the observed differences between these predictions and V. SD LEVEL PROPERTIES

ours stems from that ZPE corrections are included in the A. Geometrical properties of SD levels

present PES calculations.

1
-0.4 0.0 0.4 0. 00 02 04 08 08

Solving H (6) provides a wealth of information on the
topology of the wave functions over th@(y) plane. In the
C. Pairing energies following discussions, only a few properties will be used for
the identification of SD levels among all those predicted in
The proton and neutron pairing energies predicted in oubur collective model, namely(j) the meang and y defor-
constrained HFB calculations over the sext&t(£=0,0 mations
<vy=<m/3) are shown in Fig. 9 for'®Hg and °%Pb.
Strengths are expressed in MeV as mpllcat_ed by the color (B)1o= f dﬂf BdBdyDY2WE, B ., (52)
codes. The topology of these surfaces is quite complex, re- s
flecting the rich variety of shell effects taking place over the
(B,v) plane. The pairing energies are generally weaker irand
the region of SD potential minimgB(~0.65 and~0.67 for
9% and 1%Pb, respectively The proton pairing energy, in
the particular case of®Hg (and otherZ=80 nuclei under
study), is nearly vanishing in the vicinity of the SD potential
minimum. The fact that it does not vanish at no spin pre-(ii) the fluctuation parameters
serves the validity of the approximatiq23) for the mass
parameters, as discussed in RE6S3,70. AB=1{B?)a— ((B)1a)? 2 (54)

(o= | a0 [ pasdyD 2, W, (63
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r 196
100 Pb
s I
g |
s 5-
[ s
= []
[ 2
F ®
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s I
3 |
> 5-
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90400 0.4 0. 00 02 04 06 08 s [
a, B s
s 50
r 196
10 Pb I
s | 04000408 00 02 04 06 08 10
3 [
s 5F il ﬁ
i FIG. 8. Same as Fig. 6 fol*®1%Po.
004000408 00 02 04 06 08 mean deformations falling in the intervals &B,,< 0.4 and
a, g 0.4< B,,= 0.6 are shown as pluses and crosses, respectively.
These excited ID states form the overwhelming majority
FIG. 7. Same as Fig. 6 fol***%1%Pb. among all those predicted below 12 MeV. This analysis ex-
g tended to the meam deformations shows that the SD states
an

A7|a:|<72>|a_(<7>|a)2|1/21 (55)

which measure the spreading of collective states over collec-
tive coordinates(iii) the K-component probabilities

I:)IKa: fsﬂdﬂdyD1/2|glKa(Biy)|2! (56)

: . ., 00
which, as usual in nuclear spectroscopy, serve to decide
which states form a rotational or quasirotational band, and
(iv) the probability densities

p.aw.y):;|g.Ka<ﬂ,y>|2Dl’2(B,w. (57)

We show in Figs. 10, 11, and 12 the systematicsref
+ collective levels predicted fof90192:19¢ g, 192.194.19pp
and 1%1%%q, respectively. In thes&,,1) plots, the predic-
tions are marked using various symbols depending upon the
values taken by the meah deformationg52), here labeled
for convenience a3,,. Normal deformed(ND) and SD
states are shown as dotg,(<0.2) and squaresB,>0.6), FIG. 9. Proton ¢r) and neutron ¢) pairing energies from con-
respectively. Levels with intermediate deformatidB) are  strained HFB calculations over the sextant S ¥iHg and **Pb.
also predicted, for which 0.& B,,< 0.6. The ID states with Codes are for the strengths expressed in MeV units.
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E, (MeV)

FIG. 11. 19219419 isotopes. For more details see caption of Fig. 10. The experimental information on yrast SD states and shape isomers
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FIG. 12. 198199 jsotopes. For more details see caption of Fig. 10.

predicted at medium spins (¥2<30) are sharp functions level is no longer dominated by i6=0 component. Further-
for v values close toy=0°. Furthermore, their mean defor- more, the fluctuation parametesg3 andA y relevant to this
mations(y),,~3° suggest that these SD levels are axiallylevel display values which significantly depart from those
deformed shapes, as illustrated in Fig. 13 through a sampleredicted(spreads around solid linefor all the SD levels
of probability densities calculated fd?*Pb and**Po. with 1=6. Thel=4 SD band 1 member mixes with ND and
ID levels, which suggests that SD band 1 demises below the
critical valuel.=6, prediction marked by an arrow in the
lower panel of Fig. 14. Similar analyses conducted for
The (E,, 1) plots show that the predicted SD levels form 1°Hg, 1°Hg, and!°%Pb lead to the result$;=14, 10 and 6,
regular patterns alsincreases. This feature suggests that theespectively(see arrows pointing to the yrast SD lines in
SD states are spread over several bands identified as continigs. 10 and 1)l In contradistinction, the yrast SD bands
ous curves in Figs. 10-12. Whether SD bands may be iderpredicted for'®Hg, °Pb, °Po, and'%Po display smooth
tified as such may be elucidated through a joint analysis ofnd regular geometrical properties all the way down to their
(i) the mean{B),, and(vy),, deformations(ii) the fluctua- heads, thea "=0" shape isomers. This implies thiat= 0.
tion parameterd 3,, andAy,,, and(iii) the K-component The I.# 0 values here predicted fof%*Hg and
probabilitiesP, , . This analysis has been conducted for all 1°21%pp agree to within two units of angular momentum
the nuclei under consideration. with experimental information[19,92. Furthermore, no
agreement is found fot*Hg, °Pb, and!®¥®o. These con-
1. Yrast SD bands trasted predictions relevant to the spin windows in which the

The dominanK=0 character is shared by all the yrast SD decay out of yrast SD bands takes place, strongly suggest
states. However, this property alone does not guarantee thtat our empirical criteria are probably too rough to charac-
the yrast SD bands actually exist all the way from high spind€rize the decay out procefss] and that the present theory
down to thel "=0" shape isomeréwhich so far have es- ;hould be extended to _mclude gp excitations and/or collec-
caped experimental identificatiprWe adopt the empirical tive modes not treated in the present work.
criteria that a band gets broken as soon as a presumed band
member is not well localized in the SD potential when
decreases from, sal=22. As an illustration, Fig. 14 shows
that the '%Pb yrast SD band.e., SD band Ldisplays regu- potentials is also dominated by the=0 component. In nor-
lar meangB and y deformation propertiessolid lineg when  mally deformed nuclei, this feature indicates that a rotational
the spin decreases down lteg6. For =4, the predicted SD band is built on top of 8 vibration. This physical picture is

B. SD bands structure

2. B bands
The first excited bandSD band 2 predicted in the SD
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valid in the superdeformation regime. Therefore, SD band 2angeZ=80-84 andN=110-114 are in good agreement
is interpreted as gB-vibrational band. With the criteria with the limited experimental information inferred from de-
adopted in the analysis of yrast SD levels, these bands tecay out studies pertinent to Hg and Pb isotopes. In Table I,
minate atl.=18, 18, 18, 18, 12, 10, 8, and 6 iW%Hg, spins and excitation energies of SD levels measured at the
192Hg, 9Hg, 1°%b, 1%Pb, 19Pb, %P0, and'®¥o, respec- decay out are also compared with our calculations! fe0.
tively (see arrows in Figs.10—12For spins lower thar,, These are able to reproduce fairly well the experimental data
states with SD geometrical properties do exist in most case$o within =500 keV. The reliability of our calculations has
In particular, ong8-phonon states are here predicted at nullfurther been assessed fof*®U, for which the value
spin for 1941°Pp and%%Po. E,=2.378 MeV predicted for thé=0 shape isomer energy

A secondK=0 vibrational bandSD band 2) located at is in very good agreement witk,=2.558 MeV deduced
an excitation energy approximately twice that of SD band 2rom experiment$83].
is predicted at higher spind £&18), except for'%°Hg.
This excited SD band, not marked by continuous curves in 2. Decay of SD states
Figs. 10-12, can ,b_e considered as a f+phonon band. The decay out in thé\~ 190 region is dominated big1
Whether SD band2is predicted or not is directly related 0 ansitiongd 80,84 which are ignored in our collective picture
the depth and shape of SD potentials and to the strength @hyolving only quadrupole collectivity. However, we may
collective masses at, and in the vicinity of the SD potentialsydy the decay mechanism by calculating the inner potential
minima. barriers as functions of spin, and compare our results with

those deduced from the phenomenological compound mixing
3.y bands model [85]. In this scenario, it is suggested that the decay

SD states with a majoK=2 component and even spin Mechanism implies both mixing between ND and SD states
values are not predicted. In contrast, we are able to identify &1d persistence of the inner potential barrier. We proceed as
sequence of=odd SD levels for which th&=2 component fE)IIows. First we extract from the collective Hamiltonian
dominates. This is ay-vibrational band, identified as SD Hy (35 the potential energy surfad B,y) (7). Since we
band 3, which never extends down to low spins. The bangbredict that th&k = 0 components by farf 99%) dominate
termination takes place &=17, 17, 13, 17, 13, 11, 17, and the yrast SD level wave functions, next we define in the SD
13 in 190.192.19¢g 192.19419p  and196.19%¢ respectively. region an axially symmetric potentia (3)
Thesel . values are marked by arrows pointing to the higher )
continuous curves shown in Figs. 10-12. _ _

As a summary of these discussions, the SD states in a V(B =B, y=0)+ 2J(B,y=0)
band retain their density distributions sharply peaked near ) ]
the SD potential axial minima until they get weakly or WhereJj is the calculated moment of inert{d0). ; may be
strongly mixed with ID and ND levels when the spin de- interpreted as the effective potential sustaining the yrast SD

creases. The sharp character of SD states inAthd90 is  State with spinl. This potential calculated over the range
gained through rotation. I=0-20 is shown in Fig. 15 fot*Hg and **Pb. As can be

seen, the SD potentialsolid curve$ get deeper as in-

1(1+1), (59

VI. SD BAND PROPERTIES TABLE I. Predicted and measured excitation energies of yrast
In this section are presented our model predictions for SDSD levels at low spin.
level energies, kinematic moments of ine(tia, quadrupolg 1™ EgedMeV) Eexp (MeV) References
moments, and strengths for intraband and interband transi-
tions. Comparisons with measurements are also offered fo’Hg 0* 4,18
yrast SD bands. 10" 4.81
¥Hg 0o 5.08 (5.7+0.5) [79]
A Yrast bands o, (10:) 572  (6.8+0.9) ;(6.5+0.9) [80,8]]
g O 6.49 (6.0
1. Excitation energies 10" 7.13 6.63 [82]
The excitation energies calculated for the= 0 shape *Pb 0 3.61 39
isomers are gathered in Table I. For each isotopic chain, 8" 4.02 (4.357 [76]
there is a clear cut trend in these energies to increase with®b 0" 4.55 (4.6)
increasing neutron number. This pattern is to be correlated 6" 4.80 4.877 [77]
with variations in the shell and pairing properties at superde?*®b 0" 6.14
formed shapes, which lead to a gradual shift of the SD po- 10* 6.80
tential minima to higher excitation energies. These minima'®ro 0" 3.30
are lowest forN=110, the neutron magic number for SD 10" 3.90
nuclei in theA~190 region. We also notice that for each 19%pg o+ 478
isotonic chain, the predicted shape isomers lower their ener- 10+ 5.39

gies asZ increases. The trends of our predictions over the
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B B FIG. 14. 19Pb isotope. Mean deformatiogg) and{y) (lines

and fluctuation parametesg andA y (shaded areador the yrast
band(SD1), andg (SD2), 88 (SD2), andy (SDJ) vibrational SD
bands. Calculations are fo=30. The scale at the left-hand side is
For meanp deformation, and that foy deformation is at the right-
hand side. Arrows have the same meaning as in Fig. 10.

FIG. 13. *Pb and !*%0 isotopes. Probability densiti€57)
over the sextant S for the SD levels with spin22, 21 and 20 in
the B, y and yrast SD bands, respectively. Contour lines are sep
rated by 20 units.

creases. This property is consistent with that deduced from
cranking model calculations. Finally the inner barrier height¥ide Qpot (dashed curvesthe charge quadrupole moments at
W, is defined as the collective SD potential minima. In the second calcula-

tions, Q; (solid curves is obtained from ouB(E2) predic-
W, =V, (Bs) —Ex(1), (59 tions using the rotational model assumption. As can be seen,
the Q, values slightly decrease through theray cascades.
whereE,(l) is the excitation energy of the predicted yrast This means that the SD shapes are subject to a minor stretch-
SD level with spinl (see Figs. 10—12 and B5 the axial ing under the influence of rotation. This structure effect
deformation (3s~0.4) calculated at the top of the inner bar- would be difficult to measure, except for tHé&%1°Po iso-
rier. As shown in Fig. 16W, smoothly increases with in- topes and possibly fof®Pb where it might be as large as
creasing spin. Aroundi=10, W,~1.3 MeV for both1®Hg  10% over the spin range under consideration. Although the
and **4Pb. This value is in excellent agreement with empiri- predictionsQ o~ Q; is obtained for most yrast SD bands, it
cal estimateg81,82,8 shown as triangles, crosses, andmay happen that the static calculations provide only rough
open diamondsWV, has also been calculated for the other SDestimates for quadrupole moments.
nuclei in our sample. The results, also shown in Fig. 16,
suggest that theV,’s are stronger for the Po isotopes than for 4. Moments of inertia
the Hg a_nd Pb isotopes. This feature of the Po _isotopes stems £or the yrast SD bands, the kinematic moments of inertia
from their very deep/,(B)’s and strong collective masses,
which should favor a decay out at low spins. 21—1

J“M)=E

()—E(1-2) (60

3. Quadrupole moments

A number of high precision measurements are now availhave been deduced from our predicted spectra and compared
able for charge quadrupole moments of yrast SD bf8ds  in Fig. 18 with experimental values inferred from measured
91], which provide opportunities to further challenge our E, transition energies, and tentative spin assignmer&92]
predictions. These data are shown as shaded areas or salidless the linking transitions are obsery&6,77,79. As can
symbols with error bars in Fig. 17, where they are comparedbe seen, the calculated!)’s remain almost constant whén
with our static and dynamic calculations. The first ones proincreases except fo’®Po. It is no surprise that constaift)
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| FIG. 15. Effective potentiald)(B) (58 for

- the yrast SD states with spirs=0, 10, and 20
(***Hg) and 1=0, 8, 20 {*Pb), and predicted
yrast SD levels. The horizontal position of each
. level corresponds to its megh deformation.

E (MeV)
E (MeV)

values are predicted becauggthe mean deformation does tions are based on information inferred from mean deforma-
not depend upon angular momentum if potential energy surtions (see Sec. Y, solid curves in Figs. 10—12, and strengths
faces are sharp and deep enough éndthe adiabatic ap- of E2 reduced transition probabilities calculated for intra-
proximation embedded in our model ignores the influence oband transitiongsee below. As can be seen, thg vibra-
rotation on intrinsic states. FdTQSPO, the calculated 5% in- tions predicted in the SD potentia|s come first above yrast
crease of the moment of inerti#?) is here related only to pands. This means that the superdeformed potentials are
the stretching effect discussed previously. Our model is insofter against elongation than against non axial deformation,
deed unable to predict the rise observed in the eXperiment@roperties which propagate on the t0p0|ogy of probab”ity
J®M values wher increases. These systematic trends may belensities(see Fig. 13 None of these bands have so far been
understood by relaxing the adiabatic approximation and uspbserved, partly because they statmb) high in excitation
ing instead the self-consistent cranking mo@ele, e.g., Ref. energy above yrast levels. However, it is for th&1%%Po
[51]). However, the GCM-GOA approach is valid at low jspotopes that thes-vibrational bands are lowe$0.8<E, <
spins where a comparison between calculated and measured, MeV). Such aB SD band observed d&,(exp=0.648
JM values is fully justified. At low spins, the predicted and MeV for 238U [93] is predicted by the present model at
measured)®) values overlap quite nicely to within 3% on E (th)=0.97 MeV, in fair agreement with the experimental
the average, the largest differences between these quantitigglue. The relative excitation energies pfbands are pre-
reaching =5% for **Hg and "*%o. These differences (icted in the range 2.1-2.6 MeV. This property is interpreted
mainly result from our early decision of adopting the valueas a direct consequence of the stiffness of SD potentials
R=1.32 in the prescriptiori20) for the moments of inertia  against triaxiality, which should not favor experimental ob-
enteringH, . Releasing this conservative numhes sug- servation. Finally, we notice that the excitation energies here
gested by the crosses shown in Figwduld lead to improv-  predicted for theg SD bands in Hg and Pb isotopes are
ing our J) predictions, except fol*Po. systematically lower than those predicted in GCM calcula-
Figure 18 also includes the moments of ineltld) cal- tions for theK”=0" octupole modg94].
culated at superdeformed PES minima in the manner of
Thouless-Valatin, that is in a mean field approximation for
rotation ignoring all the other collective degrees of freedom.
TheseJd™ values shown as arrows are systematically 10— The B(E2;1—1—2) values for transitions between SD
20 % larger than the kinematic moments of ine(6®) de-  states in bands 2 and 3 have been calculated for all the nuclei
termined at low spins. These systematic differences observe¢nder study. Whenever needed, these transition rates are ex-
between)™ andJ™ show thatvibrational correlationsplay ~ Plicitly noted asB(E2;SD2-SD2) andB(E2; SD3-SD3),
a key role in the analysis of moments of inertia. Rotation and€spectively, in the present discussion. For the sake of com-
vibration are not decoupled modes, at low and moderat@leteness, the predictd®{E2;SD1—~SD1)’s relevant to the
spins in theA~ 190 region of superdeformation. This is one Yrast SD bands are also considered.

2. Intraband transitions

of the main results of this study. A feature common to all SD nuclei but®®o is that
B(E2; SD1-SDJ), B(E2; SD2-SD2), and B(E2; SD3
B. Vibrational SD bands —SD3J) display similar patterns dsincreases: the transition

rates in a band increase and reach values common to all three

bands as soon ds-22. This increase is related to the prop-
The relative excitation energies of thg3- and erties of the 3-coupling coefficient in Eq(49), and to the

v-vibrational SD bands are shown in Fig. 19. These predicstretching effects discussed previously, which may enhance

1. Energies
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FIG. 17. Quadrupole momenigb) of yrast SD bands. The
dashed and solid curves represent our predictions for static and
transition moments, respectively. The shaded areas and various
symbols with errors bars are for experimental measurements. The
experimental information fot®®Hg, 1%Hg, *Hg, %Pb, and'*Pb
are from Refs[87], [88], [89], [90], and [91], respectively. For
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0~ ' —— ' ' 19%ph the adopted spins are two units of angular momentum higher
0 10 20 O 10 20 . . .
than those of Refl91], and therefore consistent with those in Ref.
L&) I® [19]. The three individual @values[91] (full circles) have been

FIG. 16. Predictiongfull squares connected with full ling$or renormalized accordingly.

the inner potential barrier heights9) in 190:1921%q 192,194.19pp,
196,199, The symbols ¢ ), (¥), and (X) are experimental esti-
mates from[81,82,86 and[77,86 for %Hg and *°*Pb, respec-
tively.

B(E2; SDn— SDm). Their strengths are displayed f&¥Pb
and 1%po in the upper parts of Fig. 20 where the symbol
Al=0, 1, and 2 means spin transfer up to two units of angu-
lar momentum.
the phenomena. An illustration is shown fé?*Pb in the The predictions shown fot*Pb are representative of the
lower panel of Fig. 20 where tH&(E2) value common to all  interband transition properties ¢f%19219g, 19219pp and
three bands i8;(E2)~ 2400 Weisskopf unit§W.u.). Simi-  19pg_ First, we observe th@(E2; SD2-SD1) remains
lar strengths are obtained fdf*'*Pb. As a general state- approximately constant over the spin rarige30. This pre-
ment, it can be said tha (E2) gradually increases from diction does not depend upon wheth®er=0 (open circles
2000 Wl-él-(Hg isotopes to 2800 W.u. {*Po). _ or Al=2 (dotg. The B(E2) strength is~10 W.u. This
The "o nucleus displays rather different properties alstrong value together with excitation energies in the MeV
superdeformation. In addition to the obvious stretchlng eﬁeCFange(see Fig. 19 are not favorable to the observation of
on the B(E2; SD1-SDJ) values, we also observe in the gihrational bands in most SD nuclei of tie- 190 region.

lower panel of Fig. 20 that the threlé(E2) sets show a The y-vibrational bands would be even more difficult to ob-

spread of magnitudes which does not reduce significantl% . . o . .
: _ . erve becausé) their excitation energies are hidk,(y)
when| increases up t6=22. This spread oB(E2) values ~2E(f)] and (i) their main decay paths proceeding

can be traced back to the topology of probability densities - . :
shown in Fig. 13. In the vicinFi)ty c?ly=22,pwe seeythat the through SD3- SD1 transitions involv®(E2) rates approxi-

198pq densities for SD levels with spis20 (SD band 1 mately ten times stronger than those for tBevibrational

21 (SD band 3 and 22(SD band 2 are peaking at different Pand decay(see top of Fig. 1p This difference between
deformations. It would be interesting to extend the calculaB(E2) strengths may be understood by considering the dif-
tions to check whetheB(E2; SD1-SD1), B(E2; SD2 ference in shape between the density probabilities of the ini-

—SD2), and B(E2; SD3—SD3 take on closer values at tial 8 andy SD levels(see Fig. 1B
higher spins. Following the same method of reasoning now fdfPo,

- we deduce that the decay properties predicted for the
3. Interband transitions y-vibrational band do not favor experimental identification.
The B(E2) values calculated for transitions between SDIn contrast, theB(E2; SD2—SDJ) rate predicted for the
bandn and SD bandm are expressed using the notation stretched(i.e., Al =2) transitions gets weaker dsncreases
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% < | FIG. 19. Relative excitation energies of one-phonBnand y
oO
osk o‘:,‘.,o 1 o SD bands.
oo°°o « oo"""’o . . L
R 000° for even-even nuclei showing secondary minima at large
1] IELLLLECE L elongation in their potential energy surfaces. The collective
—— o Hamiltonian under present consideration is built from the
105« po 1< pg 1 GCM+GOA method to describe both rotation and quadru-
i pole vibrations at normal and SD shap@,, is parameter
o] + W8"50 ] free since its surface and kinetic energy components are de-
i - agu"® ;°o° ] termined only from the self-consistent HFB method in which
85} | o0°° i the Gogny force is used. Here, our treatment of the kinetic
e b energy is improved over that adopted eafl&8,47], by scal-
60 8 16 24 0 8 16 24 ing the Inglis-Belyaev moments of inertia to those calculated
Lk Li® in the manner of Thouless-Valatin.

The present study is focusing on the spectroscopic prop-
FIG. 18. Kinematic moments of inertia of yrast SD bands. Com-erties of the'90192.19g 19219419 4andl9%1%¢ jsotopes
parison between our predictiorifull square$ and values inferred  at large deformation. Among all the= + collective levels
from measurementircles. The arrows indicate the moment of predicted with our methods, only a few display a SD char-
inertia calculated la Thouless Valatir(see text The “experimen-  acter. The geometric properties attached to the SD levels are
tal” I values are deduced from measurements and spin assigexploited to show that these states form yrast and excited SD
ments gathered in Ref19]. bands. One-quadrupole-phonghandy SD bands are iden-

and reaches the vallB(E2)=4 W.u. for|=22. This predic- tified at relatively low excitation energies above the yrast SD
tion together with the expected low excitation enekgy ) bands for all nuclei. These excitation energies depend upon
~ 800 keV (see Fig. 19 should favor the experimental dis- the SD potential shapes and depths. Since the SD potentials

" o "o are softer along axial deformation than they are against tri-
covery of a low-lyingB-vibrational SD band in"**Po. axial coordinate, the8 bands are systematically lowest in

4. Moments of inertia energy. Only for the'®Po and!®®Po isotopes are the exci-
&ation energies falling belo®, =1 MeV. This low excitation

Before closing this presentation relevant to the excite L herav ranae should favor experimental discovery of such
band properties, we now briefly discuss our results for kine- 9y 9 P y

matic moments of inertia. For all nuclei bdt8o, theJ®  One-guadrupole-phonon SD bands in #e 190 region. The
values predicted for excited and yrast SD bands are nearl eakB(EZ_) strengths calculated for §tretchEﬁ transitions
identical and show no significant variations with increasing epopulating theg bands enhance this conclusion f6fPo.

spin. In contrast, the kinematic moment of inertia predicted” 0Ntrast, both excitation energiespbands g,=2.1-2.6
for the excited and yrast SD bands 8fPo display a com- MeV) and strongB(E2)’s for vy to yrast band transitions are

mon pattern: their values increase at the same rate when"Ot favoraple prop.erties.

increases. Furthermord™®(8 band [J(y band] is 5% The main trust in our study has been placed_on thg yrast
(15%) lower thanJ™)(yrast bangl All these features are not SD b.a'mds for whictti) a vyealth of measurements is available
unexpected. They again reflect the influence of stretchin nd (i) a decay scenario based on a tunneling process has

effects and vibration correlations on the moments of inertia~c" suggested. \We predicF that the yrast SD bands should
exist down to thd =0 shape isomers. FdP%Pb, 1%Hg, and

VIl. CONCLUSIONS '9%Pb, their excitation energies compare rather well with
) those inferred from decay out measurements. Furthermore,
A general and powerful two-center basis method has beeghe relative excitation energies bf- 10 levels as estimated
designed and applied to solve a collective Hamiltoritay,  for *Hg and1%Pb above the inner potential barrier invoked
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FIG. 20. B(E2) values(in W.u.) predicted for interband and intraband transitions relevant to the yaandy SD bands of'%Pb and
1980, The arrows have the same meaning as in Fig. 10.

in the phenomenological tunneling model, are consistent ACKNOWLEDGMENTS
with our predictions. It would be interesting to meas@g
for 1980, the nucleus for which a 10% stretching in its shapeC

's predicted when the spin incregses up 4@2. authors (J.L) thanks the Service de Physique Nuaite,
When deduced from our predicted energy spectra, the k'Bruyéres-Ie-CﬁseI, for the support and warm hospitality ex-

nematic moments of inertid) for SD bands are generally tended to him during the last stage of this work performed

constant as functions of spin. This feature is consistent withinger the cooperation agreement between CEA and Univer-
the adiabatic approximation underlying the GEIBOA ap-  sjte Bordeaux-I.

proach. For'®®o, the calculated™ values are raising with

I, a property which is not correlated with Coriolis coupling.

Our J® predictions help fixing the spins of observed yrast AppeENDIX: ALGEBRAIC AND NUMERICAL METHODS

SD bands. Once the spin assignment has been performed, the ) )

experimental and predictei!) values overlap within 5% at ~ The eigenstates¥;) (39) necessarily possess the space
low spins, except for'®®o0. Any other spin assignments symmetries ofH,. To minimize the computational effort,
would destroy this agreement. This detailed discussion sughe basis states on which th#;)’s are expanded are built to
gests that the two-center basis method together with the minclude the same symmetries. Since these well-known sym-
croscopic inputgpotential and tensor of inerfi@ntering our ~ Metries are more easily expressed in terms of the polar co-
collective model lead to reliablé®) predictions at low spin. ordinatesB and y, we forget for a moment thakt is
Therefore, the 10—15 % reduction observed when comparingctually solved for the variablex, anda,. In the first stage
the moment of inertia calculated in the manner of Thoulessef this appendix, symmetries attached to the wave functions
Valatin with those deduced from the predicted energy specare briefly defined and applied to the present problem. The
tra directly stems from quadrupole vibrational correlations.second part is devoted to building a convenient set of basis
This sizeable effect of rotation-vibration coupling at super-states which are symmetrized and fulfilling boundary condi-
deformed shapes is, in our view, one of the most significantions. Finally, the last portion of this appendix is devoted to
conclusion of the present study. In a forthcoming paper, thenore technical aspects: basis truncations, numerical integra-
rotation-vibration coupling will be discussed again in thetion method for matrix elements, orthonormalization, and op-
context of the cranking HFB method. timization of the truncated basis.

We wish to express our gratitude to Dr. D. Gogny for his
ontinuous interest and stimulating discussions. One of the
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1. Symmetries in collective wave functions

As pointed out a long time ago, a functichexpressed in
the variables g,v,{)) able to describe an eigenstate’faﬁ(fo”

with angular momentunh, and therefore obeying the same

symmetry rules, may be written in full generality as

ALM(B,%QF;’F'Kaw,y)cp'MK(m, (A1)

where ¢}, (Q) is the normalized combination @, (Q)
Wigner rotation matrices for angular momentinmvith pro-
jectionsM and K onto the third axis in the laboratory and
intrinsic systems, respectively, defined as

21+1 |2

16m2(1+ S¢o)
X[D k() + (1) KDy ()], (A2)

Pak(Q)=

and wherea contains any other indexes distinguishing be-

tween states with the samé, /1) quantum numbers.

a. SymmetriesR;, R,, and R3

An eigenstate ofﬂcou, and therefore under our present

hypothesis an4!™ function, must be invariant under any
transformation which relabels the intrinsic axg¢s &, and

&5. The three elementary transformations associated with this

relabeling are usually chosen @sR4 which reverses thé,
and &5 axes,(ii) R, which is thew/2 rotation around thé;
axis, and(iii) Rz which is the&— &, (with &,=§&3) cir-
cular permutation of axes.

As is well known, theR, invariance establishes a rela-

tionship [see Eq.(A2)] between the+K and —K compo-
nents of A'M and rules out th&=0 component wheth is
odd. TheR, invariance excludes odd components for any
| value, and implies the following parity condition:

Fka(B,— ) =(—1)2F, (B,7). (A3)

The invariance ofA'M under theR, andR, transformations
is secured provided th&i{(a obeys Eq.(A3), and that the
summation oveK [noted as¥’ in Eq. (Al)] is restricted to
0=K=l if Kis even, and t&k#0 if | is odd. Such condi-
tions exclude the subspace of angular momentum1.

Let us now consider a componelt=N in Eq. (Al), that
we write F™MN(8,7) ¢}, (Q). The indexs(N) means that
the function F™™(B,y) has to obey the parity condition
(A3). As shown in a pioneering woir63], applying theRR,

PHYSICAL REVIEW G0 054301

a7
Myk=2(—1)V2(1+ 8yo) Y21+ 5Ko)_1/27):\u<(§, E,ﬂ'),

(AS5)
in which [95]
330
NKl 2727
-1 K/2
:( 2|) X% (_1)I7$
[ +K) =K (T+N) (T =N) ]2
SI(K+N+S)!I(I-K—=9)!I(I-N—-S)!"’
(AB)

where the summation ov&runs over values for which fac-
torial functions are defined.

These matriced/ ) obey various relationships deduced
from orthogonality properties of the Wigner rotation matri-
ces. Two of them are of special importance for the present
analysis, namely,

(_ 1)N/2(_1)K/22’ (_1)L/2MINLM:_K= MlNK’ (A7)
and

(—DVA-DMEX My M{c=duk-  (A8)

As shown in Eq(A4), the R; transformation mixes thi
components and intricates their relative weights. As a well
known result, arfR; invariant state will necessarily contain
all the availablek components in the considered subspace of
angular momentunh.

b. Functions invariant underR,, R,, and Ry

SinceR; (i.e., the circular permutation of the three prin-
cipal axes in the intrinsic system of coordinatdgs the
trivial property (R3)°=1, we may define the symmetrization
operatorP; as

Py=1+R3+R3. (A9)

For any functionf, Psf is obviously invariant undeR; and

transformation to any one among such components results filffills the property

RalF™™M(8,7) opn(Q)]

- FW(N)(B’WL 2% ; (= DNMykemk(Q),
(A4)

whereM | is the symmetric matrix

Ra(Psf)=Rg(f+ Raf + R3F)=(Rsf + R5F+ R 3F)="P;f.
(A10)

To establish theP; operator properties for our particular
state functions, we first need to find an explicit form 3.
Applying twice Eq.(A4) to [Fi (8,7)emk(Q)], and using
the property(A7) results in

054301-20



MICROSCOPIC DESCRIPTIONS OF SUPERDEFORMED . ..

RAF™M(B,7) opn(Q)]

4 ,
ZFW(N)<B17+ ? (_l)NIZZ MlNK(P:\/IK(Q)-

(A11)

PHYSICAL REVIEW@054301

the property(A13) suggest a periodic function in thg co-
ordinate. Therefore, the basis functions we have adopted
[46,47 have the following form:

F™MN(8,7) eun(Q)=Q,[ B2 B3cog3y) 18" PNn(7.Q),
(A17)

Next, using Eq(A4) three times together with the property where

(A8), a transformation compatible with the propefys=1
results in

RIF™M(B,y) epn(Q)]
= F"(N)( v+ ZW)Z ' 5NK(PIMK(Q)a (A12)

which is valid as long as

F™N(B,y+2m)=F™MN(8,y). (A13)

Of course Eq(A13) holds true for any univalued function in
the deformation space described by the polar variables”

(B,7).

Finally, we check thatPs[ F™™(8,y)eyn(Q)] is also
R4 andR, invariant. Considering the explicit form of the,
transformatiorfsee Eqs(A4), (A9), and(Al11)], it is easy to
check thatP;[ F™™ (B, ) ejn(Q)] has the propeK com-
ponentdi.e., (0O<K=I, K=even and K#0 for I=0dd)]. It
remains to check that thé components

{ANN B 7 D= {PLF™™N (B, y) oun() T}k
(A14)

of P3[F™MN(B,v) ohn(Q)] fulfill the parity condition(A3).
Using the relationgA4), (A9), and(Al1l), we deduce

{AlNM(Bv’Y!Q)}K

= SnkF ™M (B, 7) + My

(_l)KIZFW(N)<IB,’y+ 2?77-)

+(_1)N/2F7T(N)(B,,y_ 2?77-)}, (A]_S)

from which it is easy to show that

{AINM(:BV_ 719)}K:(_1)K/2{A:\IM(:87719)}K .
(A16)

As a result, the functioPs[ F™™(8,y) epn ()] built to be
invariant by theR5 transformation, is als@®,; and R, in-
variant.

2. Building a set of symmetrized basis functions

N
O (y,Q)=cogny) eyn(Q) (E = even)
and

DM (y,Q)=sinny) oy (Q) (g=odd, (A18)

in which n is a non-negative integer. The functi@, does
not depend upon the angular varialle For such functions,
the R transformation is nothing but making the change
v+2m/3. The invariants of theR, transformation for
functions analytic in the &,,a,) coordinates are3® and
B3cos(3y) [63]. The functionQ,, which indeed depends only
upon these two invariants is not changed by Eiesymme-
trization operator. As discussed later on, fginvariantQ,,
function is taken as an exponential weight which secures the
fulfillment of boundary conditions at far edgg- ).
Furthermore, the tern8™ is subject to the condition

m=n-+2\, (A19)
where\ is any non-negative integer. This condition guaran-
tees that the basis functiof817) keep their analytic char-
acter when transformed back from thg, {) to the @g,a,)
coordinates. In numerical applications, is subject to the
cutoff conditionm=m,,,,. Therefore, Eq(A19) implies the
truncationn=m, .

Next, we build the symmetrized basis functions

A (B 7. Q) =Q,[ 82, B3cog3y) 18 Ps®in(v.Q)},
(A20)

on which the collective wave functior®,, (40) are ex-
panded. These are written

‘IflMa(ﬁi'Y!Q)

Mmax Mmax Mmax

=2 2 > 2 USRS A 8.7, ),

u=1n=1 m=nn+2- N
(A21)

wherea is a label index for a state in the spin blogkand

U'iun @n expansion coefficient. The )1\, states are not

So far, the functiorF ™™ (,7) has been given no close linearly independent. Some of them will be excluded later on

form. We only know thaf ™™ should fulfill the parity con-

dition (A3), and be an analytic function when expressed in
Cartesian coordinatesa§,a,). Several ways of adopting a

particular close form exidisee, for instance Reff96]). Here,
we have made our choice through the consideration7hat
operates on the polar coordinateThis feature together with

using simple algebraic considerations as well as the Gramm-
Schmidt method.
a. P; transformation in the ® ! (y,Q) space

In a subspace with angular momentuinthe P transfor-
mation is also written
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Padyh= ; " Chkn®in (A22)

where the coefficient€yx,,

2
Chkn= Onk+ Myl [(— )N+ (- 1)K/2]Co{ n?)

277) A23
n? ( )
are deduced from the transformation properti&9), (A4),
and(A11) and from the definitiofA18). These results mean
that, for a given frequency index the space spanned by the
PP \1's is a subspace of that spanned by i vectors.

+(—1)N?—(=1)*3sin

The structure of Eq(A23) has important implications: it <O n=3k+1
renders possible an important reduction of the configuration . . . L .
space. As an example, let us consider Fhetransformation 0 4 8 12 16 20

in the 1=0 subspace. We obtaiﬁgq):\,i'%;gng:O and/or
Pad 0025 2=0, with k as a non-negative integer. Fur-
thermore, only the Componerﬂ%ﬂ)',\‘::'%;%k remain. More FIG. 21. Number of independent basis components in the block
generally, theCy, properties imply that linear relationships (I,n) as a function of angular momentum amésee the Appendix
exist between th@;®)’s whenN is taken as the running The shaded area means that the truncatigps 2 is adopted.

index. For instanceP;®3y , ;=P;P3% ., in the =2 sub-

space. Furthermore, any component of the faPgd2M_ ., pends upon the values Faken by the upper limits of the sum-
vanishes. Finally, only the componen&®2" . ., and mation indexesw andm in Eq. (A21). In the present study,
P®2M . . need to be considered. TheBgtransformation W€ adopt the value n,,=2 andmy,,—36 (see below, and

; . .thus obtain theN, set identified in Fig. 22 by the symbol
properties are therefore of some practical importance, as dis- ! : .
cussed in the following paragraph. %NIT. As can be seen, the total number of basis states in-

I

b. Exclusion of uselessd 1\, basis states 8000
; I of inde. 22
In each block [,n), V\II'\Fj define the numbel .of inde - Two-center basis properties
pendent component;d ., as the number of basis elements

extracted from théN-ordered lists 25001 .
(Ps®ONF(N=0,2,4...1), l=eve, (A24) - .
and 2000 Mgy = 36 —
{Ps®ONh,(N=2,4,6...1-1), I=o0dd. (A25) i .

The M, values are shown in Fig. 21. These form two families N; 1500
of broken lines depending upon whether 3k (solid line)

or n=3k* 1 (dashed ling As an example of the lowering in -
the basis size resulting from tf; transformation, we con-

sider thel=10 spin block. For thid value, M\ =2. This 1000
implies that theN=0 andN=2 components alone survive the

P; transformation. TheN=4, 6, 8, and 10 components are
therefore excluded because they can be expressed as linear
combinations ofN = 0 and N=2 components, or vanish
identically.

The/\/'n values in each blockl(n) increase with angular
momentum and display regular patterns, whether3k or 0 ' ' ' '
n=3k=1. Both lines in Fig. 21 exhibit structures which INIT BOUND TRUNC ORTHO
repeat every six units of angular momentum all the way from  F|G. 22. Number of states considered at different stages labeled

low to high spins. . . . INIT, BOUND, and TRUNC while building them,,,=36 two-
The total numbeN, of basis states in each spin block as center basis in various spin blocks frdm0 to 1=22. The symbol

obtained after useless components have been excluded, d8BRTHO refers to orthonormalized basis sizes foundf8Hg.

500
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creases with spin, froml,~ 250 (I = 0 and 3 to N,~ 2800 =AM ol AM (A31)
(I = 22). Including boundary conditions leads to reducing ”mNn mN N g
the N, values still more, as explained below. The linear combinatiotA31) is formed in such way that all
_ ) . - the K#0 andK/2=even components df display ay de-
c. Basis functions fulfilling boundary conditions pendence proportional tpcosfiy)—cosf’y)]. This differ-

The boundary conditions dictate that the bound state scence vanishes fop=0 andy= only if nandn’ have same
lutions be vanishing at large elongati¢ire., B—). These parity. To find such properties, we need to reexpie$a31)
conditions are fulfilled by taking foQ, in Eq. (A20) the as

exponential form " |
F,umNn_ ﬂm[P3CDMNn+UNnn’P3(DMNn’]' (ASZ)

1
— 4 3 2

Qﬂ—exp{ - 5{“4u(fg )+ ag,[B7cod3y) ]+ az, B, Exploiting properties of thd:NKn coefficients (A22) and

(A26) (A23) attached to thé®; transformation, a partng?;®,,

, . . of P3® ), can always be found provided that=n+2, or
g‘rlwr&'gpntehde tl):?nsrir?araz;rlneetiﬁ/ﬁ;s gé’&'d%rﬁgé" araenprﬁg' n+4, or n+6. The lower possiblen’ value is actually
y defined. y valu inateQ,, vanishes Ce . e
at far edge provided that either one of the two conditions adopted, which fixes, . Of colurse the Imear combina

tion (A31) is formed only if both4A'™ LmNn andA'™ belong

ay,=asz,=0 and a,,>0 (A27) to the basis set labeled INIT prewously
This discussion was introduced to cure a specific pathol-
and ogy. When no pathology exists, that is, for the special case
where theK #0 andK/2 even component®;®,,,,, vanish
a4,>0 (A28)  (j.e., for C},=0) and obviously for components in tHe

<4 spin blocks, we al he n i for th
is fulfilled. These conditions will serve as constraints in the. . SPIN PIocks, we also adopt the notat iBtffyn for the
basis stated LmNn-

g;gﬁn“:tilr ?;?Od employed later on to optimize the basis As a by-product of using the “paired” basis stal‘é%mmNn
The boundary conditions at axially symmetric shaies, ~ A32) in @ given subspace of angular momentum, the num-
y=0,7/3,27/3, etc) have been discussed at length in i?ef ber Nt of functions fulfilling the boundary conditions and
built from the originalN;"'™ functions.A . ., has the prop-

[63]. Here, we discuss their impact on t Mmanunctions NIT
(A20). The discussion restricted to the=0 andy= cases €ry:Nr=N;"". The numbers of basis states thus obtained
are |dent|f|ed by the label BOUND in Fig. 22. As can be

does not alter the results since the functidA20) are R . ) " .
invariant. We write the functiongA20) in the convenient S€€n. the effect of including boundary conditions is a reduc-

form tion of the number of basis functions witk=4. This reduc-
tion gets stronger akincreases, and reaches typically 15 %

for 1=22.

pumNn’

A}Mua,y,m:;’A}Kw,wm(m, (A29)

3. Numerical methods

where j={u,m,N,n}, and repeat the analysésla Kumar The physical f&ateﬁflma (40) now defined in terms of the
and Barangef63] for the(A}'\" |7:{coll|-/4}'>/l> matrix elements. Pasis functiond” v\, are written
After integration over the Euler angles, one is left with inte- Pmax  Mmad Mmay’
gral kernels among which only one needs special care. This Vo By, Q)= >
kernel is written “ i=1n=0T2...m=nn72,...

S [ AL B, x E Tl sl 8,7/,

o J ] T3 (B 7)

(A30) (A33)

wheredu is the metric anddyy: the Kronecker symbol. \yhere theT'®
Problems may arise only for th€+0 terms in Eq.(A30).
First, we notice that thé& amplitudes withK/2=odd van-
ish for y=0 andy=1r since they are proportional to siny).
Next, we discuss the case of amplitudes witk+ O and
K/2=even, which exist only in the spin blocks=4. These
amplitudes[proportional to cos(y)] do not vanish fory
=0 andy= . When it shows up, this pathology is cured by
introducing new basis functions which are linear combina- The configuration space spanned by the basis funclions
tions of the previous ones, namely, is truncated as follows. First, consider the numjpgf,, of

umnnS are coefficients attached to this expan-
sion, and where the summation notati&n has the same

meaning as before. A new symbal is introduced. This
short notation means that the summation is restricted to the

basis functlonsl“ﬂmNn which were not excluded previously.

a. Truncations
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exponential weight function®,. Since we treat on the wherec is the channe{x, m, N, n}.In the (8,y) collec-

same grounds ND and SD collective levels, we adopt thdive coordinates, these kernels are written

value uy.,=2. We have checked that this prescription gen-

erates a set of basis vectors which is rich enough to secure _ 17 I \1/2

the stability of our predictions. HCC'_f dQL(FCHCO”FC’) pdgdy (A3
Next, consider the indem. This number is characteristic

of (i) the order of the power expansigA21) and (i) the  and

number of nodegA19) in the Fourier componentéA18).

The maxim.um'vaIL'Je adopted fqm is mma¥=36. We have Occ’:f dﬂf (Flcrlcr)[D(ByY)]llzﬂdBd% (A37)

shown earlier in Fig. 22 that this value is large enough to s

secure the stability in energy of the predicted collective lev- ]

els. This specific truncation is relevant to the vibration am-"éspectively. These kernels are calculated over the sextant

plitudes expanded in terms of the coordingsesndy. When ~ S={8=0,0sy=n/3} using the mesh AB,Ay)=(1/70,

expanding the amplitudes now expressed in the Cartesiafi/180. Furthermore, the maximum valy. is of the or-

coordinatesa, and a,, components of the formag)'(a,)’ der of 0.92. Precise cutoff values are not given because the
are obtained. These two separate expansions of the vibrati@$tualBmaxs are fixed for each nucleus using the criteria that
amplitudes are equivalent provided that-() < My, the magnitude of the exponential weigh@s, should be

Now consider the numbe which bears similarities with lower than 107 at far edge. Finally, integration over the
K, the projection of angular momentum on the symmetrydomain is performed for bot#( .., and O, with approxi-
axis. TheN values exclusively depend upon the values takerdnately 4000 points. Integration over the Euler angles, on the
by the number\”, of linearly independenp;®!,,, func-  Other hand, is straightforward because g and Heol'.
tions. In the range@1=<22, N\ takes on values from 0 to 4 functions are always expressed in terms of Wigner matrices.

(see Fig. 21 Here, the truncationj(/L)maX=2 is adopted
(and marked by the shaded area in Fig\.. Zhis implies that
the basis states witfN=4 or 6,1=ever} and with{N=6 or Next, we proceed to the orthonormalization of the basis
8, I=odd indexes are removed from the summation oMer set using the well-known Gramm-Schmidt method. The ex-
in Eq. (A33), which fixesN... The total numbersN, of  cluded basis states have norms weaker thad@ 4, and the
state vectors in the block of spin calculated in the range absolute values of nondiagon@l.., matrix elements are al-
I=0-22, are shown in Fig. 22 where the label TRUNCways lower than X107 in the new basis. Th&l, values
means thai\',<2. As can be seen, the truncation alters thethus obtained fort%Hg are shown at the right hand side of
N, values determined fdr=12 and leaves unchangey for ~ Fig. 22 where the notation ORTHO is used. Approximately

| <12. Although impressive at high spin, this reduction 60% of the original of basis states in each spin block are
leaves over complete our vector basis. rejected. For instance, tHe=0 subspace now is spanned by

The truncation\! <2 implies that some levels with ~ N(-0)=98 orthonormalized basis states and that lfe22
=12 are ignored. We have checked in the SD region that n§1v0lves only N, ;=390 vectors. Similar results are ob-
discontinuities show up when comparing the excitation enertained for the otheAr nuclei. These dimensions are numerically
gies predicted for the yrasf§, and y bands at spins higher tractable. SolvingH., now reduces to a simple eigenvalue
and lower than=12. This is the strongest argument to sup-problem which is treated through standard matrix diagonal-
port this geometric truncation. Moreover, adoptikg<2 in ization.
our analyses enhances the relative weight of skalbmpo-
nents in the predicted wave functions becadzg is the d. Optimum basis sets
leading-order term in the geometric fact@gy, (A23). We The content of basis states and the nunte? " in Fig.
therefore consider thait/"nsz is a reliable approximation for 22 depend upon the selected parametersin Eq. (A26).

I= 12 because we are dealing only with the first SD bandsy)| the N,ORTHOS used when solving.., are determined

which all are strongly dominated by loi-components. The  ater the basis parameters have been optimized. This optimi-
truncation\',<2 may just alter the spectra predicted at high,ation method is described below.

c. Orthonormalization

excitation energies. The free parameters are embedded in the exponential
) weightsQ,, defined in Eq(A26). They are optimized in such
b. Matrix elements a way that the first O levels predicted at normal and super-
In the representatiorfA33), we need to calculate the deformed shapes take on energies as low as possible. For the
Hamiltonian kernel ground state, this method is nothing but the application of the
variational principle. This variational principle might be
HCC/:<F|C|7:(CO”|FIC,> (A34) adopted in the region of superdeformation as long as the 0

SD level component at normal deformation is weak. We
have adopted this view and tested its reliability through
checking the stability of our predictions upon increasing the
el basis size. This size is governed by the parametgg,
Oco=(Telle), (A35)  (A21) which is increased from a starting valog,.

and the overlap kernel
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In the numerical optimization process which is repeatedwo-center basis calculation to minimize the energy of the
for each nucleus, we fiRny,, to My=my=20. In the first  first 0" state exhibiting SD character. A new set {)® is
step, the parameter setg () and (¢;,) in Q; andQ,, re-  obtained. This iterative method is repeated over and over
spectively, are guessed separately through sol¥ipg with ~ from step 2 until stability of the predictions at normal qnd _
one-center bases. The parameter sets){? and (a;,)® superdetormed shapes is reached. The last step consists in
thus obtained are used in calculations involving the two-solving Hcg for spins|>0. Thenm,, iS increased until
center basis. In step 2, the parameter set attaché, tis  stability of all level predictions is obtained. As shown in Fig.
optimized to minimize the ground state energy. A new se#, stability occurs fom,,,,=36. This value is common to all
(e1)® is obtained. In step 3,d(;)® is used in a new calculations performed in th&~ 190 region.
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