RAPID COMMUNICATIONS

PHYSICAL REVIEW C, VOLUME 60, 051306

Transition strength sums and quantum chaos

V. K. B. Kota! R. Sahut? K. Kar,2 J. M. G. Ganez? and J. Retamo$a
IPhysical Research Laboratory, Ahmedabad 380 009, India
2physics Department, Berhampur University, Berhampur 760 007, India
3Theory Group, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700 064, India
4Departamento de Bica Afanica, Molecular y Nuclear, Universidad Complutense de Madrid, E-28040 Madrid, Spain
(Received 21 April 1999; published 8 October 1999

For the embedded Gaussian orthogonal ensemble of random matrices, the strength sums generated by a
transition operator acting on an eigenstate vary with the excitation energy as the ratio of two Gaussians. This
general result is compared to exact shell-model calculations of Gamow-Teller strength sums in nuclei. Good
agreement is obtained in the chaotic domain of the spectrum, and strong deviations are observed as nuclear
motion approaches a regular regime. Thus transition strength sums seem to be a new statistic sensitive to the
chaoticity of the systen].S0556-28189)51411-9

PACS numbses): 24.60.Ky, 21.60.Cs, 24.30.Gd, 24.60.Lz

In the last 15 years there has been an explosive growth ipivariate  strength  densities |biv;o(E,E')=<(OT5(H
the use of random matrix theories for quantum systems, par- E')05(H—E)))=1"(E’)|(E'|O|E)|2I (E) take bivariate
ticularly in the context of quantum cha@]s] It is now well Gaussian fornﬁe]; here and e|sewheKQ. . >> denotes trace
known that the fluctuation properties of energy levels in(similarly (- - -) denotes averageThough the EGOE forms
quantum systems whose classical analogs are chaotic agree(i) and (i) are derived by evaluating the averages over
with the predictions of the Gaussian orthogonal ensemblgxed-m spaces, in a large number of numerical shell-model
(GOE) of random matrix theory, while quantum analogs of examples, it is verified that they apply equally well in fixed-
classically integrable systems display the features of Poissam mT, and mJT spaces[2,5—-§. In practice, Edgeworth
statistics[2,3]. However, in the chaotic and intermediate do- corrections are added to the Gaussian forms. One important
mains, much less is known about the structure and Correlagyproduct of(ii) is that the transition strength sum density
tions of stationary wave-function amplitudes and transition<<(9‘r@5(|_| —E))), which is a marginal density of the bivari-
strengths generated by the action of a transition operator ofte strength density, takes a Gaussian form, since the mar-
an e|ge_nstaté4]. o . ginal of a bivariate Gaussian is a Gaussian. Therefore, using

In this work we study whether the statistical properties of(j) and (i), it is immediately seen that transition strength
the total Gamow-Telle(GT) strength, as function of the ex- syms vary with excitation energy as the ratio of two Gauss-
citation energyE of nuclear states, can be related to regularigns. Giverk =010, the transition strength sum is given by
or chaotic features of nuclear dynamics. This strength is gne expectation valuéK)E, and can be written in terms of

relevant quantity in astrophysics for presupernova evolutiofpe expectation value densipy (E) [6,8],
and stellar collapse. In fact, the smoothed behavior of the

total GT strength vE& will be adequate for many astrophysi-

cal purposes, and it will give information about order-chaos (K)®=[dp(E)]™* EE (Ea|K|Ea)|=1k(E)/I(E)
transitions, just as energies, wave-function amplitudes, and “

transition strengths. Our purpose is to formulate, for the EGOE L

smoothed GT strength sums, a statistical theory in terms of =pk(E)p(E) — pk(E)p(E)=pk.g(E)lpg(E),
the embeded Gaussian orthogonal ensemble of random ma-

trices (EGOB), test it in terms of exact shell-model calcula- @)

tions, and study its behavior in chaotic and in regular do-
mains. It should be mentioned that the EGOE smoothed
forms gave birth to the so-called statistical nuclear spectros- _ 1
copy [2,5—8, and there are recent studies of this in atoms px(E)=(K&(H=E))=d""1«(E)
%9], rgolecules and solid$10], and mesoscopic systems =d"Y((KS(H-E))); K=0"0.
11,12

The EGOEK) is defined inm-particle spacefi.e., in the  In Egs.(1) d is the dimensionality, " stands for Gaussian,
(ﬁ,\f) dimensional space generated by distributngermions  and the bars ovep(E) and px(E) indicate the ensemble
over \ single particle statdswith a GOE representation in average(smoothed with respect to EGOE. In deriving Egs.
k-particle space fok-body operatorgusually k<m). Two (1) it is assumed that the smothed form @f(E)/p(E) re-
important results given by EGOE are that, in strongly inter-duces to the ratio of smoothed forms @{(E) and p(E).
acting shell-model spacésssentially in @ w spacej (i) the  This result ignores the fluctuations in bgiR(E) andp(E),
state densitie$(E)=((56(H—E))) take the Gaussian form and the rms error due to neglect of the fluctuations is given
[5] and (i) with the strengtrR(E,E’) = |(E'|O|E)|? gen- in terms of the number of principal components or the in-
erated by a transition operat6rin the H-diagonal basis, the verse participation ratio for the transition operatér

p(E)=(8(H—E))=d N(E)=d " Y{(S(H—E))),
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of the spectra. Thus it seems that the agreement is good in
the chaotic region and that the deviations are just in the
g ground-state region, where the states are not sufficiently
complex(chaotig. Similar deviations are observed at the up-
per end due to the finite shell-model space.
| In order to verify this interpretation of the agreement as a
4 consequence of chaoticity, next we study this question via
(K(GT))E when the Hamiltonian changes through a param-
eter from a symmetry preserving, i.e., regular Hamiltonian to
| a chaotic one. In the situation that a given one- plus two-
4 body H is a Wigner spin-isospirsU(4)-ST invariant, the
1 eigenvalues and eigenvectors are given easilgbj4)-ST
o algebra. The eigenstates are labeled, for a given numiwér

-20 0 20 40 valence nucleons, bl, S J, T, and theSU(4) irreducible

ENERGY (MeV) representations. In addition, as the GT operat_or is a gt_anerator
of the SU(4) group, theSU(4) algebra directly gives
FIG. 1. Gamow-Telle(GT) strength sum versus excitation en- (K(GT))E in terms of SU(4)-ST quantum numbers. De-

ergy (E) for the 814 dimensional six particld |§)-shell space with composing a given Hamiltoniad into theSU(4)-STinvari-
J=0, T=0. The exact shell-model results for the realistic KB3 antHg).st[15], and the remaining part that mix&€sJ(4)-
interaction are compared with the EGOE predictions given by EqQST states, one can construct thig Hamiltonian,

(D).
H\=Hsuyu)-st AMH—=Hsyua)-s7- (4)

As \ varies from 0 to 1, there is ordggood SU(4)-ST] to
chaos(given by full realisticH) transition, since it is well

15 + (fp)m=6’J=0’T=o

10

Shell Model

GT STRENGTH SUM

[2,7,13. Note that the smoothed EGOE form fd¢)E takes
into account K,H) and (K,H?) correlations, which define

thzsa_centr(gideK and ;’Vidth‘TK of pk(E); ex=(KH)/(K) and | ,5uun that realistic Hamiltonians generate, except at the

‘TK—<KH_ M(K) — ek - ends of the spectrum, chaoticomplex stateq1,2,4).
Equation(1) expresses a very general result. In order 0~ culations  for 2Mg in the 325 dimensional

study its domain of validity we carried out detailed shell- 251d)™=83=0T=0 space were performed using the

model tests using the operator that generates GT strengichester—Oak Ridge shell-model code and Kuo's two-body
sums. The GT transition operatSlg is given by interaction[16] with 1’O single-particle energies iH. Fig-
ure 2 shows the total GT strength vs excitation energy for
o) = Y o, ()t=(i), (20 A=0,03,0.5, and 1 cases. For the realistic nuclear interac-
i=nucleons tion (A=1) the results are in good agreement with the
EGOE curve except at the edges, i.e., the statistical theory
wheret.. converts a neutron into a proton and vice versagives a good smoothed description in the chaotic domain,
The total GT strength originating from an initial state at en-jyst as we saw for*®. For the SU(4)-ST Hamiltonian ¢
ergy E to all final states is given by the expectation value=(), there are many degenerate states and the shape of the

(K(GT))F of the operatoK(GT), where GT strength sums is very different from the shape for the
realistic interaction. It is clearly seen that the EGOE curve is
KE(GT) = ()t o) 3 not a good smooth_aproxmatlon to the exact results in the

(GT) % Ocru0ct @ case of regular motion.

As a quantitative measure of the similarity between

In this paper we restrict ourselves T16=0 states ofN=Z EGOE and shell-model results we can use the mean square
nuclei and, therefore&{ (GT)=K(")(GT)=K()(GT). deviation y? between their total GT strengths at the shell-

Exact shell-model calculations for the total GT strengthmodel energies and their corresponding values in the
have been carried out for all tide=0 states of'®V in the 814  smoothed EGOE curve. Figure 3 shows tyfsvalue as a
dimensional (12p)™=67=0T=0 gpace. The -calculations function of\. Itis reduced by an order of magnitude when
were performed with thesvATHAN code of the Strasbourg- makes the transition from order to chaos, confirming our
Madrid group, using the effective interaction KB3, which interpretation of the EGOE and shell-model agreement as a
successfully reproduces experimental binding energies, excineasure of chaoticity.
tation spectra, and transition strengths for nuclei in this re- The order to chaos transition as increases is clearly
gion [14]. On the other hand, the expectation value densityillustrated by the theP(s) distribution of nearest-neighbor
pk(cT):¢ for the K(GT) operator is constructed in terms of level spacings and the spectral rigididys, which are com-
its centroid and width and, similarly, the state density Gaussmonly used statistics to distinguish order from chaos in
ian. Then, using Eqgs(1), the smoothed form of the GT quantum systemgl,2]. Figure 4 showsP(s) and A for \
strength sum as a function of excitation energy is constructee-0.3, 0.5, and 1. Thé(s) distribution is related to short-
and compared with exact shell-model results. range correlations, and s, to long-range correlations be-

In Fig. 1 it is seen that the smoothed EGOE curve detween energy levels. At=0.3, P(s) is already very close to
scribes very well the shell-model results, except at the edgethe GOE limit, apparently indicating a quick onset of chaos
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FIG. 2. Gamow-Telle(GT) strength sum versus excitation en- o[ T . i
ergy (E) for 325 dimensional eight particled)-shell space with °© =1 -l /
J=0, T=0. The exact shell-model results for 8tJ(4)-ST invari- ° ©=0.99£0.07 /’
ant Hamiltonian § =0), for a realistic Kuo interactionN(=1) and of T e ,,’
for the interpolating cases with=0.3 and 0.5 are compared with __ * /
the EGOE predictions given by E¢L). T3t \ {1 4 /
’
\ 0 !
AN : !
even for a smaller fraction of the realistic nuclear force, but §F AN . © // -
Aj is still relatively far from the GOE limit. Since the total < /
GT strength is the sum of strengths from one parent state tc N o= s
all the states of the daughter nucleus, it is a quantity associ 0 1 2 3 0 10 20 30 40 50 60
L

ated with long-range correlations between nuclear states anu
it can be expected to behave more likg. In Fig. 3 it is
indeed seen that? is three times larger at=0.3 than at
A=1. Finally, the system becomes fully chaotichat 0.5,
whereP(s), A;, andy? are all close to their chaotic limits.

FIG. 4. Distribution of nearest-neighbor spaciri®s) and av-
eraged spectral rigidityA(L) for the (ds)™=87=0T=0 |evels in
Mg, for various values of the interpolating paramekein H,
defined by Eq(4). The dashed lines represent Poisson; dotted lines,
GOE predictions; and solid lines, best fit Brody distributions with
parameteiw [2]. The error bars give the standard deviation of the
A3 average over overlaping intervals of length

10 T T T T T T T T

In conclusion, we find that the GT strength sum as a func-
tion of excitation energy is an observable which is sensitive

g to the regular or chaotic regimes of nuclear motion. The
ii transition from order to chaos has been studied as the nuclear
G HamiltonianH, goes from theSU(4)-ST limit for A\=0to a

realistic interaction forn=1. It has been shown that as
nuclear dynamics approach the chaotic regime, the GT
strength sums approach EGOE predictions. The EGOE
(equivalently statistical spectroscopymoothed strength
sum for a transition operator varies with excitation energy as
the ratio of two Gaussians, and agrees very well with exact
shell-model predictions in the chaotic domain of the spec-
FIG. 3. Mean square deViatiOF(z)\)/X(Z)\:l) between the exact trum for a realistic nuclear Hamiltonian, while important de-
shell-model and EGOE predictions for GT strength sums for all theviations are observed at the edges, where nuclear states are
(ds)™M=8J=0T=0 gtates, versus the interpolating paramatén H, ~ not chaotic.
defined by Eq(4). The chaoticity of the system has been studied using the
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P(s) distribution and thé\ ; statistic as well. As the order to Although we have presented results for the GT strength
chaos transition takes pIacB(s) approaches very quickly sums onIy, similar conclusions are seen to be valid for other
the Wigner surmise limit. In contrast, the GT strength sumgransition operators as well. A more comprehensive account
behave rather like tha 5 statistic, approaching more slowly ©f these results will be presented elsewhere.

the EGOE and GOE limits. This similarity is probably due to

the fact that both statistics are related to long-range correla- v K.B.K. thanks O. Bohigas for many valuable discus-
tions between energy levels or wave functions. This angjons and suggestions. K.K. acknowledges helpful discus-
other related questions require investigations using deformesions with S. Sarkar and M.V.N. Murthy. This work has been
embedded random matrix ensemblgs, in Eq. (4) is a partially supported by DGESSpain under Project No.
member of a deformed EGOE afd gives other examplés  PB96-0604 and by DSTIndia).
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