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Transition strength sums and quantum chaos
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For the embedded Gaussian orthogonal ensemble of random matrices, the strength sums generated by a
transition operator acting on an eigenstate vary with the excitation energy as the ratio of two Gaussians. This
general result is compared to exact shell-model calculations of Gamow-Teller strength sums in nuclei. Good
agreement is obtained in the chaotic domain of the spectrum, and strong deviations are observed as nuclear
motion approaches a regular regime. Thus transition strength sums seem to be a new statistic sensitive to the
chaoticity of the system.@S0556-2813~99!51411-8#
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In the last 15 years there has been an explosive growt
the use of random matrix theories for quantum systems,
ticularly in the context of quantum chaos@1#. It is now well
known that the fluctuation properties of energy levels
quantum systems whose classical analogs are chaotic a
with the predictions of the Gaussian orthogonal ensem
~GOE! of random matrix theory, while quantum analogs
classically integrable systems display the features of Pois
statistics@2,3#. However, in the chaotic and intermediate d
mains, much less is known about the structure and corr
tions of stationary wave-function amplitudes and transit
strengths generated by the action of a transition operato
an eigenstate@4#.

In this work we study whether the statistical properties
the total Gamow-Teller~GT! strength, as function of the ex
citation energyE of nuclear states, can be related to regu
or chaotic features of nuclear dynamics. This strength
relevant quantity in astrophysics for presupernova evolu
and stellar collapse. In fact, the smoothed behavior of
total GT strength vsE will be adequate for many astrophys
cal purposes, and it will give information about order-cha
transitions, just as energies, wave-function amplitudes,
transition strengths. Our purpose is to formulate, for
smoothed GT strength sums, a statistical theory in term
the embeded Gaussian orthogonal ensemble of random
trices ~EGOE!, test it in terms of exact shell-model calcul
tions, and study its behavior in chaotic and in regular d
mains. It should be mentioned that the EGOE smoot
forms gave birth to the so-called statistical nuclear spect
copy @2,5–8#, and there are recent studies of this in ato
@9#, molecules and solids@10#, and mesoscopic system
@11,12#.

The EGOE(k) is defined inm-particle spaces@i.e., in the
(m
N) dimensional space generated by distributingm fermions

over N single particle states# with a GOE representation in
k-particle space fork-body operators~usually k!m). Two
important results given by EGOE are that, in strongly int
acting shell-model spaces~essentially in 0\v spaces!, ~i! the
state densitiesI (E)5^^d(H2E)&& take the Gaussian form
@5# and ~ii ! with the strengthR(E,E8) 5 u^E8uOuE&u2 gen-
erated by a transition operatorO in theH-diagonal basis, the
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bivariate strength densities I biv;O(E,E8)5^^O †d(H
2E8)Od(H2E)&&5I 8(E8)u^E8uOuE&u2I (E) take bivariate
Gaussian form@6#; here and elsewherê̂•••&& denotes trace
~similarly ^•••& denotes average!. Though the EGOE forms
in ~i! and ~ii ! are derived by evaluating the averages ov
fixed-m spaces, in a large number of numerical shell-mo
examples, it is verified that they apply equally well in fixe
m, mT, and mJT spaces@2,5–8#. In practice, Edgeworth
corrections are added to the Gaussian forms. One impor
byproduct of~ii ! is that the transition strength sum dens
^^O †Od(H2E)&&, which is a marginal density of the bivari
ate strength density, takes a Gaussian form, since the
ginal of a bivariate Gaussian is a Gaussian. Therefore, u
~i! and ~ii !, it is immediately seen that transition streng
sums vary with excitation energy as the ratio of two Gau
ians. GivenK5O †O, the transition strength sum is given b
the expectation valuêK&E, and can be written in terms o
the expectation value densityrK(E) @6,8#,

^K&E5@dr~E!#21F (
a«E

^EauKuEa&G5I K~E!/I ~E!

5rK~E!/r~E! →
EGOE

rK~E!/r~E!5rK:G~E!/rG~E!,

~1!

r~E!5^d~H2E!&5d21I ~E!5d21^^d~H2E!&&,

rK~E!5^Kd~H2E!&5d21I K~E!

5d21^^Kd~H2E!&&; K5O †O.

In Eqs.~1! d is the dimensionality, ‘‘G’’ stands for Gaussian,
and the bars overr(E) and rK(E) indicate the ensemble
average~smoothed! with respect to EGOE. In deriving Eqs
~1! it is assumed that the smothed form ofrK(E)/r(E) re-
duces to the ratio of smoothed forms ofrK(E) and r(E).
This result ignores the fluctuations in bothrK(E) andr(E),
and the rms error due to neglect of the fluctuations is giv
in terms of the number of principal components or the
verse participation ratio for the transition operatorO
©1999 The American Physical Society06-1
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@2,7,13#. Note that the smoothed EGOE form for^K&E takes
into account (K,H) and (K,H2) correlations, which define
the centroideK and widthsK of rK(E); eK5^KH&/^K& and
sK

2 5^KH2&/^K&2eK
2 .

Equation~1! expresses a very general result. In order
study its domain of validity we carried out detailed she
model tests using the operator that generates GT stre
sums. The GT transition operatorOGT is given by

OGT;m
(6) 5 (

i 5nucleons
sm~ i !t6~ i !, ~2!

where t6 converts a neutron into a proton and vice ver
The total GT strength originating from an initial state at e
ergy E to all final states is given by the expectation val
^K(GT)&E of the operatorK(GT), where

K (6)~GT!5(
m

OGT;m
(6)† OGT;m

(6) . ~3!

In this paper we restrict ourselves toT50 states ofN5Z
nuclei and, therefore,K(GT)5K (1)(GT)5K (2)(GT).

Exact shell-model calculations for the total GT streng
have been carried out for all theJ50 states of46V in the 814
dimensional (1f 2p)m56,J50,T50 space. The calculation
were performed with theNATHAN code of the Strasbourg
Madrid group, using the effective interaction KB3, whic
successfully reproduces experimental binding energies, e
tation spectra, and transition strengths for nuclei in this
gion @14#. On the other hand, the expectation value den
rK(GT):G for the K(GT) operator is constructed in terms o
its centroid and width and, similarly, the state density Gau
ian. Then, using Eqs.~1!, the smoothed form of the GT
strength sum as a function of excitation energy is construc
and compared with exact shell-model results.

In Fig. 1 it is seen that the smoothed EGOE curve
scribes very well the shell-model results, except at the ed

FIG. 1. Gamow-Teller~GT! strength sum versus excitation e
ergy ~E! for the 814 dimensional six particle (f p)-shell space with
J50, T50. The exact shell-model results for the realistic KB
interaction are compared with the EGOE predictions given by
~1!.
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of the spectra. Thus it seems that the agreement is goo
the chaotic region and that the deviations are just in
ground-state region, where the states are not sufficie
complex~chaotic!. Similar deviations are observed at the u
per end due to the finite shell-model space.

In order to verify this interpretation of the agreement a
consequence of chaoticity, next we study this question
^K(GT)&E when the Hamiltonian changes through a para
eter from a symmetry preserving, i.e., regular Hamiltonian
a chaotic one. In the situation that a given one- plus tw
body H is a Wigner spin-isospinSU(4)-ST invariant, the
eigenvalues and eigenvectors are given easily bySU(4)-ST
algebra. The eigenstates are labeled, for a given numberm of
valence nucleons, byL, S, J, T, and theSU(4) irreducible
representations. In addition, as the GT operator is a gene
of the SU(4) group, the SU(4) algebra directly gives
^K(GT)&E in terms of SU(4)-ST quantum numbers. De
composing a given HamiltonianH into theSU(4)-ST invari-
antHSU(4)-ST @15#, and the remaining part that mixesSU(4)-
ST states, one can construct theHl Hamiltonian,

Hl5HSU(4)-ST1l~H2HSU(4)-ST!. ~4!

As l varies from 0 to 1, there is order@goodSU(4)-ST] to
chaos~given by full realisticH) transition, since it is well
known that realistic Hamiltonians generate, except at
ends of the spectrum, chaotic~complex! states@1,2,4#.

Calculations for 24Mg in the 325 dimensiona
(2s1d)m58,J50,T50 space were performed using th
Rochester–Oak Ridge shell-model code and Kuo’s two-b
interaction@16# with 17O single-particle energies inH. Fig-
ure 2 shows the total GT strength vs excitation energy
l50, 0.3, 0.5, and 1 cases. For the realistic nuclear inte
tion (l51) the results are in good agreement with t
EGOE curve except at the edges, i.e., the statistical the
gives a good smoothed description in the chaotic dom
just as we saw for46V. For theSU(4)-ST Hamiltonian (l
50), there are many degenerate states and the shape o
GT strength sums is very different from the shape for
realistic interaction. It is clearly seen that the EGOE curve
not a good smooth aproximation to the exact results in
case of regular motion.

As a quantitative measure of the similarity betwe
EGOE and shell-model results we can use the mean sq
deviation x2 between their total GT strengths at the she
model energies and their corresponding values in
smoothed EGOE curve. Figure 3 shows thisx2 value as a
function ofl. It is reduced by an order of magnitude whenl
makes the transition from order to chaos, confirming o
interpretation of the EGOE and shell-model agreement a
measure of chaoticity.

The order to chaos transition asl increases is clearly
illustrated by the theP(s) distribution of nearest-neighbo
level spacings and the spectral rigidityD3, which are com-
monly used statistics to distinguish order from chaos
quantum systems@1,2#. Figure 4 showsP(s) and D3 for l
50.3, 0.5, and 1. TheP(s) distribution is related to short
range correlations, andD3, to long-range correlations be
tween energy levels. Atl50.3, P(s) is already very close to
the GOE limit, apparently indicating a quick onset of cha

.
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even for a smaller fraction of the realistic nuclear force, b
D3 is still relatively far from the GOE limit. Since the tota
GT strength is the sum of strengths from one parent stat
all the states of the daughter nucleus, it is a quantity ass
ated with long-range correlations between nuclear states
it can be expected to behave more likeD3. In Fig. 3 it is
indeed seen thatx2 is three times larger atl50.3 than at
l51. Finally, the system becomes fully chaotic atl50.5,
whereP(s), D3, andx2 are all close to their chaotic limits

FIG. 2. Gamow-Teller~GT! strength sum versus excitation e
ergy (E) for 325 dimensional eight particle (ds)-shell space with
J50, T50. The exact shell-model results for anSU(4)-ST invari-
ant Hamiltonian (l50), for a realistic Kuo interaction (l51) and
for the interpolating cases withl50.3 and 0.5 are compared wit
the EGOE predictions given by Eq.~1!.

FIG. 3. Mean square deviationx (l)
2 /x (l51)

2 between the exac
shell-model and EGOE predictions for GT strength sums for all
(ds)m58,J50,T50 states, versus the interpolating parameterl in Hl

defined by Eq.~4!.
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In conclusion, we find that the GT strength sum as a fu
tion of excitation energy is an observable which is sensit
to the regular or chaotic regimes of nuclear motion. T
transition from order to chaos has been studied as the nuc
HamiltonianHl goes from theSU(4)-ST limit for l50 to a
realistic interaction forl51. It has been shown that a
nuclear dynamics approach the chaotic regime, the
strength sums approach EGOE predictions. The EG
~equivalently statistical spectroscopy! smoothed strength
sum for a transition operator varies with excitation energy
the ratio of two Gaussians, and agrees very well with ex
shell-model predictions in the chaotic domain of the sp
trum for a realistic nuclear Hamiltonian, while important d
viations are observed at the edges, where nuclear state
not chaotic.

The chaoticity of the system has been studied using

e

FIG. 4. Distribution of nearest-neighbor spacingsP(s) and av-
eraged spectral rigidityD3(L) for the (ds)m58,J50,T50 levels in
24Mg, for various values of the interpolating parameterl in Hl

defined by Eq.~4!. The dashed lines represent Poisson; dotted lin
GOE predictions; and solid lines, best fit Brody distributions w
parameterv @2#. The error bars give the standard deviation of t
D3 average over overlaping intervals of lengthL.
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P(s) distribution and theD3 statistic as well. As the order to
chaos transition takes place,P(s) approaches very quickly
the Wigner surmise limit. In contrast, the GT strength su
behave rather like theD3 statistic, approaching more slowl
the EGOE and GOE limits. This similarity is probably due
the fact that both statistics are related to long-range corr
tions between energy levels or wave functions. This a
other related questions require investigations using defor
embedded random matrix ensembles@Hl in Eq. ~4! is a
member of a deformed EGOE and@4# gives other examples#.
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Although we have presented results for the GT stren
sums only, similar conclusions are seen to be valid for ot
transition operators as well. A more comprehensive acco
of these results will be presented elsewhere.
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