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Simple model for decay of superdeformed nuclei
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~Received 28 May 1999; published 7 October 1999!

Recent theoretical investigations of the decay mechanism out of a superdeformed nuclear band have yielded
qualitatively different results, depending on the relative values of the relevant decay widths. We present a
simple two-level model for the dynamics of the tunneling between the superdeformed and normal-deformed
bands, which treats decay and tunneling processes on an equal footing. The previous theoretical results are
shown to correspond to coherent and incoherent limits of the full tunneling dynamics. Our model accounts for
experimental data in both theA;150 mass region, where the tunneling dynamics are coherent, and in theA
;190 mass region, where the tunneling dynamics are incoherent.@S0556-2813~99!50911-4#

PACS number~s!: 21.60.2n, 21.10.Re, 27.70.1q, 27.80.1w
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One of the most interesting recent discoveries in nucle
structure physics is the existence of superdeformation
nuclei in the massA;150 andA;190 regions. So far, a
consistent theory regarding the decay out of a superdefor
~SD! rotational band into a normal-deformed~ND! band has
not been achieved. Most of the early work@1–6# on this
problem attributed the decay-out process to a mixing of
SD states with ND states of equal spin. Decay out of the
band sets in at a spinI 0, for which penetration through th
barrier between the SD minimum and the ND minimum
competitive with the E2 decay within the SD band. A stat
tical model was used@2,3# to describe the ND states, and th
decay out of the SD band was determined as a function
the decay widthsGS and GN in the SD and ND potentia
wells, respectively, the spreading~or tunneling! width G↓

through the barrier, and the average spacingDN of the ND
states. Under the assumption that the ND states form a
tinuum on the scale of the other energies in the problem,
spreading width was found, using Fermi’s golden rule, to
@5#

G↓52p^V2&/DN , ~1!

where ^V2& is the mean square of the coupling matrix e
mentsVab connecting the SD and ND states.G↓ measures
the strength of the coupling between the SD and ND sta
In Refs.@2,3#, it was assumed thatGN&GS and thatG↓/DN
;1, i.e., that the coupling between the SD and ND state
relatively strong.

Quite recently, a different approach to this problem h
been reported@7#. In this approach, the reduction factorFS of
the intraband transition intensity is calculated directly a
function of the spreading widthG↓ and of the intraband E2
width GS . Their final result forFS is shown to be indepen
dent of the statistical E1 decay widthsGN of the ND states,
provided thatGN@G↓,GS . Since the publication of the late
result, it has been difficult to reconcile the predictions
these two calculations, because their final results do not
pend upon the same parameters.

The purpose of the present Rapid Communication is
formulate a simple two-level model for this problem, so as
study in detail the dependence of the decay-out proces
GS , GN , and G↓. It will be shown that the results of bot
0556-2813/99/60~5!/051305~4!/$15.00 60 0513
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previous investigations of the decay-out process can be
tained in certain limits, depending on the relative sizes
these widths. It will also be shown that the appropriate
pression for the spreading width is not Eq.~1!, but

G↓5
2ḠV2

D21Ḡ2
, ~2!

where Ḡ5(GS1GN)/2, V is the matrix element connectin
the SD state of interest with the single ND state with whi
it mixes most strongly, andD is the energy difference o
these two states. It will be shown that Eq.~1! is indeed the
correct mean value ofG↓ over a statistical ensemble of nucl

in the limit V!Ḡ, in agreement with Ref.@7#. However, the
fluctuations inG↓ are typically much larger than its mean
indicating that Eq.~2! must be used to describe the decay o
of a particular superdeformed state.

Motivated by the experimental fact@8# that GN ,GS!DN
in the A;190 region, we consider an effective two-lev
system consisting of the superdeformed stateS and the
normal-deformed stateN to which it couples most strongly
The Hamiltonian of the system is

H5H01HD , ~3!

whereHD describes the electromagnetic decay processesGN
andGS within the ND and SD bands, respectively, and

H05«ScS
†cS1«NcN

† cN1V~cS
†cN1cN

† cS! ~4!

describes the effective two-level system, including tunnel
through the barrier separating the SD and ND states. HercS

†

andcN
† are creation operators for the superdeformed statS,

of energy«S , and the normal-deformed stateN, of energy
«N , respectively. Without loss of generality, the tunnelin
matrix elementV is chosen positive via an appropriate choi
of the relative phase of the statesS andN.

In order to include both the coherent ‘‘Rabi oscillations
due toV and the irreversible decaysGS andGN , it is useful
to consider the retarded Green’s function

Gi j ~ t !52 iu~ t !^$ci~ t !,cj
†~0!%& ~5!
©1999 The American Physical Society05-1
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and its Fourier transform

Gi j ~E!5E
2`

`

dtGi j ~ t !eiEt. ~6!

The Green’s function of the tunneling HamiltonianH0 satis-
fies

G0
21~E!51~E1 i01!2H0 , ~7!

where1 is the unit matrix. In theuS&,uN& basis, one has

G0
21~E!5S E2«S1 i01 2V

2V E2«N1 i01D . ~8!

The full Green’s function, including decay processes, may
calculated from Dyson’s equation,

G215G0
212S, ~9!

whereS is the self-energy matrix describing the decay p
cessesGS andGN induced byHD . The simplest ansatz forS
is @7#

S[S SSS SSN

SNS SNN
D 5S 2 iGS/2 0

0 2 iGN/2D . ~10!

Using Eqs.~8! and ~10!, one can solve Dyson’s equation
obtain the full retarded Green’s function of the two-lev
system,

G[S GSS GSN

GNS GNN
D

5@~E2«S1 iGS/2!~E2«N1 iGN/2!2V2#21

3S E2«N1 iGN/2 V

V E2«S1 iGS/2D . ~11!

One can obtain fromG all information about the dynamics o
the system and the branching ratios of the decay proces

Let us first study the dynamics of the coupled SD-N
system. Assuming the nucleus starts out at time zero in
superdeformed stateuS&, the probability that the nucleus is i
stateuS& at a later timet is PS(t)5uGSS(t)u2. The probability
that the nucleus is in the normal stateuN& at time t is
PN(t)5uGNS(t)u2. PS(t) and PN(t) may be calculated
straightforwardly from the Fourier transform of Eq.~11!.
The general result forPN(t) is

PN~ t !5
2V2

uvu2
e2Ḡt~coshv i t2cosv r t !, ~12!

where

v[v r1 iv i5A4V21~D2 iG8!2, ~13!

D5«N2«S , G85(GN2GS)/2, andḠ was defined after Eq
~2!. The general expression forPS(t) is rather lengthy.
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The tunneling dynamics are particularly interesting wh
the energy differenceD50. There are then two qualitativel
different dynamical regimes, depending on the relative s
of the tunneling matrix elementV and the difference in deca
ratesG8. For 2V.uG8u, the tunneling dynamics arecoher-
ent, and one finds

PS~ t !5e2ḠtF cos2
v0t

2
1

G8

v0
sinv0t1

G82

v0
2

sin2
v0t

2 G ,

PN~ t !5
4V2

v0
2

e2Ḡt sin2
v0t

2
, ~14!

where the Rabi frequencyv0 is

v05u4V22G82u1/2. ~15!

For 2V,uG8u, on the other hand, the tunneling dynamics a
incoherent, and

PS~ t !5e2ḠtF cosh2
v0t

2
1

G8

v0
sinhv0t1

G82

v0
2

sinh2
v0t

2 G ,

PN~ t !5
4V2

v0
2

e2Ḡt sinh2
v0t

2
. ~16!

For G850 andDÞ0, the tunneling dynamics arecoherent,
given by Eq.~14!, with v0→(4V21D2)1/2. For G8Þ0 and
DÞ0, the tunneling dynamics have both coherent and in
herent components@c.f. Eq. ~12!#, the coherent componen
being suppressed for largeG8 and/or largeD.

The dynamics of the system are similar to that of t
two-level system with dissipation, investigated by Legg
et al. @9#; the principal difference is that we consider a tw
level system in which the total number of particles is its
time dependent. The physical origin of the imaginary se
energyS is virtual transitions of the nucleus to lower-lyin
states and back again, which alter the state of the electrom
netic environment. This is analogous to the coupling of
two-level system to a bath of bosonic excitations conside
in Ref. @9#. If the environment couples with equal strength
the statesS andN, i.e., if GS5GN5Ḡ, the Green’s function
factorizes quite generally@10#; G(t)5e2Ḡt/2G0(t), and the
nucleus undergoes Rabi oscillations with frequencyv
5(4V21D2)1/2 between the statesSandN. The nucleus is in
a coherent superposition of states, which decays at an ov
rate Ḡ to lower-lying states. However, if the environme
couples with different strengths to the statesS andN, i.e., if
G8Þ0, coherent tunneling betweenS and N is suppressed
since the environment ‘‘measures’’ which state the system
in. For D50 and 0,uG8u,2V, the dynamics described b
Eq. ~14! are qualitatively similar to the caseG850, but the
Rabi frequency is reduced to the value given in Eq.~15!. If
the difference in coupling exceeds the critical valueuG8u
.2V for D50, the coherent superposition ofS and N is
destroyed altogether, and the dynamics are overdamped
5-2
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in the model of Ref.@9#, there are both coherent and inc
herent components of the dynamics when bothG8Þ0 and
DÞ0.

Let us now turn our attention to the decay branching ra
which is the experimentally measurable quantity. When
nucleus is in the stateS, it decays at a rateGS to a lower
superdeformed state, and when it is in stateN it decays at a
rateGN to a lower-energy state in the normal-deformed ba
Thus, the time-dependent rates to decay in theSandN chan-
nels are

G̃S~ t !5GSPS~ t !, G̃N~ t !5GNPN~ t !. ~17!

The fractionFN of nuclei that decay viaE1 processes in the
normal-deformed band is just@11#

FN5

E
0

`

dtG̃N~ t !

E
0

`

dt@G̃N~ t !1G̃S~ t !#

5GNE
0

`

dtPN~ t !. ~18!

This integral may be evaluated to obtain the central resul
this paper,

FN5
~11GN /GS!V2

D21Ḡ2~114V2/GNGS!
. ~19!

The fraction of nuclei decaying viaE2 processes within the
superdeformed band isFS512FN . In Ref. @7#, FS was de-
noted byF.

Let us now consider some limits of Eq.~19!. In the limit
of very strong coupling of the statesS and N,V@Ḡ, one
finds

lim
V/Ḡ→`

FN5
GN~GS1GN!

~GS1GN!21GSGN~D/V!2
. ~20!

This is equivalent to the result of Vigezzi, Broglia, and Do
sing @2,3# for the case where only a single SD state an
single ND state mix:

FN
vbd5 (

s56

ucsu2~12ucsu2!GN

~12ucsu2!GN1ucsu2GS

, ~21!

wherec65^6uS& are the mixing amplitudes of the eigen
statesu6& of H0 with uS&. From Eq.~4! we have

uc6u25@11~x6Ax211!2#21, ~22!

with x5D/2V. Inserting Eq.~22! into Eq. ~21!, one indeed
recovers Eq.~20!. Thus the result~21! of Refs.@2,3# is seen
to be a limiting case forV/Ḡ→` ~i.e., for fully coherent
tunneling! of our general result, Eq.~19!.

Another limit was considered in Ref.@7#, namely GN
@GS ,G↓. In this limit, the tunneling dynamics areincoher-
ent. The assumptionGS!GN is motivated by the fact thatGS
is an E2 decay andGN is an E1 decay. In the limitGN
@GS , Eq. ~19! simplifies to
05130
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lim
GN /GS→`

FN5
G↓

GS1G↓ , ~23!

whereG↓ is given by Eq.~2!. Equation~23! is identical to the
principal result of Weidenmu¨ller, von Brentano, and Barret
@7#, although our expression forG↓ differs from that of Ref.
@7#. Note that, in contrast to the argument of Ref.@7#, no
assumption has been made about the relative size ofV andḠ
in deriving Eq.~23! from Eq. ~19!. However, the interpreta
tion of G↓ as atunneling rateis only justified whenG↓/Ḡ
!1; for larger values ofV, the tunneling dynamics describe
by Eq.~12! are more complex, though the integrated rate s
obeys Eq.~23!, providedGN@GS .

Equation~2! for G↓ is also the expression one would o
tain from a correct application of Fermi’s golden rule in th
limit V!Ḡ!DN :

G↓52pV2E
2`

`

dErS~E!rN~E!, ~24!

where the lifetime-broadened densities of states of the
and ND levels are

rS~E!5
GS/2p

~E2«S!21GS
2/4

,

rN~E!5
GN/2p

~E2«N!21GN
2 /4

.

Evaluating the integral in Eq.~24!, one obtains expressio
~2!. The level-spacingDN in the ND band is irrelevant ifV
!DN , sinceV only mixes the stateS and the single stateN
which is closest to it in energy in that case, as we ha
assumed.

The branching ratio~19! depends strongly on the energ
differenceD5«N2«S , which in turn depends sensitively o
the microscopic Hamiltonian of the particular nucleus und
investigation. In order to eliminate this parameter dep
dence, one practice that is employed is to calculate the a
age ofFN over a statistical Gaussian orthogonal ensemble
similar nuclei. In the limit of incoherent tunnelingV
!GS ,GN , Eq. ~19! may be integrated overD to obtain

^FN&5E
2`

` dD

DN
FN~D!5

^G↓&
GS

, ~25!

where ^G↓& is given by the right-hand side of Eq.~1!, in
agreement with Ref.@7#. However, it is clear from Eq.~19!
that FN typically deviates significantly from its mean valu
For instance, the mean square ofFN is much larger than the
square of̂ FN& whenDN@Ḡ:

^FN
2 &

^FN&2
5

DN^V4&

2pḠ^V2&2
. ~26!
5-3
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Thus, it would be preferable to compare experimental res
directly with Eq.~19!, rather than with its ensemble averag

In Table I, we show some experimental data for nucle
the A;150 andA;190 mass regions. So far, little data
available in theA;150 region, with estimates only@2# for
the widths for152Dy. From the numbers given in Table I, w
observe that the nuclei in theA;190 mass region hav
G↓,GS!GN . The dynamics ofS→N tunneling in these nu-
clei are thus incoherent, and the appropriate branching r
is given by Eq.~23!, in agreement with Ref.@7#. On the other
hand, for 152Dy,G↓@GS ,GN , indicating coherentS
N
tunneling. The measured value@2,12# of FS50.51 for
152Dy ~26! is consistent with Eq.~20!, using the values ofGS
andGN in Table I and assumingV/D;1, in accordance with

TABLE I. Widths and level spacings for a number of nucle
deduced from the data of Refs.@2,8,12#, following the analysis of
Ref. @2# for A;150 and of Ref.@7# for A;190. The spin values o
the decaying states are given in parentheses.

Nucleus GN (meV) DN (eV) GS (meV) G↓ (meV)

152Dy(26) 10–20 3–10 ;11 900–3000
152Dy(24) 10–20 3–10 ;7.6 900–3000
192Hg(12) 10.3 34 0.116 0.018
192Hg(10) 10.3 30 0.054 0.544
194Hg(12) 18.1 92 0.144 0.097
194Hg(10) 18.4 79 >0.047 >0.89
194Pb(10) 1.6 1699 0.066 0.011
194Pb(8) 1.7 1549 0.028 0.009
E.

,

s.

.
c
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the theory of Refs.@1–6#. Our general result~19! is consis-
tent with the data in both theA;150 andA;190 mass re-
gions and unifies these two complementary theoretical
proaches.

A recent paper@13# shows that theS→N tunneling rate
may be enhanced by several orders of magnitude if the
states are chaotic at the moment of the decay out. Th
results are not inconsistent with our two-level model, b
would simply imply an enhancement of the tunneling mat
elementV.

In conclusion, we have shown that a simple two-lev
model, which treats decay and tunneling processes on
equal footing, can explain the apparently disparate previ
theoretical results, i.e., Refs.@1–6# versus Ref.@7#, for the
decay out of a superdeformed band. These previous re
are shown to correspond to the coherent and incoherent
its, respectively, of the tunneling dynamics, and are spe
cases of our general result, Eq.~19!. We remark that it is
straightforward to extend our method to treat an SD st
coupled to an arbitrary number of ND states.

Note added in proof.In a recent paper@14#, Gu and
Weidenmu¨ller have demonstrated that the result of Ref.@7#
has a large variance in theA;190 mass region, consisten
with our Eq.~26! for the ensemble average. Nonetheless,
have shown that forA;190, our Eq.~23! holds for each
member of the ensemble. The large variance ofFN should,
thus, be attributed to the fluctuations ofG↓ over the ensemble
@see Eq.~2!#.

B.R.B. thanks R. Kru¨cken for helpful discussions and ac
knowledges partial support from NSF Grant N
PHY9605192.
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