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Spectral content of isoscalar nucleon form factors
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The nucleon strange vector and isoscalar electromagnetic form factors are studied using a spectral decom-

position. TheKK̄ contribution to the electric and magnetic radii as well as the magnetic moment is evaluated
to all orders in the strong interaction using an analytic continuation of experimentalKN scattering amplitudes

and bounds from unitarity. The relationship between nonresonant and resonantKK̄ contributions to the form

factors is demonstrated, and values for the vector and tensorfNN̄ couplings are derived. TheKK̄ spectral
functions are used to evaluate the credibility of model calculations for the strange quark vector current form
factors.@S0556-2813~99!02310-9#

PACS number~s!: 14.20.Dh. 11.55.Fv, 12.38.Lg, 14.65.Bt
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I. INTRODUCTION

The reasons for the success of the constituent qu
model of light hadrons remains one of the on-going mys
ies of strong interaction physics. Although deep inelas
scattering has provided incontrovertible evidence for the
istence of gluons and QCD current quarks in the light
hadrons, these degrees or freedom are manifestly ab
from the the quark model. Nevertheless, a description
light hadrons solely in terms of constituent quarks moving
an effective potential has been enormously successful in
counting for the mass spectrum and other properties of l
lying hadrons. Various explanations for this situation ha
appeared in the literature, including the simple and intuit
idea that the sea quarks and gluons of QCD ‘‘renormaliz
the valence current quarks into the constituent quarks of
quark model@1#. In this picture, for example, the multitud
of QCD degrees of freedom appear to a long wavelen
probe primarily as single objects carrying the quantum nu
bers and effective mass of the constituent quark. From
standpoint of the quark-quark effective potential, gluon a
sea-quarks are similarly undiscernible—as they help ren
malize the quark model string tension into the physical va
used as model input@2#. In fact, most low-energy observ
ables studied to date are unable to uncover explicit signat
of QCD degrees of freedom.

There have been, however, a few exceptions to this s
ation. Of particular interest are observables sensitive to
presence of strange quarks in the nucleon. In contrast to
and down quarks, which appear both as valence and
quarks, strange quarks constitute a purely sea-quark de
of freedom. Being the lightest such objects, they ought
generate the largest effects~in comparison to the heavie
quarks!. Consequently, nucleon matrix elements of stran
quark operators provide an interesting window on theqq̄ sea
and as such may shed new light on the connection betw
nonperturbative QCD and the quark model. Indeed, w
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strange-quark observables found to be vanishingly small,
might ascribe the quark model’s success partly to the
merical insignificance of sea quark effects.1 In fact, the situ-
ation is more ambiguous. As is well known, analyses of
‘‘ s term’’ in pN scattering, theg1 sum in polarized deep
inelastic scattering, andnm ( n̄m) N deep inelastic scattering
suggest that nontrivial fractions of the nucleon mass, s
and light-cone momentum arise from thess̄sea~see Ref.@3#,
and references therein!. Evidently, the most naive explana
tion for the quark model’s validity is ruled out by thes
analyses.

More recently, a well-defined program has begun to
termine the matrix element̂ Nus̄gmsuN& using parity-
violating elastic and quasielastic electron scattering from
proton and nuclei@3#. The first result for the magnetic form
factor associated with this matrix element has been repo
by the SAMPLE Collaboration at MIT-Bates@4#:

GM
s ~q2520.1 GeV2!50.2360.3760.1560.19, ~1!

whereq2 is the four-momentum transfer squared.~The first
error is statistical, the second is the estimated systematic
ror, and the last uncertainty is due to radiative correctio
entering the analysis.! Although the value is consistent wit
zero, the error bars are large. Improved accuracy is expe
when the full data set is analyzed. Similarly, a combinat
of the strange magnetic and electric form factors have b
determined by the HAPPEX Collaboration@5#:

GE
s 10.39GM

s ~q2520.48 GeV2!

50.02360.03460.02260.026, ~2!

where the first two errors are again of statistical and syst
atic origin, respectively, and the last one arises from the
timated uncertainty in the electric neutron form factor. Wh
no definitive conclusion can as yet be made regarding

1The reasonwhy nonperturbative QCD produces small sea-qua
effects at low-energies would remain to be explained, however
©1999 The American Physical Society05-1
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experimental scale of̂Nus̄gmsuN&, one expects to be able t
do so at the conclusion of the measurements.

In contrast, the theoretical understanding of^Nus̄gmsuN&
is much less clear. The difficulty lies with the mass sca
relevant to strange quark dynamics. In contrast to the he
quarks, for whichmq@LQCD, the strange quark hasms

;LQCD. Consequently, the lifetime of a virtualss̄ pair is
commensurate with typical strong interaction time scales,
lowing the pair to exchange a plethora of gluons with oth
quarks and gluons in its environment. The dynamics of
pair are therefore inherently nonperturbative. Given
present state of QCD theory, a complete, first princip

treatment of^Nus̄gmsuN& has remained beyond reach. A
tempts to obtain this matrix element on the lattice have p
duced two results forGM

s (q250), neither of which agree
with each other nor with the first SAMPLE results@6,7#, and
one result for the slope ofGE

s at the origin with large error
bars@7#.

An alternative—and more popular approach—has bee
employ various effective frameworks, with varying degre
of model dependence. These frameworks have inclu
nucleon models, chiral perturbation theory~ChPT!, and dis-
persion relations. Generally speaking, the degrees of free
adopted in each of these approaches have been had
rather than quark and gluon, given that the lifetime of anss̄
pair permits it to form strange hadronic states. Apart from
few exceptions, effective approaches do not address the
in which QCD sea quarks hadronize. Hence, the connec
with QCD is indirect at best, with each approach empha
ing some aspects of the strong interaction to the exclusio
others.

Not surprisingly, the range of predictions for the strang
ness form factors is broad. In particular, the breadth ofmodel
predictions appears to be as wide as the variety of mo
that has been used even though the same models are in
sonable agreement for standard nucleon observables@3,8,9#.
This situation illustrates the sensitivity of sea quark obse
ables to model assumptions and the limited usefulnes
models in making airtight predictions. One might have hop
for more insight from ChPT, which relies on the chiral sym
metry of QCD to successfully account for a wide variety
other low-energy observables@10#. Unfortunately, ChPT is
unable to make a prediction for the leading nonvanish
parts of GM

s or GE
s since the leading moments depend

unknown counterterms@11#. Recently, however, it has bee
noticed that slope ofGM

s at the origin is independent of un
known counterterms toO(p3) @12#.

In the present study, we turn to dispersion relatio
~DR’s! to derive insight intô Nus̄gmsuN&. Similar to ChPT,
DR’s rely on certain general features of QCD~and other field
theories! to relate existing experimental data to the obse
ables of interest. In the case of DR’s it is analyticity a
causality, rather than chiral symmetry, which allow one
make the connection. Although DR’s do not bear on the w
in which QCD quarks and gluons form intermediate stran
hadronic states, they do provide an essentially mod
independent framework for treating the way in which tho
04520
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states contribute to the form factors. We view them as p
viding an intermediate step toward understanding the stra
quark form factors at the fundamental level of QCD. Becau
of their generality, they also allow us to evaluate the cre
ibility of several model predictions.

Our use of DR’s to study nucleon form factors is not ne
The spectral content of the nucleon isovector form fact
has been clearly delineated using this approach@13,14#. It is
now known that both an uncorrelatedpp continuum as well
as thepp→r resonance play important roles in the low-q2

behavior of these form factors. Theq2 dependence of the
isoscalar EM form factors has been successfully reprodu
using DR’s under the assumption of vector meson do
nance~VMD !. The results have been used to infer relatio
between thevNN andfNN coupling strengths and to mak
predictions for the strange quark form factors@15–17#. How-
ever, the relationship between the resonance and contin
contributions to these form factors has not been previou
established. Consequently, a number of model predicti
have appeared which rely on the assumption that the un
related continuum~‘‘meson cloud’’! gives the largest effect
These meson cloud calculations have generally entaile
truncation at second order in the strong hadronic coup
g—a practice of questionable validity. The correspondi
predictions have generally been in disagreement with th
obtained using VMD.

In what follows, we consider both the strange quark a
isoscalar EM form factors without relying on thea priori
assumption of vector meson or meson cloud dominance.
focus in particular on the contribution from theKK̄ interme-
diate state. The rationale for this focus is twofold. First, t
KK̄ state constitutes the lightest intermediate state contain
valences and s̄ quarks. Its contribution to the strange qua
form factors has correspondingly been emphasized in b
models and ChPT. Second, given the present availability
strong interaction and EM data, theKK̄ contribution can be
computed to all orders ing using a minimum of assumptions
From an analysis ofKN→KN and e1e2→KK̄ data, we
show that the scale of theKK̄ contribution depends critically
on effects going beyondO(g2) and argue that a similar situ
ation holds for the remainder of the form factor spectral co
tent. We also~a! illustrate the relation between the con
tinuum and resonance contributions,~b! evaluate the
credibility of several model predictions as well as theO(p3)
prediction of ChPT for the magnetic radius,~c! derive values
for the vector and tensorfNN couplings and compare with
those obtained from isoscalar EM form factors under
assumption of VMD.

In Refs. @18,19#, we reported on the results of our D
analysis of theKK̄ contribution to the nucleon ‘‘strangenes
radius’’ ~the slope ofGE

s at the photon point!. Here, we
expand on that analysis to consider the fullq2 dependence in
both the isoscalar EM and strangeness channels and to
cuss both the electric and magnetic form factors. Since
DR approach requires knowledge of theKK̄→NN̄ ampli-
tudes in the unphysical region, some form of analytic co
tinuation is needed to complete the analysis. Using backw
5-2
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SPECTRAL CONTENT OF ISOSCALAR NUCLEON FORM . . . PHYSICAL REVIEW C60 045205
dispersion relations, we obtain the unphysical amplitu
from KN phase shift analyses. The results of this contin
tion and their implications for nucleon form factors cons
tute a central theme of this paper.

Our discussion of these issues is organized as follo
After outlining our formalism, we perform the spectral d
composition of the form factors and write down DR’s in Se
II. In Sec. III, we express the spectral functions in terms
KK̄→NN̄ partial waves and give the corresponding unitar
bounds valid in the physical region of the dispersion in
grals. The analytic continuation ofKN amplitudes which is
used in the unphysical region is performed in Sec. IV.
brief description of the analytic continuation and our tre
ment of the inherent problems is given. The results are
plied to the nucleon’s strange and isoscalar EM form fact
in Sec. V. In Sec. VI, we discuss the contribution of oth
intermediate states and summarize our conclusions.

II. SPECTRAL DECOMPOSITION
AND DISPERSION RELATIONS

The vector current form factors of the nucleonF1(t) and
F2(t) are defined by

^N~p8!u j m~0!uN~p!&

5ū~p8!FF1~ t !gm1
iF 2~ t !

2mN
smn~p82p!nGu~p!, ~3!

where t5q25(p82p)2. We consider two cases forj m : ~i!
the strange vector currents̄gms and ~ii ! the isoscalar EM
current j m

(I 50) . Since the nucleon carries no net strangene
F1

s must vanish at zero momentum transfer@i.e., F1
s(0)50#,

whereasF1
(I 50) is normalized to the isoscalar EM charge

the nucleonF1
(I 50)(0)51/2. We also define the electric an

magnetic Sachs form factors, which may be interpreted
the fourier transforms of the charge and magnetic mom
distributions in the Breit frame

GE5F12tF2 , GM5F11F2 , ~4!

with t52t/4mN
2 . In the case of the strange form factors w

are particularly interested in their leading moments,
strange magnetic moment and the strange radii:

ks5F2
s~0!5GM

s ~0!5ms,

^r 2& i
s56

dGi
s~ t !

dt
U

t50

, ~5!

wherei 5E,M , respectively. A dimensionless version of th
radii can be defined by

rE
s 5

dGE
s ~t!

dt
U

t50

52
2

3
mN

2 ^r 2&E
s ~6!

and similarly forrM
s . The leading moments of the EM form

factors are defined analogously.
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It is conventional to employ a once subtracted DR forF1.
Typically, one wishes to predictF2(0) as well as itstÞ0
behavior. In this case, an unsubtracted DR is appropriate.
follow this ansatz in the present study and obtain

F2
s~ t !5

1

pEtl

` Im F2
s~ t8!

t82t
dt8 ~7!

and

F1
s~ t !5

t

pEtl

` Im F1
s~ t8!

t8~ t82t !
dt8. ~8!

As a consequence, subtracted DR’s can be written for
Sachs form factors as well.

From Eqs.~7!, ~8!, it is clear that the quantities of interes
are the imaginary parts of the form factors. The success
the DR analysis relies on a decomposition of the ImFi into
scattering amplitudes involving physical states. To obt
this spectral decomposition, we follow the treatment of Re
@20,21,18# and consider the crossed matrix element

Jm5^N~p!N̄~ p̄!u j m~0!u0&

5ū~p!FF1~ t !gm1
iF 2~ t !

2mN
smn~ p̄1p!nGv~ p̄!, ~9!

wheret is now timelike. Using the LSZ reduction formalism
and inserting a complete set of intermediate states, ImJm
may be expressed as

Im Jm5
p

AZ
~2p!3/2N(

l
^N~p!uJ̄N~0!ul&

3^lu j m~0!u0&v~ p̄!d4~p1 p̄2pl!, ~10!

where N is a spinor normalization factor andJN(0) a
nucleon source. Equation~10! determines the singularity
structure of the form factors and relates their imaginary pa
to on-shell matrix elements for other processes. The fo
factors have multiple cuts on the positive realt axis. The
invariant mass-squaredMl

2 of the lightest state appearing i
the sum defines the beginning of the first cut and the low
limit in the dispersion integrals:Ml

25tl . Since Eq.~10! is
linear, the contributions of differentul& can be treated sepa
rately.

There is an infinite number of contributing intermedia
statesul& which are restricted by the quantum numbers
the currentss̄gms and j m

(I 50) @ I G(JPC)502(122)#. Naively,
the lightest states generate the most important contribut
to the leading moments of the current. Moreover, becaus
the sourceJN(0), the intermediate states must have ze
baryon number. The lowest allowed states together with th
thresholds are collected in Table I. Resonances, such a
v, do not correspond to asymptotic states and are alre
included in the continuum contributions, such as that fro
the 3p state.
5-3
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H.-W. HAMMER AND M. J. RAMSEY-MUSOLF PHYSICAL REVIEW C60 045205
When sufficient data exist, experimental information m
be used to determine the matrix elements appearing in
~10!. However, when the thresholdtl of the intermediate
stateul& is below the two-nucleon threshold, the values

the matrix element̂N(p)uJ̄N(0)ul&v( p̄) are also required in
the unphysical regiontl<t<4mN

2 . In this case, the ampli
tude must be analytically continued from the physical to
unphysical regime. The first cut in the complext plane ap-
pears at the 3p production threshold,t59mp

2 , and higher-
mass intermediate states generate additional cuts. For

ample, forul&5uKK̄& the cut runs fromt54mK
2 to infinity.

Therefore, the matrix element forKK̄→N̄N is also needed in
the unphysical region 4mK

2 <t<4mN
2 , which requires an ana

lytic continuation.
Some of the predictions for theFi

s reported in the litera-
ture are based on approximations to the spectral funct
appearing in Eqs.~7!, ~8!. The work of Refs.@15–17# em-
ployed a VMD approximation, which amounts to writing th
spectral function as ImFi

s(t)5p( jajd(t2mj
2), wherej de-

notes a particular vector meson resonance~e.g.,v or f) and
the sum runs over a finite number of resonances. In term
the formalism from above this approximation omits any e
plicit multimeson intermediate statesun& and assumes tha

the products^N(p)uJ̄N(0)ul&^lus̄gmsu0&v( p̄) are strongly
peaked near the vector meson masses. The same has
made conventional analyses of the isoscalar EM form fac
@13,14#.

In contrast, a variety of hadronic effective theory a
model calculations for the strange form factors have focu
on contributions from the two-kaon intermediate sta
@3,8,11#. Even thoughuKK̄& is not the lightest state appearin
in Table I, it is the lightest state containing valence stran
quarks. The rationale for focusing on theKK̄ contribution is
based primarily on the intuition that such states ought to g
larger contributions to the matrix element^lus̄gmsu0& than
purely pionic states with no valences or s̄ quarks. In other
words, the kaons represent the lightest contribution favo
by the OZI rule. Typically, kaon-cloud predictions have be
computed toO(g2) only. The results for forrE

s in particular
are smaller in magnitude than the vector meson domina
predictions and have the opposite sign. In what follows,
illustrate how both the structure and magnitu

TABLE I. Lowest mass intermediate states contributing to E
~10!.

Mesonic states tl@GeV2# Baryonic states tl@GeV2#

3p 0.18 NN̄ 3.53

5p 0.49 NN̄pp 4.67

7p 0.96 LL̄ 4.84

KK̄ 0.98 SS̄ 5.76

KK̄p 1.28 LS̄p 5.95

A A
04520
y
q.

f

e

x-

ns

of
-

een
rs

d

e

e

d

ce
e

of the full kaon cloud contribution differ from theO(g2)
result and how af-resonance structure appears in the a
orders analysis.

Although we consider here only theKK̄ intermediate
state, we note in passing that the validity of this so cal
‘‘kaon cloud dominance’’ ansatz is open to question for
variety of reasons. As can be seen from Table I, for exam
the three-pion threshold is significantly below theKK̄ thresh-
old. Consequently, the 3p contribution is weighted more
strongly in the dispersion integral than theKK̄ contribution
because of the denominators in Eqs.~7!, ~8!. Moreover, three
pions can resonate into a state having the same quan
numbers as thef ~nearly puress̄), and thereby generate
nontrivial contribution to the current matrix element. Indee
the f has roughly a 15% branch to multipion final stat
~largely via arp resonance!. Although such resonances d
not appear explicitly in the sum over the states in Eq.~10!,
their impact nevertheless enters via the current matrix
ment ^3pus̄gmsu0& and the NN̄ production amplitude

^N(p)uJ̄N(0)u3p&v( p̄). Thus, the 3p state could contribute
appreciably to the strangeness form factors via its coup
to the f. We return to this possibility in Sec. VI~see also
Ref. @25#!.

III. KK̄ INTERMEDIATE STATE AND UNITARITY

In order to determineKK̄ contribution to the spectra
functions, we need the matrix elemen

^N(p)uJ̄NuK(k)K̄( k̄)&v( p̄) and ^K(k)K̄( k̄)u j mu0&. By ex-
panding theKK̄→NN̄ amplitude in partial waves, we ar
able to impose the constraints of unitarity in a straightf
ward way. In doing so, we follow the helicity amplitud
formalism of Jacob and Wick@22#. With l and l̄ being the
nucleon and antinucleon helicities, we write the correspo
ing S-matrix element as

^N~p,l!N̄~ p̄,l̄ !uŜuK~k!K̄~ k̄!&

5 i ~2p!4d4~p1 p̄2k2 k̄!~2p!2F 64t

t24mK
2 G1/2

3^u,f,l,l̄uŜ~P!u00&, ~11!

wheret5P25(p1 p̄)2 andmK is the kaon mass. The matri
element ^u,f,l,l̄uŜ(P)u00& is then expanded in partia
waves as@18,22#

Sl,l̄[^u,f,l,l̄uŜ~P!u00&

5(
J

S 2J11

4p DbJ
l,l̄D 0m

J ~f,u,2f!* , ~12!

whereDnn8
J (a,b,g) is a Wigner rotation matrix withm5l

2l̄. The bJ
ll̄ define partial waves of angular momentumJ.

Because of the quantum numbers of the isoscalar EM
strange vector currents, only theJ51 partial waves contrib-

.

5-4
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ute to the spectral functions. Moreover, because of pa
invariance only two of the four partial waves are indepe
dent. We chooseb1

1/2, 1/2andb1
1/2,21/2 which fulfill the thresh-

old relation@18#

b1
1/2,21/2~ t !u t54m

N
2 5A2b1

1/2, 1/2~ t !u t54m
N
2 . ~13!

Using the above definitions, the unitarity of theS matrix
S†S51 requires that

ubJ
l,l̄~ t !u<1, ~14!

for t>4mN
2 . Consequently, unitarity gives mode

independent bounds on the contribution of the physical
gion (t>4mN

2 ) to the imaginary part. In the unphysical re
gion (4mK

2 <t<4mN
2 ), however, the partial waves are n

bounded by unitarity. Therefore, we must rely upon an a
lytic continuation ofKN scattering amplitudes. This proce
dure is discussed in the next section.

The second matrix element appearing in Eq.~10!,

^K(k)K̄( k̄)u j m
(a)u0&, is parametrized by the kaon vector cu

rent form factorFK
a :

^0u j m
(a)uK~k!K̄~ k̄!&5~k2 k̄!mFK

a ~ t !, ~15!

wherea denotesEM or s andFK
a (0) gives the correspondin

charge@e.g.,FK
s (0)521#.

From Eq. ~10!, the spectral functions are related to t
partial waves and the kaon strangeness form factor by

Im F1
(a)~ t !5ReH S mNqt

4pt
2 D F E

A2mN

b1
1/2,21/2~ t !

2b1
1/2, 1/2~ t !GFK

a ~ t !* J , ~16!

Im F2
(a)~ t !5ReH S mNqt

4pt
2 D Fb1

1/2, 1/2~ t !

2
mN

A2E
b1

1/2,21/2~ t !GFK
a ~ t !* J , ~17!

where

pt5At/42mN
2 , qt5At/42mK

2 , and E5At/2.
~18!

The corresponding spectral functions for the Sachs form
tors follow from Eq.~4!,

Im GE
(a)~ t !5ReH S qt

4mN
Db1

1/2, 1/2~ t !FK
a ~ t !* J , ~19!

Im GM
(a)~ t !5ReH S qt

2A2t
D b1

1/2,21/2~ t !FK
a ~ t !* J . ~20!
04520
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On one hand, Eqs.~16!–~20! may be used to determin
the spectral functions from experimental data. On the ot
hand, one can impose bounds on the imaginary parts in
physical region by using Eq.~14!. Equations~16!–~20! in-
volve expressions of the type

Re$b1
1/2,61/2~FK

a !* %5ub1
1/2,61/2uuFK

a ucos~d12dK!

5ub1
1/2,61/2uuFK

a u~11gK!, ~21!

where the phase correctiongK is defined bygK[cos(d1

2dK)21, with d1 anddK the complex phases of theb1
l,l̄ and

form factor, respectively. The experimental information
gK is incomplete. Sinceu11gKu<1, however, we can take
gK50 to obtain an upper bound on the spectral functions
order to obtain finite bounds for the Dirac and Pauli for
factors at theNN̄ threshold, we build in the correct thresho

relation for theb1
l,l̄ , Eq.~13!. This is necessary to cancel th

1/pt
2 factor in Eqs.~16!, ~17!. Strictly speaking, the relation

holds only fort54mN
2 . For simplicity, however, we assum

this relation to be valid for all momentum transfers, as, e
holds in the tree approximation of perturbation theory. Co
sequently, we have

uIm F1
(a)~ t !u<

qt

2A2~At12mN!
uFK

a ~ t !u, ~22!

uIm F2
(a)~ t !u<

mNqt

A2t~At12mN!
uFK

a ~ t !u. ~23!

The unitarity bounds for the Sachs form factors are obtai
more straightforwardly by simply settingub1

1/2,61/2(t)u<1 in
Eqs.~19!, ~20!.

Kaon form factors. The timelike EM kaon form factor
FK

EM(t) has been determined frome1e2→KK̄ cross sec-
tions. A striking feature ofFK

EM observed in these studies
the pronounced peak fort'mf

2 @23#. At higher values oft,
oscillations at a much smaller scale are observed. A var
of analyses ofFK

EM in this region have been performe
@23,24#, and it is found thatFK

EM is well described by a VMD
parametrization

FK
EM~ t !5(

V
CV

mV
2

mV
22t2 imVGVf V~ t !

, ~24!

where the sum is over vector mesons of massmV and width
GV and wheref V(t) is some specified function oft. We use
f V(t)5t/mV

2 @24#. In nearly all analyses, one finds for th
residuesCr'1/2, Cv'1/6, and Cf'1/3. These residues
may alternately be described in terms of theVg and VKK̄
couplings:CV5gVKK̄ / f V , where f r'5.1, f v'17, and f f
'13. The strong couplings can be determined fromG(f
→KK̄) and SU~3! relations.

To obtain FK
s (t) we follow Refs. @15,11,25# and draw

upon the known flavor content of the vector mesons. Thr
does not contribute to isoscalar form factors. To the ext
5-5
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that ~i! the v and f satisfy ideal mixing (uf&52uss̄& and
uv&5uuū1dd̄&/A2) and ~ii ! the valence quarks determin
the low-t behavior of the matrix elements^0uJmuV& one ex-
pects^0us̄gmsuv&50 and^0us̄gmsuf&523^0uJm

EMuf&. It is
straightforward to account for deviations from ideal mixin
@15,11,25#:

Cv
(s)/Cv52A6F sine

sin~e1u0!G'20.2,

Cf
(s)/Cf52A6F cose

cos~e1u0!G'23, ~25!

where thes superscript denotes the residue for the stran
ness form factor,u0 is the ‘‘magic’’ octet-singlet mixing
angle giving rise to pureuū1dd̄ andss̄ states, ande devia-
tions from ideal mixing. From Eqs.~24! and~25! we observe
that the timelike kaon strangeness form factor is domina
by the f(1020) resonance. We note that the flavor rotat
of Eq. ~25! only gives the relative size of thev andf con-
tributions but does not lead to the correct normalization
FK

s at t50 which must be enforced by hand.
In Fig. 1 we plotFK

s as given by Eqs.~24! and ~25! and
compare it with a simple VMD model@18# and the Gounaris-
Sakurai~GS! parametrization forFp @26# with all r param-
eters replaced by the corresponding ones for thef. We ob-
serve that the GS and VMD forms reproduce the essen
features ofFK

s as determined frome1e2 data and standard
flavor rotation arguments. SinceFK

s is needed fort>4mK
2 ,

the v contribution which gives rise to the bump aroundt
'0.6 GeV2 in Fig. 1 is negligible. In comparison to th
strongf peak, the small scale oscillations at highert have a
negligible impact as well. When computing the leadi
strangeness moments, we find less a than 10% variatio
the results when any of these different parametrizations
FK

s is used. In short, any model parametrization ofFK
s show-

ing the peak at thef mass and having the correct norma
izationFK

s (0)521 may be used for the purpose of studyi

FIG. 1. Different model parametrizations forFK
s . Full line

shows simple VMD model with thef only, dashed line shows th
flavor rotated VMD model including thev andf, and dash-dotted
line shows GS parametrization. The dotted vertical line indica

KK̄ threshold.
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nucleon strangeness. The pointlike approximationFK
s 521,

however, misses important resonance physics. Throug
the remainder of this work, we will use the GS parametriz
tion.

IV. ANALYTIC CONTINUATION

To obtain theb1
l,l̄ for 4mK

2 <t<4mN
2 we analytically con-

tinue physical amplitudes into the unphysical regime. T
analytic continuation~AC! of a finite set of experimenta
amplitudes with nonzero error is fraught with potential a
biguities. Indeed, AC in this case is inherently unstable, a
analyticity alone has no predictive power. Additional info
mation must be used in order to stabilize the problem, as
discuss below@27#.

In order to illustrate these issues and the methods
adopt to resolve them, we first briefly review the kinemat
of KN scattering~cf. Ref.@28#!. It is useful to consider thes-,
u-, andt-channel reactions simultaneously,2

~a! s channel: K~qi !1N~pi !→K~qf !1N~pf !,

~b! u channel: K̄~2qf !1N~pi !→K̄~2qi !1N~pf !,

~26!

~c! t channel: K̄~2qf !1K~qi !→N̄~2pi !1N~pf !,

where the four-momenta of the particles are given in par
theses. In this notation the crossing relations between
different channels are immediately transparent. The th
processes can be described in terms of the usual Mandel
variables

s5~pi1qi !
2, u5~pi2qf !

2, and t5~qi2qf !
2.
~27!

The invariant matrix element for theKN scattering process
has the structure

M5ū~pf !FA~s,t !1
1

2
~q” i1q” f !B~s,t !Gu~pi !, ~28!

and the isospin decomposition of the invariant amplitudeA
andB reads

A~s,t !5A1~s,t !1A2~s,t !~tWN•tWK!,

B~s,t !5B1~s,t !1B2~s,t !~tWN•tWK!. ~29!

We also need theL and S pole contributions toA(6) and
B(6) which are given by

Apole
(6)~s,u!5 (

Y5L,S

gKNY
2

2
~mY2mN!S 1

u2mY
2

6
1

s2mY
2 D ,

2We do not considerK0N scattering data in this analysis. In th

following, we writeK and K̄ for K1 andK2, respectively.

s
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Bpole
(6)~s,u!5 (

Y5L,S

gKNY
2

2 S 1

u2mY
2

7
1

s2mY
2 D . ~30!

It is instructive to display the range ofs,u, and t in the
Mandelstam plane, shown in Fig 2. The physical regions
the three reactions do not overlap, and the invariant am
tudes simultaneously describe all three processes. The p
cal values of the invariant amplitudes are obtained when
Mandelstam variables are taken in the corresponding ran
In order to carry out the dispersion integrals of Eqs.~7!, ~8!,

we require theb1
l,l̄ along thet-channel cut, indicated by th

gray shaded area in Fig. 2.
We begin with experimentalKN amplitudes in the

s-channel region and employ the method of backward DR
obtain the unphysical amplitudes along thet-channel cut.
The backward DR method has has been used successful
a similar continuation ofpN scattering amplitudes@29# and
as a consistency test for differentKN phase shift solutions in
the 1970’s@30#. Only recently has a continuation of theKN
amplitudes become possible due to improvements in the
base over the last three decades. A continuation ofKN scat-
tering amplitudes has also been performed on the basi
hyperbolic DR @31#. In the latter analysis, however, th
t-channel helicity amplitudes have been parametrized
sharp resonance poles, ana priori assumption we seek t
avoid in the present analysis. We use the recentKN phase
shift analysis of the VPI group@32# as experimental input.

A. Overall strategy and problems

Although an AC is uniquely defined from a continuum
points, this is not the case for a finite set of points lyi

FIG. 2. Mandelstam plane forKN scattering. Physical region
are marked by dashed areas.
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within a certain error corridor. Consequently, the proced
for obtaining amplitudes outside the range of the given d
is unstable. In practice the problem is stabilized by restr
ing the admissible solutions. This is achieved by usinga
priori information on the solution from experiment or theo
as ‘‘stabilizing levers’’@27#. In the remainder of this subsec
tion, we give an overview of our general procedure for ma
ing this stabilized continuation@28,19#.

The first important observation is that in the backwa
direction, the invariant amplitudes in thes and t channel
coincide, i.e.,f s(t,us5p)5 f t(t,u t5p)5 f (t). Here f is a
generic invariant amplitude andus and u t are the c.m.-
scattering angles in thes and t channel, respectively. Thus
the continued amplitudef s(t,us5p) in the unphysical re-
gime can be identified with the unphysicalt-channel ampli-
tude f t(t,u t5p).

Second, we work on a Riemann sheet where only
singularities from thes- and t-channel reactions are presen
The backward amplitudef then possesses a left-hand c
from zero to minus infinity stemming from thes-channel
reaction. The lowest right-hand cut, which is due to the 3p
intermediate state in thet channel, runs from 9mp

2 to infinity.
The two cuts do not overlap and we can write an uns
tracted DR forf. The amplitude is known from experimen
on the left-hand cut in the regiontp<t<0 and we need its
values on the right-hand cut wheref is related to theKK̄

→NN̄ partial waves. In particular, we are interested in t
unphysical region 4mK

2 <t<4mN
2 where the partial waves ar

not bounded by unitarity.
Following our strategy to include as mucha priori infor-

mation as possible, we do not continue the amplitudef itself
but rather a related functionD f , the so-called discrepanc
function. InD f the analytically determined pole terms forf,
as well as the experimentally known behavior of the amp
tude, have been subtracted out. This subtraction is carried
in such a way as to remove the portion of the left-hand
lying in the rangetp<t<0 where the phase shift analyse
are available. Thus, the use ofD f presents two advantage
First, the original problem which entailed an AC from th
boundary of the region of analyticity to another point on t
boundary (B→B) has been transformed into one in whic
the continuation occurs from the interior of the analytic
domain to the boundary (I→B). Second, the well-known
pole terms can be continued explicitly, and only nonpo
parts which remain inD f must be continued with othe
methods. In the end,f is easily reconstructed fromD f .

The continuation ofD f is carried out by means of a
power series expansion. Such an expansion, however,
verges only up to the nearest singularity. In our case
point lies at the three-pion cut, well below the region
interest. We circumvent this problem by using a conform
mapping of the complext plane. First we symmetrize th
cuts to lie along (2`,2R# and @R,`). We then map the
cuts forD f onto the circumference of the unit circle in thew
plane and the rest of thet plane into its interior using

t~w!5
2Rw

11w2
. ~31!
5-7
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Now it is possible to use a Legendre series inw to perform
the continuation. In principle, the series can be fit toD f in
the regiontp<t<0 and the fit then be evaluated in the r
gion of interest. In practice, we fit to the function

Dg~w!5utu2aD f @ t~w!# ~32!

instead ofD f . In so doing, we explicitly enforce the high
energy behavior of the amplitudef: f (t);utua for t→`. The
parametera may be obtained from Regge analyses. In ad
tion, the explicit inclusion of the high-energy behavior sta
lizes the continuation by suppressing oscillations in the
lution. In fact, a can also be thought of as an auxilia
parameter introduced just for this purpose. The final res
depend only weakly on the precise value ofa. In fact, we
evaluate the stability of the continuation by studying t
variation of the results witha as well as with the number o
terms included in the Legendre series. The technical de
of the AC procedure are given in Ref.@28#. In the next sub-
section, we directly start with the continued backward a
plitudes.

B. Results

First we introduce the invariant amplitudeF (6) which in
the backward limit is related toA(6) andB(6) via

F (6)~ t !5A(6)~ t !1mNAqt /ptB
(6)~ t !. ~33!

In order to extract theb1
l,l̄ , we needB(1) and F (1) in the

t-channel unphysical region. In Fig. 3, we show the results
the analytic continuation forF̃ (1)5F (1)2Fpole

(1) and B̃(1)

5B(1)2Bpole
(1) up to t514mK

2 . The continued amplitude
vanish ast→`. We do not expect the power series expa
sion to be credible in a larger region than the one in which
coefficients have been determined. Since the experime
amplitudes are given in the interval28mK

2 <t<0, we trust
our continuation only up tot'8mK

2 which covers half of the
unphysical region. Fortunately, for purposes of analyz
nucleon form factors, theKK̄ threshold region dominates

The kaon form factorFK
a (t), which multiplies theb1

l,l̄ in the

FIG. 3. Analytic continuation of the invariant backward amp

tudesF̃ (1)5F (1)2Fpole
(1) ~with n56) andB̃(1)5B(1)2Bpole

(1) ~with
n55) for a521.2.
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spectral functions amplifies the low-t contribution and sup-
presses that from the region 8mK

2 <t<4mN
2 . We plot only

the results for the amplitudes without their pole part. Sin
the pole part is exactly known, it can be continued explici
and is added to the remainder obtained from the AC in
end.

Ultimately, we require theJ51 partial wave projections
of the backward amplitudes which can be expanded in pa
waves as

B(1)~ t !5
8p

qt
2 (

J51

` J1 1
2

AJ~J11!
bJ

1/2,21/2~ t !PJ8~21!,

F (1)~ t !52
4pAt

ptqt
(
J50

` S J1
1

2DbJ
1/2,1/2~ t !PJ~21!. ~34!

Because the AC gives the invariant amplitudes only in
backward direction, it is nontrivial to extract the parti
waves. The expansion can be carried out separately forf̃ and
f pole. This is useful because the sum in Eq.~34! converges
much faster for the nonpole part than for the pole part@29#.
Consequently, we exploit the faster convergence for the n
pole part and add the exactly known pole term projectio

after theb1
l,l̄ have been isolated.

Since the amplitude is known only for one value ofu t , a

separation of theb1
1/2,61/2 from the bJÞ1

l,l̄ relies on several

additional observations. First, eachubJ
l,l̄u→1 or smaller as

t→4mN
2 because of unitarity. The only significant deviatio

from this trend for 4mK
2 <t<4mN

2 occurs via resonant en
hancements of the partial waves. The lightestJ.1, I 50
resonance having a non-negligible branching ratio to theKK̄
state is thef 2(1270), whose mass lies near the upper end
the range of validity of the AC. Moreover, in Ref.@31# no
evidence forJ>2 resonance effects close to theKK̄ thresh-
old was found. Consequently, we truncate the expansion
Eq. ~34! at J51. In order to test the validity of this trunca
tion, we also perform an analysis with a model for the re
nant J52 partial waves included. As discussed below, o
results are essentially unaffected by this inclusion. Since
width of the f 2(1270) is;185 MeV, we may expect som
small, residual contamination of theJ<1 partial waves due
to our truncation. Fortunately, the presence ofFK

a (t) in Eqs.
~16!–~20! protects the spectral functions. The kaon form fa
tors are peaked in the vicinity of thef(1020) and strongly
suppress contributions fromt.mf

2 @18#.
The remaining separation between theS and P waves in

B(1) may be performed by drawing on the work of Ref
@30# and@31#, where backward and hyperbolic DR have be
used to analyze theKK̄→NN̄ amplitudes under the assump
tion that the helicity amplitudes are dominated by sharp re
nance poles. In theSwave, one finds a resonance close to t
KK̄ threshold having a 22% branching ratio toKK̄, namely,
the f 0(980). Therefore, we use the resonantb0

1/2,1/2amplitude
5-8
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FIG. 4. Comparison of the results for th
b1

1/2,1/2 ~upper row! and b1
1/2,21/2 ~lower row! for

different order of the Legendre seriesn anda5

21.2. Solid lines showub1
1/2,61/2u, dashed lines

show Reb1
1/2,61/2, and dotted lines show

Im b1
1/2,61/2. The continuation is expected to b

trustworthy up tot'2 GeV2.
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from Refs. @30,31# and subtract it from our result.3 Both
analyses use the following form for the amplitude:

b0
1/2,1/2~ t !5

2qt

Atpt

G
1

f 0

mf 0

2 2t2 i e
, ~35!

and obtain approximately the same result for the residueG
1

f 0 .

We useG
1

f 05(224.1066.65)mK
3 @31# and extract theb1

l,l̄

from the continued invariant amplitudes using

b1
1/2,21/2~ t !5

A2qt
2

12p
B̃(1)~ t !1b1

1/2,21/2~ t !upole,

b1
1/2, 1/2~ t !5

1

3 S ip2qt

2pAt
F̃ (1)~ t !1b0

1/2,1/2D 1b1
1/2, 1/2~ t !upole,

~36!

with p25AmN
2 2t/4. Note that theL andS pole term pro-

jections for even values ofJ vanish for the isoscalar ampli
tudes in thet channel. As a consequence, the pole term p
jection forJ50 does not appear in Eqs.~36!. TheJ51 pole
term projections are

b1
1/2,21/2~ t !upole5 (

Y5L,S

A2qtgKNY
2

24p ip2

3@Q0~2 i jY!2Q2~2 i jY!#,

b1
1/2, 1/2~ t !upole5 (

Y5L,S

gKNY
2

4pAt
F ~mY2mN!Q1~2 i jY!

1
mNqt

3ip2
@2Q2~2 i jY!1Q0~2 i jY!#G ,

~37!

3We cannot use the results of Refs.@30,31# directly because the

b1
l,l̄ were assumed to be dominated by a single effectivev pole and

the explicit effect of thef wasa priori excluded.
04520
-

where theQi , i 50,1,2 are Legendre functions of the seco
kind andjY is given by

jY5
t22mK

2 12~mY
22mN

2 !

4qtp2
. ~38!

The introduction of a width in Eq.~35! changes the extracte
amplitudesb1

1/2,61/2 only slightly and has almost no impac
on the application to nucleon form factors. The same obs
vation applies for the case when theJ52 partial waves from
Ref. @31# are subtracted as well. Therefore, we discard
J>2 partial waves and proceed accordingly.

In the following, we discuss the sensitivity of the amp
tudes to the ordern of the Legendre series and the hig
energy parametera. In Fig. 4, we display the fullb1

1/2,61/2 for
different values ofn. We show their real and imaginary par
as well as their absolute value. It is clearly seen thatb1

1/2,1/2 is
almost independent ofn, whereasb1

1/2,21/2 shows some varia-
tion. From the quality of the fits to the discrepancy function
we choosen56 for F (1), whereas we taken55 for B(1).
This choice corresponds to taking the minimumn which
gives a satisfactory fit in order to minimize the amplificatio
of experimental noise@27,34#. The dependence of our resul
on the asymptotic parametera is similar. Althougha is a
physical parameter, its determination is model depend
We have varieda from 20.2 to25.0 to test the sensitivity
of the AC toa. Similar to the dependence onn, the b1

1/2,1/2

are almost independent ofa, whereas theb1
1/2,21/2 show

some variation. Fora→0 our analysis becomes unstable
we expect since arbitrary oscillations in the AC are no lon
suppressed. Furthermore, fora>0 the DR does not con
verge and the corresponding results are meaningless. Fo
final results we takea521.2 from the Regge-model fit o
Ref. @33#. From the dependence onn anda, we expect our
results for b1

1/2,1/2 to be more reliable. This conclusion i
supported by the fact thatuFu2 is directly related to the back
ward cross section. Hence,F is particularly well determined
by the data and errors in the phase shift analysis cancel in
reconstruction ofF @29,30#.

As shown in Fig. 4, a clear resonance structure at thre
old is seen inb1

1/2,1/2, which presumably is thef resonance.
This resonance is not observed inb1

1/2,21/2. There are two
possible explanations for this fact:
5-9



gn

e

e

b
ce
t

rs

he
a

e
g
tr
m

e-

an
a
e

fo

r

h

ng
of

e
he
to
s.
in-
cur-

-
the

tri-
alar

riate

hi-

,
nd
q.
the
iva-

H.-W. HAMMER AND M. J. RAMSEY-MUSOLF PHYSICAL REVIEW C60 045205
~1! The AC for B and consequentlyb1
1/2,21/2 is not suffi-

ciently well determined for the reasons explained above.
~2! The vector and tensor couplings of thef meson to the

nucleon are approximately equal and have opposite si
Parametrizing the resonant part of theJ51 partial waves by
the f, we have@31#

G2
f 52

2A2

3

GfKK̄

4p
~GfNN̄

V
1GfNN̄

T
!,

G1
f 52

2mN

3

GfKK̄

4p S GfNN̄
V

1
mf

2

4mN
2

GfNN̄
T D , ~39!

where theG6
f are the residues corresponding tob1

1/2,61/2

@cf. Eq. ~35!#. GfNN̄
V

52GfNN̄
T then leads to a resonanc

in b1
1/2,1/2 but not inb1

1/2,21/2.
Following scenario 2 above, we determineGfNN̄

V and

GfNN̄
T from the resonance structure inb1

1/2, 1/2. We fit the
region around this structure using theJ51 analog of Eq.
~35!, but including a finite widthGf . We obtain GfNN̄

V

57.4 using the Particle Data Group value forGf @35# and
GfNN̄

V
59.6 whenGf is allowed to be a fit parameter. Thes

values are comparable with the valueGfNN̄
V

59.2 obtained
from the VMD parametrization ofF1

(I 50) @14#. Our value for
GfNN̄

T
52GfNN̄

V , however, has a larger magnitude than o
tained in Ref.@14#. The possible reasons for this differen
are discussed elsewhere@36#. We emphasize, however, tha
our determination of thefNN̄ couplings relies only on the
observed resonance structure in the strong amplitudeb1

1/2, 1/2

and not on a VMD ansatz for the isoscalar EM form facto

We also note that theinterpretationof the b1
l,l̄ in terms of

fNN̄ couplings is inconsequential for the computation of t
Fi

(a) , since the amplitudes themselves—rather than a par
etrization of them—are used in the dispersion integrals.

V. KK̄ CONTRIBUTION TO NUCLEON FORM FACTORS

We now use theb1
l,l̄ to evaluate the contribution of th

unphysical region to the dispersion integral for the stran
and isoscalar nucleon form factors. We consider the elec
and magnetic Sachs radii and the anomalous magnetic
ment. Drawing upon Eqs.~7!, ~8!, we write down subtracted
DR’s for the Sachs radii

r i
a52

4mN
2

p E
4mK

2

`

dt8
Im Gi

a~ t8!

t2
, ~40!

where i 5E,M and a denotes the isoscalar EM or strang
ness channel. Before evaluating Eq.~40!, we discuss the
qualitative features of the spectral functions forrE

a , rM
a , and

ka. Since for our purpose the difference between the EM
strange kaon form factors is essentially given by the norm
ization, the qualitative features of the strange and EM sp
tral functions are the same. Consequently, we limit the
lowing discussion to the strange spectral functions.
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The KK̄ content of the spectral function forrE
s is dis-

played in Fig. 5. In Fig. 5~a!, we compare two scenarios fo
b1

1/2, 1/2: ~I! the Born approximation~BA! in the nonlinears
model and~II ! the AC from the previous section. For bot
scenarios a pointlike kaon form factorFK

a (t)[1 has been
used. Although the pointlike form factor is unrealistic, usi
it in this context allows to illustrate separately the effects
form factor and scattering amplitudes.

We include scenario~I! because of its correspondenc
with a number of model calculations as well as ChPT. T
scenario~I! spectral function contains only contributions
O(g2), whereg is the scale of the strong hadronic coupling
It constitutes the DR form of a one-loop calculation conta
ing a kaon and strange baryon intermediate state and a
rent insertion on the kaon line@18,20#. A variety of model
calculations~see, e.g., Refs.@3,8#! have been performed un
der the assumption that such amplitudes dominate
strangeness form factors and that a truncation atO(g2) gives
a reliable estimate of the scale and sign of the kaon con
bution. In ChPT analyses of both the strange and isosc
EM moments, the nonanalytic~in quark masses! parts of the
same amplitudes are retained and added to the approp
low-energy constants. In the case ofrE

s , for example, the
leading-order nonanalytic contribution is singular in the c
ral limit @11#:

rnonanal
s 52S mN

Lx
D 2H 11

5

3 F S 3F1D

A6
D 2

1
3

2
~D2F !2G J ln

mK
2

m2 , ~41!

whereF andD are the usual SU~3! reduced matrix elements
Lx54p f p gives the scale of chiral symmetry breaking, a
m is a renormalization scale. The chiral singularity of E
~41! arises from the kaon-nucleon one loop graph with
strange vector current inserted on the kaon line. The equ

FIG. 5. KK̄ contributions to the spectral function forrE
s . Short

dashed curve~a! givesO(g2) result of scenario~I! discussed in the
text. Solid curve@~a! and ~b!# gives result for scenario~II !. Long-
dashed curve gives unitarity bound fort>4mN

2 using a pointlikeFK
s

@scenario~II !# and GS parametrizedFK
s @scenario~III !#. Dashed-

dotted curve~b! gives all-orders spectral function@scenario~III !#.

Dotted vertical line indicates physicalNN̄ production threshold.
5-10
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lence of this loop calculation with the scenario~I! for the DR
analysis@18,20,21# guarantees that the DR computation i
cludesrnonanal

s .
At leading order ChPT, bothrE

s andks also contain low-
energy constants which cannot be obtained from exis
data using chiral symmetry@11#. For the magnetic radius
however, only the nonanalyticone-loopterms contribute at
O(p3) @12#. In principle, the low-energy constants includ
higher-order effects~in g) not contained in the nonanalyti
loop contributions. A comparison of the scenario~I! spectral
function with the full spectral function—containing contribu
tions to all orders ing—allows us to determine the impor
tance of these low-energy constants and more generall
evaluate the credibility of one-loop predictions.

For both scenarios~I! and~II !, we show the upper limit on
the spectral function generated by the unitarity bound
b1

1/2, 1/2. As observed previously in Ref.@18#, and as illus-
trated in Fig. 5~a!, the BA omits these rescattering corre
tions and consequently violates the unitarity bound by a f
tor of 4 or more even at theNN̄ threshold. This feature alon
casts a shadow on predictions which relysolelyon one-loop
amplitudes. In principle, the low-energy constants of Ch
correct for the unitarity violation implicit in the one-loo
contributions. The counterterm-freeO(p3) prediction for
rM

s , however, does not include this unitarity correction.
The curve obtained in scenario~II ! indicates the presenc

of a peak in the vicinity of thef(1020) meson, reflecting th
presence of aKK̄↔f resonance inb1

1/2, 1/2. This structure
enhances the spectral function over theO(g2) result near the
KK̄ threshold. Ast increases from 4mK

2 , the spectral func-
tion obtained in scenario~II ! falls below that of scenario~I!,
presumably due toKK̄ rescattering which must eventual
bring the spectral function below the unitarity bound fort
>4mN

2 . The fact that the AC is approximately consta
abovet*2 GeV2 and also violates the unitarity bound, in
dicates that the AC and partial wave separation canno
trusted close to theNN̄ threshold.

In Fig. 5~b! we plot the spectral function for a third sce
nario ~III !, obtained by including a realistic~empirical! kaon
form factor. We use the GS parametrization, although ot
parametrizations forFK

s , such as a simplef-dominance
form, yield similar results as has been discussed above
elsewhere @18#. The corresponding spectral function
shown in Fig. 5~b!, and compared with the spectral functio
for a pointlike FK

s . The use of the GS parametrization si
nificantly enhances the spectral function near the beginn
of the KK̄ cut as compared with the pointlike case, while
suppresses the spectral function fort*2 GeV2. Conse-
quently, the full spectral function is dominated by the lowt

region where the AC for theb1
l,l̄ is reliable. The t

*2 GeV2 region gives a negligible contribution, eve

though theb1
l,l̄ are too large in this range@see Fig. 5~b!#.

The error associated with this region is correspondingly n
ligible. We emphasize that the one-loop model predictio
miss entirely the resonance enhancement of theKK̄ contri-
bution.
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The corresponding scenarios for the magnetic Sachs
dius rM

s are shown in Fig. 6. In contrast tob1
1/2, 1/2, b1

1/2,21/2

shows no resonance structure at all. The possible expl
tions for this behavior have been discussed in the previ
section. Here we take our result at face value and develop
pertinent consequences forrM

a . In Fig. 6~a! we compare the
results of scenario~I! BA and ~II ! AC for a pointlike cou-
pling of the kaon tos̄gms. The AC spectral function stay
clearly below the BA result for allt, presumably due to res
cattering effects included in the AC. Similar to the elect
case the unitarity bound is also violated in scenario~II !, al-
though the violation is about a factor 2 weaker than in
BA. Again we conclude that the continuedb1

1/2,21/2 is not
trustworthy close tot54mN

2 . The suppression of the spectr
function for t*2 GeV2 by the GS form factor in scenario
~III ! is displayed in Fig. 6~b!.

The absence of the resonance structure inb1
1/2,21/2 sug-

gests that the integrated spectral function for scenario~III !
gives an upper bound, rather than a firm prediction, forrM

a .
The reason has to do with the relative phases ofb1

1/2,21/2 and
FK

a (t). Consider the strangeness case with a simple VM
parametrization ofFK

s (t) ~other parametrizations are sim
lar!:

FK
s ~ t !5

mf
2

mf
2 2t2 imfGf

. ~42!

As input to Eqs.~28!–~32!, we require

Reb1
l,l̄FK

s * 5~Reb1
l,l̄ !~ReFK

s * !1~ Im b1
l,l̄ !~ Im FK

s * !,
~43!

where Reb1
l,l̄ and Imb1

l,l̄ are shown in Fig. 4. Ast crosses
the resonance in the vicinity ofmf

2 , ReFK
s * changes sign

while ImFK
s * does not. Instead, the latter reaches its pe

value of magnitude;mf /Gf . From Fig. 4, we observe tha

neither Reb1
l,l̄ nor Imb1

l,l̄ undergoes a phase change arou
t5mf

2 . Hence, when integrated across the resonance,

contributions to the integral from (Reb1
l,l̄)(ReFK

s * ) change
sign, leading to substantial cancellations. The contributi

from (Imb1
l,l̄)(Im FK

s * ), on the other hand, do not chang
sign, and no cancellations occur. In the case ofb1

1/2, 1/2, it is

FIG. 6. KK̄ contribution to spectral function forrM
s . Curves are

as in Fig. 5.
5-11
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Im b1
1/2, 1/2 which contains the resonance structure. Con

quently, the integral forrE
s is dominated by the resonatin

imaginary parts ofb1
1/2, 1/2 and FK

s , which remain in phase
The continuum contribution is suppressed by the rela
phase change of the real parts.

The situation forrM
s is different becauseb1

1/2,21/2 displays
no resonant behavior. Again, the contribution to the integ
from (Reb1

1/2,21/2)(ReFK
s * ) is suppressed by cance

lations from the phase change across the resona
u(Im b1

1/2,21/2)(Im FK
s * )u!ub1

1/2,21/2FK
s * u, however, and its

precise magnitude is sensitive to the parametersa and n.
Consequently, the integral of Re(b1

1/2,21/2FK
s * ) is rather un-

certain. We are confident, therefore, in quoting only an up
bound forrM

s , obtained by integratingub1
1/2,21/2FK

s * u, which
varies only gently witha andn, and usinggK51 @Eq. ~21!#.
As we note below, even this upper bound is nearly twice
small as the result obtained from scenario~I!.

To determine the anomalous magnetic momentka, we
require an unsubtracted DR and turn toF2

a . Equation~7!
reduces in the limitt50 to

ka5F2
a~0!5

1

pE4mK
2

`

dt8
Im F2

a~ t8!

t
, ~44!

with Im F2
a given in Eq.~17!. However, an additional com

ment is in order. ImF2
a depends on bothb1

l,l̄ rather than on
one as for the radii. In order to guarantee a finite spec

function at theNN̄ threshold, the twob1
l,l̄ must fulfill the

threshold relationb1
1/2,21/25A2b1

1/2, 1/2. Our AC, however, is
not reliable att54mN

2 and does not obey this relation. Ther
fore, we replace ImF2

a(t) by ImF2
a(t58mK

2 ) for 8mK
2 <t

<4mN
2 . Doing so leads to an upper bound for the spec

function. Essentially the same qualitative observations as
rE

a apply toka because the spectral function is dominated
the resonance inb1

1/2, 1/2 in both cases. Specifically, the con
tribution from t>8mK

2 is negligible.
The numerical consequences of our analysis are indic

in Table II, where we give results for the leading strangen
moments. The first three lines give theO(g2) ‘‘kaon cloud’’

TABLE II. Kaon cloud contribution forrE
s , rM

s , andks for the
scenarios discussed in the text. Second and third columns give
tributions to the dispersion integral from the unphysical and ph
cal region, respectively. In both scenarios, the unitarity bound

theb1
l,l̄ is imposed fort>4mN

2 . To convertrs to ^r 2&s, multiply rs

by 20.066 fm2.

Scenario Moment 4mK
2 <t<4mN

2 4mN
2 <t Total

rE
s 0.25 0.10 0.35

O(g2) rM
s 0.30 0.05 0.35

ks 20.07 20.07 20.14

rE
s 0.98 0.01 0.99

AC/GS rM
s 0.17 0.01 0.18

ks 20.41 20.01 20.42
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prediction for rE
s , rM

s , and ks ~scenario I!. The last three
lines give the results when the GS form factor and anal
cally continued fit toKN amplitudes forb1

1/2,61/2 are used
~AC/GS!. In all cases the unitarity bound onb1

1/2,61/2 is im-
posed fort>4mN

2 . The AC/GS results were obtained by e
tending b1

1/2, 1/2 to 4mN
2 . Although the continuation can b

trusted only fort&8mK
2 , and although the continued ampl

tudes exceed the unitarity bound fort→4mN
2 , the GS form

factor suppresses contributions fort*8mK
2 , rendering the

overall contribution from 8mK
2 <t<4mN

2 negligible. The
overall sign of the product ofFK

s * and theb1
1/2,61/2 has been

determined by fits to EM form factor data@36#. However, the
sign of rE

s is well determined from the phase ofb1
1/2, 1/2 and

FK
s * at thef peak.

From Table II, we observe that the use of a realisticKK̄
spectral function increases the kaon cloud contribution torE

s

by roughly a factor of 3 as compared to theO(g2) calcula-
tion. Moreover, the result of the all-orders computation a
proaches the scale at which the proposed PV electron s
tering experiments@3# are sensitive, whereas theO(g2)
calculation~e.g., one-loop! gives a result which is too sma
to be seen. This observation depends critically on the p
ence of the resonance structure neart5mf

2 in both b1
1/2, 1/2

andFK
s ~Fig. 5!. Its absence from either the scattering amp

tude or kaon form factor would lead to a significantly smal
magnitude forrE

s .
Becauseb1

1/2,21/2 does not display any resonance stru
ture, no enhancement inrM

s is observed. In fact theO(g2)
result is a factor of 2 larger than in the AC/GS case. W
emphasize that the AC/GS result forrM

s constitutes an uppe
bound, given the phase uncertainty discussed above.
noteworthy that this boundurM

s u50.18 is not consistent with
the range given by ChPT to orderO(p3), rM

s

52.44, . . . ,9.05 @12#. Although both the DR and ChPT ca
culations ofrM

s include only theKK̄ contribution, a large
discrepancy exists between the two methods. We suspec
the problem lies in the truncation atO(p3) in ChPT, for the
following reasons. First, theO(g2) spectral function contains
no rescattering corrections required for consistency with
unitarity bound. When integrated as in Eq.~40!, this spectral
function yields the value forrM

s given in Table II. Second,
theO(p3) calculation in ChPT includes only the nonanalyt
contributions to this integral. The latter yield a result that
an order of magnitude larger than the result obtained for
full O(g2) integral. Given that this is already a factor of
larger than the upper bound obtained from the all orders
result, we suspect that theO(p3) ChPT result omits crucia
higher-order rescattering effects. Presumably, these eff
are contained in theO(p4) Lagrangian, which contains a
term of the form

L(4)5
b

Lx
3c̄smnc]2Fmn, ~45!

whereLx54p f p . In effect, the AC/GS result of Table I
represents a determination of the kaon rescattering contr

n-
i-
n

5-12



rm

f 3
ce
d

e
a

ce
od
a
t

rd
th

f

e

ila
th

n-
ef

ne

nts
r
tes

os-
ably
rm
bi-

orts
he
ns.

st
or-

as-
nd
e-
by

of

l

M

s

sult
is

nd
ula-

ty
es-

a

b

m
on

SPECTRAL CONTENT OF ISOSCALAR NUCLEON FORM . . . PHYSICAL REVIEW C60 045205
tions tob1
l,l̄ . Unfortunately, ChPT cannot make counterte

free predictions for the other moments@11# and the problem
remains unresolved.

In the case ofks, we observe an increase by a factor o
over theO(g2) approximation. However, due to the presen
of both b1

1/2, 1/2 and b1
1/2,21/2 in Im F2 and the phase-relate

uncertainty associated withb1
1/2,21/2, we consider the all-

orders AC/GS value forks to be an upper bound. Given th
size of the experimental errors, this bound is not incomp
ible with the SAMPLE results@see Eq.~1!#.

It is interesting to note that only the normalization ofGM
s

at q250 but not itsq2 dependence receives a resonan
enhancedKK̄ contribution. This feature can be understo
by observing that the resonance-enhanced partial w
b1

1/2, 1/2 enters ImF1 and ImF2 with the same coefficient bu
opposite sign@cf. Eqs.~4!, ~16!, ~17!#.

In Fig. 7, we plot the quantity extracted from forwa
angle parity-violating electron scattering experiments on
proton,GE

s 1t(11kp)GM
s , as a function of the momentum

transfert. At t50.48 GeV2, one can compare the result o
the HAPPEX Collaboration@see Eq.~2!# with the KK̄ con-
tribution uGE

s 10.39GM
s uKK̄50.053. The two values agre

within the experimental error bars.4

From a qualitative standpoint, theKK̄ spectral content of
the isoscalar EM and strangeness form factors are sim
The numerical significance, however, differs between
two cases. In Table III, we give theKK̄ contribution to the
leading isoscalar EM moments. We compare theKK̄ contri-
butions for the AC/GS scenario with the total ‘‘experime
tal’’ values from the dispersion theoretical analysis of R
@14# and thef pole contribution alone.5 Evidently, theq2

dependence of the isoscalar EM form factors is determi
by states other thanuKK̄&. Its contribution tok (I 50), how-

4Note that we quote only the absolute value because of the ph
related uncertainty inGM

s .
5If a phenomenological EM form factor of the kaon@cf. Eq. ~24!#

is used the numbers in the second line of Table III are reduced
20%.

FIG. 7. KK̄ contribution toGE
s 1t(11kp)GM

s as function of the
momentum transfert. The contributions fromGE

s and GM
s enter

with opposite signs.
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ever, is considerable. The VMD analyses of Refs.@15–17#
indicate a significant contribution to the leading mome
from the f. The results of the VMD treatment and ou
present study are compatible only if other intermediate sta
having t0<mf

2 contain considerablef strength. A prelimi-
nary consideration of this possibility is given in Ref.@25#,
where the role of thef resonance in the 3p channel is
discussed~see also Ref.@36#!.

VI. OTHER CONTRIBUTIONS AND CONCLUSIONS

The role of continuum and resonance effects in the is
calar EM and strangeness form factors appears consider
more complicated than in the case of the isovector EM fo
factors whose spectral functions are dominated by a com
nation of r resonance and uncorrelatedpp continuum. In
the present study, we have continued our previous eff
@18,25,19# to determine the corresponding picture for t
isoscalar EM and strange vector current spectral functio
We have focused on theKK̄ contribution for two reasons:~i!
the availability of scattering data afford us with the lea
model-dependent determination of this contribution to all
ders in the strong coupling and~ii ! the OZI rule has
prompted a number of strange form factor calculations
suming this state to give the dominant contributions. We fi
that ~a! theKK̄ contribution to the isoscalar EM and strang
ness electric spectral functions is significantly enhanced
the presence of af-resonance inb1

1/2, 1/2 and FK
a , ~b! there

exists no evidence for such a resonance in theb1
1/2,21/2 par-

tial wave,~c! the resonance affects only the normalization
GM

a but not itsq2 dependence,~d! results~a! and~b! can be

reconciled with a simplef-resonance model ofNN̄→KK̄ if
the vector and tensorfNN couplings have roughly equa
magnitudes and opposite signs. We obtain a value forGfNN̄

V

in agreement with the VMD analyses of the isoscalar E
form factors@14#. Our value forGfNN̄

T , however, is larger in

magnitude.~e! The KK̄ contribution to the magnetic radiu
rM

s is significantly smaller than the value obtained atO(p3)

in ChPT. ~f! The KK̄ contribution to the subleadingq2 de-
pendence of the isoscalar EM moments is small. The re
~f! implies that consideration of other intermediate states
essential to a proper description of the isoscalar EM a
strangeness spectral functions. In this respect, the calc
tions of Refs.@9,37# are suggestive, indicating the possibili
of cancellations between different contributions as succ

se-

y

TABLE III. Leading moments of the isoscalar EM nucleon for
factors. First line gives ‘‘experimental’’ values from the dispersi

analysis of Ref.@14#. Second line showsKK̄ contribution in AC/GS
scenario. Third line gives contribution off pole alone in the pole
fits of Ref. @16#.

Scenario rE
(I 50) rM

(I 50) k (I 50)

Expt. @14# 24.55 23.97 20.06
AC/GS 20.50 20.09 0.21
f pole @16# 2.21 2.87 0.15
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sive higher-mass intermediate states are included. Moreo
as discussed in Refs.@25,36#, contributions from light, multi-
meson intermediate states may be just as large as that o

KK̄ state. Nevertheless, our study of theKK̄ state provides
several insights into the the treatment of these contributio
In particular, we are able to understand the connection
tween continuum and resonance contributions to the iso
lar EM and strangeness form factors and to evaluate the c
ibility of other approaches used in computing them. Inde
perturbative calculations which truncate atO(g2) omit what
appears to be the governing physics of the spectral functi
namely, rescattering and resonance effects. Conseque
the O(p3) ChPT computation of the strange magne
radius—though counterterm independent—contains only
nonanalytic contributions atO(g2) and exceeds our uppe
bound for the magnetic radius by an order of magnitude. T
higher-order rescattering corrections needed to render
ChPT prediction consistent with our bound are presuma
contained in terms ofO(p4) or higher. Similarly, we suspec
that the pattern of cancellations obtained in theO(g2)
NRQM calculation of Ref.@9# will be significantly modified
when rescattering and resonance effects are included.

A computation to all orders ing of the remaining contri-
butions would appear to be a daunting task. A few obser
tions may simplify the problem, however. First, unitarity a
guments suggest that the important structure in the spe
function lies below the two-nucleon threshold. Contributio
from states such asLL̄,LL̄p, . . . , whose thresholdstl

.4mN
2 are limited by unitarity bounds on the strong part

waves6 and are unlikely to be significantly enhanced by re
nance effects in the intermediate state form factors.

Second, we expect that the only important pionic con
butions arise via resonances, such as thev(780) orf(1020).
In ChPT, for example, the matrix element^3pus̄gmsu0& re-

6Note that this is not the case in one-loop model calculati
where unitarity is strongly violated@18#.
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ceives no nonanalytic contributions atO(p7). Consequently,
the 3p contribution to the spectral function is small in th
absence of resonant short distance effects. As discusse
Ref. @25#, such effects~e.g., 3p↔v and 3p↔rp↔f) may
enhance the 3p contribution up to the scale of theKK̄ con-
tribution. In fact, we speculate that thef strength obtained in
the VMD analyses of the isoscalar EM form factors aris
primarily in the 3p channel. There exists little evidence fo
significant coupling of higher-mass multipion states
@ I G(JPC)502(122)# resonances. We thus expect their co
tributions to be no larger than the nonresonant part of theKK̄
term.

Third, states involving pions and strange mesons m
generate important contributions via thev(1420), v(1600),
and f(1680) resonances. A preliminary exploration of th
possibility is given in Ref.@37#. In the VMD fits of Refs.
@15–17#, inclusion of a vector meson pole in this mass regi
is needed to obtain an acceptablex2. Since the flavor conten
of the vector mesons in this region is not known, the high
mass contributions to the strangeness form factors have
inferred from a priori assumptions about their large-t behav-
ior. A reasonable range for the strange moments avoid
these assumptions has recently been given in Ref.@36#.

A calculation of unitarity bounds for states havingtl

>4mN
2 is tractable. Data forNN̄→3p andpN→ppN may

permit a model-independent determination of the 3p contri-
bution to all orders ing. Whether or not a realistic treatmen
of the other multimeson states can be carried out remain
be seen.
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