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Spectral content of isoscalar nucleon form factors

H.-W. Hammet* and M. J. Ramsey-Musoif*’

TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3
2Department of Physics, University of Connecticut, Storrs, Connecticut 06269
3Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195

(Received 6 April 1999; published 17 September 1999

The nucleon strange vector and isoscalar electromagnetic form factors are studied using a spectral decom-
position. TheKK contribution to the electric and magnetic radii as well as the magnetic moment is evaluated
to all orders in the strong interaction using an analytic continuation of experiméNtaicattering amplitudes
and bounds from unitarity. The relationship between nonresonant and regdkardntributions to the form
factors is demonstrated, and values for the vector and teplsdd couplings are derived. ThiK spectral
functions are used to evaluate the credibility of model calculations for the strange quark vector current form
factors.[S0556-281®9)02310-9

PACS numbes): 14.20.Dh. 11.55.Fv, 12.38.Lg, 14.65.Bt

[. INTRODUCTION strange-quark observables found to be vanishingly small, one

The reasons for the success of the constituent quarkiight ascribe the quark model's success partly to the nu-
model of light hadrons remains one of the on-going mystermerical insignificance of sea quark effettm fact, the situ-
ies of strong interaction physics. Although deep inelastication is more ambiguous. As is well known, analyses of the
scattering has provided incontrovertible evidence for the ex- o term” in 7N scattering, they; sum in polarized deep
istence of gluons and QCD current quarks in the lightestnelastic scattering, and, (v,) N deep inelastic scattering
hadrons, these degrees or freedom are manifestly absesuggest that nontrivial fractions of the nucleon mass, spin,
from the the quark model. Nevertheless, a description ohnd light-cone momentum arise from thesea(see Ref[3],
light hadrons solely in terms of constituent quarks moving inand references therginEvidently, the most naive explana-
an effective potential has been enormously successful in ation for the quark model's validity is ruled out by these
counting for the mass spectrum and other properties of lowanalyses.
lying hadrons. Various explanations for this situation have More recently, a well-defined program has begun to de-
appeared in the literature, including the simple and intuitivetermine the matrix eIemenl(ngyMs|N> using parity-
idea that the sea quarks and gluons of QCD “renormalize”violating elastic and quasielastic electron scattering from the
the valence current quarks into the constituent quarks of thproton and nuclei3]. The first result for the magnetic form
quark model[1]. In this picture, for example, the multitude factor associated with this matrix element has been reported
of QCD degrees of freedom appear to a long wavelengtty the SAMPLE Collaboration at MIT-Batdg]:
probe primarily as single objects carrying the quantum num-
bers and effective mass of the constituent quark. From the ~ Gu(g*=—0.1 GeV¥)=0.23+0.37+0.15+0.19, (1)

standpoint of the quark-quark effective potential, gluon and 5. .
sea-quarks are similarly undiscernible—as they help renorvhereq” is the four-momentum transfer squaréthe first

malize the quark model string tension into the physical valu!Tor iS statistical, the second is the estimated systematic er-
used as model inpue]. In fact, most low-energy observ- T and the last uncertainty is due to radiative corrections

ables studied to date are unable to uncover explicit signaturédt€ring the analysisAlthough the value is consistent with
of QCD degrees of freedom. zero, the error bars are large. Improved accuracy is expected

There have been, however, a few exceptions to this situvhen the full data set is analyzed. Similarly, a combination

ation. Of particular interest are observables sensitive to th@' the strange magnetic and electric form factors have been

presence of strange quarks in the nucleon. In contrast to (jetermined by the HAPPEX Collaborati¢]:

and down quarks, which appear both as valence and sea GS+0.3%G5,(g= — 0.48 Ge\)
quarks, strange quarks constitute a purely sea-quark degree
of freedom. Being the lightest such objects, they ought to =0.023+0.034+ 0.022+0.026, 2)

generate the largest effect® comparison to the heavier

quarks. Consequently, nucleon matrix elements of strangevhere the first two errors are again of statistical and system-
quark operators provide an interesting window ondlesea atic origin, respectively, and the last one arises from the es-
and as such may shed new light on the connection betwedfinated uncertainty in the electric neutron form factor. While
nonperturbative QCD and the quark model. Indeed, werd© definitive conclusion can as yet be made regarding the

*Electronic address: hammer@triumf.ca The reasorwhy nonperturbative QCD produces small sea-quark
Electronic address: mjrm@phys.uconn.edu effects at low-energies would remain to be explained, however.
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experimenta| scale Cﬂng‘yMS|N>! one expects to be able to states contribute to the form factors. We view them as pro-
do so at the conclusion of the measurements. viding an intermediate step toward understanding the strange

In contrast, the theoretical understanding{Nﬂ?yﬂsm) quark form factors at the fundamental level of QCD. Because

is much less clear. The difficulty lies with the mass scales‘olc their generality, they also allow us to evaluate the cred-

relevant to strange quark dynamics. In contrast to the heav&p'lgy of sevirgerpotdeltprdedlctlolns. ‘ factors | i
quarks, for whichmg>Aqcp, the strange quark hasi ur use o s to study nucleon form factors is not new.

I . o The spectral content of the nucleon isovector form factors
~Aqcp- Consequently, the lifetime of a virtuals pair is

) ' . S has been clearly delineated using this apprdd&l14. It is
commensurate with typical strong interaction time scales, al

now known that both an uncorrelatedr continuum as well

lowing the pair to exchange a plethora of gluons with otheras themrm— p resonance play important roles in the lo-

quarks and gluons in its environment. The dynamics of thebehavior of these form factors. T dependence of the

pair are therefore inherenty nonperturbatlv_e. le_en_ thelsoscalar EM form factors has been successfully reproduced
present state of QCD theory, a complete, first principle

_ ﬁjsing DR’s under the assumption of vector meson domi-
treatment of(N|sy,s|N) has remained beyond reach. At- nance(VMD). The results have been used to infer relations
tempts to obtain this matrix element on the lattice have propetween theoNN and NN coupling strengths and to make
duced two results foGy,(q?=0), neither of which agree predictions for the strange quark form factpt§—17. How-
with each other nor with the first SAMPLE resul,7], and  ever, the relationship between the resonance and continuum
one result for the slope dbg at the origin with large error ~contributions to these form factors has not been previously
bars[7]. established. Consequently, a number of model predictions
An alternative—and more popular approach—has been tbave appeared which rely on the assumption that the uncor-
employ various effective frameworks, with varying degreesrelated continuunt“meson cloud”) gives the largest effect.
of model dependence. These frameworks have includedhese meson cloud calculations have generally entailed a
nucleon models, chiral perturbation thedGhPT), and dis-  truncation at second order in the strong hadronic coupling
persion relations. Generally speaking, the degrees of freedofir—a practice of questionable validity. The corresponding
adopted in each of these approaches have been hadromtedictions have generally been in disagreement with those

rather than quark and gluon, given that the lifetime ofsan obtlalneﬁ lﬁm"g VMD. ider both the st K and
pair permits it to form strange hadronic states. Apart from a n V\II aEI(\)/I ?WS’ v]:/e tcon5| frr] c: | €s rangtjanugr_ an
few exceptions, effective approaches do not address the wayoscaiar orm factors without relying on e priori

in which QCD sea quarks hadronize. Hence, the connectio ssumption of vector meson or meson cloud dominance. We
with QCD s indirect at best, with each approach emphasizfocus in particular on the contribution from ti& interme-

ing some aspects of the Strong interaction to the exclusion djlite state. The rationale for this focus is twofold. First, the
others. KK state constitutes the lightest intermediate state containing

Not surprisingly, the range of predictions for the strange-yalences ands quarks. Its contribution to the strange quark
ness form factors is broad. In particular, the breadtmoflel  form factors has correspondingly been emphasized in both
predictions appears to be as wide as the variety of modelgodels and ChPT. Second, given the present availability of
that has been used even though the same models are in resz?r'ong interaction and EM data, theK contribution can be
Soﬁ‘ab!e agree.ment for standard nggleon observ4Bj8s. computed to all orders ig using a minimum of assumptions.
This situation illustrates the sensitivity of sea quark observ- , . —
ables to model assumptions and the limited usefulness dioM an analysis oKN—KN and e’e” —~KK data, we
models in making airtight predictions. One might have hopedshow that the scale of th€K contribution depends critically
for more insight from ChPT, which relies on the chiral sym- on effects going beyon@(g?) and argue that a similar situ-
metry of QCD to successfully account for a wide variety of ation holds for the remainder of the form factor spectral con-
other low-energy observabl¢40]. Unfortunately, ChPT is tent. We also(a) illustrate the relation between the con-
unable to make a prediction for the leading nonvanishinginuum and resonance contributiongb) evaluate the
parts of G5, or GE since the leading moments depend oncredibility of several model predictions as well as tgp°)
unknown countertermgl1]. Recently, however, it has been Prediction of ChPT for the magnetic radius) derive values
noticed that slope o6}, at the origin is independent of un- for the vector and tensapNN couplings and compare with
known counterterms t&(p3) [12]. those obtained from isoscalar EM form factors under the

In the present study, we turn to dispersion relations2SSumption of VMD.

(DR’s) to derive insight into(N|sy,s|N). Similar to ChPT, In Refs. 118,19, we _repgrted on the resul'f:s of our DR
DR’s rely on certain general features of Q@and other field anqu3|s of the&KK COﬂtI’ISbutIOI’l to the nucleop strangeness
theories to relate existing experimental data to the observ-adius” (the slope ofGg at the photon point Here, we
ables of interest. In the case of DR's it is analyticity andeXpand on that analysis to consider the fildependence in
causality, rather than chiral symmetry, which allow one toboth the isoscalar EM and strangeness channels and to dis-
make the connection. Although DR’s do not bear on the wayFuss both the electric and magnetic form_factcls. Since the
in which QCD quarks and gluons form intermediate strangeDR approach requires knowledge of tKe&kK —NN ampli-
hadronic states, they do provide an essentially modeltudes in the unphysical region, some form of analytic con-
independent framework for treating the way in which thosetinuation is needed to complete the analysis. Using backward
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dispersion relations, we obtain the unphysical amplitudes It is conventional to employ a once subtracted DRFor
from KN phase shift analyses. The results of this continuaTypically, one wishes to predidt,(0) as well as its#0
tion and their implications for nucleon form factors consti- behavior. In this case, an unsubtracted DR is appropriate. We

tute a central theme of this paper. follow this ansatz in the present study and obtain
Our discussion of these issues is organized as follows.
After outlining our formalism, we perform the spectral de- 1 (= ImF3(t")
composition of the form factors and write down DR’s in Sec. Fa)=—| ———dt’ )
II. In Sec. Ill, we express the spectral functions in terms of Iy Ut

KK— NN partial waves and give the corresponding unitarity 4
bounds valid in the physical region of the dispersion inte-
grals. The analytic continuation &N amplitudes which is S/ur
. g . . . t [~ Im Fl(t )
used in the unphysical region is performed in Sec. IV. A Fi(t):—f i T @®)
brief description of the analytic continuation and our treat- Tty t'(t'—1)
ment of the inherent problems is given. The results are ap-
plied to the nucleon’s strange and isoscalar EM form factord\s a consequence, subtracted DR’s can be written for the
in Sec. V. In Sec. VI, we discuss the contribution of otherSachs form factors as well.

intermediate states and summarize our conclusions. From Eqgs.(7), (8), it is clear that the quantities of interest
are the imaginary parts of the form factors. The success of
Il. SPECTRAL DECOMPOSITION the DR analysis relies on a decomposition of theFininto
AND DISPERSION RELATIONS scattering amplitudes involving physical states. To obtain

this spectral decomposition, we follow the treatment of Refs.

The vector current form factors of the nucleBn(t) and  [20,21,18 and consider the crossed matrix element
F,(t) are defined by

(N(p")j L(0)IN(p)) J,L=<N(p)N(p)|jﬂ(0.)|0>
T in |F2(t) ' v :U(p) Fl(t)'y +mg V(E+p)v V(E), (9)
=u(p’)|Fe(t)y,+ Z—mNU‘”’(p -p)’u(p), (3 # T 2my TH

wheret is now timelike. Using the LSZ reduction formalism

2 (' _ )2 ; S
wheret=q"=(p’—p)". we conS|der"two cqses for, - (1) and inserting a complete set of intermediate states],Im
the strange vector currersty,s and (i) the isoscalar EM may be expressed as

currentjEL':O). Since the nucleon carries no net strangeness,
F$ must vanish at zero momentum transffiee., F3(0)=0], - -
whereasm{'=? is normalized to the isoscalar EM charge of ImJ,=—(2m)*2N2, (N(p)|In(0)|\)
the nucleorF{' =9(0)=1/2. We also define the electric and Vz A

magnetic Sachs form factors, which may be interpreted as
the fourier transforms of the charge and magnetic moment
distributions in the Breit frame

X(\j (0)|0)v(p)&*(p+p—py), (10

where N is a spinor normalization factor andy(0) a
Ge=F,—7F,, Gu=F,+F,, nucleon source. Equatiofil0) determines th smgulanty
BT MTRLTT2 @ structure of the form factors and relates their imaginary parts
with 7= —t/4mﬁ. In the case of the strange form factors we O on-shell matrix elements for other processes. The form

are particularly interested in their leading moments, thefamOrS have multiple cuts on the positive r¢aixis. The

strange magnetic moment and the strange radii: invariant mass—squaremlf of the lightest state appearing in
the sum defines the beginning of the first cut and the lower
KS=F35(0)=G}(0)=pu®, limit in the dispersion integralsM?=t, . Since Eq.(10) is
linear, the contributions of differefik ) can be treated sepa-
dGX(t) rately.
(r3)°= 6d— , (5) There is an infinite number of contributing intermediate
tlizo states|\) which are restricted by the quantum numbers of

the currentssy, s andj (=¥ [18(3P9=0"(1"")]. Naively,
the lightest states generate the most important contributions
to the leading moments of the current. Moreover, because of
5 the sourcedy(0), the intermediate states must have zero
= —mi(rdt (6)  baryon number. The lowest allowed states together with their
=0 3 thresholds are collected in Table I. Resonances, such as the
w, do not correspond to asymptotic states and are already
and similarly forpy, . The leading moments of the EM form included in the continuum contributions, such as that from
factors are defined analogously. the 37 state.

wherei =E,M, respectively. A dimensionless version of the
radii can be defined by

dGg(7)
PE= dr
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TABLE I. Lowest mass intermediate states contributing to EqQ.of the full kaon cloud contribution differ from thé(g?)
(10). result and how ap-resonance structure appears in the all-
orders analysis.

Although we consider here only thKK  intermediate

Mesonic states  t,[ GeV?] Baryonic states  t,[GeV?]

37 0.18 NN 3.53 state, we note in passing that the validity of this so called
5 0.49 NN 4.67 “kaon cloud dominance” ansatz is open to question for a
7 0.96 AR 484 variety of reasons. As can be seen from Table I, for example,
— — the three-pion threshold is significantly below K& thresh-
KK 0.98 sS 5.76 A .
old. Consequently, the 8 contribution is weighted more
strongly in the dispersion integral than tK& contribution

KK 1.28 AS o 5.95
i : because of the denominators in EG8, (8). Moreover, three
pions can resonate into a state having the same quantum
numbers as theb (nearly puress), and thereby generate a
When sufficient data exist, experimental information maynontrivial contribution to the current matrix element. Indeed,
be used to determine the matrix elements appearing in Eghe ¢ has roughly a 15% branch to multipion final states
(10). However, when the thresholg of the intermediate (largely via aps resonance Although such resonances do
state|\) is below the two-nucleon threshold, the values ofnot appear explicitly in the sum over the states in 8d)),
the matrix elemen¢N(p) |J_N(0)|)\>V(H) are also required in their impact nevertheless enters via the current matrix ele-
the unphysical regiom, <t<4mj. In this case, the ampli- ment (3w|sy,s|0) and the NN production amplitude
tude must be analytically continued from the physical to the{N(p)|Jn(0)[37)v(p). Thus, the 3r state could contribute
unphysical regime. The first cut in the compleplane ap- appreciably to the strangeness form factors via its coupling
pears at the 3 production thresholdt= gmi, and higher- to the ¢. We return to this pOSSIblllty in Sec. kee also
mass intermediate states generate additional cuts. For eRef. [25]).

ample, for|\)=|KK) the cut runs front=4m2 to infinity.
Therefore, the matrix element f&fK — NN is also needed in

the unphysical regionmig<t=4my, which requires anana- | order to determineKK contribution to the spectral

lytic continuation. . _ . functions, we need the matrix  elements
Some of the predictions for the} reported in the litera- (N(P)[In|K (KK (K))v(p) and <K(k)?(?)|j,t|0>. By ex-

ture are based on approximations to the spectral funCtionﬁanding theKK — NN amplitude in partial waves, we are

appearing in Eqs(7), (8). The work of Refs[15-17 em- ;1,0 1o impose the constraints of unitarity in a straightfor-

ployed a VMD approximation, which amo%nts to writing the ward way. In doing so, we follow the helicity amplitude

: Sren . -
spectral function as IR;(t) = 7X;a; o(t—myj), wherej de- ¢y i of Jacob and Wicke2]. With A andx being the

notes a particular vector meson resonafecg.,  or ) and 1 cjeon and antinucleon helicities, we write the correspond-
the sum runs over a finite number of resonances. In terms (?ﬁg Smatrix element as

the formalism from above this approximation omits any ex-

lll. KK INTERMEDIATE STATE AND UNITARITY

plicit multimeson intermediate statés) and assumes that (NP, MNPV SIK (KK (K))
the products(N(p)|Jn(0)IN){(\|sy,s|O)v(p) are strongly "
peaked near the vector meson masses. The same has been (2 45% D+ D= k—T)(277)2
made conventional analyses of the isoscalar EM form factors (2m)"oi(p+p )(2m) t—4mg
[13,14]. —
In contrast, a variety of hadronic effective theory and X(6,¢,N\,\[S(P)|00), (11)

model calculations for the strange form factors have focused .
on contributions from the two-kaon intermediate statewheret=P?=(p+ p)? andmy is the kaon mass. The maitrix

[3,8,11. Even thoughKE) is not the lightest state appearing element<0,¢,k,x|§(P)|00> is then expanded in partial
in Table I, it is the lightest state containing valence strangevaves a$18,22

quarks. The rationale for focusing on tK&< contribution is

based primarily on the intuition that such states ought to give SA;E<0,¢,7\X|AS( P)|00)
larger contributions to the matrix elemefit|sy,s|0) than 2341\ -
purely pionic states with no valenseor s quarks. In other =§ (?) bg'xpfm(d),ﬁ,— d)*, (12

words, the kaons represent the lightest contribution favored
by the OZI rule. Typically, kaon-cloud predictions have been
computed ta?(g?) only. The results for fopg in particular
are smaller in magnitude than the vector meson dominance \. The bﬂ”‘ define partial waves of angular momentum
predictions and have the opposite sign. In what follows, weBecause of the quantum numbers of the isoscalar EM and
illustrate  how both the structure and magnitudestrange vector currents, only tde=1 partial waves contrib-

Wh_ereDJW,(g,,B,y) is a Wigner rotation matrix withu =N\
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ute to the spectral functions. Moreover, because of parity On one hand, Eq416)—(20) may be used to determine
invariance only two of the four partial waves are indepen-the spectral functions from experimental data. On the other
dent. We choosb¥? 2andb/? ~ Y2 which fulfill the thresh-  hand, one can impose bounds on the imaginary parts in the
old relation[18] physical region by using Eq14). Equations(16)—(20) in-
volve expressions of the type
by A0 i—am2z = 2D1* VA0 |icam2. (19 N N
" " Re{by® = 2(FR)*} = by ="4|Fi|cos 6, — 6)

U;smg the a_bove definitions, the unitarity of ti&matrix =|bi’2'il’2||Fﬁ|(l+yK), (21)
S'S=1 requires that

where the phase correctiopy is defined by yx=cos(;

—&)—1, with §; and &k the complex phases of thg* and

5 L , form factor, respectively. The experimental information on
for t=4my. Consequently, unitarity gives model- . s incomplete. Sincél+ yx|<1, however, we can take
mdependent bounds on the contribution of the physical rés, =0 to obtain an upper bound on the spectral functions. In

gion (t=4mg) to the imaginary part. In the unphysical re- order to obtain finite bounds for the Dirac and Pauli form

2
gion (4mi<t<4my), however, the partial waves are not factors at the\N threshold, we build in the correct threshold
bounded by unitarity. Therefore, we must rely upon an ana | for theb? N Eq.(13). Thi Ith
lytic continuation ofKN scattering amplitudes. This proce- relation for t g.(13). This is necessary to cancel the

dure is discussed in the next section. 1/pt factor in Eqgs. (16) (17). Strictly speaking, the relation
The second matrix element appearing in Hq_o)' holds Only fOI‘t=4mﬁ . For Slmp|ICIty, hOWeVer, we assume

KKK (K)|i®|0), is parametrized by the kaon vector cur- this re_lation to be valid f_or aI_I momentum trgnsfers, as, e.g.,
ﬁen(t zor&)fggto'rlza ) P y holds in the tree approximation of perturbation theory. Con-
K-

sequently, we have

b} ()] <1, (14)

(0l IK (K (k) = (k—k) ,FE(1), (15 “

[ImF ()| < —=—F———I[Fk(V)|
wherea denotesEM or sandF%(0) gives the corresponding ! 2\/5( i+ 2my) “
chargele.g.,Fg(0)=—1].

From Eg.(10), the spectral functions are related to the im R (1)< Mg 2| 23
. m =" .
partial waves and the kaon strangeness form factor by 2 J2t(Ni+ 2my) K

m
ImF@(t)=R Lgt
4p;

_ b%/Z, 1/2(t)

(22

b1/2 ~vyp) The unitarity bounds for the Sachs form factors are obtained
more straightforwardly by simply setting1’>~%(t)|<1 in
Eqgs.(19), (20).
Kaon form factors The timelike EM kaon form factor
FR(D* (16) EM - "
K ' Fr'(t) has been determined from"e” —KK cross sec-
tions. A striking feature oF ;™ observed in these studies is

ﬁ my

Mgl the pronounced peak fdr= mfﬁ [23]. At higher values of,
ImF@(t)= Re{ L;) b2 Yqt) oscillations at a much smaller scale are observed. A variety
4p; of analyses ofFE’\’I in this region have been performed
[23,24], and it is found thaF g™ is well described by a VMD
N 172,172 a arametrization
——=—b; (t) FK(t)*]1 @ P
V2E .
EM _

where Fe (1) 2\/: Cvm\z,—t—imvl“va(t)’ (24)
pe=t/A-mi, q=\t4-mg, and E=.t/2. where the sum is over vector mesons of masand width

(18) Iy and Wherefv(t) is some specified function af We use
fy(t)=t/m2 [24]. In nearly all analyses, one finds for the
reS|duesC ,~1/2, C,~1/6, andC,~1/3. These residues
may alternately be described in terms of Mg and VKK
U couplings:CV=gVK§/fV,' where f ,~5.1, fww'17, andf,
Im G(Ea)(t)=Re[(4 )bl’z YA Fa(t)* ] (19  ~13. The strong couplings can be determined frbifw
—KK) and SU3) relations.
To obtain Fg(t) we follow Refs.[15,11,25 and draw
)bl’z YRR (1) ] . (200 upon the known flavor content of the vector mesons. Fhe
does not contribute to isoscalar form factors. To the extent

The corresponding spectral functions for the Sachs form fac
tors follow from Eq.(4),

o

Im Gﬁj‘)(t)zRe| "
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L L S L B ] nucleon strangeness. The pointlike approximafigr=—1,
however, misses important resonance physics. Throughout
0 : E the remainder of this work, we will use the GS parametriza-
i : ] tion.

IV. ANALYTIC CONTINUATION

IFel

/1 \ To obtain theb}™ for 4m2 <t=<4mj we analytically con-

Iy N ] tinue physical amplitudes into the unphysical regime. The
,1/ T ] analytic continuation(AC) of a finite set of experimental
N T T s amplitudes with nonzero error is fraught with potential am-
0.8 1.2 16 20 biguities. Indeed, AC in this case is inherently unstable, and

t [Gev?] analyticity alone has no predictive power. Additional infor-
mation must be used in order to stabilize the problem, as we
discuss below27].

In order to illustrate these issues and the methods we
2adopt to resolve them, we first briefly review the kinematics
of KN scatteringcf. Ref.[28]). It is useful to consider the,

u-, andt-channel reactions simultaneougly,

that (i) the  and ¢ satisfy ideal mixing (¢)= —|ss) and (@ s channel: K(g;)+N(p;)—K(as)+N(ps),
|w)=|uu+dd)/y2) and (i) the valence quarks determine
the low+t behavior of the matrix element®|J,,|V) one ex- (b) u channel: K(—g;)+N(p;)—K(—g)+N(ps),

10° et
0.0 0.4

FIG. 1. Different model parametrizations fd¥y . Full line
shows simple VMD model with thé only, dashed line shows the
flavor rotated VMD model including the and ¢, and dash-dotted
line shows GS parametrization. The dotted vertical line indicate

KK threshold.

pects(0[sy,s|w)=0 and(0[sy,s|¢)=—3(0|I5| #). It is (26)
straightforward to account for deviations from ideal mixing . .
[15,11,25: (c) tchannel: K(—qgs)+K(q)—N(—=p;)+N(ps),
) sine where the four-momenta of the particles are given in paren-
Co /C,=~6 sin(e+ 6,) ~-02, theses. In this notation the crossing relations between the
different channels are immediately transparent. The three
© cose processes can be described in terms of the usual Mandelstam
S, _ I U .
chic,=— 8| coget 0 3, (25  variables

— 2 — 2 — 2
where thes superscript denotes the residue for the strange- s=(pi+q)°, u=(pi—qs and t=(g—ds) 27
ness form factor,d, is the “magic” octet-singlet mixing
angle giving rise to pureu+dd andss states, and devia-  The invariant matrix element for th€N scattering process
tions from ideal mixing. From Eq$24) and(25) we observe has the structure
that the timelike kaon strangeness form factor is dominated

by the ¢(1020) resonance. We note that the flavor rotation = 1

of Eqg. (25) only gives the relative size of the and ¢ con- M=u(py)| Als,) + E(qurqf)B(S't) u(pi), (28
tributions but does not lead to the correct normalization for

F% att=0 which must be enforced by hand. and the isospin decomposition of the invariant amplitudles

In Fig. 1 we plotFy as given by Eqs(24) and(25) and ~ andB reads
compare it with a simple VMD mod¢L 8] and the Gounaris-

Sakurai(GS) parametrization foF . [26] with all p param- A(s,)=A"(s,) +A™(s,))(7y- k),
eters replaced by the corresponding ones forgh&Ve ob-
serve that the GS and VMD forms reproduce the essential B(s,t)zB*(s,t)+B‘(s,t)(?,\,- ;-K)_ (29

features ofF; as determined frone™ e~ data and standard

flavor rotation arguments. Sinde} is needed fot=4mZ, We also need thé. andX pole contributions toA™) and
the » contribution which gives rise to the bump around B{*) which are given by

~0.6 GeV in Fig. 1 is negligible. In comparison to the

strong¢ peak, the small scale oscillations at highéave a (+) _ giNY
negligible impact as well. When computing the leading 'A‘pole(s’u)_YZEAz 5 (My=my)
strangeness moments, we find less a than 10% variation in '

the results when any of these different parametrizations for

Fg is used. In short, any model parametrizatiorF}f show-

ing the peak at thep) mass and having the correct normal- ?We do not consideK®N scattering data in this analysis. In the
ization F(0)=—1 may be used for the purpose of studying following, we write K andK for K* andK ~, respectively.

1 1
* 1
u—m

<N
(2}
|
3
<
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within a certain error corridor. Consequently, the procedure
for obtaining amplitudes outside the range of the given data
is unstable. In practice the problem is stabilized by restrict-
ing the admissible solutions. This is achieved by using
priori information on the solution from experiment or theory
as “stabilizing levers”[27]. In the remainder of this subsec-
tion, we give an overview of our general procedure for mak-
ing this stabilized continuatiof28,19.

The first important observation is that in the backward
direction, the invariant amplitudes in theandt channel
coincide, i.e.,fy(t,0s=m)="1(t,0,=m)=1(t). Heref is a
generic invariant amplitude andg and 6, are the c.m.-
scattering angles in the andt channel, respectively. Thus,
the continued amplitudég(t,ds= ) in the unphysical re-
gime can be identified with the unphysidathannel ampli-
tude f(t, 6;= ).

Second, we work on a Riemann sheet where only the
singularities from thes- andt-channel reactions are present.
The backward amplitudé then possesses a left-hand cut
from zero to minus infinity stemming from thechannel
reaction. The lowest right-hand cut, which is due to the 3
intermediate state in thechannel, runs from @ to infinity.

FIG. 2. Mandelstam plane fd¢N scattering. Physical regions 1h€ two cuts do not overlap and we can write an unsub-
are marked by dashed areas. tracted DR forf. The amplitude is known from experiment
on the left-hand cut in the regiop<t<0 and we need its

values on the right-hand cut whefds related to theKK

— NN partial waves. In particular, we are interested in the

U— 2 + s m2| (30 unphysical region 4_12 §t<4mﬁ, where the partial waves are
Y Y not bounded by unitarity.

Following our strategy to include as muahpriori infor-

Bpole(s!u):Y:A s 2

(*) gﬁNY( 1 —
It Is instructive to dlsplay th? range sfu, a_ndt N t_he ation as possible, we do not continue the amplitiidself
Mandelstam plane, shown in Fig 2. The physical regions o . :

; . . but rather a related functioaf, the so-called discrepancy
the three reactions do not overlap, and the invariant amp“function INAf the analytically determined pole terms for
tudes simultaneously describe all three processes. The physg well és the ex erimgntallyknown beha\F/)ior of the amoli-
cal values of the invariant amplitudes are obtained when th P y ) o mp

. . . ude, have been subtracted out. This subtraction is carried out
Mandelstam variables are taken in the corresponding ranges

i L in such a way as to remove the portion of the left-hand cut
In order to carry out the dispersion integrals of B3, (8), lying in the ranget,<t<0 where the phase shift analyses

we require theb)™ along thet-channel cut, indicated by the are available. Thus, the use Af presents two advantages.
gray shaded area in Fig. 2. . . First, the original problem which entailed an AC from the

We begin with experimentaKN amplitudes in the poyndary of the region of analyticity to another point on the
s-channel region and employ the method of backward DR toyundary 8—B) has been transformed into one in which

obtain the unphysical amplitudes along thehannel cut.  the continuation occurs from the interior of the analyticity
The backward DR method has has been used successfully fgbmain to the boundaryl (-B). Second, the well-known

a similar continuation ofrN scattering amplitude29] and pole terms can be continued explicitly, and only nonpole

the 1970's[30]. Only recently has a continuation of theN  methods. In the end,is easily reconstructed fromf.
amplitudes become possible due to improvements in the data The continuation ofAf is carried out by means of a

base over the last three decades. A continuatiokNfscat- power series expansion. Such an expansion, however, con-
tering amplitudes has also been performed on the basis Qfrges only up to the nearest singularity. In our case this
hyperbolic DR[31]. In the latter analysis, however, the noint lies at the three-pion cut, well below the region of
t-channel helicity amplitudes have been parametrized bynterest. We circumvent this problem by using a conformal
sharp resonance poles, anpriori assumption we seek to mapping of the complex plane. First we symmetrize the
avpid in thg present analysis. We use the. re¢€thhase cuts to lie along ¢,—R] and[R,»). We then map the
shift analysis of the VPI group32] as experimental input.  ¢\;ts forAf onto the circumference of the unit circle in the
plane and the rest of theplane into its interior using
A. Overall strategy and problems

Although an AC is uniquely defined from a continuum of t(w)= 2Rw

. (31
points, this is not the case for a finite set of points lying 1+w?
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Now it is possible to use a Legendre seriesniio perform  spectral functions amplifies the lotveontribution and sup-
the continuation. In principle, the series can be fittb in  presses that from the regiom8<t<4m?. We plot only
the regiont,<t<0 and the fit then be evaluated in the re- the results for the amplitudes without their pole part. Since

gion of interest. In practice, we fit to the function the pole part is exactly known, it can be continued explicitly
and is added to the remainder obtained from the AC in the
Ag(w) =] ~Af[t(w)] 32 end

Ultimately, we require thed=1 partial wave projections

of the backward amplitudes which can be expanded in partial
instead ofAf. In so doing, we explicitly enforce the high- waves as

energy behavior of the amplitudef (t) ~|t|* for t—o. The
parameterr may be obtained from Regge analyses. In addi-

tion, the explicit inclusion of the high-energy behavior stabi- 8r < J+3 Vo112
lizes the continuation by suppressing oscillations in the so- ~ B™(t)=— Z \/:bj TP,
lution. In fact, « can also be thought of as an auxiliary Gr J=1 I+

parameter introduced just for this purpose. The final results
depend only weakly on the precise value afIn fact, we w
evaluate the stability of the continuation by studying the FO(t)=— 4”‘5 (JJFE
variation of the results witlw as well as with the number of PG =0 2
terms included in the Legendre series. The technical details
of the AC procedure are given in R¢28]. In the next sub-
section, we directly start with the continued backward am-Because the AC gives the invariant amplitudes only in the
plitudes. backward direction, it is nontrivial to extract the partial
waves. The expansion can be carried out separatelfy dod

B. Results fpole- This is useful because the sum in E&4) converges
much faster for the nonpole part than for the pole |h2&i.
Consequently, we exploit the faster convergence for the non-
pole part and add the exactly known pole term projections
. . . after theb) have been isolated.
FE(0) =AM +mya /p B (). (33 Since the amplitude is known only for one valueyf a

separation of thé}> =2 from the b)), relies on several

In order to extract thé}", we needB!") andF") in the  additional observations. First, eap)™*|—1 or smaller as
t-channel unphysical region. In Fig. 3, we show the results of_, 4m?2 because of unitarity. The only significant deviation
the analytic continuation ng(+):F(+)__ Fioe and BH from this trend for 4nZ<t<4m? occurs via resonant en-
=B(+)—Bf):§,2e up to t=14mi . The continued amplitudes hancements of the partial waves. The lightdstl, |=0
vanish ast—o. We do not expect the power series expan-respnance having a non-negligible branching ratio tokke
sion 'go.be credible in a larger region thap the one in whlch ItSstate is thef,(1270), whose mass lies near the upper end of
coefficients have been determined. Since the experimentghe range of validity of the AC. Moreover, in RdB1] no

. . . . 2 ! _
amplitudes are given in the |nte2rvaI$mKst$0, We tIUSt  oidence forJ=2 resonance effects close to & thresh-
our continuation only up to~8mj which covers half of the = g was found. Consequently, we truncate the expansions in
unphysical region. Fortunately, for purposes of analyzingzq (34) atJ=1. In order to test the validity of this trunca-
nucleon form factors, th&K threshold region dominates. tion, we also perform an analysis with a model for the reso-

The kaon form factoF g(t), which multiplies thebﬁ'” inthe hantJ=2 partial waves included. As discussed below, our
results are essentially unaffected by this inclusion. Since the

by?YAt)Py(—1). (34)

First we introduce the invariant amplitud€=) which in
the backward limit is related t&(*) andB(*) via

50 T 20 P width of the f,(1270) is~185 MeV, we may expect some
e FE oF-. ] small, residual contamination of thle<1 partial waves due
e N e T S to our truncation. Fortunately, the presence=g{t) in Egs.

(16)—(20) protects the spectral functions. The kaon form fac-
tors are peaked in the vicinity of th¢(1020) and strongly
suppress contributions from> mf/) [18].

The remaining separation between ®and P waves in
B(") may be performed by drawing on the work of Refs.
bl [30] and[31], where backward and hyperbolic DR have been

4 6 8 10 12 14 4 6 8 10 12 14 _ . .
t [mg’] t [yl used to analyze thiKkK—NN amplitudes under the assump-

tion that the helicity amplitudes are dominated by sharp reso-

FIG. 3. Analytic continuation of the invariant backward ampli- Nance poles. In th8wave, one finds a resonance close to the
tudesﬁ<+)=|:(+)_|:g|33 (with n=6) andE(”:B(”—Bé&l (with KK threshold having a 22% branching ratiokd, namely,
n=5) for a=—1.2. the f(980). Therefore, we use the resonbfit/?amplitude

R B(+)_B(+)
II:B(H pole
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FIG. 4. Comparison of the results for the
bY2Y2 (upper row and b2~ 22 (lower row) for

35 different order of the Legendre serinsand a=
—1.2. Solid lines showb}?=¥3, dashed lines

show Reb}?>* Y2, and dotted lines show
Imbi?*2, The continuation is expected to be

trustworthy up tot~2 Ge\2.

4 o 4 s 4 T 4 T
>2V>ZV>ZV>2V
g oFs 3 R Eaperr— § 0PI § O
o-2 ;, {02 :',' k-] :.‘ ' 02 X

—4 . n.=7 —4f" n= : —4 w n=5 —4 . n= .

05 15 25 35 0.5 25 35 05 25 35 05 2.

t [Gev?] t [GeV?] t [Gev?] t [Gev]

4 i 4 2 4 4 4 s
o 2 £ 2 /4 o 2 < o 2
3 R b $ 3
g0 N7 g 0 g0 § O ——=—
o-2 < o8-2 JEETO a-2 3o-2

s . ~.‘~r:-7 _4 . n=i —4 . nasl _4 ‘ n=4.
05 15 25 35 05 15 25 35 05 15 25 35 05 15 25 35
t [Gev?] t [Gev?] t [Cev?] t [Gev?

from Refs.[30,31] and subtract it from our resultBoth
analyses use the following form for the amplitude:

f
20, Iy

b212 1) = , 35

o) Jtp, mfzo—t—ie 39

and obtain approximately the same result for the resItﬂELe

We usel 0= (—24.10+ 6.65)mg [31] and extract theb}™
from the continued invariant amplitudes using
V297,

by ~(t) = 5B+ b1 VA1) |,

1/ip_Qi~
bi/z,l/z(t):§ zpm‘;EtF(ﬂ(tHbé/z,l/z DY R
(36)

with p_= \/mzN—t/4. Note that theA andZ, pole term pro-

jections for even values af vanish for the isoscalar ampli-

where theQ;, i=0,1,2 are Legendre functions of the second

kind andéy is given by

; =t—2mﬁ+2(m$—mﬁ)
Y 4qip-

(39

The introduction of a width in Eq.35) changes the extracted
amplitudesb}>* Y2 only slightly and has almost no impact
on the application to nucleon form factors. The same obser-
vation applies for the case when the 2 partial waves from
Ref. [31] are subtracted as well. Therefore, we discard the
J=2 partial waves and proceed accordingly.

In the following, we discuss the sensitivity of the ampli-
tudes to the orden of the Legendre series and the high-
energy parametet. In Fig. 4, we display the ful!b}’z'i Y2 tor
different values oh. We show their real and imaginary parts
as well as their absolute value. It is clearly seen H&t*?is
almost independent of wherea$h>~ 12 shows some varia-
tion. From the quality of the fits to the discrepancy functions,
we choosen=6 for F(*), whereas we take=5 for B(*).
This choice corresponds to taking the minimumwhich
gives a satisfactory fit in order to minimize the amplification

tudes in thet channel. As a consequence, the pole term progf experimental noisg27,34). The dependence of our results

jection forJ=0 does not appear in Eq86). TheJ=1 pole
term projections are

\/eqgiNY

b%lz’illz(t”pole: E 247Tip_

Y=A,%

X[Qo( —i&y) —Qa(—iéy)],

2
gkny

b%/z’m(t”pole: E m (my—my)Q1(—iéy)

Y=A2

MnQ;

T

[2Qa(—i&y) +Qo(—iév)]],
37

3\A/e cannot use the results of Ref80,31] directly because the

b} were assumed to be dominated by a single effeatiymle and
the explicit effect of thepp wasa priori excluded.

on the asymptotic parameter is similar. Althougha is a
physical parameter, its determination is model dependent.
We have variedr from —0.2 to —5.0 to test the sensitivity

of the AC toa. Similar to the dependence am the b}/>/2

are almost independent af, whereas theb;? 2 show
some variation. Forr— 0 our analysis becomes unstable as
we expect since arbitrary oscillations in the AC are no longer
suppressed. Furthermore, fa=0 the DR does not con-
verge and the corresponding results are meaningless. For the
final results we takexr=—1.2 from the Regge-model fit of
Ref.[33]. From the dependence anand «, we expect our
results forb}?Y? to be more reliable. This conclusion is
supported by the fact th#|? is directly related to the back-
ward cross section. Henck,is particularly well determined

by the data and errors in the phase shift analysis cancel in the
reconstruction of [29,30.

As shown in Fig. 4, a clear resonance structure at thresh-
old is seen ib}?¥2 which presumably is the resonance.
This resonance is not observed bi>~ 2. There are two
possible explanations for this fact:
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(1) The AC for B and consequentlp}’>~ 2 is not suffi- 0.12 o [T
ciently well determined for the reasons explained above. _ i §(b)
(2) The vector and tensor couplings of themeson to the "> 0.09 £ oL ]
nucleon are approximately equal and have opposite signsé o
Parametrizing the resonant part of the 1 partial waves by  « o0.06 | ok
the ¢, we have[31] =
o
L -2
po 22GuE Eh N
- 3  4r éNN #NN/? 0.00 E . R !
12 3 12 3
2my G| v m(zﬁ . t [Gev?] t [Gev?Z]
ré=—— Gt —3Camnl (39 o _
3 4w ¢ 4my, ¢ FIG. 5. KK contributions to the spectral function fpg . Short

dashed curvéa) givesO(g?) result of scenaridl) discussed in the
where thel“i are the residues corresponding Wz,ﬂ/z text. Solid curve[(a) and (b)] gives result fg)r scenaridl). Lon%-
vV __ T _ dashed curve gives unitarity bound fer4my using a pointlikeF
.[Cf' 1|/52C]1./2(35)]. G‘?NN;Z_SZ‘ISNN then leads to a resonance [scenario(ll)] gnd GS pargmetrizeﬁﬁ [sc’\(‘enario(lll)]. Dashelé-
in by =7but not inby™ 7= v dotted curve(b) gives all-orders spectral functidiscenario(lll)].
Following scenario 2 above, we determi@q&NN and Dotted vertical line indicates physichlﬁ production threshold.
G;NN from the resonance structure b{’>*2 We fit the

region around this structure using tde=1 analog ofVEq. The KK content of the spectral function fgr? is dis-
(35), but including a finite widthI",. We obtainG ,,  played in Fig. 5. In Fig. &), we compare two scenarios for
=7.4 using the Particle Data Group value 0y, [35] and  b}> Y2 (1) the Born approximatioBA) in the nonlinearr

G\;Nﬁz 9.6 whenl , is allowed to be a fit parameter. These model and(ll) the AC from the previous section. For both

values are comparable with the Va'@\:mﬁ: 9.2 obtained Scenarios a pointlike kaon form factéi(t)=1 has been
from the VMD parametrization o {' =) [14]. Our value for used. Although the pointlike form factor is unrealistic, using
i .

TV _ it in this context allows to illustrate separately the effects of
G¢NN_ _G¢NN’ however, has a larger magnitude than Ob'form factor and scattering amplitudes.

tained in Ref[14]. The possible reasons for this difference  \ye include scenaridl) because of its correspondence
are discussed elsewhe&6]. We emphasize, however, that yith a number of model calculations as well as ChPT. The

our determination of theéNN couplings relies only on the scenario(l) spectral function contains only contributions to
observed resonance structure in the strong amplindfe’?  ©(g?), whereg is the scale of the strong hadronic couplings.
and not on a VMD ansatz for the isoscalar EM form factors.It constitutes the DR form of a one-loop calculation contain-
We also note that thinterpretationof the b} in terms of ~ INg @ kaon and strange baryon intermediate state and a cur-

— . o . . rent insertion on the kaon lingl8,20. A variety of model
¢NN couplings is inconsequential for the computation of thecalculations(see, e.g., Ref$3,8)) have been performed un-

Fi(a) , since the amplitudes themselves—rather than a Paraer the assumption that such amplitudes dominate the
etrization of them—are used in the dispersion integrals. strangeness form factors and that a truncatiof(@?) gives
- a reliable estimate of the scale and sign of the kaon contri-
V. KK CONTRIBUTION TO NUCLEON FORM FACTORS bution. In ChPT analyses of both the strange and isoscalar
— EM moments, the nonanalyticn quark massesparts of the

We now use théd}™ to evaluate the contribution of the same amplitudes are retained and added to the appropriate
unphysical region to the dispersion integral for the stranggow-energy constants. In the case gif, for example, the
and isoscalar nucleon form factors. We consider the electrigaading-order nonanalytic contribution is singular in the chi-
and magnetic Sachs radii and the anomalous magnetic mey| |imit [11]:
ment. Drawing upon Eqg<7), (8), we write down subtracted

DR’s for the Sachs radii 5

, ) . mN) 2{ L. 5| (3F+D
amy [ Im G2(t’ Pnonanal” — | A 20| 7 =
prm - TN g (40 A 800 Ve
T Jamy t )
3 ) mi
wherei=E,M anda denotes the isoscalar EM or strange- +5(D-F) }IHF’ (41)
ness channel. Before evaluating Eg40), we discuss the

qualitative features of the spectral functions #@r, pf, , and

«2. Since for our purpose the difference between the EM andvhereF andD are the usual S(3) reduced matrix elements,
strange kaon form factors is essentially given by the normalA, =4=f . gives the scale of chiral symmetry breaking, and
ization, the qualitative features of the strange and EM specg is a renormalization scale. The chiral singularity of Eq.
tral functions are the same. Consequently, we limit the fol{41) arises from the kaon-nucleon one loop graph with the
lowing discussion to the strange spectral functions. strange vector current inserted on the kaon line. The equiva-
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lence of this loop calculation with the scenatipfor the DR O — 10° " Ty
analysis[18,20,2] guarantees that the DR computation in- _ o : (a) _ g ;
CIUdesPﬁonanar T> // N T> -
At leading order ChPT, bothg and «® also contain low- 8 %0 F N1 8 v
energy constants which cannot be obtained from existingy, E AN S
data using chiral symmetrjl1]. For the magnetic radius, »\2005 3 ;' b 0L
however, only the nonanalytiene-loopterms contribute at €~ F ! ©
O(p® [12]. In principle, the low-energy constants include = E o £
higher-order effectgin g) not contained in the nonanalytic 0.00 bt 107

loop contributions. A comparison of the scenafipspectral
function with the full spectral function—containing contribu-
tions to all orders ing—allows us to determine the impor-  FIG. 6. KK contribution to spectral function fgr, . Curves are
tance of these low-energy constants and more generally tas in Fig. 5.

evaluate the credibility of one-loop predictions.

For both scenariod) and(ll), we show the upper limit on The corresponding scenarios for the magnetic Sachs ra-
the spectral function generated by the unitarity bound onius p$, are shown in Fig. 6. In contrast tnj/> 12, p1/2.~1/2
bi% 2. As observed previously in Ref18], and as illus- shows no resonance structure at all. The possible explana-
trated in Fig. %a), the BA omits these rescattering correc- tions for this behavior have been discussed in the previous
tions and consequently violates the unitarity bound by a facsection. Here we take our result at face value and develop the
tor of 4 or more even at thidN threshold. This feature alone pertinent consequences fof, . In Fig. 6@ we compare the
casts a shadow on predictions which rebjlelyon one-loop  results of scenarigl) BA and (Il) AC for a pointlike cou-
amplitudes. In principle, the low-energy constants of ChPTpling of the kaon tosy,s. The AC spectral function stays
correct for the unitarity violation implicit in the one-loop clearly below the BA result for al, presumably due to res-
contributions. The counterterm-fre@(p®) prediction for cattering effects included in the AC. Similar to the electric
pw » however, does not include this unitarity correction. case the unitarity bound is also violated in scenaliip al-

The curve obtained in scenarib) indicates the presence though the violation is about a factor 2 weaker than in the
of a peak in the vicinity of thes(1020) meson, reflecting the BA. Again we conclude that the continudd’® ~*? is not
presence of &K« ¢ resonance iby> 2. This structure trustworthy close ta=4mj . The suppression of the spectral
enhances the spectral function over é?) result near the function fort=2 Ge\? by the GS form factor in scenario

KK threshold. Ast increases from #Z , the spectral func- (II1) is displayed in Fig. &). 1
tion obtained in scenaridl) falls below that of scenarid), The absence of the resonance structurdjift ~* sug-

presumably due t&K rescattering which must eventually ggsts that the integrated speciral fun.ction for. s_cenélti()
bring the spectral function below the unitarity bound for 9VeS @n upper bound, rather than a firm prediction ofr

H H 1/2¢—1/2
=4m?. The fact that the AC is approximately constantTQe reason has to do with the relative pha.selslgf. and
abovet=2 Ge\? and also violates the unitarity bound, in- Fk(t). Consider the strangeness case with a simple VMD
o s o o
dicates that the AC and partial wave separation cannot bBarametrization of~y(t) (other parametrizations are simi-

trusted close to th&IN threshold. lar):

In Fig. 5(b) we plot the spectral function for a third sce- m2
nario (Il'), obtained by including a realistiempirica) kaon S (t)— 4

istie FR)= —————. (42)

form factor. We use the GS parametrization, although other my—t—imyl',
parametrizations fofFy, such as a simplep-dominance . .
form, yield similar results as has been discussed above arf} input to Eqs(28—(32), we require
elsewhere[18]. The corresponding spectral function is — — —
shown in Fig. §b), and compared with the spectral function ~ Reb)F¥* =(Reb}™)(ReF*)+(Imby™) (ImFg*),
for a pointlike F§ . The use of the GS parametrization sig- (43)
nificantly enhances the spectral function near the beginning

Y AN AN PR—
of the KK cut as compared with the pointlike case, while it where Ré; ™ and Imb; ™ are sho;/vn " Fﬁ 4. As crosses
suppresses the spectral function for2 Ge\. Conse- (he resonance in the vicinity afy, ReF* changes sign

quently, the full spectral function is dominated by the low- While Im Fr* does not. Instead, the latter reaches its peak
region where the AC for theb)™ is reliable. Thet value of magnitude-m,/T",. From Fig. 4, we observe that

=2 Ge\? region gives a negligible contribution, even nenh;ar Reéb;™ nor Imbi“ undergoes a phase change around
though theb}’” are too large in this rangsee Fig. B)]. t=mj. Hence, when integrated across the resonance, the

The error associated with this region is correspondingly negcontributions to the integral from (R8"*)(ReF*) change
ligible. We emphasize that the one-loop model predictionssign, leading to substantial cancellations. The contributions

miss entirely the resonance enhancement ofkKecontri-  from (Im b}*)(ImF3*), on the other hand, do not change
bution. sign, and no cancellations occur. In the caset ', it is

2 3
t [Gev?]
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TABLE II. Kaon cloud contribution fopg , py, , and«® for the  prediction forpg, p3,, and «° (scenario ). The last three
scenarios discussed in the text. Second and third columns give cofines give the results when the GS form factor and analyti-
tributions to the dispersion integral from the unphysical and phySi'caIIy continued fit toKN amplitudes forbilz't 12 are used
cal region, respectively. In both scenarios, the unitarity bound Or(AC/GS). In all cases the unitarity bound cb.}/Z,tl/Z is im-

AN e 2 2 :
theb; ™ is imposed fott=4my . To convertp® to(r®)®, multiply p° 55 fort=4m32 . The AC/GS results were obtained by ex-

by —0.066 fnf. tending b}* 2 to 4mZ . Although the continuation can be
Scenario Moment 4mZ<t<4m? 4mi<t  Total trusted only fort58m_,2<, and although thezcontinued ampli-
tudes exceed the unitarity bound for-4my, the GS form
PE 0.25 0.10 0.35 factor suppresses contributions foe8m2, rendering the
(g P 0.30 0.05 0.35  overall contribution from &Z<t<4m? negligible. The
K —0.07 —0.07 =014 oyerall sign of the product df* and theb}? =2 has been
. determined by fits to EM form factor daft@6]. However, the
PE 0.98 0.01 0.99  sign of pt is well determined from the phase b}* ¥?and
ACIGS o3 0.17 0.01 018 Es* at the o peak
K® —-0.41 —0.01 —0.42

From Table II, we observe that the use of a realisti¢
spectral function increases the kaon cloud contributiopgto

2 -
Imb}> Y2 which contains the resonance structure. ConselY roughly a factor of 3 as compared to t¥g-) calcula

uentlv. the intearal fon® is dominated by the resonatin tion. Moreover, the result of the all-orders computation ap-
quenty, 9 12 1'?25 S . ymet 9 proaches the scale at which the proposed PV electron scat-
imaginary parts ob;“ ~“and Fy, which remain in phase.

g L T ~ tering experimentg3] are sensitive, whereas th@(g?)
The continuum contribution is suppressed by the relative.y ey jation(e.g., one-loopgives a result which is too small

phase change of thf real. parts. 12 -1/2 to be seen. This observation depends critically on the pres-
The situation foipy, is different becausby displays  once of the resonance structure nearmi in both bY/2 /2

no resonant behavior. Again, the contribution to the integra‘Ljl s (i : : ;
) ndFg (Fig. 5). Its absence from either the scattering ampli-
from (Reb}>~Y)(ReF3*) is suppressed by cancel-  (Fig. 9 g amp

g tude or kaon form factor would lead to a significantly smaller
lations from the phase change across the resonancpnagni,[ude forpS

ImbY2 =) (Im F$*)|<|bY? "Y2ES* | however, and its 125172 -
Io(recisle ma;)rgitudeKis)|se|n§itive to I;h|e parameterand n. Becauseb; does not display any resonance struc-

. - . ture, no enhancement iy, i rved. In fact thé(g?
Consequently, the integral of Re{> ~Y2F$*) is rather un- oo MO ehnanceme oy is observed. In fact theX(g*)

: \ . . result is a factor of 2 larger than in the AC/GS case. We
certain. We are confident, therefore, in quoting only an upper.

bound forp$, , obtained by integratin{j)%’z”l’zFﬁ*L which emphasize that the AC/GS result faj;, constitutes an upper

varies only gently withe andn, and usingy, =1 [Eq. (21)]. bound, given the phase uncertainty discussed above. It is

As we note below, even this upper bound is nearly twice a%noteworthy that this bounfby,| =0.18 is not consistent with
X he range given by ChPT to ordeO(p3), py

small as the result obtained from scendip
To determine the anomalous magnetic momefit we :2'4.4' T '9'05_[12]' Although both the DR ar.1d ChPT cal-
require an unsubtracted DR and turn Bd. Equation(7) ~ culations ofpy, include only theKK contribution, a large
reduces in the limit=0 to discrepancy exists between the two methods. We suspect that
the problem lies in the truncation &(p®) in ChPT, for the
1 (o ImF3(t") following reasons. First, th@(g?) spectral function contains
k?=F3(0)= — 2dt’f, (44)  no rescattering corrections required for consistency with the
) ami unitarity bound. When integrated as in E40), this spectral
) Q. ) - function yields the value fopy, given in Table Il. Second,
with ImF3 given in Eq.(17). However, an additional com- 6 (3 calculation in ChPT includes only the nonanalytic
ment is in order. InF3 depends on both}™ rather than on  contributions to this integral. The latter yield a result that is
one as for the radii. In order to guarantee a finite spectraan order of magnitude larger than the result obtained for the

function at theNN threshold, the twd}™ must fulfill the  full O(g?) integral. Given that this is already a factor of 2
threshold reIatiorh)}’z"l’zz \/Eb}’z* Y2 Our AC, however, is larger than the upper bound obtained from the all orders DR

not reliable at=4m? and does not obey this relation. There- '6Sult, we suspect that th@(p°) ChPT result omits crucial
fore, we replace IMFa(t) by ImF3(t=8m2) for 8m2<t higher-order rescattering effects. Presumably, these effects
' 2 2\t K K™=

. . 4 . . .
$4m§,. Doing so leads to an upper bound for the spectra re contained in théX(p") Lagrangian, which contains a

! . o . erm of the form
function. Essentially the same qualitative observations as for

pg apply tox? because the spectral function is dominated by
th.e resonance ibi’z':/?in both cases. Specifically, the con- 5(4):%EUW¢§2FMV, (45)
tribution fromt=8mj is negligible. X

The numerical consequences of our analysis are indicated
in Table II, where we give results for the leading strangeneswhere A, =4=f .. In effect, the AC/GS result of Table II
moments. The first three lines give tt¥g?) “kaon cloud” represents a determination of the kaon rescattering contribu-
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000 por— T T T T T T T T TABLE lll. Leading moments of the isoscalar EM nucleon form
3 factors. First line gives “experimental” values from the dispersion
analysis of Ref[14]. Second line showkK contribution in AC/GS

;22—0‘02 — _ scenario. Third line gives contribution @f pole alone in the pole

@ E E fits of Ref.[16].

£ 003k 3

3 Scenario pl=?® pii x(1=0)

s —0.04 F E

o E ] Expt. [14] —-4.55 -3.97 —-0.06
~0.05 - ' AC/GS —0.50 —0.09 0.21
S S ¢ pole[16] 2.21 2.87 0.15

T00 0.1 0.4 0.5

0.2 0.3
—t [GeVv?]
o ever, is considerable. The VMD analyses of R¢ib—17

FIG. 7. KK contribution toGg+ 7(1+ «P) Gy, as function of the  indicate a significant contribution to the leading moments
momentum transfet. The contributions fromGg and G}, enter  from the ¢. The results of the VMD treatment and our
with opposite signs. present study are compatible only if other intermediate states

— havingto=<m2, contain considerable strength. A prelimi-

tions tob}™* . Unfortunately, ChPT cannot make countert iderati : ibility is given i
lons tob; ™ . Uniornately, cannot make counterterMngry consideration of this possibility is given in R¢R5],
free predictions for the other momeritsl] and the problem \yhere the role of thep resonance in the @ channel is

remains unresolved. . discussedsee also Ref.36)).
In the case okS®, we observe an increase by a factor of 3

over theO(g?) approximation. However, due to the presence
of both b} 2 and b2 =2 in ImF, and the phase-related
uncertainty associated with}> Y2 we consider the all- The role of continuum and resonance effects in the isos-
orders AC/GS value fok® to be an upper bound. Given the calar EM and strangeness form factors appears considerably
size of the experimental errors, this bound is not incompatmore complicated than in the case of the isovector EM form
ible with the SAMPLE result§see Eq.(1)]. factors whose spectral functions are dominated by a combi-
It is interesting to note that only the normalization@}, ~ nation of p resonance and uncorrelateds continuum. In
at g?=0 but not itsq® dependence receives a resonancefhe present study, we have continued our previous efforts

enhancedK contribution. This feature can be under:stood.[18’25’19 to determine the corresponding picture for the

by observing that the resonance-enhanced partial waygoscalar EM and strange vector current spectral functions.
b}’z' 12 anters InF, and ImF, with the same coefficient but We have focused on th€K contribution for two reasonsi)

opposite sigrcf. Eqs.(4), (16), (17)]. the availability of scattering data afford us with the least
In Fig. 7, we plot thé qur;mtity extracted from forward Model-dependent determination of this contribution to all or-
angle parity-violating electron scattering experiments on th&lers in the strong coupling andi) the OZI rule has
proton, GS+ 7(1+ «P)GS, , as a function of the momentum prompted a number of strange form factor calculations as-
transfért EAt t=0.48 Ge\';g one can compare the result of suming this state to give the dominant contributions. We find

the HAPPEX Collaboratiofisee Eq.(2)] with the KK con- that(a) theKEcontribution to the isoscalar EM and strange-
tribution |GE+0.39G5,|«k=0.053. The two values agree nhess electric s;;ectral functlonsnljsilflgzn|f|c§12tally egh:;nced by
within the experimental error bafs. the presence of @-resonance irb;™ ““andFy, (b) there

o ) — exists no evidence for such a resonance inkth& ~ %2 par-
From a qualitative standpoint, ttikeK spectral content of tial wave,(c) the resonance affects only the normalization of

the isoscalar EM and strangeness form factors are similat., o
The numerical significance, however, differs between theb’\’I but not itsq” dependence(d) results(a) and (b) can be

two cases. In Table Ill, we give th€K contribution to the reconciled with a S|mple,5-resonar_1ce model dIN—KK if
o — : the vector and tenso$NN couplings have roughly equal
leading isoscalar EM moments. We compare Ki€ contri-

butions for the AC/GS scenario with the total “experimen- magnitudes and opposite signs. We obtain a VaIUG%Nrﬁ

tal” values from the dispersion theoretical analysis of Ref.in @greement with the VMD anTaIyses of the isoscalar EM

[14] and thes pole contribution alon&.Evidently, theq? ~ form factors[14]. Our value forG iy, however, is larger in
dependence of the isoscalar EM form factors is determine¢hagnitude.(e) The KK contribution to the magnetic radius

by states other thafKK). Its contribution tox('=%, how-  p}, is significantly smaller than the value obtained({p?)

in ChPT. (f) The KK contribution to the subleading® de-
pendence of the isoscalar EM moments is small. The result
“Note that we quote only the absolute value because of the phaséd) implies that consideration of other intermediate states is
related uncertainty iIG$, . essential to a proper description of the isoscalar EM and
%If a phenomenological EM form factor of the kapef. Eq.(24)]  Strangeness spectral functions. In this respect, the calcula-
is used the numbers in the second line of Table IIl are reduced biions of Refs[9,37] are suggestive, indicating the possibility
20%. of cancellations between different contributions as succes-

VI. OTHER CONTRIBUTIONS AND CONCLUSIONS
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sive higher-mass intermediate states are included. Moreovegeives no nonanalytic contributions@(p’). Consequently,
as discussed in Refi25,36], contributions from light, multi-  the 3 contribution to the spectral function is small in the
meson intermediate states may be just as large as that of th@sence of resonant short distance effects. As discussed in
KK state. Nevertheless, our study of ti& state provides Ref.[25], such effectse.g., 37 w and 3 pm— ¢) may
several insights into the the treatment of these contributionenhance the 8 contribution up to the scale of tH€éK con-
In particular, we are able to understand the connection besibution. In fact, we speculate that tigestrength obtained in
tween continuum and resonance contributions to the isoscdhe VMD analyses of the isoscalar EM form factors arises
lar EM and strangeness form factors and to evaluate the cre@imarily in the 37 channel. There exists little evidence for
ibility of other approaches used in computing them. Indeedsignificant coupling of higher-mass multipion states to
perturbative calculations which truncate@tg?) omit what ~ [1%(37©)=07(17")] resonances. We thus expect their con-
appears to be the governing physics of the spectral functiong;ibutions to be no larger than the nonresonant part oKike
namely, rescattering and resonance effects. Consequentlgrm.
the O(p®) ChPT computation of the strange magnetic Third, states involving pions and strange mesons may
radius—though counterterm independent—contains only thgenerate important contributions via tkg1420), »(1600),
nonanalytic contributions at(g?) and exceeds our upper and ¢(1680) resonances. A preliminary exploration of this
bound for the magnetic radius by an order of magnitude. Th@ossibility is given in Ref[37]. In the VMD fits of Refs.
higher-order rescattering corrections needed to render tHé-5—17, inclusion of a vector meson pole in this mass region
ChPT prediction consistent with our bound are presumablyS Neéeded to obtain an.accc_aptalv.?e Since the flavor content
contained in terms of(p?) or higher. Similarly, we suspect of the vector mesons in this region is not known, the higher
that the pattern of cancellations obtained in t&¥g?) mass contrlbutlon_s to the strangeness form factors have been
NRQM calculation of Ref[9] will be significantly modified !nferred from a priorl assumptions about their Ialtgeaehav-. .
when rescattering and resonance effects are included. lor. A reasonaple range for the strangg mqments avoiding
A computation to all orders ig of the remaining contri- these assumptions has recently been given in 36

butions would appear to be a daunting task. A few observa- A ;:zlalculatlon of unitarity_bounds for states having
tions may simplify the problem, however. First, unitarity ar- =4M is tractable. Data foNN— 3 and7N— 77N may
guments suggest that the important structure in the spectr@ermit a model-independent determination of the Gontri-

function lies below the two-nucleon threshold. Contributionsbution to all orders irg. Whether or not a realistic treatment
from states such ad A AA whose thresholds, of the other multimeson states can be carried out remains to

>4m? are limited by unitarity bounds on the strong partial be seen.
waveg

and are unlikely to be significantly enhanced by reso-
nance effects in the intermediate state form factors. ACKNOWLEDGMENTS
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