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Nuclear currents based on the integral form of the continuity equation

P. J. Barneo, J. E. Amaro, and A. M. Lallena
Departamento de Fı´sica Moderna, Universidad de Granada, E-18071 Granada, Spain

~Received 26 March 1999; published 14 September 1999!

We present an approach to obtain new forms of the nuclear electromagnetic current, which is based on an
integral form of the continuity equation. The procedure can be used to restore current conservation in model
calculations in which the continuity equation is not verified. In addition, it provides, as a particular result, the
so-called Siegert’s form of the nuclear current, first obtained by Friar and Fallieros by extending Siegert’s
theorem to arbitrary values of the momentum transfer. The new currents are explicitly conserved and permit a
straightforward analysis of their behavior at both low and high momentum transfers. The results are illustrated
with a simple nuclear model which includes a harmonic oscillator mean potential.@S0556-2813~99!02810-1#

PACS number~s!: 25.30.Dh, 23.20.Js
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I. INTRODUCTION

One of the oldest and still unsolved problems in nucl
physics is that of the determination of the electromagn
current operator. The basic difficulty lies in the absence
useful constraints one can impose to this operator. For a
time, the Siegert theorem@1# has played an important role i
this respect, mainly because its application allows us
avoid the consideration of two-body currents in the calcu
tions. After the application of the theorem, the effects of su
currents can be evaluated in terms of the charge contr
tions, the corrections of which area priori small. However,
the Siegert theorem only applies in the long-wavelength li
and then it is irrelevant for the values of the momentu
transfers usually observed in electron scattering experime

In principle, one can think that current conservation, a
more precisely the continuity equation~CE!, could provide
the needed procedure. Nevertheless, the task cannot b
complished due to the impossibility to fix in a unique mann
the operator, because those terms given as the rotation
any function are not constrained by the CE.

Using current conservation, the longitudinal current
eliminated in terms of the charge operator, and the elec
scattering cross section reads

ds

dV
5

4psM

f rec~2Ji11! FvL(
l

utClu21vT(
l

~ utElu21utMlu2!G ,
~1!

wheretCl , tEl , andtMl are the Coulomb, electric, and ma
netic multipoles of the transition. It is common to rewrite t
matrix elements of the electric transverse operators in te
of the charge matrix elements, by using the equations

v

q
tCl52A l

2l11
tl22A l11

2l11
tl1 , ~2!

tEl5A l11

2l11
tl22A l

2l11
tl1 . ~3!

Here we have defined the transition matrix elements

tl65^Jf i iTl,l61iJi& ~4!
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of the multipole operators

TJLM~q!5E d3r j L~qr !YJL
M ~ r̂ !•J~r !, ~5!

where J(r ) is the electromagnetic current operator of t
nucleus andYJL

M ( r̂ ) labels a vector spherical harmonic.
Equation ~2! is the multipole expression of the CE.

relates the charge multipoles to the longitudinal multipo
of the current. Equation~3! is the definition of the electric
multipoles. Using Eq.~2! it is possible to eliminate one o
the multipolestl6 in terms of the CoulombtCl multipole
and substitute it in the expression oftEl . In this way one can
use the CE constraint even in the calculation of the tra
verse form factor. In addition, this procedure allows us
minimize the errors coming from an insufficient knowled
of the transverse current~e.g., meson-exchange currents! in
electron scattering calculations.

This method of rewriting the matrix elements of the ele
tric transverse operator in terms of the charge matrix e
ments, has been applied traditionally in many electron s
tering calculations. Despite the fact that this ensures that
CE is satisfied, the procedure is completely meaningles
models which do not satisfy the CE@2#. As a consequence
the problem of current conservation in model calculations
electron scattering by nuclei is still under theoretical stu
@3–5#.

A similar situation appears in the relativistic treatment
the off-shellgNN vertex in (e,e8p) reactions. Several pre
scriptions for the current operators obtained by extrapola
the on-shell currents have been proposed@6#. The corre-
sponding off-shell vertex operators violate current conser
tion, which is enforced by eliminating the three or zero co
ponents using the continuity equation. The problem wh
arises is that different results are obtained depending on
option chosen@7#.

An alternative approach is provided by the so-called Si
ert current~SC! developed by Friar and Fallieros@8,9# by
extending the Siegert theorem to arbitrary wavelengths. T
procedure is based on isolating the components of the cur
which are constrained by the CE and replacing them by
adequate combination of the charge multipoles. Howev
the results are not satisfactory@10# because they show
©1999 The American Physical Society15-1
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pathological behavior for high momentum transfer when
nuclear model considered does not verify current conse
tion. This has been also pointed out recently by Capar
and de Passos@3# in RPA and TDA calculations.

Two main conclusions of the work of Friar and Fallier
@9# must be pointed out. First, the SC appears to be pre
able to the traditional forms of the nuclear currents even
models which satisfy the CE, because the size of the
change current operators is considerably reduced. Sec
they suggest that well-behaved current operators, satisf
the constraints of current conservation for high moment
transfer, could be determined, but these new forms of
current have not been found up to now.

In this paper we present a new approach to obtain nuc
conserved currents. Specifically we show that the SC app
as a particular case of a more general family of current
erators which can be obtained from the CE. Though all
them produce identical results in models conserving the
rent, they permit us to formulate different prescriptions
restoring current conservation in electron scattering mo
calculations. In addition, our formalism allows us to obta
explicitly the asymptotic behavior of these new currents.

Our method deals with the CE written in integral for
~Sec. II! from which the new currents can be obtained
rectly both in coordinate and momentum spaces. Our
proach generalizes the Friar and Fallieros procedure and,
consequence, permits us to find,a priori, infinite ways of
restoring the CE in models which do not conserve the c
rent. In Sec. III we show how to do it and we study in det
the low and high momentum transfer behavior of the c
served currents found as well as that of their multipoles.
finish, in Sec. IV we show some examples in a sim
nuclear model. The conclusions are drawn in Sec. V.

II. INTEGRAL CONTINUITY EQUATION

A. Coordinate space

Usually, the CE is written in differential form as

¹•J~r !52 i @H,r~r !#, ~6!

where H is the Hamiltonian andr and J are the nuclear
charge and current densities, respectively. This equation
stricts the value of¹•J, once the densityr and the Hamil-
tonianH of the system are known, but, as mentioned abo
it does not permit to fix completely the current because
rotational terms do not contribute to the divergence.

The key point in our development consists in writing
integral equation equivalent to the CE. To do that, we s
with the relation

1

r

d

dr
@r 2J~r !#52J~r !1~r•¹!J~r !. ~7!

Taking into account the vector identity

¹3@r3J~r !#5@¹•J~r !#r22J~r !2r•¹J~r !,

one can rewrite Eq.~7! as
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dr
@r 2J~r !#5r $@¹•J~r !#r2¹3@r3J~r !#%. ~8!

Integrating in the radial direction and using the CE~6! we
obtain

r 2J~r !2r 0
2J~r0!5E

r 0

r

dr r $@¹•J~r !#r2¹3@r3J~r !#%

52E
r 0

r

dr r $ i @H,r~r !#r1¹3@r3J~r !#%.

~9!

This equation permits to obtain the integral continuity equ
tion ~ICE!

J~r !5
r 0

2

r 2
J~r0!2

1

r 2Er 0

r

dr r $ i @H,r~r !#r1¹3@r3J~r !#%.

~10!

The ICE is equivalent to the CE and if current conserv
tion is fulfilled, the electromagnetic current is recovered
computing the right-hand side of the equation. The ICE
simplified by choosing a value ofr0 for which r 0

2J(r0)50,
such as, for instance,r 050 or `. In addition, the fact that
the above expression of the current is manifestly conserv
permits us to use it as a prescription to restore the CE. T
point will be discussed in the next section.

It is useful to write the ICE in an equivalent form. On
starts from the equation

d

da
@a2J~ar !#52aJ~ar !1a2r•¹J~ar !5aC~ar !,

~11!

where we have introduced the adimensional parametera and
defined the auxiliary currentC. It is easy to check that

C~r ![2 i @H,r~r !#r2¹3@r3J~r !#. ~12!

By integrating Eq.~11! from a5a0 to a51 we obtain

J~r !5a0
2J~a0r !1E

a0

1

da aC~ar ! ~13!

and introducing the form ofC given by Eq.~12! we have

J~r !5a0
2J~a0r !2 i FH,E

a0

1

daa2r~ar !G r
2¹3F r 3E

a0

1

daaJ~ar !G . ~14!

As for Eq. ~10!, this equation simplifies by selecting a valu
of a0 such asa0

2J(a0r )50. It is of particular interest to
choosea05`. In this case we can write the current as

J~r !5Jc~r !1Jm~r !, ~15!

where
5-2
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Jc~r ![ i FH,E
1

`

da a2r~ar !G r5 i FH,E
0

1dl

l4
r~r /l!G r ,

~16!

Jm~r ![¹3S r3E
1

`

aJ~ar ! D 5¹3S r3E
0

1dl

l3
J~r /l!D .

~17!

These currents coincide with those obtained by Friar
Fallieros@see Eqs.~8a!–~8d! and~4c! in Ref. @9##. Then, Eq.
~14! can be considered as an extension of the Siegert’s
rent formulated by these authors. Other values of the par
eter a0 fulfilling the relation a0

2J(a0r )50 ~such as, e.g.
a050) provide new currents potentially useful to restore
CE in model calculations. On the other hand, the proced
we have followed is considerably simpler.

To finish this discussion, we remember that if CE is s
isfied, the different currents one can obtain from Eq.~14!
coincide. Then, for the two particular casesa050 and`, we
have

J~r !5E
0

1

da aC~ar !5 È1

da aC~ar !, ~18!

and, as a result,

E
0

`

da aC~ar !50. ~19!

This is a global consequence of the CE and is verified by
conserved current.

B. Momentum space

In order to study the behavior of the currents as a funct
of the momentum transferq, it is useful to see how the
equations obtained in the previous subsection read in
mentum space. The corresponding version of the ICE ca
obtained by calculating the Fourier transform in Eq.~10!.
However, we derive it again to illustrate the differences b
tween coordinate and momentum spaces in what refers to
procedure followed.

We start with the equation analogous to Eq.~7!:

d

dq
@qJ~q!#5J~q!1q•¹qJ~q!. ~20!

If we consider the vector relation

¹q@q•J~q!#5J~q!1q•¹qJ~q!1q3¹q3J~q!,

we obtain from Eq.~20!

d

dq
@qJ~q!#5¹q@q•J~q!#2q3¹q3J~q!,

and, by inserting here the CE in momentum space

q•J~q!5@H,r~q!#, ~21!
04461
d

r-
-

e
re

-

y

n

o-
be

-
he

we have

d

dq
@qJ~q!#5@H,¹qr~q!#2q3¹q3J~q![2C~q!.

~22!

Here we have introduced the auxiliary currentC(q) which,
as it is easy to check, is the Fourier transform of the curr
C(r ) defined in Eq.~12!. The ICE in momentum space i
then obtained by integrating Eq.~22!

J~q!5
q0

q
J~q0!2

1

qEq0

q

dqC~q! ~23!

5
q0

q
J~q0!1

1

qEq0

q

dq$@H,¹qr~q!#2q3¹q3J~q!%.

~24!

As in the case of coordinate space, this ICE reduces
choosing a valueq0 for which q0J(q0)50.

We can also obtain the ICE in momentum space equ
lent to Eq. ~14!. To do this we introduce an adimension
parameterl such that

]

]l
@lJ~lq!#52C~lq!. ~25!

Integrating this equation in the interval@l0,1#, and taking
into account the definition of the currentC given in Eq.~22!,
we obtain for the ICE in momentum space

J~q!5l0J~l0q!2E
l0

1

dlC~lq! ~26!

5l0J~l0q!1FH,E
l0

1

dl~¹qr!~lq!G
2q3E

l0

1

dl l~¹q3J!~lq!. ~27!

It is worthwhile to note that the second and third terms
this equation coincide with the Fourier transforms of theJc
andJm currents defined in Eqs.~16! and~17!. In addition, it
can be shown that, forl050, the corresponding current
introduced by Friar and Fallieros@9# are recovered.

Finally, the condition analogous to Eq.~19! is found by
considering the valuesl050 and` in the ICE ~27!:

E
0

`

dlC~lq!50. ~28!

The integral in this equation allows us to analyze t
asymptotic behavior of the currents in momentum space
case the CE is not fulfilled. We discuss this point in the n
section.

C. Multipoles of the current

In this subsection we obtain the corresponding expr
sions for the multipoles of the current. As it is known@11#,
5-3
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the electric and magnetic multipoles are linear combinati
of the multipole operators defined in Eq.~5!. Taking into
account Eq.~13! we have

TJLM~q!5E d3r j L~qr !YJL
M ~ r̂ !•Fa0

2J~a0r !

1E
a0

1

da aC~ar !G . ~29!

An easy calculation permits us to write

TJLM~q!5
1

a0
TJLMS q

a0
D1E

a0

1

da
1

a2
CJLMS q

a D , ~30!

where we have defined the multipoles of the auxiliary curr
C as

CJLM~q![E d3r j L~qr !YJL
M ~ r̂ !•C~r !. ~31!

Finally, writing the integral~30! in terms of the variablel
51/a we obtain

TJLM~q!5l0TJLM~l0q!1E
1

l0
dlCJLM~lq!, ~32!

wherel051/a0. Hence, the multipoles of the currentJ are
given by integrating the multipolesCJLM(q) of the auxiliary
currentC(r ). This equation is the one corresponding to E
~26! verified by the currentJ(q), and which is, therefore
satisfied by each one of its multipoles separately.

Introducing in Eq.~32! the variableq85lq we finally
have

TJLM~q!5
q0

q
TJLM~q0!1

1

qEq

q0
dq8CJLM~q8!, ~33!

where we have definedq05l0q.
By choosing the valuesq050 and`, for which the first

term in Eq.~33! vanishes, we obtain a global condition fo
the integral of the multipolesCJLM

E
0

`

dqCJLM~q!50. ~34!

As for the current, this condition is fulfilled when the CE
satisfied.

III. PRESCRIPTIONS FOR RESTORING
THE CONTINUITY EQUATION

The equations derived in the previous section assume
current conservation is verified. Often, the nuclear curren
not conserved in electron scattering calculations, wher
known density operatorr(r ), obtained as the sum of one
body single-nucleon densities, and a current operatorJ(NC),
such as

¹•J(NC)~r !Þ2 i @H,r~r !#, ~35!
04461
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Here we use the ICE to restore the CE. Starting with

nonconserved currentJ(NC) and the charge density, we ca
culate the auxiliary currentC(NC) as given by Eq.~22! and
define new currents according to Eq.~23!. In particular we
consider the valuesq050 and` for which q0J(q0)50 and
we obtain

J(0)~q!52
1

qE0

q

dq8C(NC)~q8!, ~36!

J(`)~q!5
1

qEq

`

dq8C(NC)~q8!, ~37!

where q85(q8/q)q. As discussed in Sec. II B, the curren
J(0)(q) is the one derived by Friar and Fallieros@9# and
afterwards used by Friar and Haxton@10# to calculate the
electron scattering form factors.

The second currentJ(`)(q) constitutes a new possibl
prescription in order to restore the CE. Both currents co
cide only if the model current is conserved; if CE is n
verified, both prescriptions are in general different, and o
has

J(`)~q!2J(0)~q!5
1

qE0

`

dq8C(NC)~q8!Þ0. ~38!

The asymptotic behavior of the new currents can be
termined from their definitions in Eqs.~36!,~37!. It can be
summarized in the following properties:

q→0: J(0)~q!;2C(NC)~0!, J(`)~q!5O~1/q!,
~39!

q→`: J(0)~q!5O~1/q!, J(`)~q!;C(NC)~q!, ~40!

The first condition is equivalent to the Siegert theorem.
fact, from the definition ofC(q) in Eq. ~22! we have

2C(NC)~0!5@H,~¹qr!~0!#5 i @H,d#, ~41!

whered is the electric dipole momentum of the system

d5E d3r rr~r !. ~42!

Therefore the currentJ(0) verifies the Siegert theorem be
cause it equals the time derivative of the electric dipole m
mentum of the system.

The second current,J(`)(q), however, does not satisf
this theorem. In fact, from its definition, we have

lim
q→0

qJ(`)~q!5E
0

`

dqC(NC)~q!Þ0. ~43!

Then, as established in Eq.~39!, this current diverges in the
origin as O(1/q) if the original current is not conserved
Therefore it should be discarded as a physical current for
momentum transfer.
5-4
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On the other hand, a similar nonphysical behavior
shown by the Friar and Fallieros currentJ(0) for large mo-
mentum transfer, because

lim
q→`

qJ(0)~q!52E
0

`

dqC(NC)~q!Þ0. ~44!

This current goes asO(1/q) for largeq.
Instead, the currentJ(`) works well in the largeq limit.

From Eqs.~36!,~37! we can write

J(`)~q!5mE
0

m

dm8
1

m82
C(NC)~q8! →

q→`

C(NC)~q!, ~45!

where the change of variablesm51/q, m851/q8 has been
used. Then the behavior ofJ(`) for q→` is the same as tha
of the auxiliary currentC(NC), which shows the adequate on
because it is built from the physical charge and current d
sity operators and its definition does not include integratio
but just derivatives and products. Its good asymptotic pr
erties for large momentum transfer made this current to ba
priori useful in this regime in electron scattering calcu
tions, without the handicap of the pathological behav
shown byJ(0). The existence of such a current was sugges
in Ref. @10#, but, to the best of our knowledge, this hypot
esis has not been proved up to now.

In order to have a better understanding of the propertie
these two currents, we can also obtain the asymptotic be
ior in coordinate space. A straightforward calculation, sim
lar to that developed for momentum space, permits us
write

r→0: J(0)~r !5O~1/r 2!, J(`)~r !;J(NC)~r !, ~46!

r→`: J(0)~r !;2C(NC)~r !, J(`)~r !5O~1/r 2!.
~47!

As we can see from these equations, both currents have
the opposite roles. The currentJ(0) is well behaved at large
distances, but it diverges near the origin. On the other ha
for r→0, the currentJ(`) goes asJ(NC), which is supposed to
be well behaved at short distances, but it does not reach
fast enough forr→`.

Finally, we summarize the asymptotic properties of t
multipoles TJL

M (q). By defining the multipoles of the two
currentsJ(0) andJ(`) as

TJLM
(0) ~q!52

1

qE0

q

dq8CJLM
(NC)~q8!, ~48!

TJLM
(`) ~q!5

1

qEq

`

dq8CJLM
(NC)~q8!, ~49!

respectively, we find the following asymptotic behavior f
these two sets of multipoles

q→0: TJLM
(0) ~q!;2CJLM

(NC)~q!, TJLM
(`) ~q!5O~1/q!,

~50!
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q→`: TJLM
(0) ~q!5O~1/q!, TJLM

(`) ~q!;CJLM
(NC)~q!.

~51!

These properties are similar to the ones verified by the c
rents in momentum space given by Eqs.~39!,~40!.

The multipolesT(0) are well behaved for low momentum
transfer, where the Siegert theorem applies, but fail for h
momentum transfer. As a consequence, the transition ma
elements corresponding to the currentJ(0) do not go to zero
fast enough asq goes tò , because the bound nuclear wa
functions have an exponential-like behavior at largeq values.
This is the reason of the pathology observed in this regim
the electric multipoles computed with the current develop
by Friar and Fallieros@10,3#.

On the other hand, the multipolesT(`) do not work well
near the origin~they diverge as 1/q), but are well behaved
for high momentum transfer. Hence they can safely be u
in this regime in model calculations.

IV. A SIMPLE MODEL CALCULATION

In order to illustrate the results quoted in the last secti
we have used a very simple model to analyze different tr
sitions in 16O and 39K and which was previously considere
in Ref. @2#. In this model, the nuclear structure is describ
by means of a single-particle Hamiltonian of the form

H52
\2

2m
¹21V01

\2

2m

r 2

b4
1VLS l•s.

The eigenfunctionsRnl are harmonic oscillator functions an
the corresponding eigenvalues are

Enl j5
\2

mb2 S 2n1 l 2
1

2D1V0

1
1

2
VLSF j ~ j 11!2 l ~ l 11!2

3

4G .
The nuclear charge density operator is taken to be

usual one,

r~r !5 (
k51

A 11t3
k

2
d~r2r k!,

while in the nuclear current density operator we have
cluded the well-known convection and spin-magnetizat
one-body terms

JC~r !5 (
k51

A
1

2Mk

1

i

11t3
k

2
@d~r2r k!¹ rk

1¹ rk
d~r2r k!#,

~52!

JM~r !5 (
k51

A S mP

11t3
k

2
1mN

12t3
k

2 D¹3@d~r2r k!sk#,

~53!

as well as the so-called spin-orbit current
5-5
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JLS~r !5
1

2
VLS(

k51

A 11t3
k

2
d~r2r k!sk3r k . ~54!

In the previous equationsMk labels the mass of the
k-nucleon,Sk5sk/2 is its spin andt3

k51 or 21 according
to whether this nucleon is a proton or neutron, respectiv
Finally, mP (mN) is the proton~neutron! magnetic moment.

The model built in this way satisfies the CE. Within it w
calculate the electric multipoles corresponding to the curr

J(PD)~r !5JC~r !1JM~r !1JLS~r ! ~55!

for some transitions in16O and 39K and the results are con
sidered as ‘‘pseudodata.’’ The parametersV0 , VLS , and b
used in the calculations are shown in Table I. They w
fixed in order to reproduce the energies of the single-part
states around the Fermi level in the two double closed-s
nuclei (16O and 40Ca) of interest.

In what follows we discuss the point relative to the res
ration of the CE by using the currentsJ(0) andJ(`) defined in
Eqs. ~36! and ~37!, respectively. We have simulated th
usual situation of a model not verifying the CE by elimina
ing the spin-orbit current from the nuclear current operat

J(NC)~r !5JC~r !1JM~r !. ~56!

We are interested in analyzing the goodness of the appro
sketched in the previous section in retrieving the ‘‘true’’ r
sults.

We focus our attention on the two following electric tra
sitions: (01→2s1/21p1/2

21)12 in 16O and (1d3/2
21→2s1/2

21)21 in
39K. In particular, we study the electric multipoles

tEJ
(k)~q!5A J11

2J11
^Jfi iTJJ21

(k) ~q!iJi&

2A J

2J11
^Jfi iTJJ11

(k) ~q!iJi&, ~57!

where the multipole operatorsTJJ61 are given by Eq.~5! and
where (k) stands for~PD!, ~0!, (`), and~NC!.

In Fig. 1 we compare the multipolesutEJ
(k)(q)u for (k)

5(0) ~full curves! and (̀ ) ~dashed curves! with the results
of the calculation done with the full model, (k)5(PD)
~dashed-dotted curves!. The asymptotic behavior discusse
in the previous section is now apparent. The calculati
performed withJ(0), that is the Siegert’s current of Friar an
Fallieros@9#, are right at lowq, but differ notably from the
‘‘exact values’’ in the highq region, in agreement with the
findings of Refs.@10,3#. On the contrary, the multipoles co

TABLE I. Parameters of the potential used in the toy mod
considered to discuss the violation of the CE~see text!.

Nucleus V0 @MeV# b @fm# VLS @MeV#

16O -53.6 1.67 -4.20
40Ca -55.7 1.80 -1.90
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responding toJ(`) are wrong for small momentum transfe
providing the correct behavior for largeq.

In order to have a better idea of the goodness of b
calculations, we show in Fig. 2@upper panels~a!,~b!# the
quantity

D (k)~q![utEJ
(PD)~q!u2utEJ

(k)~q!u ~58!

for (k)5(0) ~solid curves!, (`) ~dashed curves!, and~NC!
~dotted curves!.

l

FIG. 1. Absolute value of the multipolestEJ given by Eq.~57!
as a function of the momentum transferq, for the two transition
considered in this work. Dot-dashed curves correspond to the ‘
act’’ model. Full and dashed curves have been obtained for
currentsJ(l0) for l050 and`, respectively.
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As we can see, this last calculation provides the be
result except at very lowq, where we know it violates the
Siegert theorem. However, forq.1 fm21 is closer to the
‘‘pseudodata’’ than the other two calculations.

It is worthwhile to note the situation of the Siegert’s cu
rent ~solid curves!. Although this current provides the righ
behavior of the electric multipoles at very low momentu
transfer, they show a considerable disagreement with
‘‘pseudodata’’ forq above 1 fm21, where the new curren
we have obtained for (k)5(`) ~dashed curves! gives rise to
more accurate results.

FIG. 2. DifferencesD given by Eq.~58! for the two transitions
considered in this work. Full and dashed curves have been obta
for the currentsJ(l0) for l050 and`, respectively. Dotted curve
correspond to the model in which the current is not conserved@that
is, by ignoring the spin-orbit current~54!#. Upper panels~a!,~b!
include the magnetization current~53! while this current has been
not included in the calculations plotted in the lower panels~c!,~d!.
04461
r

e

In order to go deeper in the analysis, we have done n
calculations without considering the magnetization curr
@see lower panels~c!,~d!#. As we know, this current is no
affected by the CE and by ignoring it we can test the imp
tance of this piece of the current in the results. However,
can see that the situation does not change too much
similar comments to those made above can be stated
these new calculations.

V. CONCLUSIONS

In this work we have developed a method to obtain n
forms of the nuclear electromagnetic current. The appro
is based on the integral form of the continuity equation a
produces, as a particular case, the Siegert’s current de
oped by Friar and Fallieros. As in this case, the new curre
can be used to restore current conservation in those m
calculations in which the continuity equation is not fulfille
In addition, our procedure permits us to understand in
easy way the asymptotic behavior shown by the currents

We have illustrated the method by means of a sim
nuclear model based on a harmonic oscillator poten
which includes a spin-orbit term. The results obtained sh
that, at least in the cases studied, the multipoles calculate
using two of the new currents do not produce better res
than those found with a model in which current is not co
served. This puts some doubts concerning the procedure
‘‘restoring the continuity equation.’’

This situation is similar to the one found in relativist
calculations of quasielastic electron scattering by nuclei@6#
where no tractable approach to treating the off-shell dep
dence rigorously exists. This makes inevitable thead hoc
modifications of the currents in order to recover conser
tion, but it is not possible to decide which one of the diffe
ent prescriptions is the better.

In any case, our approach permits other possibilities
define new currents which deserve a more careful analy
Work in this direction is in progress.
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