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Nuclear currents based on the integral form of the continuity equation
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We present an approach to obtain new forms of the nuclear electromagnetic current, which is based on an
integral form of the continuity equation. The procedure can be used to restore current conservation in model
calculations in which the continuity equation is not verified. In addition, it provides, as a particular result, the
so-called Siegert’s form of the nuclear current, first obtained by Friar and Fallieros by extending Siegert’s
theorem to arbitrary values of the momentum transfer. The new currents are explicitly conserved and permit a
straightforward analysis of their behavior at both low and high momentum transfers. The results are illustrated
with a simple nuclear model which includes a harmonic oscillator mean potdi3G856-28139)02810-1

PACS numbd(s): 25.30.Dh, 23.20.Js

I. INTRODUCTION of the multipole operators

One of the oldest and still unsolved problems in nuclear .
physics is that of the determination of the electromagnetic TJLM(q)=J d3er(qr)Y'JV',_(r)-J(r), (5)
current operator. The basic difficulty lies in the absence of
useful constraints one can impose to this operator. For a lo
time, the Siegert theorefd] has played an important role in
this respect, mainly because its application allows us t
avoid the consideration of two-body currents in the calcula-
tions. After the application of the theorem, the effects of sucH

currents can be evaluated in terms of the charge contriblﬁf the current. Equatioii3) is the definition of the electric

tions, the corrections of which awge priori small. However, multipoles. Using Eq(2) it is possible to eliminate one of

the Siegert theorem only applies in the long-wavelength limit"€ Multipolest, .. in terms of the Coulomlic, multipole
and then it is irrelevant for the values of the momentum2nd Substitute itin the expressiontef . In this way one can

transfers usually observed in electron scattering experimentdS€ the CE constraint even in the calculation of the trans-

In principle, one can think that current conservation, and/€rS€ form factor. In addition, this procedure allows us to
more precisely the continuity equati¢GE), could provide minimize the errors coming from an insufficient know!edge
the needed procedure. Nevertheless, the task cannot be &-the transverse currler(ndla.g_., meson-exchange currenis
complished due to the impossibility to fix in a unique manner€'€ctron scattering calculations.

the operator, because those terms given as the rotational of 'S method of rewriting the matrflxtflemhents of the_elecI:-
any function are not constrained by the CE. tric transverse operator in terms of the charge matrix ele-

Using current conservation, the longitudinal current isMeNts, has been applied traditionally in many electron scat-

eliminated in terms of the charge operator, and the electroffiNg calculations. Despite the fact that this ensures that the
scattering cross section reads CE is satisfied, the procedure is completely meaningless in

models which do not satisfy the JB]. As a consequence,
the problem of current conservation in model calculations of
' electron scattering by nuclei is still under theoretical study
1 [3-5].
similar situation appears in the relativistic treatment o
@ A similar situat the relativistic treatment of
. , .
wheretc, , te, , andt,,, are the Coulomb, electric, and mag- the_ oi_‘f-shellyNN vertex in (e,e'p) reactions. Several pre-
scriptions for the current operators obtained by extrapolating

netic multipoles of the transition. It is common to rewrite the hell s h b st Th
matrix elements of the electric transverse operators in termg1e on-shell currents have been propogéll The corre-

of the charge matrix elements, by using the equations sponding off-shell vertex operators violate current conserva-
' tion, which is enforced by eliminating the three or zero com-

w N N+ 1 ponents using the continuity equation. The problem which
—tor=— Vo ath-— V5ot (2)  arises is that different results are obtained depending on the
q 2 +1 2 +1 option choseri7].

An alternative approach is provided by the so-called Sieg-

"Ghere J(r) is the electromagnetic current operator of the

cpucleus and(g"L(F) labels a vector spherical harmonic.
Equation (2) is the multipole expression of the CE. It
elates the charge multipoles to the longitudinal multipoles

do Aoy

Jo_ TTOm ) ) ,
dQ  fd2J+1) V'—; |teal +VT; (Itex]*+tmal?)

o / )\+1t A ‘ 3 ert current(SC) developed by Friar and Fallierds,9] by
EA 2 +1N 2 +1 M extending the Siegert theorem to arbitrary wavelengths. This
procedure is based on isolating the components of the current
Here we have defined the transition matrix elements which are constrained by the CE and replacing them by an
adequate combination of the charge multipoles. However,
e = (Il Ty nx2ll3i) (4)  the results are not satisfactof¢t0] because they show a
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pathological behavior for high momentum transfer when the d

nuclear model considered does not verify current conserva- a[fzJ(r)Ff{[V'J(r)]f—VX[fXJ(f)]}- (8
tion. This has been also pointed out recently by Caparelly

and de Passds] in RPA and TDA calculations. Integrating in the radial direction and using the C& we

Two main conclusions of the work of Friar and Fallieros gptain
[9] must be pointed out. First, the SC appears to be prefer-
able to the traditional forms of the nuclear currents even for , 5 (T
models which satisfy the CE, because the size of the ex-' J(r)—rOJ(ro)—Jrodrr{[V.J(r)]r—Vx[rxJ(r)]}
change current operators is considerably reduced. Second,

they suggest that well-behaved current operators, satisfying _ r .

the constraints of current conservation for high momentum - rodr Hi[H.p(D]r+VX[rxJ(r)}.
transfer, could be determined, but these new forms of the

current have not been found up to now. €)

In this paper we preser]t_a new approach to obtain nlJCIea1|(his equation permits to obtain the integral continuity equa-
conserved currents. Specifically we show that the SC appeay,

( ; fdn (ICE)
as a particular case of a more general family of current op-
erators which can be obtained from the CE. Though all of r2 1 (r
them produce identical results in models conserving the cur- j(r)= —gj(ro)— _J drr{i[H,p(n)]r+VX[rxJ(r)]}.
rent, they permit us to formulate different prescriptions for r r<Jrg
restoring current conservation in electron scattering model (10

calculations. In addition, our formalism allows us to obtain The ICE i ivalent to the CE and if current conserva-
explicitly the asymptotic behavior of these new currents. . 1€ &L 1S equivatent to the LE a current conserva
tion is fulfilled, the electromagnetic current is recovered by

Our method deals with the CE written in integral form . . . . :
(Sec. 1) from which the new currents can be ob?ained di_c'omp'u'tlng the nght.-hand side of the quaﬂog. The ICE is
rectly both in coordinate and momentum spaces. Our apSiMPlified by choosing a value af for which rgJ(ro) =0,

proach generalizes the Friar and Fallieros procedure and, as4Ch @s, for instance,=0 or =. In addition, the fact that

consequence, permits us to firal,priori, infinite ways of the a_bove express_ion of the current is manifestly conservefj,
restoring the CE in models which do not conserve the curPE/Mits us to use it as a prescription to restore the CE. This
rent. In Sec. Il we show how to do it and we study in detail POINt Will be discussed in the next section.
the low and high momentum transfer behavior of the con- 't iS useful to write the ICE in an equivalent form. One
served currents found as well as that of their multipoles. To>t@ts from the equation
finish, in Sec. IV we show some examples in a simple
nuclear model. The conclusions are drawn in Sec. V. E[aZJ(ar)]zzaJ(ar)JraZr.VJ(ar):ac(ar),

II. INTEGRAL CONTINUITY EQUATION 11
where we have introduced the adimensional parametard

A. Coordinate space defined the auxiliary currer€. It is easy to check that

Usually, the CE is written in differential form as

V-J(r)=—i[H,p(r)], (6)

C(r)=—i[H,p(r)]Jr=VX[rxJ(r)]. (12

By integrating Eq(11) from a=aq to @=1 we obtain

where H is the Hamiltonian ang and J are the nuclear 1
chgrge and current densities, respectl_vely. This equat|.on re- J(f)=ag\](aof)+f da aC(ar) (13)
stricts the value oW - J, once the density and the Hamil- g
tonianH of the system are known, but, as mentioned above, ] )
it does not permit to fix completely the current because thénd introducing the form of given by Eq.(12) we have
rotational terms do not contribute to the divergence. 1

The key point in our development consists in writing an J(r):agJ(aor)_i[H,f daa?p(ar)
integral equation equivalent to the CE. To do that, we start ag
with the relation

r

—-VX . (14)

1
rx f daad(ar)
ag

1d

—d—[er(r)]=2J(r)+(r~V)J(r). 7)
rar As for Eq.(10), this equation simplifies by selecting a value
of aqy such aSagJ(aor)ZO. It is of particular interest to

Taking into account the vector identity chooseay=0. In this case we can write the current as

VX[rxJI(r)]=[V-I(r)]r—23(r)—r-VI(r), J(r)=J.(r)+Jy(r), (15
one can rewrite Eq(7) as where
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o 1dh we have
Jc(r)Ei[H,f da a?p(ar)|r=i H,f —4p(r/)\) r,
1 0\ d
(16) d—q[qJ(q)]=[H.qu(q)]—qxvqu(q)E—C(q).
(22)
* 1dA
In(N)=VX|rXx L ad(ar) | =VX|rX fogJ(F/A) : Here we have introduced the auxiliary currétq) which,

1 as it is easy to check, is the Fourier transform of the current
17) C(r) defined in Eq.(12). The ICE in momentum space is

These currents coincide with those obtained by Friar and'€n obtained by integrating E(R2)
Fallieros[see Eqgs(8a—(8d) and(4c) in Ref.[9]]. Then, Eq. q 1 (q
(14) can be considered as an extension of the Siegert’s CUU-(q):—OJ(qO)——f dqC(q) (23
rent formulated by these authors. Other values of the param- q aJao
eter aq fulfilling the relation aéJ(aOr)=0 (such as, e.g.,
a0=.0) provide new currents potentially useful to restore the =%J(q0)+Efqdq{[H,qu(q)]—qXquJ(q)}.
CE in model calculations. On the other hand, the procedure q QJq
we have followed is considerably simpler. (24
To finish this discussion, we remember that if CE is sat- . . .
isfied, the different currents one can obtain from Etd) As in the case of coordinate space, this ICE reduces by

coincide. Then, for the two particular cases=0 ande, we ~ €N00Sing a valug for which g¢J(do) =0. ,
have We can also obtain the ICE in momentum space equiva-

lent to Eq.(14). To do this we introduce an adimensional

1 1 parameten such that
J(r)ZJ' da aC(ar)Zf da aC(ar), (18
0 ®

J
o [MAa)]=—-C(xa). (25
and, as a result,
- Integrating this equation in the intervBhy,1], and taking
J da aC(ar)=0. (190  into account the definition of the curre@tgiven in Eq.(22),
0 we obtain for the ICE in momentum space

This is a global consequence of the CE and is verified by any 1
conserved current. J(@)=NoI(Noq) — J}\ d\C(AQ) (26)
0

B. Momentum space
=NoJ(\o@)+

1
In order to study the behavior of the currents as a function H,JxodA(qu)()\q)}

of the momentum transfeq, it is useful to see how the
equations obtained in the previous subsection read in mo-
mentum space. The corresponding version of the ICE can be
obtained by calculating the Fourier transform in EgO0).
However, we derive it again to illustrate the differences be- It is worthwhile to note that the second and third terms in
tween coordinate and momentum spaces in what refers to tibis equation coincide with the Fourier transforms of the
procedure followed. andJ,, currents defined in Eq$16) and(17). In addition, it

We start with the equation analogous to Ef): can be shown that, foky=0, the corresponding currents
introduced by Friar and Fallierd®] are recovered.

Finally, the condition analogous to EQL9) is found by
considering the values,=0 ande in the ICE (27):

—qxfld)\ N(VgXxXJI) (). (27
Ao

d
ﬁ[qJ(Q)FJ(QHQ-VqJ(Q)- (20

If we consider the vector relation f dNC(Aq)=0. 29)
0

Vala-J(a)]=3(q) +a-Vad(a)+9xVexI(q),
The integral in this equation allows us to analyze the

We obtain from Eq(20 asymptotic behavior of the currents in momentum space in
d case the CE is not fulfilled. We discuss this point in the next
aglad@=Vqa-I@]-qx VexAa), section.

. . . . Multipol f th
and, by inserting here the CE in momentum space C. Multipoles of the current

In this subsection we obtain the corresponding expres-
g-J(q)=[H,p(q)], (21)  sions for the multipoles of the current. As it is knowd],
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the electric and magnetic multipoles are linear combinationsire considered.

of the multipole operators defined in E¢p). Taking into Here we use the ICE to restore the CE. Starting with the

account Eq(13) we have nonconserved curred™® and the charge density, we cal-
culate the auxiliary currenEN® as given by Eq(22) and

_ 3pi Moy | 2 define new currents according to E@3). In particular we
Touw(@) f drjL(ar)Y;u(r)-| agd(aor) consider the valuegy=0 ando for which gyJ(qo) =0 and
. we obtain
+f da aC(ar)|. (29 1 (q
@ IO(q)=— HJ dq'c™(q"), (36)
An easy calculation permits us to write 0
1 ©
1 q 1 1 q J) :_f da’ cNO(q’ , 3
TJLM(q):_TJLM(_ +J da—ZCJLM —), (30) (q) q q q (q) ( 7)
[£75) (%)) ag o o

hereq'=(q'/q)q. As discussed in Sec. Il B, the current
9(q) is the one derived by Friar and Fallier8] and
afterwards used by Friar and HaxtphO] to calculate the
. electron scattering form factors.
CJLM(q)EJ d3rj (an)Y5L(r)-C(r). (31 The second currend™)(q) constitutes a new possible
prescription in order to restore the CE. Both currents coin-
Finally, writing the integral(30) in terms of the variable. ~ cide only if the model current is conserved; if CE is not
=1/ we obtain verified, both prescriptions are in general different, and one
has

where we have defined the multipoles of the auxiliary currené\f
Cas

Ao
TJLM(Q):)\OTJLM(AOQ)+J d\Cjym(ra), (32 1 (=
! J<°°’<q)—J<°><q):aJ dg'c™(q)#0. (39
0

where\ o= 1/aq. Hence, the multipoles of the currehtare
given by integrating the multipoleS;, y(q) of the auxiliary The asymptotic behavior of the new currents can be de-
currentC(r). This equation is the one corresponding to Eqg.termined from their definitions in Eq$36),(37). It can be
(26) verified by the currentl(q), and which is, therefore, summarized in the following properties:
satisfied by each one of its multipoles separately.
Introducing in Eq.(32) the variableq’ =\q we finally q—0: J9(q)~-cN90), I*(g)=0(1/),
have (39
do 1 fa g—oe: IOq=0(1/), I7(a)~CM(q), (40)
Tam(@)= _TJLM(QO)‘F—f da'Cym(a’), (33
q 9Jq The first condition is equivalent to the Siegert theorem. In

where we have defineg=1\q. fact, from the definition ofC(q) in Eq. (22) we have

By choosing the valuegy=0 and<, for which the first —cNOY(Q)=TH (V 0)1=i[H.d 41
term in Eg.(33) vanishes, we obtain a global condition for (O=[H.(Vep)(O)]=i[H.d], 4D
the integral of the multipole€, whered is the electric dipole momentum of the system

fo dqCym(a)=0. (34) d:f d3r rp(r). (42)
As for the current, this condition is fulfilled when the CE is Therefore the curreni® verifies the Siegert theorem be-
satisfied. cause it equals the time derivative of the electric dipole mo-
mentum of the system.
ll. PRESCRIPTIONS FOR RESTORING The second current)*)(q), however, does not satisfy
THE CONTINUITY EQUATION this theorem. In fact, from its definition, we have

The equations derived in the previous section assume that "
current conservation is verified. Often, the nuclear current is lim qJ(w)(q):f dqCcN(q)+#0. (43
not conserved in electron scattering calculations, where a q—0 0

known density operatop(r), obtained as the sum of one-

body single-nucleon densities, and a current operdity?,  Then, as established in E@9), this current diverges in the
such as origin as O(1/q) if the original current is not conserved.

Therefore it should be discarded as a physical current for low
V- INO(ry#£ —i[H,p(r)], (350  momentum transfer.
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On the other hand, a similar nonphysical behavior is  g—c: T.(](I)_)M(Q):O(llq)' Tgf)M(q)NcgNLfﬂ)(q).
shown by the Friar and Fallieros curreif’ for large mo- (51)
mentum transfer, because

These properties are similar to the ones verified by the cur-

. * rents in momentum space given by E¢39),(40).
lml a% (@)=~ fo daC™(a)#0. (44) The multipolesT(®) are well behaved for low momentum
- transfer, where the Siegert theorem applies, but fail for high
This current goes a®(1/q) for largeq. momentum transfer. As a consequenc)e, the transition matrix
Instead, the current™ works well in the largeq limit. elements corresponding to the currdf do not go to zero
From Egs.(36),(37) we can write fast e_:nough ag goes tox, be_:cagse the b(_)und nuclear wave
functions have an exponential-like behavior at laggalues.
g0 This is the reason of the pathology observed in this regime in

J(w)(q)zﬂfﬂd#’izc('\‘c)(q’) — c(NO(q), (45  the electric multipoles computed with the current developed
0 w' by Friar and Falliero$10,3].

On the other hand, the multipol@$™) do not work well
where the change of variablgs=1/q, u'=1/q" has been near the origin(they diverge as 1), but are well behaved
used. Then the behavior df*) for q—c= is the same as that for high momentum transfer. Hence they can safely be used
of the auxiliary curren€N®, which shows the adequate one in this regime in model calculations.
because it is built from the physical charge and current den-
sity operators and its definition does not include integrations, IV. A SIMPLE MODEL CALCULATION
but just derivatives and products. Its good asymptotic prop-
erties for large momentum transfer made this current ta be  In order to illustrate the results quoted in the last section,
priori useful in this regime in electron scattering calcula-we have used a very simple model to analyze different tran-
tions, without the handicap of the pathological behaviorsitions in 0 and**K and which was previously considered
shown byJ(O). The existence of such a current was suggesteih Ref. [2]. In this model, the nuclear structure is described
in Ref.[10], but, to the best of our knowledge, this hypoth- by means of a single-particle Hamiltonian of the form
esis has not been proved up to now.

In order to have a better understanding of the properties of h? 5 h? r?
these two currents, we can also obtain the asymptotic behav- H=- ﬁv +V0+ﬁ E“L\/le'S
ior in coordinate space. A straightforward calculation, simi-

lar to that developed for momentum space, permits Us tqe eigenfunction®, are harmonic oscillator functions and

write the corresponding eigenvalues are
r—0: JO(H=0(1r?), I®N(r)~INO(r), (46) 52 1
Enj=——| 2n+1— | +Vq
ro: JO(r)~—cNO(r),  IC)(r)=0(1k?). " mp? 2
(47) 1 3
As we can see from these equations, both currents have also Vil DI+ )= Z}'

the opposite roles. The curredf®) is well behaved at large
distances, but it diverges near the origin. On the other hand, The nuclear charge density operator is taken to be the
for r—0, the currend™ goes asiN®, which is supposed to usual one,
be well behaved at short distances, but it does not reach zero

fast enough for — . B e
Finally, we summarize the asymptotic properties of the P(”—gl 2 or=r,
muItipoIesTg"L(q). By defining the multipoles of the two
currentsJ© andJ*) as while in the nuclear current density operator we have in-

cluded the well-known convection and spin-magnetization

1(a one-body terms
@=-¢ [ dachfi@). @9
A K
+ T3
1 (e Jc(r):k=12_Mki_ > [o(r=r )V, +V, 8(r—ry],
i@ =3 | darchifia), (49 2
respectively, we find the following asymptotic behavior for . 1+7 :5 1-7 5
) M — _
these two sets of multipoles J (”—gl Mp TN VX[a(r=r)e’],

o (53
q—0: TRW(@~-CiP(@, Tu(@=0(1/m),
(50) as well as the so-called spin-orbit current
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TABLE |. Parameters of the potential used in the toy model 10<2 . _
considered to discuss the violation of the Gee text i ' ! ) ' 7 3
h 160). 0t—=25,,1p:5 1
i O: S1721p112]
Nucleus Vo [MeV] b [fm] Vs [MeV] -\ iy
L .

1 \
%0 -53.6 1.67 -4.20 10% ko (a) .
40ca -55.7 1.80 -1.90 F ]
C “‘ ]
L LY i
A 1+ 7 k — . - ‘ 5 b

3S(r) = —vLsE —2ar-rgefxr. (59 FI0 A

In the previous equationsvl, labels the mass of the
k-nucleon,S‘= ¢*/2 is its spin andr§=1 or —1 according
to whether this nucleon is a proton or neutron, respectively. 108
Finally, up (uy) is the proton(neutror) magnetic moment.

The model built in this way satisfies the CE. Within it we
calculate the electric multipoles corresponding to the current

ey
' NI

LI R A |
-
2 sl

]0-10 )
JPO ()= JC(r) + IM(r) + 35(r) (55)
" . 2
for some transitions if%0 and *°K and the results are con- 107 g T |39 T ; T
sidered as “pseudodata.” The parametdfs, Vi s, andb p K: 1dsp—=2s]12

used in the calculations are shown in Table I. They were
fixed in order to reproduce the energies of the single-particle
states around the Fermi level in the two double closed-shell 107
nuclei (*°0 and “°Ca) of interest.

In what follows we discuss the point relative to the resto-
ration of the CE by using the current®’ andJ™) defined in
Egs. (36) and (37), respectively. We have simulated the —, 5
usual situation of a model not verifying the CE by eliminat- & 10
ing the spin-orbit current from the nuclear current operator:

-

T v vormmg
-
-
-
11 aanl

JNO)(ry=3%(r )+ IM(r). (56)

L]
]
]
]
10°¢ ' ) _
We are interested in analyzing the goodness of the approach ' “,‘.‘
sketched in the previous section in retrieving the “true” re- H 1 ]
sults. ! * ]
We focus our attention on the two following electric tran- 10 3
sitions: (0" —2s,,1py;3)1- in *%0 and (-d33—2s;3),+ in 10 La
3. In particular, we study the electric multipoles 0 1 2 3 4 5
-1
qlfm’]
(K) — i T(x) .
v (Q)= 2J+ 1<‘]f”I-I—JJ‘l(Q)”J'> FIG. 1. Absolute value of the multipolds; given by Eq.(57)

as a function of the momentum transfgr for the two transition
() considered in this work. Dot-dashed curves correspond to the “ex-
23+ 1<Jf||'TJJ+1(Q)”Ji>' (57 act” model. Full and dashed curves have been obtained for the
currentsJ®0 for A\;=0 andw, respectively.

where the multipole operatony ;.. are given by Eq(5) and

where (k) stands for(PD), (0), (>), and(NC). responding ta)*) are wrong for small momentum transfer,
In Fig. 1 we compare the multipoldst)(q)| for ()  Pproviding the correct behavior for large
=(0) (full curves and () (dashed curvéswith the results In order to have a better idea of the goodness of both

of the calculation done with the full modelxf=(PD) calculations, we show in Fig. Pupper panelga),(b)] the
(dashed-dotted curvesThe asymptotic behavior discussed quantity

in the previous section is now apparent. The calculations

performed with)©), that is the Siegert’s current of Friar and AW(q)=[tEPA() [t (a)] (58
Fallieros[9], are right at lowq, but differ notably from the

“exact values” in the highq region, in agreement with the for (x)=(0) (solid curves, (<) (dashed curvgsand (NC)
findings of Refs[10,3]. On the contrary, the multipoles cor- (dotted curves
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similar comments to those made above can be stated for
4 these new calculations.

160. 0*— 251215} Pk 1d5h — 251, In order to go deeper in the analysis, we have done new
0.01 T ——T calculations without considering the magnetization current
(a) 3\ () [see lower panelsc),(d)]. As we know, this current is not
- 4 F E‘\‘ . affected by the CE and by ignoring it we can test the impor-
/\ 2N g y N tance of this piece of the current in the results. However, we
kS N 5L N can see that the situation does not change too much and

A(q)

[T R S V. CONCLUSIONS

-0.0] —=—1 L !
0.01 — —— In this work we have developed a method to obtain new
(d) forms of the nuclear electromagnetic current. The approach
is based on the integral form of the continuity equation and
- produces, as a particular case, the Siegert’s current devel-
& o A oped by Friar and Fallieros. As in this case, the new currents

S > >,
F % ST/ = ] can be used to restore current conservation in those model
L 1 L/ i calculations in which the continuity equation is not fulfilled.
g ! In addition, our procedure permits us to understand in an
DY) B R A R T easy way the asymptotic behavior shown by the currents.
o ! 2 3 4 5 0 1 2 3 4 5 We have illustrated the method by means of a simple
qlfm’] q[fn’] nuclear model based on a harmonic oscillator potential

) ) N which includes a spin-orbit term. The results obtained show
FIG. 2. Differences\ given by Eq.(58) for the two transitions  yha ot |east in the cases studied, the multipoles calculated by
considered in this work. Full and dashed curves have been obtalnqjising two of the new currents do not produce better results
for the currents)* for \o=0 andz, respectively. Dotted curves than those found with a model in which current is not con-
.Correspond _to the mOd.el in V.Vh'Ch the current is not consefifet served. This puts some doubts concerning the procedures of
is, by ignoring the spin-orbit current4)]. Upper panelqa),(b) “restoring the continuity equation.”
include the magnetization curre(83) while this current has been This situation is sirr?ilar o thel one found in relativistic
not included in the calculations plotted in the lower pane)gd). calculations of quasielastic electron scattering by nu@i
where no tractable approach to treating the off-shell depen-
dence rigorously exists. This makes inevitable #utk hoc

As we can see, this last calculation provides the bettepwodifications of the currents in order to recover conserva-
result except at véry lova, where we know it violates the tion, but it is not possible to decide which one of the differ-

Siegert theorem. However, far>1 fm™! is closer to the ent prescriptions is the better. . I
“pseudodata” than the other two calculations. In any case, our approach permits other possibilities to
It is worthwhile to note the situation of the Siegert's cur- define new currents which deserve a more careful analysis.

rent (solid curve$. Although this current provides the right Work in this direction is in progress.
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