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Convergence of the solution of the continuum discretized coupled channels method
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The validity of the method of continuum discretized coupled chan(@RCC) is numerically tested and
confirmed for a realistic example of+ %Ni scattering at 80 MeV. Elastic and breakSpmatrix elements,
calculated with the CDCC method, numerically converge as the model space is extended, viz., the internal
angular momentum of the proton-neutron pair and the matching radius are increased. Two methods of discreti-
zation, the average method and midpoint method, of the continuum of the internal linear momentum-af the
pair are tested and found to yield the same res[#8556-28139)00810-9

PACS numbds): 24.10.Eq, 25.45:z

I. INTRODUCTION <k, andl<l,, and the setting of the the asymptotic outgo-
ing wave boundary condition &=R,,. We call this ap-
The method of continuum discretized coupled channelproximation the model space approximation. It is justified if
(CDCQO) has been successful in describing nuclear reactionthe CDCC solution converges to the exact one as the model
involving breakup processes of weakly bound projectilesspace is extended.
[1,2], and its theoretical foundation has been a subject of The second approximation is the discretization of khe
extensive studie§l—10. The CDCC method is concerned continuum. Two methods of discretization have been used so
with a three-body system comprised of two fragments intdfar, the averagéAv) method[3] and the midpoint(Mid)
which the projectile is breakable and a target nucleus whiclmethod[9]. It is the former method that is widely used in
is assumed to be an inert core. One assumes a three-boggactice and is examined in the present paper. In these meth-
HamiltonianH for the system comprising the kinetic ener- ods, thek continuum is divided into a finite number of bins,
gies of the three particles and the interaction potentials beand the internal states within each bin are represented by a
tween all pairs of particles in the system. In the case of @&ingle wave function. For the validity of this approximation
nuclear reaction such as the one we investigate in the preseitis necessary that the result of the calculations converge as
paper, one takes optical potentials for the interaction betweetihe number of the bins is increased and consequently the
the target and each of the fragments of the projectile. Thaizes of the bins are decreased, and that it be independent of
CDCC method is a practical method of solving the three-the method of discretization.
body Schrdinger equation i—E)¥=0. In the CDCC The validity of the discretization was examined in H&fl.
method,V is expanded in the basis of the complete set ofwith the Av method in which the internal wave functions of
eigenfunctions of the internal Hamiltonian of the projectile. the continuous breakup states within each bin were averaged
Each eigenfunction defines a channel, and is characterized Ity get the representative wave function of the bin. Calculated
the orbital angular momenturhand the linear momentutka  breakupS-matrix elements converged as the common size of
of relative motion of the fragments if the state is in the con-the bin, A, was decreased with,, kept fixed. The Av
tinuum, and the principal quantum numbreif it is a bound  method, however, was criticizdd] in that it suppressed the
state. The unknown coefficient of the expansion is the wavehannel coupling potentials between breakup states at large
function of relative motion between the projectile and theR. We have then examined the numerical convergence of the
nucleus and is a function of the relative coordinate of theCDCC solution with the Mid methof9] in which the con-
channel, viz., the coordinate of the center-of-mass of the tinuous breakup states in each bin were simply represented
projectile relative to that of the target nucleus. A set ofby a breakup state wave function at a midpoint of the bin.
coupled equations for the wave functions of the relative mo-Convergence was clearly seen&glecreased withk,,, kept
tion of the channels is derived from the three-body Schrofixed. This result was free from the criticism mentioned
dinger equation. It is impossible to solve the coupled chanabove since the original asymptotic form of the internal wave
nels equations exactly since the breakup states haregying  functions was retained in the representative one and, hence,
from 0 to infinity, andk is continuous so that a continuously no suppression of the coupling potentials between breakup
infinite number of channels are coupled in the equations. Iistates at larg®.
order to overcome this difficulty, the following two approxi-  The question of crucial importance is whether the
mations are made in the CDCC method. CDCC solution, even though it numerically converges as the
The first approximation is the truncation kfand| by k model space is enlarged, converges to the correct solu-
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tion of the three-body problem. This problem has been adthat betweend and A, U (R), neglecting its effect on the

dressed in Ref.10]. It has been shown that the CDCC solu- internal motion of then-p pair. The operatork, andKg are

tion is first-order approximation to a set of distorted-wavethe kinetic energies associated witland R.

Faddeev equationd 1], and corrections to the CDCC solu- In the CDCC method, the three-body wave function

tion can be estimated and shown to decrease as the modél;,,, associated with the total angular momentdiand its

space is extended, unless incoming waves are generated projectionM on thez axis, is expanded as

breakup channels &#=R,,. If incoming waves are gener-

ated there, they go back to the inner regpaR,,, in which V(R =Do(r) Yoo Q) Yim(Qr)g5(Po,R)/R

coupling potentials between breakup channels are strong and

much affect the CDCC solution in that region. A theoretical -

foundation of the CDCC solution, therefore, is the assump- +|20 EL: [Yi(Q)®YL(QR)]sm

tion that few incoming waves are generatedR®R,, in

breakup channels. An aim of this paper is to verify this as- o

sumption with numerical calculations. X jo ®,(k,r)g)3(P,R)AK/R (2.2
The theoretical consideration of R¢L0] makes no men-

tion of how fast the convergence is with respect to the ex- . . .

tension of the model space. If the convergence is t0o siow" @n orthonormal basis set of the internal wave functions of

the CDCC solution is not useful in practice. So we have tot’he p-n pair, ©, comprising the ground state wave function

examine how fast the convergence is. In RES]. the ®y(r) and the breakup state wave functiobg(k,r), char-

CDCC solution was found to converge at a reasonable sizg(:telr 'Zfd ?yt_the Imetz_ar rgonmNentUKlar:jd thbe {a;]ngular_ m?cmen-
of the model space. The examination, however, used the A m 1 of reé;ative motion betweep andn, both ranging from -
method for discretization. Another aim of this paper is to28ro to infinity. We assume that the deuteron ground state is

reexamine the convergence with the Mid method for discretid" S state so that=0. The®,(k,r) are normalized to &

zation and show that the convergence is realized at a reaso@’-nCtlon ink. The coefficientsy ,(P,R) of the expansion

able size of the model space escribe the motion of a broken-yp-n pair in the state
The last aim of the present paper is to test whether the twg>'(k’r) ][elrz]atlve to A. Thedlmeardand o(rjbll_tal angulgr :no-

methods of discretization give the same results. In practicépenta of the motion are denoted Byan , respectively,

the Av method is more convenient than the Mid method,2nd the total angular momentum ByHereJ is given by a

since the Av method requires less numerical works than thd€Cctor coupling of the angular momeritand L. Since we
Mid method. assumd =0 for the deuteron ground state, we obtdin L

The present paper gives a full account of our investiga—for the elastic channel. We denote the linear momentum of

tions concerning the validity and the practicality of the 1€ incident deuteron bi,. The momentd, andP satisfy
CDCC method, together with discussions in terms of thdn€ total energy conservation

behavior of the channel coupling potentials. As the test case,

we take the same realistic example of deuteron scattering and _ n?p?  h2k? _ 1°P;
breakup on°®Ni at 80 MeV as in the previous woll]. The E= 21 + my 24 * €0,
construction of this paper is as follows. In Sec. Il, we reca-

pitulate the method of CD.CC.and its assumptions. In SeCyhereE is the total energy of the systers, is the binding
[ll, our method of calculation is presented. In Sec. IV, NU-energy ofd, my is the nucleon mass, and=myX 2A/(A
merical results are presented, and Sec. V is devoted to _@2) is the 'redNuced mass. ’ N
summary and discussion. As the first assumption of the CDCC method, the sum
overl is truncated by =<lI,, and thek integral byk<k,,. We
Il. METHOD OF CDCC simply takek,, common to alll in the present paper. As the
We consider a reaction initiated by a deuterat) {m- secqnd assumption, the truncatedontl_nuum[o, K] is Q|s-
pinging on a target nucleusAj. In the CDCC method, it is cretized as follows. The truncat&tontinuum|0, k] is first

assumed that the reaction in the three-body system comprigivided into a finite numbeN of bins, [0k, ], [k K], . ..,

ing A and the neutronr() and proton p) pair ind can be  [Ki-Ki+al, ..., [kn-1,ky], €ach with a common widti
described by a model Hamiltonian =ki;1—ki=k,/N. The wave functions of the continuous

breakup states in thigh bin are replaced by a wave function
H=K,+Kg+ V(N +Uy(R=1/2)+ U, (R+1/2)+U(R). &, (r). Two methods have been used to defibg(r), the
2.1 average (Av) method and midpointMid) method. The

HereV,,(r) is the interaction betweemandp. The vector @ (r) are defined in each method as

is a coordinate op relative ton, andR is the coordinate of

the center of mass of the-n pair relative toA. The interac- R 1 (k

tion U,(R+r/2) [U,(R—1/2)] betweenp (n) andA is as- q)”(r):\/_KJk_ ®(k,r)dk (for Av), (2.9
sumed to be the central nuclear part of the prdtuoeutror] ot

optical potential at half the deuteron incident eneryi2. .

We approximate the Coulomb potential betwgeand A by Oy (r)= \/KCI>|(ki ,r)  (for Mid), (2.5

(2.3
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wherek; = (ki + ki _1)/2. Thed,;,(r) satisfy

j (i)ﬁm(r)(i)i/pmr(r)dr:5”!5||75mm/ (fOI’AV),
(2.6

féﬁmu)@iufmf(r)drﬂ&ura(E—Eo(smmf (for Mid),
2.7

where®d;;,(r)=; (r)Y,m(£2,). Under the two assumptions

described above} ;,, takes the form
Wiu~Do(r,QR)05(Po,R)/R

N
3, &,(k.r.006,(P L RIR, (28

where
Do(r,QR)=Do(1) Yoo ) Yam(Qp), (2.9
® (ki ,r,Qp) =Dy (NIYI(Q) @ YL(QR)]su
for y=(i,l,L,J,M) (2.10
and
93(Po,R)=03(Po.R), (2.1

9,(P;, R =VAg(P;,R) for y=(i,lL,J,M).
(2.12

Thek; are defined ak?=k?+ A?/12 for the Av method 1]
and k;=k; for the Mid method. The momentl; and P;
satisfy the total energy conservatioft =%2P?/(2u)
+42kZmy.

Unknown coefficient functiong,(P; ,R) are determined
by a set of coupled channels equations:

d> .. L(L+1) 2u a a
dRZ_ |2_ R2 _?Vyy(R) gy(Pi 5R)
2um 4
= % ﬁVw,(R)gy,(Pi ,R) (2.13
Y #Ey

for all y including the elastic channet=(0,0J,J,M), for

which Py=P,. Equation (2.13 is the basic equation of

CDCC method. The coupling potentials,,,(R) are defined
by

Vo, (R)=(® |U (R+1/2)+ Uy (R—1/2)|D ),
(2.14

where the angular brackets stand for integrations owvand
Qg, the angular part oR. TheV_.(R) and theg (P, ,R)
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are independent dfl sinceH is rotationally invariant. The
set of coupled equations is solved under the asymptotic
boundary conditiori11]

. . P .
9,(Pi.R)~u{ (P R) 8, 0— \Es%ou{”m R,
0
(2.19

whereu{)(P;,R) andu{")(P;,R) are incoming and outgo-
ing Coulomb wave functions with momentuit andS, g is

the Smatrix element for a transition-8 v, where 0 stands
for the initial channel. At largeR, V,,(R) between dis-
cretized breakup states decreaseRéé for the Av method
and R™2 for the Mid method, while the original coupling
potentials between continuous breakup states d® & The
CDCC calculations made so far for analyzing experimental
data used the Av method. Asymptotic boundary conditions
therefore can be set at a matching radijsof 30 fm or so,
because of the fast damping of the Av coupling potentials.
This, however, ought to be verified by showing that the same
Smatrix elements are obtained with the Mid method in
which the damping of the coupling potentials is much
slower.

The assumptions made in the CDCC method are summa-
rized as follows. The first assumption is the sufficiency of the
model space defined with three types of truncatignsrun-
cation ofl by a maximuml ,,, (ii) truncation ofk by a maxi-
mum k,,, and (iii) setting the asymptotic outgoing wave
boundary condition aR=R,,. The second assumption is
(iv) discretization of the truncatekl continuum[0k,,], by
either the Av or Mid method. A set of coupled integral equa-
tions derived from the coupled differential equatid@sl3
has compact kernels, owing to the model space truncation
[10] even before the discretization. In this sense, the model
space truncation is more basic than the discretizafion It
is also shown in Ref(10] that the CDCC solution tends to
the exact solution as the model space is extended, provided
(I) that no incoming wave is generated RtR,, by long
ranged coupling potentials between breakup channels. Trun-
cation(iii) is only justified if assumptiofl) is valid. We test
the truncations(i) and (i), together with assumptiofl),
settingk,,=1.0 fm ! as in Ref.[3]. Truncation(ii) is not
examined in this paper since the previous {&tconfirmed
its validity. We also investigate which of the Av and Mid
methods is more practical as the method of discretization,

(iv).

. METHOD OF CALCULATION

We use the method of Ichimuret al. [12] to solve the
coupled channels equatiof.13 since it is quite effective
for long ranged coupling potentials. In that method,

9,(P;,R) is expressed as

g,(Pi.RI=a,(R)f (R +a{(RU,(R), (3.1
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Wher_efy(R) and U(;)(R) are regular a_nd oquoing wave 06 Is(k)l d+5Ni, E4=80MeV
solutions of uncoupled Schdimger equations with the diag- | H7
onal potentials 1,=0
d> .. L(L+1) 2u
2 —
@— i‘T‘ﬁVW(R) U,(R)=0, (3.2

where U (R) is eitherf (R) or U'(R). The coefficients
a,(R) anda"(R) satisfy the coupled differential equations

d 2u N
ﬁay(m:h—ﬁ,yg {[US(RIV,, (R, (R)]a, (R)

USRIV, (RU(R) 1AL (R)),

0.2
N4
(3.3 I N<20 2

d ., 2u 00 05 10
TR (RI== FZ {[f,(RV,, (R, (R)]a,(R) Kifar
7 (+) (+) FIG. 1. The modulus of th&matrix elements of breakup pro-
RV, (RUL (R)]a, (R}, (3.4  cessess(k), in d+5Ni at 80 MeV. These are calculated by the
CDCC method with Av @) and Mid (+) discretizations withN
and subject to the boundary Conditioa%(oc): 5%0 and =§, 8, 12, anq 20. The sol!d lines correspond to the result of the
al"(0)=0. In actual calculations, however, the boundaryMid method withN=20. Ry, is taken at 30 fm.
condition for a, is set atR=R, instead ofR=c«. The ) ) )
coupled equations are solved iteratively starting from12, and 20. As shown in the figurg(k) calculated with both
a(;)(R):O at all R. The resultantS-matrix elements are the Av and Mid method converge to the same valug¥ at

12. The same agreement is also seen for eldtiatrix
elements at much smalléy; in the case ofN=5 andJ
[P
Sp3, 07+ 2i \/;a(y“(Rm)
1

given by
=17, for example, the absolute value of the element is

(3.5) 0.6254 for the Av method and 0.6252 for the Mid method. It
' is clear that the Av method converges faster than the Mid

method excepk neark,,. The slow convergence of the Av

whereS, is the Smatrix element for elastic scattering due to Method atk neark, does not matter much in calculating
the potentiaNoo(R). The Smatrix elements depend d&,,  Preakup cross sections since the breaBupatrix elements
but theR,, dependence is very weak, as shown in Sec. IV. Iithémselves are small for sugh

the present test, we extefid up to 8,R,, up to 90 fm, andN The superiority of the Av method to the Mid method in
up to 20, while we keel, =1 fm . as mentioned in Sec. 1. the convergence may be understood by the mean value theo-
rem

S%OI

IV. NUMERICAL RESULTS ki
jﬂgy(P,R)CDy(k,r,QR)dk
k

The results of our test concerning two assumptions, the i
model space truncation and the discretization of kheon- o Koy
tinuum, for the case afi+ °®Ni are presented in this section. =g,(P; ,R)J ®,(k,r,Qg)dk, (4.0
We use the Becchetti-Greenlegk3] optical potentials for ki
the neutron- and proton-nucleus interaction at half the deu-

teron incident energy, and neglect spins. whereP; satisfiesP(k;_. 1) <P;<P(k;), which is true unless
@ (k,r,Qg) changes the sigﬂ withAi[1kiA,ki+1]. The right-
A. Discretization of the k continuum hand side of Eq(4.1) is VAg,( Pi,R)®, (ki ,r,Qg), which is

In order to see howSmatrix elements depend on the nothing but Av discretization iP;=P;. SincedP(k)/dk=

method of discretization, we calculate breaksmatrix ele-  — 2#K/[myP(K)] because O_fE=ﬁ2P2/(2M)jLﬁ2k2/mN,
mentsS(k) with both the Av and Mid methods in the iden- P(K) changes little over the intervik; ki,,] if k<P(k);
tical model space wittk,=1 fm~!, R,,=30 fm, andl,, henceP;~ P; exceptk neark,,. The Av discretization is thus
=0, for N ranging fromN=5 to N=20. Figure 1, quoted Jjustified.

from Ref.[9], showsS(k) atE4=80 MeV andJ= 17, which In the Mid method, the left-hand side of Et.1) is ap-
is the grazing angular momentum, for four casedlef5, 8,  proximated by\/Zgy(lADi ,R)® (ki ,r,Qg). For the validity
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TABLE I. Convergence of the elasti&matrix element with 1=0 L=17 J=17
respect to increasinlg, at the grazing angular momentuhs 17 for , 051 =0 ©
the systemd+58Ni at 80 MeV. Parameters taken aRg,=30 fm |5|,L(k)| ° 4 "> n
andk,=1 fm~1. Mid discretization is used withl=8. oLk :=é M

:8 -
I m |S2 Phase(deg
| o
0 0.6242 24.4 L
2 0.5945 20.1 7
4 0.5956 19.9 02Fo T,
6 0.5954 19.9 .
[m]
. o 01+ "8
of this approximation, not onlyg,(P,R) but also o $
@ (k,r,Q2g) change little over the intervdk; ki, ]. This 8 ")
condition is satisfied only foA smaller than that in the Av : L : 10
method. Thus, the Av method is more practical than the Mid k(fr )
method.

FIG. 2. DiscretizedS-matrix elements t&wave breakup states
with J=17 andL=17. These are calculated by the Av method.
Herel ,, varies from 0 to 8 through even values, wHRg is fixed at

The model space truncation is tested mainly with Mid60 fm. The symbol©, O, +, ®, and ¢ correspond td,,=0, 2, 4,
discretization. As mentioned in Sec. IlI, this truncation is6, and 8, respectively.
composed of three types of truncatioris; truncation ofl,

(i) truncation ofk, and(iii ) setting the asymptotic boundary are generated &=30 fm in breakup channels. The validity
condition at a finite value oR,,. of the asymptotic outgoing wave boundary condition for the

First, we test truncatiofi). Table | shows rapid conver- channeli=3 is understandable, because even the diagonal
gence of elastiS&matrix elements with respect to increasing potential which is the biggest among coupling potentials be-
|, at the grazing angular momentuds=17, which gives tween breakup channels is a slowly varying functionFof
the largest contribution to the breakup cross section. In comand is much smaller &=30 fm than the asymptotic kinetic
parison, thé =8 breakup, for example, has a contribution of energy#2P?/2, [9]. Fori=12, in contrast, this condition is
less than 0.04%. The breakup up lte 2 is sufficient for  not well satisfied, since the corresponding kinetic energy is
practical purposes. quite small for the channel. However, the diagonal potential

Breakup Smatrix elements are much more sensitive t0js still a slowly varying function ofR especially atR
increasing than the elastiSmatrix elements sinckin the =30 fm, and therefore produces few incoming waves there
final state is not restricted as in the case of elastic scatteringy 4],

In order to minimize numerical errors, we use the Av method  \we next examine the behavior af")(R) as a function of

in this part of our test. As shown in Figs. 2-5, breakupr Figure 7 shows the results for the caselef17,1,=0,
Smatrix elements converge bBt=6 with R,,=60 fm fixed.

B. Model space truncation

Next, we test truncatiofiii ). Since the Mid coupling po-
tentials decay a2, it is not obvious whether we can set
the asymptotic boundary condition at a reasonable value of
Ry . Forl,=6 andJ=17, we, therefore, examine the valid-
ity of it for elastic Smatrix elements. The elasti&-matrix
element calculated with the Mid method has modules 0.5954
and phase 19.9° aR,,=30 fm. These values remain un-
changed even wheR,, is increased up to 90 fm, as shown in
Table Il. The reason for this result is well understood in
terms of the coefficient functiors,(R) and a(;“)(R) of Eq.
(3.1). We examine the behaviors aﬁ)(R) in the neighbor-
hood of R, set at 80 fm where the potential tails are negli-
gibly small. Figure 6 is shown for the caseb£17,1,,=0,
andN=12. It presents the ratip, = |ay(R)/a(7+)(R)| for K,
at which |S(k)| is almost peaked, and fde;, close tokp,.

The p,(R) drop sharply aR increases. Foks, or for the
breakup channdl=3, it is about 0.4% neaR=20 fm. For

|5tk

0.5

0.4

03

0.2

0.1

40

-+

1=2 L=17 J=17

n

"'OCI

Do N

¢ +D

05
k{fmr)

FIG. 3. Discretizedsmatrix elements ta-wave breakup states

kip, or fori=12, itis somewhat large, but still less than 3% with 3=17 andL=17. These are calculated by the Av method.
at 20 fm. The outgoing wave boundary condition is thusHerel , varies from 0 to 8 through even values, whig, is fixed at
satisfied within the accuracy of practical interest. This meanso fm. The symbolsl, +, ®, and ¢ correspond td,=2, 4, 6,
that few incoming waves, of which,(R) is the amplitude, and 8.
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=2 L=15 J=17 TABLE Il. Convergence of the elasti&matrix element with
051 =2 respect to increasing,, at the grazing angular momentuds= 17
IS‘JM i o for the systend+%Ni at 80 Mev. Parameters taken drg=6 fm
' =6 andk,=1 fm~1. Mid discretization is used withi=8.
Ol' B = 8 >
Ry (fm) |S2 Phase(deg
03r 30 0.5954 19.9
+ 80 60 0.5954 19.9
02k = 90 0.5954 19.9
>
o e 2
o1k * <R,,. The reason for this is the smoothness of coupling po-
= * tentials between breakup channels. Property ¢uarantees
the convergence of the CDCC solutionR,=30 fm. This
0 L i . X also means that the coupling potentials between High
Kifmrh breakup channels which dominateRit R,,, do not affect the

wave function aR<R,,. This consideration is supported by

FIG. 4. Discr_etized breakus-matrix elements tod-wave Fig. 10. The wave function &<R,, does not contain high
breakup states witd=17 andL =15. These are calculated by the ,reakup components, because the coupling potentials to such
Av rne_thod. Herd ,, varies from 0 to 8 through even values, while breakup channels are very weak there. Thus, propéjty
R is fixed at 60 fm. The symbols], +, @, and ¢ correspond to 5 rantees also the convergence of the CDCC solution with
Im=2, 4,6, and 8. respect to increasinlg,. Assuming propertyl), the work of
Ref.[10] showed that the CDCC solution tends to the exact
one as the model space is extended. The present result sup-
ports the statement.

and N=12. Rapid convergence a)(R) is seen for its
elastic componenit=0 and breakup componenis-3 and
i=12. Fori=12, a{"(R) shows a small slow convergence,
but is practically independent & for R=30 fm. This im-
plies that almost all outgoing waves are generatedRat
=30 fm and few outgoing waves are newly generate® at We have numerically examined two basic assumptions of
=30 fm. The same test for the sadd@ndk,, is carried out the CDCC method, the model space truncation and the dis-
for differentl ,, andN, i.e.,| ,=2 andN=16. The asymptotic ~cretization of thek continuum, and the practical application
outgoing wave boundary condition is setRy,=88 fm. The  of the CDCC method to nuclear reactions involving weakly
results are shown in Figs. 8 and 9. Again, gﬁé)(R) show bound projectiles which can break up easily, either virtually
rapid convergence for the elastic channel andsheave ( Or really, in the course of the reaction. We tatte- **Ni
=0) breakup channél=4 and a small slow convergence for Scattering at 80 MeV as a typical realistic example and carry
the swave breakup channét 16 neark,,. The ratiop.(R) out numerical tests of the two assumptions. Tests in realistic
for the channei =16 is about 0.08 neaR=20 fm, but in  cases are important since the CDCC method has successfully
practice this produces only negligible breakup cross section$en used for analyses of experimental data. We have used
The analysis 0&{")(R) andp.(R) indicates (1) that few the Beccheeti-Greenlees nucleon-nucleus optical potentials
Y Y
incoming waves are little generated R=30 fm which at half the incident deuteron energy, 40 MeV, throughout the

would otherwise be propagate back to the inner regin,

V. SUMMARY AND DISCUSSION

10 : :
=2 L=19 J=17 gooN, E-80MY
031 lm =2 0 J=17, ! =ON=12 |
=4 10" " ]
B =6 . -
’ = 1=
02f =8 - |§7|
107
01k g
o E -> E 5 (] 3
h T - O 1074
3 1 1 R
0 05 70
K(fr ) [
A N N
1079 10 30 L0

FIG. 5. Discretized breakugs-matrix elements tod-wave
breakup states witll=17 andL=19. These are calculated by the
Av method. Herd,, varies from 0 to 8 through even values, while FIG. 6. The ratiop (R) = |ay(R)/a(,/+)(R)| calculated with the
R, is fixed at 60 fm. The symbols], +, @, and ¢ correspond to  Mid method. Herey is taken asi( I, L, J)=(i,0,17,17) fori=3
In=2, 4, 6, and 8. and 12.

20
Rifm)
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10°; : . . . 10° . : .
: de NI, E4=80MeV i d+55JNi,1 ;Zdiaoge\{ .
_ J17, 1,20, N2 : | L0,
10—1 10"} i=0 3
3 i=3 3 B f iz
- i=0 J L
lay) 102
1°k 4
10°}
16°kL i
10 : . .
0 10 20 30 40
R{fm)
' o " 0 o FIG. 9. The amplitude functiona’)(R) calculated with the
Rifm Mid method. Herey is taken as i I, L, J)=(i,0,17,17) fori

=0, 4, and 16. Parameters taken bre=2 andN=16.

FIG. 7. The amplitude functiona’")(R) calculated with the
Mid method. Herey is taken asi( I, L, J)=(i,0,17,17) fori=0,  same values. This clearly shows that the CDCC results are
3, and 12. independent of the method of discretization and, conse-

quently, justify the Av method. We have also found that the

work. As the model space, the internal linear momentum Av method yields faster convergence and so is more useful
and the orbital angular momentunof then-p pair are trun-  in practice than the Mid method.
cated ak,, andl,,, and the distancR between the centers of The validity of the Av method which has short ranged
mass of than-p pair andA atR,,,. We have changeld, upto  coupling potentials raises a question: What is the role of the
8 andR,, up to 90 fm. We have kefk,, fixed at 1 fm since long ranged tails of the Mid coupling potentials Rt R,,?
tests for increasind,, have already been made in detail in We have investigated this question through the behavior of
Ref.[3]. a,(R) anda{"(R) which are related to the channel wave

Av discretization was criticized4,7] for the reason that fynctions asg.(P;,R)=a.(R)f(R)+a'?(R)U(R). If

. . . . Y\ b Y b b

the coupling potentials between the_ _dlscretlzed breakUphere is any incoming wave &> R, other than that in the
crlaznnels decay &, whereas the original ones decay asijtial channel, setting the asymptotic outgoing wave bound-
R™“. We have then tested the Av method by comparing ityry condition atR= Ry is not valid. The incoming wave
with Mid method which retains the proper asymptotic formsamplitude in a breakup channelis proportional toa.(R).
of the original_ coupl_ing potentials. We ha\{e carriec_j Outyve have found thata (R) is very small compayred to
CDCC calculations with the two methods of discretization 'na(;)(R) in the important breakup channels for which the

the same model space with=0, Rngo fm and _Iooked al g matrix elements are large. Even in the breakup channels
convergence of the calculatédn_atrlx glements with respect iy small Smatrix elements, the asymptotic outgoing wave
to increasingN, the number of discretized breakup channels. '

We have found that th&matrix elements converge to the

10° o .
d: ';', Ed1=780Mev
10° ' ' =0, L=17, J7
i 50N, E, =80MeV o hzp-
[ =1, L7, 120 e
o =2, N<t6 181
10‘2F
5
107
103
107}
1075 R%f‘o) 30 %0
10" W0 30 W ’ ~
Rifm) FIG. 10. Breakup channel wave functiogs. Here y is taken

as(, !, L, J)=(i,0,17,17) fori=3 and 8. These are calculated by
FIG. 8. The ratiop (R) = |a7(R)/a(;)(R)| calculated with the the Av method withR,,=60 fm. The dash-dotted and dotted lines
Mid method. Herey is taken asi( I, L, J)=(i,0,17,17) fori=4 correspond td,,=2 and 6, and the solid line correspondsltp
and 16. Parameters taken &yg=2 andN=16. =4,
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boundary condition is well satisfied within the accuracy ofinner parts of the wave functions, as predicted in R&f.

practical interest. We have extended the same calculation to We have found, from the analyses el(y”(R) and
the larger model space with,=2 and reached the same p_(R), (I'), that few incoming waves are generatedRat
conclusion. Thus, long ranged tails of the Mid coupling po-=30 fm. This is due to the smoothness of the coupling po-
tentials do not make any essential contribution to thetentials between breakup channglg]. This is a necessary

CDCC solution.

and essential condition for the validity of the model space

The model space truncation is the most essential assumpruncation. Propertyl) directly guarantees the convergence
tion in the CDCC method, because with this truncation theof the CDCC solution with respect to increasify, and

kernel of the integral equation form of E.13 is compact
[10]. It consists of three kinds of truncatiofi) truncation of
| at |, (ii) truncation ofk at k,,, and (iii) setting the
asymptotic boundary condition at a finite valueRy,. We
have tested the truncatiorig and (iii). The test of(ii) has
already been made in detail in RER].

justifies truncation oR. Property (I) also shows that when

R,,>30 fm, any smooth coupling potentials between
breakup channels &>R,, little reflect the outgoing waves
back to the inner regioR<R,,, namely, that coupling po-
tentials between highbreakup channels which are important
only atR>R,, do not affect the CDCC wave function Bt

The convergence of elastic and breakup cross sectionsR_. The latter, therefore, does not contain the high

with respect tol,, was first obtained in Refl3] with Av
discretization afl ,=4 for k,=1 fm~1. It was found that

breakup components. Thus, propetty guarantees also the
convergence of the CDCC solution with respect to increasing

Im=2 was sufficient for elastic scattering cross sections. I{_ and justifies the truncation df According to Ref[10],
was questionef#], however, if the convergence was not due furthermore, the CDCC solutiollf cpcc has an error propor-
to Av discretization which alters the asymptoftdepen-  tional toV,¥ cpee. The interactionV,, () is a short ranged
dence of the coupling potentials between continuous breakuynction ofr, so only the very low components off cpcc
states toR™* from the originalR™>. We have, therefore, contribute to the error. Obviously, the error vanished as
tested the validity of the truncation with both the Av and increases. Thus, the CDCC solution tends to the exact one as
Mid method. The Mid Coupling potentials between dis- the model space is extended, as predicted in B@ﬂ_
cretized breakup states retain the proper asymptotic form of e have also examined roles of the absorptive part of the
the original coupling potentials. Their strength at lafe optical potentials and found that the absorptive part acceler-
increases with. We have therefore increased bbthandR,,  ates the convergence of the CDCC solution, as predicted in
until the Smatrix elements converge. It is found that the Refs.[6] and[10].
important elasticSmatrix elements converge at,=2 in In view of all the results described above, we conclude
both the Av and Mid methods of discretization and indepen+that the two assumptions made in the CDCC method, the
dent of Ry, for Ry,=30 fm. BreakupSmatrix elements con- model space truncation and the discretization koton-
verge in the Av method dt,=6 andR,,=30 fm, and only  tinuum, are well justified in the realistic case investigated.
small S-matrix elements are sensitiveRg. The small ele- The CDCC method, therefore, is well founded as a practical
ments also converge &t,=6 andR,=60 fm. In the Mid method of calculation to deal with reactions involving
method, the breaku@-matrix elements converge &,=6  weakly bound projectiles such as deuter8r,i, etc.
and R,=60 fm, except for smallSmatrix elements for
which anR,, larger than 60 fm may be needed. However, we
do not pursue this possibility any further, because numerical
errors due to the integration of coupled differential equations This work was supported by a Grant-in-Aid of the Japa-
over R larger than 60 fm may not be negligible. nese Ministry of Education, Science, Culture and Sports
When theS-matrix elements converge with respect to in- (Monbushg. One of the authoréR.A.D.P) wishes to thank
creasingl,,, we have looked at the rate of convergence ofthe Japanese Government for support. The calculations were
the wave functions ak, increases, and found that the inner performed at the Computer Center of Kyushu University un-
parts of the wave functions also convergé.at 6. Coupling  der financial support to international collaborations for com-
potentials betweeh>4 breakup channels do not affect the putational work at the Center.
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