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Convergence of the solution of the continuum discretized coupled channels method

R. A. D. Piyadasa
Department of Mathematics, University of Kelaniya, Kelaniya, Sri Lanka

M. Kawai and M. Kamimura
Department of Physics, Kyushu University, Fukuoka 812-8581, Japan

M. Yahiro
Department of Physics and Earth Sciences, University of Ryukyus, Nishihara-cho, Okinawa 903-0213, Japan

~Received 21 April 1999; published 8 September 1999!

The validity of the method of continuum discretized coupled channels~CDCC! is numerically tested and
confirmed for a realistic example ofd158Ni scattering at 80 MeV. Elastic and breakupS-matrix elements,
calculated with the CDCC method, numerically converge as the model space is extended, viz., the internal
angular momentum of the proton-neutron pair and the matching radius are increased. Two methods of discreti-
zation, the average method and midpoint method, of the continuum of the internal linear momentum of thep-n
pair are tested and found to yield the same results.@S0556-2813~99!00810-9#

PACS number~s!: 24.10.Eq, 25.45.2z
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I. INTRODUCTION

The method of continuum discretized coupled chann
~CDCC! has been successful in describing nuclear react
involving breakup processes of weakly bound projecti
@1,2#, and its theoretical foundation has been a subjec
extensive studies@1–10#. The CDCC method is concerne
with a three-body system comprised of two fragments i
which the projectile is breakable and a target nucleus wh
is assumed to be an inert core. One assumes a three-
HamiltonianH for the system comprising the kinetic ene
gies of the three particles and the interaction potentials
tween all pairs of particles in the system. In the case o
nuclear reaction such as the one we investigate in the pre
paper, one takes optical potentials for the interaction betw
the target and each of the fragments of the projectile. T
CDCC method is a practical method of solving the thre
body Schro¨dinger equation (H2E)C50. In the CDCC
method,C is expanded in the basis of the complete set
eigenfunctions of the internal Hamiltonian of the projecti
Each eigenfunction defines a channel, and is characterize
the orbital angular momentum,l and the linear momentumk
of relative motion of the fragments if the state is in the co
tinuum, and the principal quantum numbern if it is a bound
state. The unknown coefficient of the expansion is the w
function of relative motion between the projectile and t
nucleus and is a function of the relative coordinate of
channel, viz., the coordinateR of the center-of-mass of th
projectile relative to that of the target nucleus. A set
coupled equations for the wave functions of the relative m
tion of the channels is derived from the three-body Sch¨-
dinger equation. It is impossible to solve the coupled ch
nels equations exactly since the breakup states havel ranging
from 0 to infinity, andk is continuous so that a continuous
infinite number of channels are coupled in the equations
order to overcome this difficulty, the following two approx
mations are made in the CDCC method.

The first approximation is the truncation ofk and l by k
0556-2813/99/60~4!/044611~9!/$15.00 60 0446
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<km and l< l m , and the setting of the the asymptotic outg
ing wave boundary condition atR5Rm . We call this ap-
proximation the model space approximation. It is justified
the CDCC solution converges to the exact one as the m
space is extended.

The second approximation is the discretization of thek
continuum. Two methods of discretization have been used
far, the average~Av! method @3# and the midpoint~Mid!
method@9#. It is the former method that is widely used i
practice and is examined in the present paper. In these m
ods, thek continuum is divided into a finite number of bins
and the internal states within each bin are represented
single wave function. For the validity of this approximatio
it is necessary that the result of the calculations converg
the number of the bins is increased and consequently
sizes of the bins are decreased, and that it be independe
the method of discretization.

The validity of the discretization was examined in Ref.@3#
with the Av method in which the internal wave functions
the continuous breakup states within each bin were avera
to get the representative wave function of the bin. Calcula
breakupS-matrix elements converged as the common size
the bin, D, was decreased withkm kept fixed. The Av
method, however, was criticized@7# in that it suppressed the
channel coupling potentials between breakup states at l
R. We have then examined the numerical convergence of
CDCC solution with the Mid method@9# in which the con-
tinuous breakup states in each bin were simply represe
by a breakup state wave function at a midpoint of the b
Convergence was clearly seen asD decreased withkm kept
fixed. This result was free from the criticism mentione
above since the original asymptotic form of the internal wa
functions was retained in the representative one and, he
no suppression of the coupling potentials between brea
states at largeR.

The question of crucial importance is whether t
CDCC solution, even though it numerically converges as
model space is enlarged, converges to the correct s
©1999 The American Physical Society11-1
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tion of the three-body problem. This problem has been
dressed in Ref.@10#. It has been shown that the CDCC sol
tion is first-order approximation to a set of distorted-wa
Faddeev equations@11#, and corrections to the CDCC solu
tion can be estimated and shown to decrease as the m
space is extended, unless incoming waves are generat
breakup channels atR>Rm . If incoming waves are gener
ated there, they go back to the inner regionR,Rm in which
coupling potentials between breakup channels are strong
much affect the CDCC solution in that region. A theoretic
foundation of the CDCC solution, therefore, is the assum
tion that few incoming waves are generated atR>Rm in
breakup channels. An aim of this paper is to verify this
sumption with numerical calculations.

The theoretical consideration of Ref.@10# makes no men-
tion of how fast the convergence is with respect to the
tension of the model space. If the convergence is too sl
the CDCC solution is not useful in practice. So we have
examine how fast the convergence is. In Ref.@3#, the
CDCC solution was found to converge at a reasonable
of the model space. The examination, however, used the
method for discretization. Another aim of this paper is
reexamine the convergence with the Mid method for discr
zation and show that the convergence is realized at a rea
able size of the model space.

The last aim of the present paper is to test whether the
methods of discretization give the same results. In pract
the Av method is more convenient than the Mid metho
since the Av method requires less numerical works than
Mid method.

The present paper gives a full account of our investi
tions concerning the validity and the practicality of th
CDCC method, together with discussions in terms of
behavior of the channel coupling potentials. As the test c
we take the same realistic example of deuteron scattering
breakup on58Ni at 80 MeV as in the previous work@3#. The
construction of this paper is as follows. In Sec. II, we rec
pitulate the method of CDCC and its assumptions. In S
III, our method of calculation is presented. In Sec. IV, n
merical results are presented, and Sec. V is devoted
summary and discussion.

II. METHOD OF CDCC

We consider a reaction initiated by a deuteron (d) im-
pinging on a target nucleus (A). In the CDCC method, it is
assumed that the reaction in the three-body system com
ing A and the neutron (n) and proton (p) pair in d can be
described by a model Hamiltonian

H5Kr1KR1Vnp~r !1Un~R2r /2!1Up~R1r /2!1Uc~R!.
~2.1!

HereVnp(r ) is the interaction betweenn andp. The vectorr
is a coordinate ofp relative ton, andR is the coordinate of
the center of mass of thep-n pair relative toA. The interac-
tion Up(R1r /2) @Un(R2r /2)# betweenp (n) and A is as-
sumed to be the central nuclear part of the proton@neutron#
optical potential at half the deuteron incident energy,Ed/2.
We approximate the Coulomb potential betweenp andA by
04461
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that betweend and A, Uc(R), neglecting its effect on the
internal motion of then-p pair. The operatorsKr andKR are
the kinetic energies associated withr andR.

In the CDCC method, the three-body wave functi
CJM , associated with the total angular momentumJ and its
projectionM on thez axis, is expanded as

CJM~r ,R!5F0~r !Y00~V r !YJM~VR!gJ~P0 ,R!/R

1(
l 50

`

(
L

@Yl~V r ! ^ YL~VR!#JM

3E
0

`

F l~k,r !glLJ~P,R!dk/R ~2.2!

in an orthonormal basis set of the internal wave functions
the p-n pair, F, comprising the ground state wave functio
F0(r ) and the breakup state wave functionsF l(k,r ), char-
acterized by the linear momentumk and the angular momen
tum l of relative motion betweenp andn, both ranging from
zero to infinity. We assume that the deuteron ground stat
an s state so thatl 50. TheF l(k,r ) are normalized to ad
function in k. The coefficientsglLJ(P,R) of the expansion
describe the motion of a broken-upp-n pair in the state
F l(k,r ) relative to A. The linear and orbital angular mo
menta of the motion are denoted byP and L, respectively,
and the total angular momentum byJ. HereJ is given by a
vector coupling of the angular momental and L. Since we
assumel 50 for the deuteron ground state, we obtainJ5L
for the elastic channel. We denote the linear momentum
the incident deuteron byP0. The momentaP0 andP satisfy
the total energy conservation

E5
\2P2

2m
1

\2k2

mN
5

\2P0
2

2m
1e0 , ~2.3!

whereE is the total energy of the system,e0 is the binding
energy ofd, mN is the nucleon mass, andm5mN32A/(A
12) is the reduced mass.

As the first assumption of the CDCC method, the su
over l is truncated byl< l m and thek integral byk<km . We
simply takekm common to alll in the present paper. As th
second assumption, the truncatedk continuum@0, km# is dis-
cretized as follows. The truncatedk continuum@0, km# is first
divided into a finite numberN of bins, @0,k1#, @k1 ,k2#, . . . ,
@ki ,ki 11#, . . . , @kN21 ,kN#, each with a common widthD
5ki 112ki5km /N. The wave functions of the continuou
breakup states in thei th bin are replaced by a wave functio
F̂ i l (r ). Two methods have been used to defineF̂ i l (r ), the
average ~Av! method and midpoint~Mid! method. The
F̂ i l (r ) are defined in each method as

F̂ i l ~r !5
1

AD
E

ki 21

ki
F l~k,r !dk ~for Av!, ~2.4!

F̂ i l ~r !5ADF l~ k̄i ,r ! ~for Mid!, ~2.5!
1-2
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wherek̄i5(ki1ki 21)/2. TheF̂ i lm(r ) satisfy

E F̂ i lm* ~r !F̂ i 8 l 8m8~r !dr5d i i 8d l l 8dmm8 ~for Av!,

~2.6!

E F̂ i lm* ~r !F̂ i 8 l 8m8~r !dr5Dd l l 8d~ k̄i2 k̄i 8!dmm8 ~for Mid!,

~2.7!

whereF̂ i lm(r )5F̂ i l (r )Ylm(V r). Under the two assumption
described above,CJM takes the form

CJM'F̂0~r ,VR!ĝJ~P0 ,R!/R

1(
l 50

l m

(
L

(
i 51

N

F̂g~ k̂i ,r ,VR!ĝg~ P̂i ,R!/R, ~2.8!

where

F̂0~r ,VR!5F0~r !Y00~V r !YJM~VR!, ~2.9!

F̂g~ k̂i ,r ,VR!5F̂ i l ~r !@Yl~V r ! ^ YL~VR!#JM

for g5~ i ,l ,L,J,M ! ~2.10!

and

ĝJ~P0 ,R!5gJ~P0 ,R!, ~2.11!

ĝg~ P̂i ,R!5ADgg~ P̂i ,R! for g5~ i ,l ,L,J,M !.
~2.12!

The k̂i are defined ask̂i
25 k̄i

21D2/12 for the Av method@1#

and k̂i5 k̄i for the Mid method. The momentak̂i and P̂i

satisfy the total energy conservationE5\2P̂i
2/(2m)

1\2k̂i
2/mN .

Unknown coefficient functionsĝg( P̂i ,R) are determined
by a set of coupled channels equations:

F d2

dR2
2 P̂i

22
L~L11!

R2
2

2m

\2
Vgg~R!G ĝg~ P̂i ,R!

5 (
g8Þg

2m

\2
Vgg8~R!ĝg8~ P̂i ,R! ~2.13!

for all g including the elastic channelg5(0,0,J,J,M ), for
which P̂05P0. Equation ~2.13! is the basic equation o
CDCC method. The coupling potentialsVgg8(R) are defined
by

Vgg8~R!5^F̂guUp~R1r /2!1Un~R2r /2!uF̂g8&,
~2.14!

where the angular brackets stand for integrations overr and
VR , the angular part ofR. The Vgg8(R) and theĝg( P̂i ,R)
04461
are independent ofM sinceH is rotationally invariant. The
set of coupled equations is solved under the asympt
boundary condition@11#

ĝg~ P̂i ,R!;uL
(2)~ P̂i ,R!dg,02A P̂i

P̂0

Sg,0uL
(1)~ P̂i ,R!,

~2.15!

whereuL
(2)( P̂i ,R) anduL

(1)( P̂i ,R) are incoming and outgo

ing Coulomb wave functions with momentumP̂i andSg,0 is
the S-matrix element for a transition 0→g, where 0 stands
for the initial channel. At largeR, Vgg(R) between dis-
cretized breakup states decreases asR24 for the Av method
and R22 for the Mid method, while the original coupling
potentials between continuous breakup states do asR22. The
CDCC calculations made so far for analyzing experimen
data used the Av method. Asymptotic boundary conditio
therefore can be set at a matching radiusRm of 30 fm or so,
because of the fast damping of the Av coupling potentia
This, however, ought to be verified by showing that the sa
S-matrix elements are obtained with the Mid method
which the damping of the coupling potentials is mu
slower.

The assumptions made in the CDCC method are sum
rized as follows. The first assumption is the sufficiency of t
model space defined with three types of truncations:~i! trun-
cation of l by a maximuml m , ~ii ! truncation ofk by a maxi-
mum km , and ~iii ! setting the asymptotic outgoing wav
boundary condition atR5Rm . The second assumption i
~iv! discretization of the truncatedk continuum@0,km#, by
either the Av or Mid method. A set of coupled integral equ
tions derived from the coupled differential equations~2.13!
has compact kernels, owing to the model space trunca
@10# even before the discretization. In this sense, the mo
space truncation is more basic than the discretization~iv!. It
is also shown in Ref.@10# that the CDCC solution tends t
the exact solution as the model space is extended, prov
~I! that no incoming wave is generated atR.Rm by long
ranged coupling potentials between breakup channels. T
cation~iii ! is only justified if assumption~I! is valid. We test
the truncations~i! and ~iii !, together with assumption~I!,
setting km51.0 fm21 as in Ref.@3#. Truncation~ii ! is not
examined in this paper since the previous test@3# confirmed
its validity. We also investigate which of the Av and Mi
methods is more practical as the method of discretizat
~iv!.

III. METHOD OF CALCULATION

We use the method of Ichimuraet al. @12# to solve the
coupled channels equations~2.13! since it is quite effective
for long ranged coupling potentials. In that metho
ĝg( P̂i ,R) is expressed as

ĝg~ P̂i ,R!5ag~R! f g~R!1ag
(1)~R!Ug

(1)~R!, ~3.1!
1-3
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where f g(R) and Ug
(1)(R) are regular and outgoing wav

solutions of uncoupled Schro¨dinger equations with the diag
onal potentials

F d2

dR2
2 P̂i

22
L~L11!

R2
2

2m

\2
Vgg~R!GUg~R!50, ~3.2!

whereUg(R) is either f g(R) or Ug
(1)(R). The coefficients

ag(R) andag
(1)(R) satisfy the coupled differential equation

d

dR
ag~R!5

2m

\ P̂g
(
g8

$@Ug
(1)~R!Vgg8~R! f g8~R!#ag8~R!

1@Ug
(1)~R!Vgg8~R!Ug8

(1)
~R!#ag8

(1)
~R!%,

~3.3!

d

dR
ag

(1)~R!52
2m

\ P̂g
(
g8

$@ f g~R!Vgg8~R! f g8~R!#ag8~R!

1@ f g~R!Vgg8~R!Ug8
(1)

~R!#ag8
(1)

~R!%, ~3.4!

and subject to the boundary conditionsag(`)5dg,0 and
ag

(1)(0)50. In actual calculations, however, the bounda
condition for ag is set at R5Rm instead of R5`. The
coupled equations are solved iteratively starting fro
ag

(1)(R)50 at all R. The resultantS-matrix elements are
given by

Sg,05FS0dg,012iAP̂0

P̂i

ag
(1)~Rm!G , ~3.5!

whereS0 is theS-matrix element for elastic scattering due
the potentialV00(R). TheS-matrix elements depend onRm ,
but theRm dependence is very weak, as shown in Sec. IV
the present test, we extendl m up to 8,Rm up to 90 fm, andN
up to 20, while we keepkm51 fm21 as mentioned in Sec. II

IV. NUMERICAL RESULTS

The results of our test concerning two assumptions,
model space truncation and the discretization of thek con-
tinuum, for the case ofd158Ni are presented in this section
We use the Becchetti-Greenlees@13# optical potentials for
the neutron- and proton-nucleus interaction at half the d
teron incident energy, and neglect spins.

A. Discretization of the k continuum

In order to see howS-matrix elements depend on th
method of discretization, we calculate breakupS-matrix ele-
mentsS(k) with both the Av and Mid methods in the iden
tical model space withkm51 fm21, Rm530 fm, and l m
50, for N ranging fromN55 to N520. Figure 1, quoted
from Ref.@9#, showsS(k) at Ed580 MeV andJ517, which
is the grazing angular momentum, for four cases ofN55, 8,
04461
n

e

u-

12, and 20. As shown in the figure,S(k) calculated with both
the Av and Mid method converge to the same values atN 5
12. The same agreement is also seen for elasticS-matrix
elements at much smallerN; in the case ofN55 and J
517, for example, the absolute value of the element
0.6254 for the Av method and 0.6252 for the Mid method
is clear that the Av method converges faster than the M
method exceptk nearkm . The slow convergence of the A
method atk near km does not matter much in calculatin
breakup cross sections since the breakupS-matrix elements
themselves are small for suchk.

The superiority of the Av method to the Mid method
the convergence may be understood by the mean value t
rem

E
ki

ki 11
gg~P,R!Fg~k,r ,VR!dk

5gg~ P̄i ,R!E
ki

ki 11
Fg~k,r ,VR!dk, ~4.1!

whereP̄i satisfiesP(ki 11), P̄i,P(ki), which is true unless
Fg(k,r ,VR) changes the sign within@ki ,ki 11#. The right-
hand side of Eq.~4.1! is ADgg( P̄i ,R)F̂g( k̂i ,r ,VR), which is
nothing but Av discretization ifP̄i5 P̂i . SincedP(k)/dk5
22mk/@mNP(k)# because ofE5\2P2/(2m)1\2k2/mN ,
P(k) changes little over the interval@ki ,ki 11# if k!P(k);
henceP̄i' P̂i exceptk nearkm . The Av discretization is thus
justified.

In the Mid method, the left-hand side of Eq.~4.1! is ap-
proximated byADgg( P̂i ,R)Fg( k̄i ,r ,VR). For the validity

FIG. 1. The modulus of theS-matrix elements of breakup pro
cesses,S(k), in d158Ni at 80 MeV. These are calculated by th
CDCC method with Av (d) and Mid ~1! discretizations withN
55, 8, 12, and 20. The solid lines correspond to the result of
Mid method withN520. Rm is taken at 30 fm.
1-4
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of this approximation, not only gg(P,R) but also
Fg(k,r ,VR) change little over the interval@ki ,ki 11#. This
condition is satisfied only forD smaller than that in the Av
method. Thus, the Av method is more practical than the M
method.

B. Model space truncation

The model space truncation is tested mainly with M
discretization. As mentioned in Sec. II, this truncation
composed of three types of truncations;~i! truncation of l,
~ii ! truncation ofk, and~iii ! setting the asymptotic boundar
condition at a finite value ofRm .

First, we test truncation~i!. Table I shows rapid conver
gence of elasticS-matrix elements with respect to increasin
l m , at the grazing angular momentumJ517, which gives
the largest contribution to the breakup cross section. In c
parison, thel 58 breakup, for example, has a contribution
less than 0.04%. The breakup up tol 52 is sufficient for
practical purposes.

BreakupS-matrix elements are much more sensitive
increasingl than the elasticS-matrix elements sincel in the
final state is not restricted as in the case of elastic scatte
In order to minimize numerical errors, we use the Av meth
in this part of our test. As shown in Figs. 2–5, break
S-matrix elements converge atl m56 with Rm560 fm fixed.

Next, we test truncation~iii !. Since the Mid coupling po-
tentials decay asR22, it is not obvious whether we can se
the asymptotic boundary condition at a reasonable valu
Rm . For l m56 andJ517, we, therefore, examine the valid
ity of it for elastic S-matrix elements. The elasticS-matrix
element calculated with the Mid method has modules 0.5
and phase 19.9° atRm530 fm. These values remain un
changed even whenRm is increased up to 90 fm, as shown
Table II. The reason for this result is well understood
terms of the coefficient functionsag(R) andag

(1)(R) of Eq.
~3.1!. We examine the behaviors ofag

(1)(R) in the neighbor-
hood ofRm set at 80 fm where the potential tails are neg
gibly small. Figure 6 is shown for the case ofJ517, l m50,
andN512. It presents the ratiorg5uag(R)/ag

(1)(R)u for k3,
at which uS(k)u is almost peaked, and fork12 close tokm .
The rg(R) drop sharply asR increases. Fork3, or for the
breakup channeli 53, it is about 0.4% nearR520 fm. For
k12, or for i 512, it is somewhat large, but still less than 3
at 20 fm. The outgoing wave boundary condition is th
satisfied within the accuracy of practical interest. This me
that few incoming waves, of whichag(R) is the amplitude,

TABLE I. Convergence of the elasticS-matrix element with
respect to increasingl m at the grazing angular momentumJ517 for
the systemd158Ni at 80 MeV. Parameters taken areRm530 fm
andkm51 fm21. Mid discretization is used withN58.

l m uSel
J u Phase~deg!

0 0.6242 24.4
2 0.5945 20.1
4 0.5956 19.9
6 0.5954 19.9
04461
d

-

g.
d

of

4

s
s

are generated atR*30 fm in breakup channels. The validit
of the asymptotic outgoing wave boundary condition for t
channeli 53 is understandable, because even the diago
potential which is the biggest among coupling potentials
tween breakup channels is a slowly varying function ofR
and is much smaller atR*30 fm than the asymptotic kinetic
energy,\2P̂i

2/2m @9#. For i 512, in contrast, this condition is
not well satisfied, since the corresponding kinetic energy
quite small for the channel. However, the diagonal poten
is still a slowly varying function ofR especially atR
*30 fm, and therefore produces few incoming waves th
@14#.

We next examine the behavior ofag
(1)(R) as a function of

R. Figure 7 shows the results for the case ofJ517, l m50,

FIG. 2. DiscretizedS-matrix elements tos-wave breakup states
with J517 andL517. These are calculated by the Av metho
Herel m varies from 0 to 8 through even values, whileRm is fixed at
60 fm. The symbolss, h, 1, d, andL correspond tol m50, 2, 4,
6, and 8, respectively.

FIG. 3. DiscretizedS-matrix elements tod-wave breakup states
with J517 andL517. These are calculated by the Av metho
Herel m varies from 0 to 8 through even values, whileRm is fixed at
60 fm. The symbolsh, 1, d, andL correspond tol m52, 4, 6,
and 8.
1-5
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and N512. Rapid convergence ofag
(1)(R) is seen for its

elastic componenti 50 and breakup componentsi 53 and
i 512. Fori 512, ag

(1)(R) shows a small slow convergenc
but is practically independent ofR for R*30 fm. This im-
plies that almost all outgoing waves are generated aR
&30 fm and few outgoing waves are newly generated aR
*30 fm. The same test for the sameJ andkm is carried out
for different l m andN, i.e., l m52 andN516. The asymptotic
outgoing wave boundary condition is set atRm588 fm. The
results are shown in Figs. 8 and 9. Again, theag

(1)(R) show
rapid convergence for the elastic channel and thes-wave (l
50) breakup channeli 54 and a small slow convergence fo
thes-wave breakup channeli 516 nearkm . The ratiorg(R)
for the channeli 516 is about 0.08 nearR520 fm, but in
practice this produces only negligible breakup cross secti

The analysis ofag
(1)(R) andrg(R) indicates (I8) that few

incoming waves are little generated atR*30 fm which
would otherwise be propagate back to the inner regionR

FIG. 4. Discretized breakupS-matrix elements tod-wave
breakup states withJ517 andL515. These are calculated by th
Av method. Herel m varies from 0 to 8 through even values, whi
Rm is fixed at 60 fm. The symbolsh, 1, d, andL correspond to
l m52, 4, 6, and 8.

FIG. 5. Discretized breakupS-matrix elements tod-wave
breakup states withJ517 andL519. These are calculated by th
Av method. Herel m varies from 0 to 8 through even values, whi
Rm is fixed at 60 fm. The symbolsh, 1, d, andL correspond to
l m52, 4, 6, and 8.
04461
s.

<Rm. The reason for this is the smoothness of coupling
tentials between breakup channels. Property (I8) guarantees
the convergence of the CDCC solution atRm530 fm. This
also means that the coupling potentials between higl
breakup channels which dominate atR.Rm do not affect the
wave function atR<Rm . This consideration is supported b
Fig. 10. The wave function atR<Rm does not contain highl
breakup components, because the coupling potentials to
breakup channels are very weak there. Thus, property~I!
guarantees also the convergence of the CDCC solution
respect to increasingl m . Assuming property~I!, the work of
Ref. @10# showed that the CDCC solution tends to the ex
one as the model space is extended. The present result
ports the statement.

V. SUMMARY AND DISCUSSION

We have numerically examined two basic assumptions
the CDCC method, the model space truncation and the
cretization of thek continuum, and the practical applicatio
of the CDCC method to nuclear reactions involving weak
bound projectiles which can break up easily, either virtua
or really, in the course of the reaction. We taked158Ni
scattering at 80 MeV as a typical realistic example and ca
out numerical tests of the two assumptions. Tests in reali
cases are important since the CDCC method has success
been used for analyses of experimental data. We have
the Beccheeti-Greenlees nucleon-nucleus optical poten
at half the incident deuteron energy, 40 MeV, throughout

TABLE II. Convergence of the elasticS-matrix element with
respect to increasingRm at the grazing angular momentumJ517
for the systemd158Ni at 80 Mev. Parameters taken arel m56 fm
andkm51 fm21. Mid discretization is used withN58.

Rm (fm) uSel
J u Phase~deg!

30 0.5954 19.9
60 0.5954 19.9
90 0.5954 19.9

FIG. 6. The ratiorg(R)5uag(R)/ag
(1)(R)u calculated with the

Mid method. Hereg is taken as (i , l , L, J)5( i ,0,17,17) fori 53
and 12.
1-6
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work. As the model space, the internal linear momentumk
and the orbital angular momentuml of then-p pair are trun-
cated atkm andl m , and the distanceR between the centers o
mass of then-p pair andA at Rm . We have changedl m up to
8 andRm up to 90 fm. We have keptkm fixed at 1 fm since
tests for increasingkm have already been made in detail
Ref. @3#.

Av discretization was criticized@4,7# for the reason tha
the coupling potentials between the discretized brea
channels decay asR24, whereas the original ones decay
R22. We have then tested the Av method by comparing
with Mid method which retains the proper asymptotic form
of the original coupling potentials. We have carried o
CDCC calculations with the two methods of discretization
the same model space withl m50, Rm530 fm and looked at
convergence of the calculatedS-matrix elements with respec
to increasingN, the number of discretized breakup channe
We have found that theS-matrix elements converge to th

FIG. 7. The amplitude functionsag
(1)(R) calculated with the

Mid method. Hereg is taken as (i , l , L, J)5( i ,0,17,17) fori 50,
3, and 12.

FIG. 8. The ratiorg(R)5uag(R)/ag
(1)(R)u calculated with the

Mid method. Hereg is taken as (i , l , L, J)5( i ,0,17,17) fori 54
and 16. Parameters taken arel m52 andN516.
04461
p

it

t

.

same values. This clearly shows that the CDCC results
independent of the method of discretization and, con
quently, justify the Av method. We have also found that t
Av method yields faster convergence and so is more us
in practice than the Mid method.

The validity of the Av method which has short range
coupling potentials raises a question: What is the role of
long ranged tails of the Mid coupling potentials atR.Rm?
We have investigated this question through the behavio
ag(R) and ag

(1)(R) which are related to the channel wav

functions asgg( P̂i ,R)5ag(R) f g(R)1ag
(1)(R)Ug

(1)(R). If
there is any incoming wave atR.Rm other than that in the
initial channel, setting the asymptotic outgoing wave boun
ary condition atR5Rm is not valid. The incoming wave
amplitude in a breakup channelg is proportional toag(R).
We have found thatag(R) is very small compared to
ag

(1)(R) in the important breakup channels for which th
S-matrix elements are large. Even in the breakup chann
with smallS-matrix elements, the asymptotic outgoing wa

FIG. 9. The amplitude functionsag
(1)(R) calculated with the

Mid method. Hereg is taken as (i , l , L, J)5( i ,0,17,17) for i
50, 4, and 16. Parameters taken arel m52 andN516.

FIG. 10. Breakup channel wave functionsĝg . Hereg is taken
as (i , l , L, J)5( i ,0,17,17) fori 53 and 8. These are calculated b
the Av method withRm560 fm. The dash-dotted and dotted line
correspond tol m52 and 6, and the solid line corresponds tol m

54.
1-7
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boundary condition is well satisfied within the accuracy
practical interest. We have extended the same calculatio
the larger model space withl m52 and reached the sam
conclusion. Thus, long ranged tails of the Mid coupling p
tentials do not make any essential contribution to
CDCC solution.

The model space truncation is the most essential assu
tion in the CDCC method, because with this truncation
kernel of the integral equation form of Eq.~2.13! is compact
@10#. It consists of three kinds of truncation:~i! truncation of
l at l m , ~ii ! truncation of k at km , and ~iii ! setting the
asymptotic boundary condition at a finite value ofRm . We
have tested the truncations~i! and ~iii !. The test of~ii ! has
already been made in detail in Ref.@3#.

The convergence of elastic and breakup cross sect
with respect tol m was first obtained in Ref.@3# with Av
discretization atl m54 for km51 fm21. It was found that
l m52 was sufficient for elastic scattering cross sections
was questioned@4#, however, if the convergence was not d
to Av discretization which alters the asymptoticR depen-
dence of the coupling potentials between continuous brea
states toR24 from the originalR22. We have, therefore
tested the validity of thel truncation with both the Av and
Mid method. The Mid coupling potentials between d
cretized breakup states retain the proper asymptotic form
the original coupling potentials. Their strength at largeR
increases withl. We have therefore increased bothl m andRm
until the S-matrix elements converge. It is found that th
important elasticS-matrix elements converge atl m52 in
both the Av and Mid methods of discretization and indep
dent ofRm for Rm>30 fm. BreakupS-matrix elements con-
verge in the Av method atl m56 andRm530 fm, and only
small S-matrix elements are sensitive toRm . The small ele-
ments also converge atl m56 and Rm560 fm. In the Mid
method, the breakupS-matrix elements converge atl m56
and Rm560 fm, except for smallS-matrix elements for
which anRm larger than 60 fm may be needed. However,
do not pursue this possibility any further, because numer
errors due to the integration of coupled differential equatio
over R larger than 60 fm may not be negligible.

When theS-matrix elements converge with respect to i
creasingl m , we have looked at the rate of convergence
the wave functions asl m increases, and found that the inn
parts of the wave functions also converge atl m56. Coupling
potentials betweenl .4 breakup channels do not affect th
-

-

.

l
s
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inner parts of the wave functions, as predicted in Ref.@5#.
We have found, from the analyses ofag

(1)(R) and
rg(R), (I8), that few incoming waves are generated atR
*30 fm. This is due to the smoothness of the coupling p
tentials between breakup channels@14#. This is a necessary
and essential condition for the validity of the model spa
truncation. Property~I! directly guarantees the convergen
of the CDCC solution with respect to increasingRm and
justifies truncation ofR. Property (I8) also shows that when
Rm.30 fm, any smooth coupling potentials betwe
breakup channels atR.Rm little reflect the outgoing waves
back to the inner regionR<Rm , namely, that coupling po-
tentials between highl breakup channels which are importa
only at R.Rm do not affect the CDCC wave function atR
<Rm . The latter, therefore, does not contain the highl
breakup components. Thus, property~I! guarantees also th
convergence of the CDCC solution with respect to increas
l m and justifies the truncation ofl. According to Ref.@10#,
furthermore, the CDCC solutionCCDCC has an error propor-
tional toVnpCCDCC. The interactionVnp(r ) is a short ranged
function of r, so only the very lowl components ofCCDCC
contribute to the error. Obviously, the error vanishes asl m
increases. Thus, the CDCC solution tends to the exact on
the model space is extended, as predicted in Ref.@10#.

We have also examined roles of the absorptive part of
optical potentials and found that the absorptive part acce
ates the convergence of the CDCC solution, as predicte
Refs.@6# and @10#.

In view of all the results described above, we conclu
that the two assumptions made in the CDCC method,
model space truncation and the discretization ofk con-
tinuum, are well justified in the realistic case investigate
The CDCC method, therefore, is well founded as a pract
method of calculation to deal with reactions involvin
weakly bound projectiles such as deuteron,6,7Li, etc.
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