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A technique for the direct treatment of asymptotic binary channels in three-body systems with bound
subsystems is developed in the framework of the hyperspherical hartidjonethod. The method is tested
on the well-studiec’Li nucleus. Comparison with “pure” HH calculations shows faster convergence of the
binding energy and larger matter radii. The model problefti* with a very loosely bound deuteron is
considered and the result demonstrates the efficiency of the method in this case. The low-lying three-cluster
states in®Li and 8B spectra are studied; various observables for such states are calculated in a three-body
+3H(®He)+ N model.[S0556-28189)01010-9

PACS numbd(s): 21.60.Gx, 21.45tv, 27.20:+n

[. INTRODUCTION three-nucleon problem and is known to ensure highly accu-
rate results for the “democratic’®H and He systemg8].

In this paper we develop simple techniques for the treatindeed, for Borromean systems, only the few lowest order
ment of long-range two-cluster correlations in the frameworkterms in the expansion contribute significantly to most of the
of a three-cluster model, and we apply this approach to studphysical observablegprovided that binary interactions do
the structure offLi and 8B nuclei. While the issue of the not contain strong repulsive cobesThis is especially true
applicability of three-cluster models is of interest itself, thewhen the binding energy is small and the three-cluster as-
structure of these nuclei is of importance for nucleosynthesigmptotics of the WF contributes predominantly to the ob-
and boron solar neutrino problems as well. Despite intensiveervables. However, in the general case of loosely bound
studies, both experimental and theoretical, many features aystems both two-body and three-body asymptotics of the
the structure of these nuclei are not well established yet. WF are significant, and this applies to thiei and B nuclei.

Three-cluster descriptions of tHi and ®B nuclei[1,2]  One may still use the HH expansion to describe such systems
seem to be very natural and transparent. In the framework djut the expansion of the outer two-body part of the WF over
such descriptions the effects of the distortion of the two-the HH basis may converge very slowly.
cluster cores’Li and 'Be are taken into account, and this  Since use of the HH expansion has many advantages in
goes beyond the binary potential modé3], and references the three-body breakup region, it would be desirable to uti-
therein. Alternative clusterizations having higher separationlize it despite the above difficulty. However, the method
energies are disregarded within the simple three-clustefeeds to be modified to cope with the two-body long-range
model we use. Those clusterizations would reduce two- an@symptotics. In fact, it has been known for many years how
three-cluster spectroscopic factors for decays into the maifp avoid the problems mentioned abdg-11]. The idea is
cluster configurations. Nevertheless, one can expect that suéqnnected with the fact that the form of the two-body outer
effects are merely small corrections. components cif the Wkboth for open and closed channjels

Two extreme situations may take place in a three-clustet® Well known;" and these components can be written down

system. In one of them the removal energy of a cluster id" an explicit form. If we subtract these components with
much lower than the binding energy of the residual two-unknown _coefflments from the WF, then_ the rema_lnder will
cluster subsystem. In such a case two-body models can tak@ve mainly the three-body asymptotics, and it can be
account of many properties of a system and correspondinﬁﬁawy expanded over the HH basis. This method was called
long-range two-body correlations. Another extreme occurdh€interpolation approachiA). It has been used a few times
when there are no bound states in any of two-body subl11.14 and has shown its a_lppllcablll_fyfl'h_e procedure en-
systems(so-called “Borromean” situation; see the reviews a@bles us to avoid matching the interior WF with the
in [4—6] and references therginStrong long-range two- asymptotic binary WF, WhIC.h is notawell—defmeq procedure
cluster correlations are absent in this case. The hypersphefR’ @ few-body WF. Physically the approach is close to
cal expansion of the wave functiaiWF) is convenient to
describe such systenj§,4]. The hyperspherical harmonic
(HH) approach has also been used for many years in theln this paper we consider only the case of closed two-body chan-
nels.
2The lack of powerful computers at that time inhibited wider ap-
*Electronic address: L.Grigorenko@surrey.ac.uk plications.
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Feshbach’s methofdL3] and also to the inclusion of distor- Alternative sets of Jacobi coordinates are obtained by cyclic
tion terms in the framework of the resonating group methocpermutations 0f1,2,3. Below we shall use hyperspherical
(RGM) [14]. coordinatesp and 6,

The main difficulty with such an approach is the necessity
to compute rather complicated nonstandard matrix elements 3
which are given by five-dimensional integrals. Here the

2_(y2 2\ — 2
method loses one of the advantages of the standard HH ap- ” =0y = A1+A2+A3i,j=§l‘j>1 AARI=R))%,
proach.

In this paper we apply the IA to study the three-cluster
nuclei. In Sec. Il we demonstrate that it is possible to avoid f=arctarix/y), X=psin(8), y=pcog0).

computations of the complicated matrix elements and deal

only with the simple HH matrix elements. In Sec. Ill it is Here the hyperradiup is a collective rotationally and per-
shown that in the case of tHii nucleus the inclusion of the mutationally invariant variable.

two-body, or binary channéBC), components into the WF In the three-body representation/f6 andA=8 nuclei
yields much faster energy convergence and leads to a largéfor details se€¢4,1]), the cluster-cluster interactions depend
matter radius as compared with the ordinary HH calcula-only on intercluster distances and cluster spins and isospins.
tions. In Sec. IV the approach is tested for the model case okfter separation of the c.m. motion the “active” WFs have
a three-cluster system extremely weakly bound with respeahe form

to the two-body decay. While the ordinary HH expansion

runs into problems in this case, the new method remains T

applicable. The real example of such a system is iBe W im(X,Y, 04, 72), ©)
nucleus which is bound by only 0.138 MeV relative to the

two-body "Be+ p threshold and by 1.725 MeV relative to whereo,; andr,; are cluster spin and isospin variabl@sM,

the three-bodyx +3He+ p threshold. Study of the structure andT are, respectively, the total angular momentum, its pro-

of the 8Li and ®B nuclei is presented in Sec. V. jection, and total isospin. The WHS) are the object of
We use unitsh=c=1. The notation 1" stands for the three-body calculations. Clusters are completely inert in this
3H cluster in8Li and the 3He cluster in®B. approach, and in order to obtain complete microscopic WFs

from Eg. (3) one should replace cluster spin and isospin

functions entering Eq(3) by intrinsic cluster WFs with
Il. THREE-BODY BOUND STATE given spin and isospin projections. In the present work the
WITH BINARY CHANNEL effects of antisymmetrization with respect to nucleons be-

Working with a three-body system it is convenient to in- longing to different clusters were taken into account approxi-

troduce translationally invariant normalized sets of Jacobmately in the usual way by employing repulsive intercluster
coordinatest, y: interactions ins waves. There exists an alternative approxi-

mate procedure, namely, use of intercluster potentials with

forbidden states and reduction of the space of three-body

AA, states via projecting out the two-cluster forbidden states. The

X3=CX3=Cx(Ri=R2), C=\ 172+ (D  two procedures were compared with each other in a number

1 of papers[15,4,16, and practically no differences in values

of the observables of the types we consider were found.

AR AR, A disadvantage of the HH_ method, in_ the case when a

y3=CyY3=Cy(W— 3), bound two-body subsystem is present, is that it does not
1tm2 provide the true asymptotic behavior of the WF at lapge

Formally, the HH basis is complete on the hypersphere of

fixed hyperradius. So at a givgnvalue one can reproduce
A /(A1+A2)A3 ) the WF with any precision, increasing the number of basis
Y Ai+A+A; HHs. However, for some physical problems, requiring exact

knowledge of the asymptotics, the computational power may

WhereA; andR; is the mass number and the coordinate ofexpire faster than the necessary precision is achieved. We are
theith particle. Assuming that the third particle is arpar- ~ 90ing to resolve this problem, writing j, as a sum of the
ticle for ®Li and a neutron(proton for 8Li (®B), the ‘“democratic” three-body function?$})" and the cluster

“physical” Jacobi coordinate;=R;, and Y3=Rjys are  +d functionW ) for SLi (or "Li+n, "Be+ p function for

scaled: 8Li, ®B), thus “forcing” W], to have the correct binary
asymptotics:
A:6, X3: \/1/2R12, y3:\/4/3R 12)3
Y W=V VG, @
A=8, X3=V12/MRyy, Y3=V7I8R(12s3- Here\lfgs,\,)lT is a standard HH method WF InS coupling,
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Ko Bi(X,Y)=[¢; (X)@ ¢ ; (Y)]sm- (€)
(B)T_ _-502 o v
VET=p"" 2 xc (P Tk Q)xThy ()
K=k{3) .y It is convenient to represent the quant{®) in the LS cou-
pling form
In Eq. (5), K is the generalized angular momentum quantum
number, and the multiindex denotes collectively the orbital L S ]
momentum and spin quantum numbers, ’ﬁlxjx(x)lﬂly(Y)AM | J-x
BOXY)=2 =gty Iy Sy
y=1{L.Ix.ly,S,S}. L S J
XYL @Y, (2y) ] @ Xslim - (10)

The notations=1{6,n,,n,} is used in Eq(5), andJx , are

basis HHs having the explicit form Here zmxjx(X) are the radial components of the binary sub-

I system WF with angular and total momemgaandj, . They
Tk Qs) = g (OLLY1 ()@Y ()] @ Xs]om are obtained using the same potential as used for the three-
body calculations, and their asymptotics are
xsm=[[xs,®xs,ls,® Xs,Ismy

— 00

X
_ _ _ h (X) ~ W, 1 +12(2KyX),
where s includes spins of nucleons or constituent clusters.

The hyperangular eigen1‘unctionzj$<XIy are proportional to Ja-

i i apB 2,25 M
cobi polynomialsP;*, K= \2ME,, 7= lv 2 =27, /f’ (11)
X X
N — Ny i Al Lol T 12}y + 172 o
k "(0) =N (sin6)x(coso) yF’(Kfleyly)/z (cos 29). whereM, andE, are the reduced mass and binding energy

(6)  of the binary subsystem. The functi(my(Y) is the binary

relative motion WHsubsystem %2 with respect to particle
3) with definite angular momentury . The function¢|y(Y)

min is taken independent df,. Outside the interaction region

mined by the lowest, andl, in the expansion. . .
The VzF(S) has a standard three—bc?dy bound state asympl—ﬁ'y(Y) ms 1o the(Coulomb Whittaker function deter-

totics, which is(without Coulomb interaction mined by the cluster separation energy. Its asymptotics
for largeY is

. . _ 3 .
The expansior(5) is truncated aK=K &), and in accor-

dance with Eq(6), the valueK &), =1,(min)+1,(min) is deter-

o]

p—
VT~ p~%%exp— kp}, )

—

Y —ox
lply(Y) -~ W—ny,|y+1/2(2KyY)l (12)

k= K2+ k2= \2M(E,+E,) = \V2ME 3¢,
o ’ ’ Ky=2M[E,[= V2M\[Ezees B (13

whereM is the nucleon massEz.e,is the binding energy of . _ . _ . o _

the system relative to the three-body breakup threshold, anside the interaction region this function is rather arbitrary.

ke andk, are normalized Jacobi momenta conjugateckto \We obtainedy, (Y) as a bound state in a Gaussian potential

andy. (plus a proper Coulomb, if anyThe depth of the potential
W7 in Eq. (4) is a two-body cluster WF in a physically was varied to get the correct separation energy. The width
motivatedjj representationj,=1,+S,, j,=I,+S;: (1) Of this potential is a nonlinear variational parameter.

The sensitivity to the parameter is very Idlike one keVj in
a wide rangea;,~3-8 fm; see Sec. lll. This shows high
WRT=>" §.(p)B.(X,Y) ) (g)  flexibility of our trial WF.
M El {p)Bi( Xty To avoid difficulties in solving systems of differential
equations for nonorthogonal functions we should orthogonal-
The different binary channels are numerated by the set dfze W@ to w7,

guantum numberémulti-index) i:

Kioax
=10y ivh, DT (2T 2)T
{ xboly Jy} \I,Sl\zl,ort_qul\% - %) ("P\(]N)I |JK,7)‘7K,7
K=Knin»¥
3 . .
In our calculations we took it to be the same for neutrons and :Z fi(P)Bion(er)XTMT- (14)
I

protons, equal to the average mass of nucleons.
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From hereon in the brackets -(-) for matrix elements de- 2 L(L+1)
note integration overdQs=sir’ ¢ cos’ 6dg dQ2,dQ, and G722~ 2M{Basest Vicrky(P)} [ Xi5(P)
summation over spin variables. P P
To calculate matrix element@MEs) of realistic binary e
(I-dependent, etg.potentials we should expand our basis _ iax MV
over eigenfunctions of angular momentum for each of three _K'—K(3) ) Ky Ky(P) XKy (P)
radii between particles. So to calculate matrix elements like Kf 'Ifl‘(y
(P@ATV|WT,) we are expanding’ )" over the HH func- S
tions. This simplifies greatly all the expressions, but intro- _
o . + i i
duces another truncation in our calculation, namely, the % EKV"Vi(p)f'(p)’ (a7
numberK 2, of HHs effectively taken into account in the '
binary channel MEs. It also gives an opportunity to control
the precision of ME calculations for a chosen maxirpal d? d f _ E c f
value, d_szrAi(P)ﬁJr Bi(p) i(P)—i#/ iri(p)fir(p)
K
KB X (p) t 2 DeyilPxey(p). (18)
VR=2 i) X g k(Qe), (15 < =Kn-7
[ K=k +25, P '

Here L=K+3/2, andVy,, k,(p) are standard hyperspheri-
cal MEs (see Appendix A for detai)s

3
Jg:l Vi(p,Qs)

X5, () =¥ B T ). (16)

VK’V’,KV(p):(jK’y’(QS) jKy(Qs)).

The overbar irPK;(p) reminds us that it is a given function,
I

unlike xk ,(p) and fi(p), which have to be obtained as a
solution of the Schidinger equation. The multi-index;
=;(Ix,jx,ly,jy) stands for the set of quantum numbers
(QNs), which Is specific to the binary channel numbker
unlike the multi-indexy in Eq. (5), which formally runs over .
all possible sets of qugntum numbers. As one can see from fi(p)p:mconst, fi'(P)p:’ 0. (19)
Eq. (10), the functionsXK;i, which have the same quantum

numbers excerjt,, differ only in a coefficientit arises from ~ Formally Eq.(19) arises from the asymptotic behavior of the
jji — LS recoupling. MEs A; andB;:
The WF\I’]M is a solution of the three-body Scliiager

equation: p—oe s
Ai(p) — const, Bj(p) — 0.

The definitions of more complicated MEs
(Ai, Bi, Ciri, Dxryiis EK%i;i) are given in Appendix B.
In Egs.(17) and (18) the functionsyy,(p) tend to zerd at
large p, while

The typical behavior of these MEs is shown in Fig. 1; the
details of the computational procedure are discussed in Ap-
pendix A. In reality, as one can see from Fig. 1, tBgp)

A set of coupled differential equations for the functions@pproaches the asymptotic values slowly. It means that the

Xk.,(p), fi(p) is obtained using the ordinary variational asymptotic behaviof19) is reached at physically reasonable
procedure: distances {10 fm without and~20 fm with Coulomb in-

teraction due to the coupling of channels. We sKip)
=const for p<pmin, f(pmin=const, andf’(pmin=0. In
practice, this does not put limits on the flexibility of our trial
wave function due to the fact thadt(?) is extremely small at
low p. This region of the WF does not influence the energy.
No sensitivity topmin can be found untip;,;,<0.6-1.6 fm,
(BH—E[w®+wE))=0, depending on the other parameters.

(H_E)\I}}MZO, H:-’l\—+\’\/:-’|\—+\,\/12+\’\/23+\731.

(T JH-E[TE+w@)=0,

When the hyperangular part of the WF is separated out,

we Obtaln a set Of Coupled equatlons to determg(p) 4The fUnCtiOnSXK,y with the quantum numbers of the binary chan-
andf;(p), which are similar to equations of a single mags nel (namely,y=y) behave ax,- at largep. For the other func-
particle motion in a deformed field: tions yy, the boundary condition&?) can be used.
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2 . - - 100 one side and to avoid complicated calculations from another
side.
What we are going to demonstrate in this section is that in
310 the presence of long-range binary correlations the conver-
gence of the radius is slower than the convergence of the
binding energy. In the ordinary HH method it could lead to a
situation where the feasible basis size is not sufficient to
describe radial properties precisely, while in the 1A method
the convergency of both energy and radius is achieved.
:'~1/p Following Ref.[4] the potentialV 5 was chosen similar
: to that in Ref[20], but with a larger radius, which makes it

0 10 20 30 40 possible to reproduce well many characteristics of te
p (fm) =6 nuclei in HH calculations. The effect of this variation of

the radius on thex-N phases is described ji@]. The poten-

FIG. 1. Typical behavior of matrix elements in Ed.8). Solid tial is of the form
curve,B;(p) using Eq.(B2); dashed curveB;(p) using Eq.(B6);
dotted curveA;(p). Calculations are performed féiti with K&,
=6, K@ =50.

A(p) (fm™)
B(p) (fm®)

Van(R)=Vc(R)+(LS)V s(R),

Normally a few tens of equatiorid7) and as many equa- Vc(R)=V¢ exfd — (R/Rg)?], (22)
tions (18) as the number of physical binary channels relevant
to the problem are present. For example, fai only one
extra equatior{18) is required: that for a deuteron in relative

s motion with the« particle. The most time-consuming part . B .
of the calculations is to obtain the expansion coefficientsVith Ro=2.35 fm. The strengths of thf potential deperl1d on
the relativeaN angular momentunt: Vo=50.0 MeV, V¢

- . .

XK?/i(p) in EQ. (16.). It can be done onc.:e during the compu— ~_4732 MeV, and V%= —23.0 MeV: Vﬁs:VEs:

tation for some trial energi sy, or to improve the quality 13 71 MeV. Components with higher angular momenta

of the WF, it can be done continuously during the search fogre put to zero. The potential is repulsive in thavave,

the bound state energy. . ~ which takes account of the Pauli principle. A pointlike Cou-
The spectroscopic factof§ ; and “radial spectroscopic  |ompb interaction was also included. TheN interaction was

functions” ijjy(Y) are defined as projections of the three-taken to be a simple central potential, acting only in ¢he

Vi s(R)=V,| g exf — (R/Ro)?],

body WF onto the bound subsystem WF: wave[14]:
Vnp(R) = —66.92 exp— (R/1.552].
S, :J IFi i (V)]AdY, (20 . .

Xy Xy It gives the deuteron binding enerdy,=2.170 MeV and
rms radius 1.97 fm. In the present calculation the binary
channel function(8) consists of theswave deuteron cluster

ijjy(Y):J' (41,5, )@Y (V)@ xs,]j Jom in a relatives state with thea particle and one equation for
the functionf;0q(p) is added to the ordinary set of HH
XWT (X, Y)dQ, dQ, Y X2dX. (21)  equationsthe results of more advanced standard HH calcu-

lations with a realistidNN potential are given, for example,
They are used below to characterize the three-body WF iff! R_ef. [4D). .
terms of a simple two-body representation Figure 2 represents the trends of convergence of the bind-
The matter radius for a system rﬁasﬁs is R2 ing energy and the matter radius in the case of an ordinary
_ 2 ) .Mt HH calculation. The convergence of the binding energy is
=(1UA)Z_1, . A(R"), where R; is the c.m. radius of : ! _ .
nucleoni. For cl sttlar systems it incorporates the e er'men—praCth"leIy achieved ak =12, andEy, differs by 2% from
tal\JI matttla.r radii <lJJf the cyonstituénlt clusﬁerS' 1(3Sfor i(r[i)tor: the asymptotic value, given by E¢23). On the contrary,
1.745) for 3He [17], and 1.46 f ¥ I. [18] '’ there is no obvious convergence for the matter radius, al-
: or “re » and 1.46 fofa particies] 1o]. though the range of its variations is about 0.1 fm. The
asymptotic binding energy of the system can be evaluated as
ll. °Li GROUND STATE

The A= 6 nuclei are well studied with various approaches B ExEx-4— Eﬁfz
including the HH method4,19]. Our purpose here is to Eas= Ex—2Ex_»+Ex_4 (23
verify the binary channel techniquéor interpolation ap-
proach before we apply it to more complicated cases, suchusing the exponential character of the energy convergence
as, for example, th&B nucleus. Therefore we simplified the for Gaussian potentials in the HH method. o= 12, Ey
potentials to obtairfLi characteristics reasonably well from =—3.91 MeV, and the asymptotic energy-s3.98 MeV.
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T T T 222 26F = ]
| %* 28F E
< 4220 3.0 ]
E /E\ % -3.2+ - :
- {os 5 = T - T
g B g2 a7t .
5 3 - .
s -3 g 20
5 1216 ;5 381 . i
g g k= WLl [ . - -
2 s A -39¢ . .
l:ﬂ 1214 \\
4 -4.0r N el S S S
T T T 2.12 0 10 20 30 40 50
0 4 8 12 >
Number K::x Number K(max
FIG. 2. Dependence of binding energsolid line, diamonds FIG. 3. The convergence curves for binding energy in the HH

and matter radiugdashed line, circloson maximal hypermomen- Method with the binary channel includely;, is the number of

tum K@ in the ordinary HH method. Potentials are given in effectivehyperspherical harmonics taken into account in the binary

Sec 1 channel(this value controls the quality of the ME calculations at
large p). Convergence is practically achievedldﬁgx~30. Differ-

. .ent curves correspond to different numbléﬁg,x of the basis hyper-
Some very small components of the WF are neglected in thigyherical harmonics taken into account. Squares, diamonds, and

calculation. In the case diLi, the main contributions to the ¢jrcles correspond 8@, =4, 6, and 8, respectively. The lines are

three-body WF arise from channels with quantum numbergjiven only to guide the eye. To demonstrate the improvement in

of the deuteron and trewave a-d relative motion. This has  comparison with ordinary HH calculations three points obtained

transparent physical meaning. For IdWvalues it is con-  without the inclusion of the binary channel are given separately:

nected with the “Pauli focusing effect;” sd@1]. For higher K&, =4 (square, K&, =6 (diamond, andK £, =8 (circle).

K values this can be understood as follows. The largekKthe

value, the larger is the characterispicdescribed by this HH. . . .

When thep v%lue becomes Iarges,ﬂthe “democr);\tic” three- (Mmarked by “IT|H+ta|I”).. The calculations of the Fhll’d type

body configurations with the “short” asymptoti@) vanish, &€ done ZW'th the binary channébr IA) technique for

and only thew + d structure with the “long” asymptoti¢12) ~ Khax=8: Kfa=50. The resuits are shown in the third row

survives. Dominance of “deuteronlike” correlation is causedof Table | and marked by “HH-BC.” If we compare the

by its energy efficiency, but to obtain it in the HH method we results of “HH+tail” and “HH +BC” calculations with

need very many HHs with deuteron quantum numbers. Thupure HH ones, we immediately see that thel asymptotics

a practical way to move far iK value in HH calculations for is very important and contributes substantially to the binding

a “non-Borromean” system is the following: starting from energy. If we compare “HH-tail” with “HH +BC” re-

someK value to retain only HHs with quantum numbers sults, we can see that the single binary channel provides a

corresponding to the clusterization of a system. larger binding energy than six three-body channels with the
The fact that aK values larger than som¢>K®) only  quantum numbers of the binary channel. This means that the

the a-d asymptotics contributes significantly to the binding suggested method works well even in g case, where the

energy can be verified in the following way. We performedseparation energy of the particle is only slightly smaller

ordinary HH calculations withK$),=8. The results are than the binding energy of the deuteron. It is also seen from

shown in the first row of Table I. Then we increas¢d, up  Table | that IA leads to a larger size of tHiti nucleus

to 14, but forK®) >8 we included only harmonics with (while the distance between valence nucleang, de-
guantum numbers, corresponding to the binary channel. Thereaseps

results are demonstrated in the second row of Table | Figures 3 and 4 refer to the case of the BC calculation.
They show how many basis HHs in the three-body channels
TABLE I. Binding energiesE;.,in MeV and geometrical char-  should be retainedq),=4,6,8) and the effective harmonics
acteristics in fm of théLi nucleus, obtained in calculations of three included in the binary channel ME calculation to obtain the
different kinds. For details, see the text. Hdg,, is the matter ~energy and matter radius. These curves correspond to the
radius,r; is the rms distance between a particte{a,N} and the parameters giving the minimal energy for fixedKﬁ)aX:

center of mass, and; is the rms distance between particlemdj. (K =4, az=3.0), KS, =6, a(12=3.8), K,

o =8, aE12)=4.O). Everywherd,(max)=I,(max)=2. We see

L Basep  Rmar  In fa NN MNa that K& =8, K@ =20-30 is enough for complete energy
HH 3.642 2.164 2.729 1.081 3.331 3.646 convergence. But in order to describe the WF precisely at

HH+tail  3.906 2204 2786 1127 3.278 3.757 large distances one should increag@), up to 40-50. This
HH+BC 4.027 228 2914 1209 3.255 3.974 does notlead to a large increase in the number of the effec-
tive harmonics since only HHs with specifi¢, I, andL
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230 acteristics is also very rapid if the binary channel MEs are
e calculated with good precisiofFig. 4, K2, =40).

'''' It should be noted that the value obtained Ry, in the
ordinary HH calculations with a realistidlN potential is
Rmar~2.35 fm (for K& =12[4]). It is at the lower limit of
the experimental value 2#40.05 fm[22]. With our simple
NN potential we getRya~2.2 for K&, =12 in pure HH
220} g calculations. Calculations with the BC gave2.29 fm. To-
gether with an overestimation of the binding energy, con-
tracting the system, this makes us think that using the same
approach with a realistid N potential it would be possible to
215 0 0 o 0 s reproduceRy for SLi rather well.

Number K(nfix

2251

R_. (fm)

IV. MODEL WITH A REDUCED «a-N INTERACTION
FIG. 4. The convergence curves for matter radii with the binary

channel includedk ), is the number of theffectivehyperspherical The °Li nucleus is not the most suitable case for applica-

harmonics taken into account in the binary channel ME. Differenttion of the binary channel technique. The separation energy

curves correspond to different numbers of hyperspherical harmoref the deuteron cluster is-1.8 MeV in our calculation,

ics taken into account in the “ordinary” three-body channels. Thewhile the binding energy of the deuteroni2.2 MeV. The

notation is the same as in Fig. 3. The convergence of the mattegdifference of these energies is small and close to the limit of

radius is achieved only fak @), ~40-50. “rigorous” applicability of the methodsee Appendix B, Eq.
(B5)]. The sizes of the deuteron andd relative motion

enter the expansiofis). For Kfﬁ;ﬁlZ the BC calculation WFs are comparable and therefore it is possible to expand

results(Figs. 3 and #coincide practically with the ordinar the WFs over a reasonable number of Hidee Table)l In
gs. A P y wit 3) @ y three-body systems likéBe, the two-body cluster separation
HH results shown in Fig. 2 for correspondmﬂjnasz

. . “max* _ energy is low in comparison with the binding energy of a
So Figs. 3 and 4 could be considered as an extension of Figy e This makes the ordinary HH method practically in-
2 10 higherkK valu'es.. - - applicable, as it requires a tremendous number of HH equa-

The Charac_terlsUc sensitivity of th_e _bmdmg energy andjons to be solved to reproduce the binary cluster asymptotic
the matter radius to the nonlinear variational parame{gly 4t |arge distances, as already mentioned in the Introduction.
is shown in Fig. 5. For practical purposes we can take any e pinary channel formalism was developed to deal with
value ofa;y) in a wide ra}nge(3—8 fm. _such three-body systems, with subsystems loosely bound

The following conclusion can be drawn from the studiesy it respect to the two-body threshold. In the previous sec-
of the °Li ground state. Taking into account the physical jon the method was verified in a well-investigated situation.
peculiarities of the system, na_\mely, the asymptotic formatior\;o, we want to check how well it works in the case of a
of the deuteron cluster irfLi, the method allows us 10 |5gsely bound cluster in the model situation of “nucleon
achieve a fast energy convergence, solving even very fe‘(x/eakly interacting with anv particle.”

HH equations(Fig. 3. The convergence of the radial char- |, the potential(22) we reduce the main component re-

sponsible for binding, putting/éz —41.5 MeV. The radial

-4.004 2282 spectroscopic functiong1o(Y) [i.e., the overlapg21) with
the deuteron WFfor the °Li WF of the preceding section
% 12280 and for the “®Li” WF obtained with a modified potential are
b= shown in Fig. 6. It is seen that for the case of a smallat
E’; 17778 2 separation energy the probability of finding a deuteron at
g 4006 1 12276 p=4 large distances increases sgbstantially. In Fig. 7 the conver-
S ' ME gence curves for the binding energy and the radius are
£ | shown. The set of parameters adopted in these BC calcula-
- tions is (K§=8, a12=4.0, I,(max)=I,(max)=2). The
1207 deuteron separation energy, is found to be 87 keV. Per-
-4.008 . . . forming an ordinary HH calculation, we retain all HHs with
2 4 6 8 K® <8, I,(max)=I(max)=2 and only HHs with the deu-
Gy (fm)

teron quantum numbers at highérvalues. In this calcula-

. 3) _

FIG. 5. Binding energysolid curve and matter radiugsdashed tion we were unable to go.further than upK_ ;x—ZO. We
curve as functions of the nonlinear variational paramedgf,). can, however, decreab’énaxln the BC calculat!on, to see the
The quality of the suggested variational function in the BC methogConsistency of the two approachébe HHs with BC quan-
is manifested in the high stability of the binding energy as well astum numbers play the same role as the corresponding BC
the matter radius to this parameter. Calculations are performed witfinction componenis For K&,<30 the Esg, energy is
K@ =6, K@ =50. smaller than the deuteron binding enefy=2.17 MeV, so

044312-7
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FIG. 6. Radial spectroscopic functiori@l) for d in °Li (left
axis, upper part of the figuyend ford in the model system with a
reduceda-N interaction(right axis, lower part of the figuje Cal-
culations are performed witk&) =6, K2 =50. Dashed curves
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FIG. 7. Convergence of binding ener¢golid curve$ and mat-
ter radius(dashed curvefor the model problem SLi with a re-
duceda-N interaction.” The quantitykmay is K&, for HH calcula-
tions andK @, for BC calculations. Squares stand for both pure HH
calculations and BC results with?). <30; diamonds for BC results

max
for K&, =30, and circles for the matter radius.

show the fraction of spectroscopic function connected with the bi-
nary channel.

the a+d subsystem is unbound, but expressidm) for-
mally allows it> The points for the energy convergence of
the BC calculations are not shown separately in Fig. 7 for
K <30 because they just coincide within 0.5 keV with the
points for the HH calculations.

The binding energy gained by adding the binary channel
to the “complete” K2, =8 calculation (29 channels to-
gethej is about 800 keV. This effect of the BC is not so
drastic in comparison with®), =20 ordinary HH calcula-
tions (only channels with deuteron quantum numbers are ac-
counted for, K& =10, 35 channels in total only
~130 keV. But here this energy gain allows us to get a
binding energy of the three-body system larger than the deu-
teron binding energyhence to move under the two-body
breakup thresholdand obtain good energy convergence and
a reliable WF. The ordinary HH method is good here only
for evaluation purposes, until we are able to moveKig,
~30-40. Note thaR,, is essentially larger in that case,
compared with previous calculatioffFig. 4), and needs a
largerK ) ~60-80 for convergence.

V. STRUCTURE OF THE 8Li AND B NUCLEI

This subject was discussed in brief in our previous paper
[2]. Here both the convergence of the calculations and the
physical aspects of the results are considered which were not
elucidated in2].

The parameters for Woods-Sax@WS) and Gaussian
type intercluster potentials we use are listed in Table Il. The
potentials include centra§§ andLS terms. In the WS case
the potentials are of the form

Correlation density (fm'z)

2)
ort

‘I"(

Binary channel WF

(b)

T
By

=
SSES
L7

\
=
=

N
g

==
=
=

SS
N
==

0.015
0.010
0.005
0.000
I -0.005
i -0.010
-0.015
-0.020

5
15

Y (fm) %

25

FIG. 8. Correlation density for the total WE® +¥(2) (@) and

the binary channel functiot 2

ort

(b) for 8B. HereY is the distance

betweenp and the c.m. of'Be. Note that the total WF is smooth.
The complicated spatial behavior ¥ at intermediate distances

SOver the two-body threshold the asymptotit3) for the BC
function (8) is physically irrelevant. Nevertheless, functidB)
plays a good role as the variational term.
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is connected with the orthogonalization proced(td). From the
physical point of view it is required to provide the correct
asymptotic behavior of the WF in the regions of space whigf2
fails to reproduce the correct asymptotior the fixedKﬁﬁ;X value.
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FIG. 9. Convergence of the full WF to the binary channel WF

for 8B when the precision of the BC MEs is increased. The solid,

dashed, dotted, and dash-dotted curves correspond, respectively,
K@ =70, 60, 50, and 40. The pure three-body calculatiom bi-
nary channglis represented with a dash-double-dotted curve.

V!

VesdN=2 7 exd(r—r)/a]’

Vi exd (r—ry)/a]

Ve e (r—rhyal?

(24)

The potentials reproduce well observables in binary sub
systems, as described in REE]. Coulomb potential¢A3) of
a homogeneously charged sphere are used. Radii of t

spheres are determined by the charge radii of the clustera}

value. The higher is th¥ value, the more HHs in the expan-
sion of the BC component of the WF should be retained.

roi; =5[ren()+r&()1/3,  re(p)=08 fm,  rey(®H)
=1.72(9) fm, re(3He)=1.93(5) fm [17], and ry(a)
=1.67 fm[18].

One of the important issues concerned2hwas the cal-
culation of the astrophysical fact@;(0) by means of the
asymptotic normalization coefficients methfiB,24]. This

guestion is closely connected with the problem of the radiaE

convergence of the calculations. A rather slow convergenc

PHYSICAL REVIEW GO0 044312
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FIG. 10. Convergence of the8 WF binary asymptotic when
the three-body basis is increased. The solid, dashed, dotted, and
dash-dotted curves correspond, respectivel%fﬁgflz, 10, 8, and
6. K@ =60 in all cases.

scopic function(21) and the BC relative motion function
(12) are chosen to demonstrate various aspects of conver-
gence in Figs. 9—11. The following points should be empha-
sized.

(i) The pure three-body HH method WF does not allow
one to reproduce binary asymptotics at large distafoey
many terms should be retained to reproduce lafdeehav-
ior). The dash-double-dotted curve in Fig. 9 shows HH cal-
culations withK ). =12, where all HHs up t& =6 and
only HHs with quantum numbers of the binary channel for
K® >6 are included. Aty>8 fm the true behavior of the

nAF is not reproduced.

(i) The MEs of the binary channel should be calculated
ith a high enough precisiotnumberk @) for a choserp

Figure 9 demonstrates that increaskiff), we increase the

distance at which the calculation is exact. If the line tends to
a constant in some range ¥f then we do not need to in-

rease the precision of ME calculations any more as the real
inary asymptotic is achieved.

of the three-body WF to the binary asymptotics in the case of (iil) The solid curve in Fig. 9 demonstrates that MEs of

the strong three-body Coulomb interactigay, B, in con-
trast with 8Li) was found in Ref[2]. Now we are going to
discuss this problem.

The main part of the variational calculatip2] for the 2"
ground statgg.s) consists of 42 channels witk) =6. It
includes all possible sets of quantum numbers up $63,
l,=3, andl,=3. Complete energy convergence is achieved
if we add to it 9 channels with quantum numbers of BC
("Be+p in thep wave up toK ) =12. However, this is not
enough if we want to go quite far in thevalue to calculate
MEs for electromagnetic transitions or such a subtle “ob-
servable” for g.s. WF a$§;,(0) value. The geometry of our
8B WF is shown in Fig. 8. In Figs. 9-11 we study the ac-
curacy with which our calculations reproduce the true behav-

ior of the WF at largeY. The squared ratfoof the spectro-

5This value is proportional t&;/(0) for largeY.
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he BC were calculated well enough up po-25 fm (Y
26.4 fm) with K2 =60. Figure 10 shows calculations
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FIG. 11. The same as Fig. 9, but for the model problem with no

Coulomb interaction in the binary channel. The “proton” separa-
tion energy is the same as fiB.
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TABLE Il. Parameters of the potentials used in the calculatiorf_ofind 8B (here and in Ref.2]). Thea-"t” potential is parametrized
in Gaussian forng22). For “t”- N anda-N potentials the WS forni24) is used. ‘t”- N anda-"“t” potentials have a repulsive term, as well
as an attractive term, put in a separate column. Each cell contains‘d:eathd widthr! parameters for one potential term. The diffusiness
parameters of the WS potentials are 0.7 fm for the central &8 components and 0.35 fm for theS component.

Term I “t"-N, WS a-“1" (Gaussiah a-N (WS)
vy ro Vi rh V4 ry Vi rh Vi r
Central s —33.0 2.0 350.0 1.43 -122.2 21 400.0 1.75 43.0 2.0
p —35.0 2.0 —141.6 2.1 300.0 1.43 —43.0 2.0
d —33.0 2.0 350.0 1.43 -7.0 2.0
f —35.0 2.0 —48.52 3.1
LS p —56.0 15 —-23 2.1 —114.29 15
d —56.0 15 —114.29 15
f —56.0 15 —13.2 1.91
SS S 200.0 1.43
p -27 2.0
d 200.0 1.43
f —2.7 2.0

with this value ofk &) but with K ), =6,8,10,12. This figure [2] the discrepancy is much lower. As was discussef2in
illustrates why the method is called theterpolation ap- those better results were obtained due to the use of experi-
proach the three-body basis we are using should be widenental magnetic moment values féH and *He clusters
enough to interpolate successfully the “intermediate” region(2.98uy and —2.13uy, respectively. In Refs.[25,27,26

in the space, where the asymptotic of the WF is transferredimple single-Gaussian WFs fotH and He clusters are

from the three-body one to the binary one. used and hence the magnetic moments associated with these
(iv) The binary asymptotics fofB is commonly believed clusters are close to single-particle ones (Zy9and
to be achieved at the distanc¥s-5-8 fm (see, for ex-  —1.91u,). If we substitute single-particle values in our cal-

ample,[23]). One can find in Fig. 9 that in our method com- cylations, then we obtaip(8Li) =1.16 and u(8B)=1.60
plete convergence to the binary asymptotic takes place &hich are close to those in[25,26 (w(8Li)
about 22-25 fm. We have done the special calculation with_ 1.18, 1.17, u(®B)=1.61, 1.42. Itis easy to find out that

the Coulomb interaction switched off in thep and “t”- p with x(3H)=3.28 and u(°He)=—2.47 the experimental
subsystems to find out if this is not an artifact of our methOd'magnetic moments ofB and £Li are reproduced. This al-

Simultaneously the short-range strong interact'ions WeTfws us to speculate about the possible polarization tof “
made less attractive to keep the “proton” separation energy,sters in the g.s. WFs =8 nuclei. Such a polarization

«w 8p1r H
for * B” around the experimental value. Although all other 4,64 ot destroy the three-cluster picture we use as only a
global properties of the system are practically the same, thf*EW more percent of a-wave admixture iPA=3 clusters is

exponential asymptotics for the _binary char_mel in this case i§ ficient to change the magnetic moment this way. On the
reached at essentially smaller distan@® Fig. 11thanthe  giper hang, if this guess is correct, then to describe such

COUIO;nb %Sy”}pt?t'cs \'/U;héf’ c?se. TZ'.S‘ result S.?O}’]VS tEat observables ag. for A=8 nuclei we need a RGM-like
gng SCOUI C‘E‘ cu ate VIS Tor larger Istances It the threeq,,ye| with realistic interactions, treatirgand d waves in
ody Coulomb interaction is present. triton dynamically.

. -TabIeSIII demonstra?es the gensmwty of observables for We also estimated the positions and spectroscopic factors
L|7and 8B to the maximal radiupay they are calculated ¢, \4ious states iffiLi and ®B. Calculations were done with

for.” For "Li the o_bservasbles are saturatedpgle—10 fm. 00 state or three-body quasiresonant boundary conditions

For bulk properties of°B larger distances Up ®max  (for details of the quasiresonant formalism §28). Table V

~15 fm are important. Those observables, which are sensi, mmarizes these results. The structure information in Table

tive to the asymptotics|R,— Ry|,Q,S7(0)] stabilize only at ;i given in terms ofjj coupling. This resembles the shell-

Pmax—21-25 M. Atpya—15 fm their deviations from fi-  moqe| janguage as the outer neutrigmoton is in a state

nal result are around 10%. with a definite total angular momentun,j with respect to

Table IV shows the contributions of each cluster in theyhe ¢ m_of the system. It is preferable to present the structure
quadrupole and magnetic moments. The most serious digsformation in this form, though it is well known that light

crepancies for observables|ig5,26 are those for magnetic nuclei “prefer” LS coupling. INA=8 this preference can be

moments: .théa .theoret.|cal value f8B is closg to experimen-  gean a5 the strong domination of ofmeaximum two com-
tal values in®Li and vice versa. In our previous calculations ponents in the WF i S coupling.

The 2" ground state irfLi and ®B is dominated by the
(LS Kly)=(1111) component—97%. However, about 20
I a6 M, thenpma=vV7/8Y max. other components are required to obtain energy convergence.

044312-10
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TABLE IlI. Sensitivity of various observables ifLi (left part and 8B (right pard to the radius of integratiorpma. The symbole
denotes stability of the results. The values in the table are calculated for the two-body separation energies adjusted to be exactly experi-
mental.

Prmax 7.5 10 15 % 75 10 15 %

Rimat 2.24 2.35 2.38 2.38 2.26 2.46 2.56 2.59
Ry 2.30 2.44 2.48 2.48 2.15 2.27 2.30 2.31
Ry 2.12 2.19 2.21 2.21 2.33 2.57 2.70 2.75
IRy =Ry 0.18 0.25 0.27 0.27 0.18 0.30 0.40 0.44
Q(fm?) 1.84 2.07 2.11 2.11 3.96 5.19 6.08 6.52
w (un) 1.26 1.34 1.35 1.35 1.19 1.33 1.34 1.38
S1A0) 21.0 20.8 20.0 19.2

The 1" states are the orthogonal mixture 0 andS  or final states, for example, nucleon capture’anand "Be
=1 components. The lower state consists(b®11), 83%  nuclei, nuclear fragmentation, and Coulomb dissociation of
and(1111), 15%; the upper state has the inverse correspond®Lj and 2B. It is seen from Table V that the excited states of
ing weights. The higher 1 level is known to have a broad the Li and "Be cores give essential contributions to spec-
width. We recall that the two-body decay properties of thetroscopic factors, especially for'istates.
states were not considered in our calculations. There are numerous fingerprints, both experimental and
The 3" is seriously mispositioned in our calculations. theoretical, of negative parity states $hi and 8B [28—30.
This state is underbound and modification of the high anguThese states can be seersagaves in neutroriprotor scat-
lar momentum components of potentials, which are not weltering, and if they are situated far from the binary threshold,
determined experimentally, does not improve the situation. ltheir signatures become too indefinite for clear experimental
makes us think that the state is falling outside of our mode|dentification. Without further details, we got the

space. The following experimental facts support this point o~ 1~ 0~ ordering for negative parity states in bothi
view: (i) low experimental spectroscopic factors for neutrongng éB.
(proton scattering on’Li (’Be) as compared to those cal-  The overall quality of the approach to the spectrumfof
culated in our model ani) the Coulomb shift is higher for =g nuclei is reasonably high considering the uncertainties of
3" state QE=2.04 MeV) than for Z or 1" (AE  experimental knowledge. Not all of the states in the spectrum
=1.98, 1.77 MeV) as we turn froniLi to ®B. It should  (3%) are within the scope of the model. Also, calculation of
mean that 3 is more compact than 2or 17, which is  magnetic moments requires renormalization of the cluster
easily understood if 3 is not a cluster state, like’2or 1*,  properties. For all the other values being calculatet also
but a “compound nucleus” state. [2]), the model did not face severe problems.

The position and width of the in 8Li were reproduced
well. The structure is dominated by a neutron in theave
(4113, 45% and4013, 32%. This is what we would expect VI. CONCLUSION
from the binary model considering the low width of the state.  Techniques for explicitly incorporating two-cluster corre-
Nevertheless, there is a significant component with fthe |ations into the three-cluster description of light nuclei have
wave ina-t relative motion(3131) “built” upon the f-wave  peen developed here in the framework of the hyperspherical
states in’Li. The decay width to the three-body continuum approach. This enables us to deal with three-body systems
(with the energy of the state adjusted to the exactly experiwhere two-body and three-body thresholds are close to each
mental valugis ~45 keV. Itis compatible with the experi- other while the two-body threshold is the lowest one. In this
mental width of the state (3515 keV) unlike the width of  \yay the main effects of the strong deformation and dynami-
binary f-wave neutron emission, which requires quite a Iowca| polarization of the two-body cores as well as the core
spectroscopic factor~+0.06-0.14) for a realistic radius of excitations are treated simultaneously.
the channel. Already in the case of systems lik®Li, where the re-

The spectroscopic factof§j ; as well as the radial spec- moval energy of the two-nucleon cluster is comparable to the
troscopic functions(21) are especially important for esti- two-nucleon binding energy, our method allows us to obtain
mates of different reactions involving these nuclei in initial a faster energy convergence and a larger binding energy than

TABLE IV. Partitions for quadrupole and magnetic momenta. The vatyes (R!’)?)y_-; give an additional insight into the quadru-
pole deformation associated with individual clusters, providing comparable values for all three clutararinl 2B; Q=3i-N,atZiTi -

Nucleus av (fm?) g, (fm»)  qee (fm?)  wg(orb)  we(orb)  pep(orb)  py(spin) ey (spin)
8L 1.82 0.573 0.965 0.0 0.120 0101  —1.843 2.975
e 3.39 0.586 0.977 0.466 0.121 0.204 2708  —2.120
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TABLE V. Dominating spectroscopic factors for thki and 8B WFs. Calculated excitation energiEs,. are given from the ground state
energies(calculated three-body separation energies are 4.647 and 1.874 MeV for the fL$.aoid ®B correspondingly Experimental
energies are frorfi22], except the energy of the second 4tate in®B, which is from[31].

State ix y Eexc E(expt) ijjy(sLi) Eexc E(expt) ijjy(sB)
2+ 1/2 3/2 0.0 0.0 0.158 0.0 0.0 0.156
3/2 1/2 0.092 0.101
3/2 3/2 0.667 0.685
1" 1/2 1/2 1.091 0.981 0.121 0.882 0.77 0.124
1/2 3/2 0.343 0.333
3/2 1/2 0.002 0.003
3/2 3/2 0.483 0.495
1+ 1/2 1/2 1.98 3.21 0.03 2.05 ~3.0[31] 0.04
1/2 3/2 0.28 0.24
3/2 1/2 0.56 0.57
3/2 3/2 0.10 0.12
3 3/2 3/2 3.87 2.255 0.95 2.97 2.32 0.88
4% 1/2 7/2 6.77 6.53 0.65 5.85 0.60

&This value was given erroneously in Ref&,33] as 0.083. However, it does not influence the results and conclusions of Reifind
changes the results of R¢83] only slightly.

the most extensive HH calculations done so far without theport. Support from Russian RFBR Grant Nos. 96-02-17517,

two-cluster component. In addition, in the case of three96-15-96548, and 97-02-17003 is acknowledged. The au-

cluster systems with small removal energy of the two-bodythors thank I. Thompson and K. Jones for a careful reading

cluster, when the latter type calculations become quit®f the manuscript and useful comments.

lengthy, our approach remains appropriate. It has been dem-

onstrated in this paper that when the removal energy is veryA‘PPENDIX A: STANDARD HYPERSPHERICAL METHOD

small, and the ordinary HH calculation runs into problems, MATRIX ELEMENTS

our approach works quite well. To solve the three-body problem the following MEs
We have applied the approach to study the structure of thehould be calculate@in Jacobi system)3

8Li and ®B nuclei considered as three-clustet *H(*He)

+N systems. Ground state properties, such as neutron, pro- A A,
ton, and matter radii, quadrupole and magnetic moments, and(V12X)| Vg Y = A1+A2X Vai Y+A1+A2X :
the asymptotic normalization constant, have been consid- (A1)

ered. In particular, the shortcomings of the three-cluster . _ L
model for a description of the magnetic moments have beeh € main problem of ME calculations for the realistic binary

discussed. Level positions and spectroscopic factors of varll -dependent, etcpotentials is that any basis functions for

ous configurations in the ground and excited states have bedfPre than two particles have definite relative angular mo-

; ) ; entum only for one pair of particles. So on{y/,(X))
obtained. The three-cluster model was found to provide é;ould be calculated easily. In the HH method this problem is

good overall description of experimental data. We note tharesolve d by the Raynal-Revai coefficient formaligae].

our v_alues of the s_pectroscopic factors of ﬁ& 9.S. WaV€  Thase coefficients expand HHs in one Jacobi sySteunm-
function have obtained an experimental confirmation in theoeri) over HHs in the other Jacobi systgmumber;):

experiment on Coulomb breakup 8B [32]. The B wave
function has also been successfully used for estimations of Ly oy Ily . Iy
the “Be momentum distributions from recently measuf&d KLS(I)_l—El— RTXTy(J — LKL g
fragmentation on a carbon target at high endi3gi. Xy

Three-cluster states in tHfBe nucleus can also be inves- It allows to express MEs in any Jacobi systemia those in
tigated in the framework of our model. An approach similarthe systemk#i,j, where the argument of potentis; is
to that used in the present paper may also be applied faroordinateX (in such system only integration ovelt is
studying the two-body continuum in a three-cluster systemnumerical:
For this purpose only the asymptotic behavior of the BC

components of a WF should be modified. g l};lyL,S,(i)|Vij|J:<X'LVS(i))
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Nuclear potentials are ordinary considered upf twaves, + X (p)
where they could be restricted by the experimental data. For Ap)= 2 2 X —(p)— K (B1)
higher partial waves the potentials are taken to be zero. i p) K K7 '

The Coulomb interaction is purely central and it is too
time consuming to calculate its MEs for highvalues using
the procedurgA2) described above. The second and third .
MEs in Eq.(A1) of Coulomb potentials for a homogeneously B.(p)= 1 2 E ( )
charged sphere radiug;; are calculated using expansions ip i K 5 XKY. P
over spherical functions:

d2 £(£+ 1)
2

~2M{Egsept Vicy, k3 ()} [Xicy (p),  (B2)

Z.Z
i for rij>rgj,
C rIJ
V( )(r ])— lega( rizj ) (A3)
3——| for rij<rg, 2M
2r g r2; o Cii(p)= ¢(p)K§:’< 2 Ve, Ky,(p)XK, (P)XKY(P)
Yi"%i
VIPQY+Cixh= X (Cy/ICy])
Dyryri(p)= EEVK <y (PIXe=(p),
XY@ Y, (1) Tov (X, ). s ¢<P> MR

The coefficientC;; for the third Jacobi system are given in
Eqg. (Al): +
Exy,ir(p) ZME Vi (P)Xicry (),

<'>(x Y)=2m(—)"1

1 where
xf d7 Pi(n)VO({CIX?+Y2+2C; XY 7).
-1
(A4) - KST?;X + Kgnz)
Integration in Eq.(A4) could be done analytically fov|f R EK,K@) ' EK: EK O
given by Eq.(A3): mn max
.
~7 Y oDV T [ .
Tl OMPIT () H0)=S S (PP (83)
Yi
2 (_)|X+|>’,+I+L Tzixiy
1=tmin +Tmax 4w |A§ We cannot improve the computation of the MEs,,
LLL Diyri, andEy,,ir,, (if we are using noncentral potentials
x[ o }C:XO|0C|XQ|05L’L58’S in any other way than increasirgf2),. But we can improve
e 1y | the computation ofA;(p), Eqg. (B1), and ¢;(p), Eq. (B3), at

large p using an exact form oB}"

J szvw)v("(xv)zp Y(6)sir?(6)co(6)d .

Intermediate angular momentdave very few allowed val- ort _ S —i _
) B(X,Y)=B;i(X,Y)— - (Q5).
Ues, L min=max(l — LI, —1}) and | e = min( 1l +1,), TXN=BOXY) =2 2 X (p) Tk, (Ds)
making the numerical part of the calculations very compact.

APPENDIX B: ADDITIONAL MATRIX ELEMENTS Then
FOR THE BINARY CHANNEL EQUATION
Using the hyperspherical decompositi¢ib) and (16) of - _
the BC function, the ME used in Eqgl7) and (18) can be bi(p)=(B|B)—> > {XK;(P)}Z,
written as Koy :

044312-13
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432 W' i | 5 sing [\ the physical situ.ation of interest, when the_ binary system is
Ai(p)= XY X Yy —y( X X) weakly bound with respect to the third particle. If we cannot
bi(p )L XY 2XY Cx Y1 Xy perform subtraction(binary subsystem is deeply boynd
, f(p) would not achieve the correct asymptotic behaxior
N cosé '/"xjx(ﬂ) the realistic calculation However, we can exploit the high
Cc, X 1\Y flexibility of the BC function even in that case. Using the
, property of the functiorss;,
- dxi;:(p)
— Ky, . -~ -
Py ; ; Xicy, (P) g, (B4) (A—E)B=(Vagt Vg~ V,) B;,

whereV, is the potential which was used to construct the

C andC, are defined in Eqg1) and(2), J=(C,Cy) "*. For  function g, (Y), one can obtain another expression for
p—0 th|s method is less reliable than that given by Eqs B.(p): Y
i(p):

(B1) and (B3), so both methods were combined in the cal-
culations.

The most complicated is MEB2), which can be written B,(p)= 2M
in symbolic form as ' ®i(p)

[ (Bi|Vy|B)— ZEK: > (BiVy|s7K,a|y)?K;i(P)
Yi

2M
Bi(p)=— —— (B|A—E| B, —E 2 (T IV )XKy,(P)XKy(P)
d)( ) K'K %7
whereB?"is asymptoticallyan eigenfuncton of Hamiltonian, =
o - (Tkr +Vai T
such thatBi(p)p—> 0. However, the ME of the kinetic en- E y% <y VastVal Jicy XKV’(p)XKV(p)

ergy, ¢i(p) " X(BT|B"), is decreasing slowly. Such a be-

havior is in principle compensated by the MEs of potentials +E 2 (o) d? CL(L+D)

entering into the Hamiltonian. In practice the hyperspherical Ky 2Mdp2  2Mp? 3sep

MEs of potentials decrease quite rapidly wjh(for given

K@), so theK? value, which we have to use to achieve ~

correct behavior foiB; (p) can be unreasonably large. De- XXK](P) ' (B6)

composing the operatd'r in T +T it is possible to find that

for The ME obtained with Eq(B6) has the Wrong behavior at

p<5-8 fm(for numerical reasonslf K&, is high enough,

E>E, (B5) then Eq.(B6) overlaps with Eq(B2) in a wide range, so they

can be easily combined. For high? [K@ =40-70 for

max

the Iong-rangeAbehavior &;(p) is connAected to the ME of Egs.(B2) and(B6) or Kggxzzo_m for Eqs(B1) and(B4)]
kinetic energy T), and otherwise withT,) [E; andE, are  different methods of ME calculation give the same result up
the binding energies of the subsystedd) and (13)]. It  to 20-25 fm, supplying us a good check as to how far we

allows us to subtract the kinetic energy ME analytically for can go inp values without loss of calculation consistency.
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