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Extended three-cluster model with two-cluster long-range correlations:
Application to the 8Li, 8B nuclei
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A technique for the direct treatment of asymptotic binary channels in three-body systems with bound
subsystems is developed in the framework of the hyperspherical harmonic~HH! method. The method is tested
on the well-studied6Li nucleus. Comparison with ‘‘pure’’ HH calculations shows faster convergence of the
binding energy and larger matter radii. The model problem ‘‘6Li’’ with a very loosely bound deuteron is
considered and the result demonstrates the efficiency of the method in this case. The low-lying three-cluster
states in8Li and 8B spectra are studied; various observables for such states are calculated in a three-bodya
13H(3He)1N model.@S0556-2813~99!01010-9#

PACS number~s!: 21.60.Gx, 21.45.1v, 27.20.1n
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I. INTRODUCTION

In this paper we develop simple techniques for the tre
ment of long-range two-cluster correlations in the framew
of a three-cluster model, and we apply this approach to st
the structure of8Li and 8B nuclei. While the issue of the
applicability of three-cluster models is of interest itself, t
structure of these nuclei is of importance for nucleosynthe
and boron solar neutrino problems as well. Despite intens
studies, both experimental and theoretical, many feature
the structure of these nuclei are not well established yet

Three-cluster descriptions of the8Li and 8B nuclei @1,2#
seem to be very natural and transparent. In the framewor
such descriptions the effects of the distortion of the tw
cluster cores7Li and 7Be are taken into account, and th
goes beyond the binary potential models~@3#, and references
therein!. Alternative clusterizations having higher separati
energies are disregarded within the simple three-clu
model we use. Those clusterizations would reduce two-
three-cluster spectroscopic factors for decays into the m
cluster configurations. Nevertheless, one can expect that
effects are merely small corrections.

Two extreme situations may take place in a three-clu
system. In one of them the removal energy of a cluste
much lower than the binding energy of the residual tw
cluster subsystem. In such a case two-body models can
account of many properties of a system and correspon
long-range two-body correlations. Another extreme occ
when there are no bound states in any of two-body s
systems~so-called ‘‘Borromean’’ situation; see the review
in @4–6# and references therein!. Strong long-range two-
cluster correlations are absent in this case. The hypersp
cal expansion of the wave function~WF! is convenient to
describe such systems@7,4#. The hyperspherical harmoni
~HH! approach has also been used for many years in

*Electronic address: L.Grigorenko@surrey.ac.uk
0556-2813/99/60~4!/044312~15!/$15.00 60 0443
t-
k
y

is
e
of

of
-

er
d
in
ch

r
is
-
ke
g
s
-

ri-

e

three-nucleon problem and is known to ensure highly ac
rate results for the ‘‘democratic’’3H and 3He systems@8#.
Indeed, for Borromean systems, only the few lowest or
terms in the expansion contribute significantly to most of
physical observables~provided that binary interactions d
not contain strong repulsive cores!. This is especially true
when the binding energy is small and the three-cluster
ymptotics of the WF contributes predominantly to the o
servables. However, in the general case of loosely bo
systems both two-body and three-body asymptotics of
WF are significant, and this applies to the8Li and 8B nuclei.
One may still use the HH expansion to describe such syst
but the expansion of the outer two-body part of the WF o
the HH basis may converge very slowly.

Since use of the HH expansion has many advantage
the three-body breakup region, it would be desirable to
lize it despite the above difficulty. However, the meth
needs to be modified to cope with the two-body long-ran
asymptotics. In fact, it has been known for many years h
to avoid the problems mentioned above@9–11#. The idea is
connected with the fact that the form of the two-body ou
components of the WF~both for open and closed channel!
is well known,1 and these components can be written do
in an explicit form. If we subtract these components w
unknown coefficients from the WF, then the remainder w
have mainly the three-body asymptotics, and it can
readily expanded over the HH basis. This method was ca
the interpolation approach~IA !. It has been used a few time
@11,12# and has shown its applicability.2 The procedure en-
ables us to avoid matching the interior WF with th
asymptotic binary WF, which is not a well-defined procedu
for a few-body WF. Physically the approach is close

1In this paper we consider only the case of closed two-body ch
nels.

2The lack of powerful computers at that time inhibited wider a
plications.
©1999 The American Physical Society12-1
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L. V. GRIGORENKOet al. PHYSICAL REVIEW C 60 044312
Feshbach’s method@13# and also to the inclusion of distor
tion terms in the framework of the resonating group meth
~RGM! @14#.

The main difficulty with such an approach is the necess
to compute rather complicated nonstandard matrix elem
which are given by five-dimensional integrals. Here t
method loses one of the advantages of the standard HH
proach.

In this paper we apply the IA to study the three-clus
nuclei. In Sec. II we demonstrate that it is possible to av
computations of the complicated matrix elements and d
only with the simple HH matrix elements. In Sec. III it
shown that in the case of the6Li nucleus the inclusion of the
two-body, or binary channel~BC!, components into the WF
yields much faster energy convergence and leads to a la
matter radius as compared with the ordinary HH calcu
tions. In Sec. IV the approach is tested for the model cas
a three-cluster system extremely weakly bound with resp
to the two-body decay. While the ordinary HH expansi
runs into problems in this case, the new method rema
applicable. The real example of such a system is the8B
nucleus which is bound by only 0.138 MeV relative to t
two-body 7Be1p threshold and by 1.725 MeV relative t
the three-bodya13He1p threshold. Study of the structur
of the 8Li and 8B nuclei is presented in Sec. V.

We use units\5c51. The notation ‘‘t ’’ stands for the
3H cluster in 8Li and the 3He cluster in8B.

II. THREE-BODY BOUND STATE
WITH BINARY CHANNEL

Working with a three-body system it is convenient to i
troduce translationally invariant normalized sets of Jac
coordinatesx, y:

x35CxX35Cx~R12R2!, Cx5A A1A2

A11A2
, ~1!

y35CyY35CyS A1R11A2R2

A11A2
2R3D ,

Cy5A~A11A2!A3

A11A21A3
. ~2!

WhereAi andRi is the mass number and the coordinate
the i th particle. Assuming that the third particle is ana par-
ticle for 6Li and a neutron~proton! for 8Li ( 8B), the
‘‘physical’’ Jacobi coordinatesX35R12 and Y35R(12)3 are
scaled:

A56, x35A1/2R12, y35A4/3R(12)3,

A58, x35A12/7R12, y35A7/8R(12)3.
04431
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Alternative sets of Jacobi coordinates are obtained by cy
permutations of~1,2,3!. Below we shall use hyperspherica
coordinatesr andu,

r25~x21y2!5
1

A11A21A3
(

i , j 51,i . j

3

AiAj~Ri2Rj !
2,

u5arctan~x/y!, x5r sin~u!, y5r cos~u!.

Here the hyperradiusr is a collective rotationally and per
mutationally invariant variable.

In the three-body representation ofA56 andA58 nuclei
~for details see@4,1#!, the cluster-cluster interactions depen
only on intercluster distances and cluster spins and isosp
After separation of the c.m. motion the ‘‘active’’ WFs hav
the form

CJM
T ~X,Y,szi ,tzi!, ~3!

whereszi andtzi are cluster spin and isospin variables.J, M,
andT are, respectively, the total angular momentum, its p
jection, and total isospin. The WFs~3! are the object of
three-body calculations. Clusters are completely inert in t
approach, and in order to obtain complete microscopic W
from Eq. ~3! one should replace cluster spin and isosp
functions entering Eq.~3! by intrinsic cluster WFs with
given spin and isospin projections. In the present work
effects of antisymmetrization with respect to nucleons
longing to different clusters were taken into account appro
mately in the usual way by employing repulsive interclus
interactions ins waves. There exists an alternative appro
mate procedure, namely, use of intercluster potentials w
forbidden states and reduction of the space of three-b
states via projecting out the two-cluster forbidden states.
two procedures were compared with each other in a num
of papers@15,4,16#, and practically no differences in value
of the observables of the types we consider were found.

A disadvantage of the HH method, in the case when
bound two-body subsystem is present, is that it does
provide the true asymptotic behavior of the WF at larger.
Formally, the HH basis is complete on the hypersphere
fixed hyperradius. So at a givenr value one can reproduc
the WF with any precision, increasing the number of ba
HHs. However, for some physical problems, requiring ex
knowledge of the asymptotics, the computational power m
expire faster than the necessary precision is achieved. We
going to resolve this problem, writingCJM

T as a sum of the
‘‘democratic’’ three-body functionCJM

(3)T and the clustera
1d functionCJM

(2)T for 6Li ~or 7Li1n, 7Be1p function for
8Li, 8B), thus ‘‘forcing’’ CJM

T to have the correct binary
asymptotics:

CJM
T 5CJM

(3)T1CJM,ort
(2)T . ~4!

HereCJM
(3)T is a standard HH method WF inLS coupling,
2-2
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EXTENDED THREE-CLUSTER MODEL WITH TWO- . . . PHYSICAL REVIEW C60 044312
CJM
(3)T5r25/2 (

K5Kmin
(3) ,g

Kmax
(3)

xK,g~r!JK,g~V5!xTMT
. ~5!

In Eq. ~5!, K is the generalized angular momentum quant
number, and the multiindexg denotes collectively the orbita
momentum and spin quantum numbers,

g5$L,l x ,l y ,S,Sx%.

The notationV55$u,n̂x ,n̂y% is used in Eq.~5!, andJK,g are
basis HHs having the explicit form

JK,g~V5!5cK
l xl y~u!@@Yl x

~Vx! ^ Yl y
~Vy!#L ^ xS#JM ,

xSMs
5@@xS1

^ xS2
#Sx

^ xS3
#SMs

,

wherexS includes spins of nucleons or constituent cluste
The hyperangular eigenfunctionscK

l xl y are proportional to Ja
cobi polynomialsPn

a,b ,

cK
l xl y~u!5NK

l xl y~sinu! l x~cosu! l yP(K2 l x2 l y)/2
l x11/2,l y11/2

~cos 2u!.

~6!

The expansion~5! is truncated atK5Kmax
(3) , and in accor-

dance with Eq.~6!, the valueKmin
(3) 5lx(min)1ly(min) is deter-

mined by the lowestl x and l y in the expansion.
The WF~5! has a standard three-body bound state asy

totics, which is~without Coulomb interaction!

CJM
(3)T ;

r→`

r25/2exp$2kr%, ~7!

k5Akx
21ky

25A2M ~Ex1Ey!5A2ME3sep,

whereM is the nucleon mass,3 E3sepis the binding energy of
the system relative to the three-body breakup threshold,
kx and ky are normalized Jacobi momenta conjugated tx
andy.

CJM
(2)T in Eq. ~4! is a two-body cluster WF in a physicall

motivatedj j representation,j x5 l x1Sx , j y5 l y1S3:

CJM
(2)T5(

i
f i~r!Bi~X,Y!xTMT

. ~8!

The different binary channels are numerated by the se
quantum numbers~multi-index! i:

i 5$ l x , j x ,l y , j y%,

3In our calculations we took it to be the same for neutrons a
protons, equal to the average mass of nucleons.
04431
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Bi~X,Y!5@c l xj x
~X! ^ c l y j y

~Y!#JM . ~9!

It is convenient to represent the quantity~9! in the LS cou-
pling form

Bi~X,Y!5(
LS

c l xj x
~X!c l y

~Y!

XY
L̂Ŝ̂x̂yH l x Sx j x

l y S3 j y

L S J
J

3@@Yl x
~Vx! ^ Yl y

~Vy!#L ^ xS#JM . ~10!

Here c l xj x
(X) are the radial components of the binary su

system WF with angular and total momental x and j x . They
are obtained using the same potential as used for the th
body calculations, and their asymptotics are

c l x
~X! ;

X→`

W2hx ,l x11/2~2KxX!,

Kx5A2MxEx, hx5
Z1Z2a

vx
5Z1Z2aAMx

2Ex
, ~11!

whereMx andEx are the reduced mass and binding ene
of the binary subsystem. The functionc l y

(Y) is the binary

relative motion WF~subsystem 112 with respect to particle
3! with definite angular momentuml y . The functionc l y

(Y)

is taken independent ofj y . Outside the interaction region
c l y

(Y) turns to the~Coulomb! Whittaker function deter-

mined by the cluster separation energyEy . Its asymptotics
for largeY is

c l y
~Y! ;

Y→`

W2hy ,l y11/2~2KyY!, ~12!

Ky5A2M yuEyu5A2M yuE3sep2Exu. ~13!

Inside the interaction region this function is rather arbitra
We obtainedc l y

(Y) as a bound state in a Gaussian poten
~plus a proper Coulomb, if any!. The depth of the potentia
was varied to get the correct separation energy. The w
a(12) of this potential is a nonlinear variational paramet
The sensitivity to the parameter is very low~like one keV! in
a wide range:a(12);3 –8 fm; see Sec. III. This shows hig
flexibility of our trial WF.

To avoid difficulties in solving systems of differentia
equations for nonorthogonal functions we should orthogon
ize CJM

(2)T to CJM
(3)T ,

CJM,ort
(2)T 5CJM

(2)T2 (
K5Kmin

(3) ,g

Kmax
(3)

~CJM
(2)TuJK,g!JK,g

5(
i

f i~r!B i
ort~X,Y !xTMT

. ~14!d
2-3
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From hereon in the brackets (•••) for matrix elements de-
note integration overdV55sin2 u cos2 u du dVxdVy and
summation over spin variables.

To calculate matrix elements~MEs! of realistic binary
( l -dependent, etc.! potentials we should expand our bas
over eigenfunctions of angular momentum for each of th
radii between particles. So to calculate matrix elements
(CJM

(2)TuV̂uCJM
T ) we are expandingCJM

(2)T over the HH func-
tions. This simplifies greatly all the expressions, but int
duces another truncation in our calculation, namely,
numberKmax

(2) of HHs effectively taken into account in th
binary channel MEs. It also gives an opportunity to cont
the precision of ME calculations for a chosen maximalr
value,

Cort
(2)5(

i
f i~r! (

K5Kmax
(3)

12,ḡ i

Kmax
(2)

x̄Kḡ i

i
~r!

r5/2
JK,ḡ i

~V5!, ~15!

x̄Kḡ i

i
~r!5r5/2~Bi uJK,ḡ i

!. ~16!

The overbar inx̄Kḡ i

i (r) reminds us that it is a given function

unlike xK,g(r) and f i(r), which have to be obtained as
solution of the Schro¨dinger equation. The multi-indexḡ i

5ḡ i( l x , j x ,l y , j y) stands for the set of quantum numbe
~QNs!, which is specific to the binary channel numberi,
unlike the multi-indexg in Eq. ~5!, which formally runs over
all possible sets of quantum numbers. As one can see f
Eq. ~10!, the functionsx̄Kḡ i

i , which have the same quantu

numbers exceptj y , differ only in a coefficient~it arises from
j j →LS recoupling!.

The WFCJM
T is a solution of the three-body Schro¨dinger

equation:

~Ĥ2E!CJM
T 50, Ĥ5T̂1V̂5T̂1V̂121V̂231V̂31.

A set of coupled differential equations for the functio
xK,g(r), f i(r) is obtained using the ordinary variation
procedure:

~JK,guĤ2EuC (3)1Cort
(2)!50,

~B i
ortuĤ2EuC (3)1Cort

(2)!50.

When the hyperangular part of the WF is separated
we obtain a set of coupled equations to determinexKg(r)
and f i(r), which are similar to equations of a single massM
particle motion in a deformed field:
04431
e
e
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F d2

dr2 2
L~L11!

r2
22M $E3sep1VKg,Kg~r!%GxKg~r!

5 (
K85Kmin

(3) ,g8
K8,g8ÞK,g

Kmax
(3)

2MVK8g8,Kg~r!xK8g8~r!

1(
i ,ḡ i

EKg,i ḡ i
~r! f i~r!, ~17!

F d2

dr21Ai~r!
d

dr
1Bi~r!G f i~r!5 (

iÞ i 8
Ci 8 i~r! f i 8~r!

1 (
K85Kmin

(3) ,g8

Kmax
(3)

DK8g8 i~r!xK8g8~r!. ~18!

HereL5K13/2, andVK8g8,Kg(r) are standard hyperspher
cal MEs ~see Appendix A for details!:

VK8g8,Kg~r!5S JK8g8~V5!U (
j Þk51

3

Vjk~r,V5!UJKg~V5!D .

The definitions of more complicated ME
(Ai , Bi , Ci 8 i , DK8g8 i , EKg,i ḡ i

) are given in Appendix B.

In Eqs. ~17! and ~18! the functionsxKg(r) tend to zero4 at
larger, while

f i~r! →
r→`

const, f i8~r! →
r→`

0. ~19!

Formally Eq.~19! arises from the asymptotic behavior of th
MEs Ai andBi :

Ai~r! →
r→`

const, Bi~r! →
r→`

0.

The typical behavior of these MEs is shown in Fig. 1; t
details of the computational procedure are discussed in
pendix A. In reality, as one can see from Fig. 1, thatB(r)
approaches the asymptotic values slowly. It means that
asymptotic behavior~19! is reached at physically reasonab
distances (;10 fm without and;20 fm with Coulomb in-
teraction! due to the coupling of channels. We setf (r)
5const for r,rmin , f (rmin)5const, and f 8(rmin)50. In
practice, this does not put limits on the flexibility of our tria
wave function due to the fact thatCort

(2) is extremely small at
low r. This region of the WF does not influence the ener
No sensitivity tormin can be found untilrmin,0.6–1.6 fm,
depending on the other parameters.

4The functionsxKg with the quantum numbers of the binary cha

nel ~namely,g5ḡ i) behave asx̄Kḡ i

i at larger. For the other func-

tions xKg the boundary conditions~7! can be used.
2-4
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EXTENDED THREE-CLUSTER MODEL WITH TWO- . . . PHYSICAL REVIEW C60 044312
Normally a few tens of equations~17! and as many equa
tions ~18! as the number of physical binary channels relev
to the problem are present. For example, for6Li only one
extra equation~18! is required: that for a deuteron in relativ
s motion with thea particle. The most time-consuming pa
of the calculations is to obtain the expansion coefficie
x̄Kḡ i

i (r) in Eq. ~16!. It can be done once during the comp

tation for some trial energyE2sep, or to improve the quality
of the WF, it can be done continuously during the search
the bound state energy.

The spectroscopic factorsSj xj y
and ‘‘radial spectroscopic

functions’’ F j xj y
(Y) are defined as projections of the thre

body WF onto the bound subsystem WF:

Sj xj y
5E uF j xj y

~Y!u2dY, ~20!

F j xj y
~Y!5E @c l xj x

~X! ^ @Yl y
~Ŷ! ^ xS3

# j y
#JM

3CJM
T ~X,Y!dVx dVyYX2dX. ~21!

They are used below to characterize the three-body WF
terms of a simple two-body representation.

The matter radius for a system massA is Rmat
2

5(1/A)( i 51, . . . ,A^Ri
2&, where Ri is the c.m. radius of

nucleoni. For cluster systems it incorporates the experim
tal matter radii of the constituent clusters: 1.59~3! for triton,
1.74~5! for 3He @17#, and 1.46 fora particles@18#.

III. 6Li GROUND STATE

TheA56 nuclei are well studied with various approach
including the HH method@4,19#. Our purpose here is to
verify the binary channel technique~or interpolation ap-
proach! before we apply it to more complicated cases, su
as, for example, the8B nucleus. Therefore we simplified th
potentials to obtain6Li characteristics reasonably well from

FIG. 1. Typical behavior of matrix elements in Eq.~18!. Solid
curve,Bi(r) using Eq.~B2!; dashed curve,Bi(r) using Eq.~B6!;
dotted curve,Ai(r). Calculations are performed for6Li with Kmax

(3)

56, Kmax
(2) 550.
04431
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one side and to avoid complicated calculations from anot
side.

What we are going to demonstrate in this section is tha
the presence of long-range binary correlations the con
gence of the radius is slower than the convergence of
binding energy. In the ordinary HH method it could lead to
situation where the feasible basis size is not sufficient
describe radial properties precisely, while in the IA meth
the convergency of both energy and radius is achieved.

Following Ref. @4# the potentialVaN was chosen similar
to that in Ref.@20#, but with a larger radius, which makes
possible to reproduce well many characteristics of theA
56 nuclei in HH calculations. The effect of this variation o
the radius on thea-N phases is described in@7#. The poten-
tial is of the form

VaN~R!5VC~R!1~LS!VLS~R!,

VC~R!5VC
l exp@2~R/R0!2#, ~22!

VLS~R!5VLS
l exp@2~R/R0!2#,

with R052.35 fm. The strengths of the potential depend
the relativeaN angular momentuml: VC

0 550.0 MeV, VC
1

5247.32 MeV, and VC
2 5223.0 MeV; VLS

1 5VLS
2 5

211.71 MeV. Components with higher angular momen
are put to zero. The potential is repulsive in thes wave,
which takes account of the Pauli principle. A pointlike Co
lomb interaction was also included. TheNN interaction was
taken to be a simple central potential, acting only in thes
wave @14#:

Vnp~R!5266.92 exp@2~R/1.55!2#.

It gives the deuteron binding energyEx52.170 MeV and
rms radius 1.97 fm. In the present calculation the bin
channel function~8! consists of thes-wave deuteron cluste
in a relatives state with thea particle and one equation fo
the function f $0100%(r) is added to the ordinary set of HH
equations~the results of more advanced standard HH cal
lations with a realisticNN potential are given, for example
in Ref. @4#!.

Figure 2 represents the trends of convergence of the b
ing energy and the matter radius in the case of an ordin
HH calculation. The convergence of the binding energy
practically achieved atK512, andE12 differs by 2% from
the asymptotic value, given by Eq.~23!. On the contrary,
there is no obvious convergence for the matter radius,
though the range of its variations is about 0.1 fm. T
asymptotic binding energy of the system can be evaluate

Eas5
EKEK242EK22

2

EK22EK221EK24
~23!

using the exponential character of the energy converge
for Gaussian potentials in the HH method. ForK512, EK
523.91 MeV, and the asymptotic energy is23.98 MeV.
2-5
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Some very small components of the WF are neglected in
calculation. In the case of6Li, the main contributions to the
three-body WF arise from channels with quantum numb
of the deuteron and thes-wavea-d relative motion. This has
transparent physical meaning. For lowK values it is con-
nected with the ‘‘Pauli focusing effect;’’ see@21#. For higher
K values this can be understood as follows. The larger thK
value, the larger is the characteristicr described by this HH.
When ther value becomes large, the ‘‘democratic’’ thre
body configurations with the ‘‘short’’ asymptotic~7! vanish,
and only thea1d structure with the ‘‘long’’ asymptotic~12!
survives. Dominance of ‘‘deuteronlike’’ correlation is caus
by its energy efficiency, but to obtain it in the HH method w
need very many HHs with deuteron quantum numbers. T
a practical way to move far inK value in HH calculations for
a ‘‘non-Borromean’’ system is the following: starting from
some K value to retain only HHs with quantum numbe
corresponding to the clusterization of a system.

The fact that atK values larger than someK.Kmax
(3) only

the a-d asymptotics contributes significantly to the bindin
energy can be verified in the following way. We perform
ordinary HH calculations withKmax

(3) 58. The results are
shown in the first row of Table I. Then we increasedKmax

(3) up
to 14, but for Kmax

(3) .8 we included only harmonics with
quantum numbers, corresponding to the binary channel.
results are demonstrated in the second row of Tabl

FIG. 2. Dependence of binding energy~solid line, diamonds!
and matter radius~dashed line, circles! on maximal hypermomen
tum Kmax

(3) in the ordinary HH method. Potentials are given
Sec. III.

TABLE I. Binding energiesE3sepin MeV and geometrical char
acteristics in fm of the6Li nucleus, obtained in calculations of thre
different kinds. For details, see the text. HereRmat is the matter
radius,r i is the rms distance between a particlei 5$a,N% and the
center of mass, andr i j is the rms distance between particlesi andj.

6Li E3sep Rmat r N r a r NN r Na

HH 3.642 2.164 2.729 1.081 3.331 3.646
HH1tail 3.906 2.204 2.786 1.127 3.278 3.757
HH1BC 4.027 2.286 2.914 1.209 3.255 3.97
04431
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~marked by ‘‘HH1tail’’ !. The calculations of the third type
were done with the binary channel~or IA! technique for
Kmax

(3) 58, Kmax
(2) 550. The results are shown in the third ro

of Table I and marked by ‘‘HH1BC.’’ If we compare the
results of ‘‘HH1tail’’ and ‘‘HH 1BC’’ calculations with
pure HH ones, we immediately see that thea-d asymptotics
is very important and contributes substantially to the bind
energy. If we compare ‘‘HH1tail’’ with ‘‘HH 1BC’’ re-
sults, we can see that the single binary channel provide
larger binding energy than six three-body channels with
quantum numbers of the binary channel. This means that
suggested method works well even in the6Li case, where the
separation energy of thea particle is only slightly smaller
than the binding energy of the deuteron. It is also seen fr
Table I that IA leads to a larger size of the6Li nucleus
~while the distance between valence nucleonsr NN de-
creases!.

Figures 3 and 4 refer to the case of the BC calculati
They show how many basis HHs in the three-body chann
should be retained (Kmax

(3) 54,6,8) and the effective harmonic
included in the binary channel ME calculation to obtain t
energy and matter radius. These curves correspond to
parametersa(12) giving the minimal energy for fixedKmax

(3) :
(Kmax

(3) 54, a(12)53.0), (Kmax
(3) 56, a(12)53.8), (Kmax

(3)

58, a(12)54.0). Everywherel x(max)5ly(max)52. We see
that Kmax

(3) 58, Kmax
(2) 520–30 is enough for complete energ

convergence. But in order to describe the WF precisely
large distances one should increaseKmax

(2) up to 40–50. This
does not lead to a large increase in the number of the ef
tive harmonics since only HHs with specificl x , l y , and L

FIG. 3. The convergence curves for binding energy in the H
method with the binary channel included.Kmax

(2) is the number of
effectivehyperspherical harmonics taken into account in the bin
channel~this value controls the quality of the ME calculations
larger). Convergence is practically achieved atKmax

(2) ;30. Differ-
ent curves correspond to different numbersKmax

(3) of the basis hyper-
spherical harmonics taken into account. Squares, diamonds,
circles correspond toKmax

(3) 54, 6, and 8, respectively. The lines a
given only to guide the eye. To demonstrate the improvemen
comparison with ordinary HH calculations three points obtain
without the inclusion of the binary channel are given separat
Kmax

(3) 54 ~square!, Kmax
(3) 56 ~diamond!, andKmax

(3) 58 ~circle!.
2-6
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EXTENDED THREE-CLUSTER MODEL WITH TWO- . . . PHYSICAL REVIEW C60 044312
enter the expansion~15!. For Kmax
(2) <12 the BC calculation

results~Figs. 3 and 4! coincide practically with the ordinary
HH results shown in Fig. 2 for correspondingKmax

(3) 5Kmax
(2) .

So Figs. 3 and 4 could be considered as an extension of
2 to higherK values.

The characteristic sensitivity of the binding energy a
the matter radius to the nonlinear variational parametera(12)
is shown in Fig. 5. For practical purposes we can take
value ofa(12) in a wide range~3–8 fm!.

The following conclusion can be drawn from the stud
of the 6Li ground state. Taking into account the physic
peculiarities of the system, namely, the asymptotic format
of the deuteron cluster in6Li, the method allows us to
achieve a fast energy convergence, solving even very
HH equations~Fig. 3!. The convergence of the radial cha

FIG. 4. The convergence curves for matter radii with the bin
channel included.Kmax

(2) is the number of theeffectivehyperspherical
harmonics taken into account in the binary channel ME. Differ
curves correspond to different numbers of hyperspherical harm
ics taken into account in the ‘‘ordinary’’ three-body channels. T
notation is the same as in Fig. 3. The convergence of the m
radius is achieved only forKmax

(2) ;40–50.

FIG. 5. Binding energy~solid curve! and matter radius~dashed
curve! as functions of the nonlinear variational parametera(12) .
The quality of the suggested variational function in the BC meth
is manifested in the high stability of the binding energy as well
the matter radius to this parameter. Calculations are performed
Kmax

(3) 56, Kmax
(2) 550.
04431
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acteristics is also very rapid if the binary channel MEs a
calculated with good precision~Fig. 4, Kmax

(2) >40).
It should be noted that the value obtained forRmat in the

ordinary HH calculations with a realisticNN potential is
Rmat;2.35 fm ~for Kmax

(3) 512 @4#!. It is at the lower limit of
the experimental value 2.460.05 fm @22#. With our simple
NN potential we getRmat;2.2 for Kmax

(3) 512 in pure HH
calculations. Calculations with the BC gave;2.29 fm. To-
gether with an overestimation of the binding energy, co
tracting the system, this makes us think that using the sa
approach with a realisticNN potential it would be possible to
reproduceRmat for 6Li rather well.

IV. MODEL WITH A REDUCED a-N INTERACTION

The 6Li nucleus is not the most suitable case for applic
tion of the binary channel technique. The separation ene
of the deuteron cluster is;1.8 MeV in our calculation,
while the binding energy of the deuteron is;2.2 MeV. The
difference of these energies is small and close to the limi
‘‘rigorous’’ applicability of the method@see Appendix B, Eq.
~B5!#. The sizes of the deuteron anda-d relative motion
WFs are comparable and therefore it is possible to exp
the WFs over a reasonable number of HHs~see Table I!. In
three-body systems like8Be, the two-body cluster separatio
energy is low in comparison with the binding energy of
cluster. This makes the ordinary HH method practically
applicable, as it requires a tremendous number of HH eq
tions to be solved to reproduce the binary cluster asympt
at large distances, as already mentioned in the Introduct

The binary channel formalism was developed to deal w
such three-body systems, with subsystems loosely bo
with respect to the two-body threshold. In the previous s
tion the method was verified in a well-investigated situatio
Now we want to check how well it works in the case of
loosely bound cluster in the model situation of ‘‘nucleo
weakly interacting with ana particle.’’

In the potential~22! we reduce the main component r
sponsible for binding, puttingVC

1 5241.5 MeV. The radial
spectroscopic functionsF10(Y) @i.e., the overlaps~21! with
the deuteron WF# for the 6Li WF of the preceding section
and for the ‘‘6Li’’ WF obtained with a modified potential are
shown in Fig. 6. It is seen that for the case of a smallera-d
separation energy the probability of finding a deuteron
large distances increases substantially. In Fig. 7 the con
gence curves for the binding energy and the radius
shown. The set of parameters adopted in these BC calc
tions is „Kmax

(3) 58, a(12)54.0, l x(max)5ly(max)52…. The
deuteron separation energyEy is found to be 87 keV. Per-
forming an ordinary HH calculation, we retain all HHs wit
Kmax

(3) <8, l x(max)5ly(max)52 and only HHs with the deu-
teron quantum numbers at higherK values. In this calcula-
tion we were unable to go further than up toKmax

(3) 520. We
can, however, decreaseKmax

(2) in the BC calculation, to see th
consistency of the two approaches~the HHs with BC quan-
tum numbers play the same role as the corresponding
function components!. For Kmax

(2) ,30 the E3sep energy is
smaller than the deuteron binding energyEx52.17 MeV, so
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the a1d subsystem is unbound, but expression~13! for-
mally allows it.5 The points for the energy convergence
the BC calculations are not shown separately in Fig. 7
Kmax

(2) ,30 because they just coincide within 0.5 keV with t
points for the HH calculations.

The binding energy gained by adding the binary chan
to the ‘‘complete’’ Kmax

(3) 58 calculation ~29 channels to-
gether! is about 800 keV. This effect of the BC is not s
drastic in comparison withKmax

(3) 520 ordinary HH calcula-
tions ~only channels with deuteron quantum numbers are
counted for, Kmax

(3) >10, 35 channels in total!: only
;130 keV. But here this energy gain allows us to ge
binding energy of the three-body system larger than the d
teron binding energy~hence to move under the two-bod
breakup threshold! and obtain good energy convergence a
a reliable WF. The ordinary HH method is good here on
for evaluation purposes, until we are able to move toKmax

(3)

;30–40. Note thatRmat is essentially larger in that case
compared with previous calculation~Fig. 4!, and needs a
largerKmax

(2) ;60–80 for convergence.

V. STRUCTURE OF THE 8Li AND 8B NUCLEI

This subject was discussed in brief in our previous pa
@2#. Here both the convergence of the calculations and
physical aspects of the results are considered which were
elucidated in@2#.

The parameters for Woods-Saxon~WS! and Gaussian
type intercluster potentials we use are listed in Table II. T
potentials include central,SS, andLS terms. In the WS case
the potentials are of the form

5Over the two-body threshold the asymptotic~13! for the BC
function ~8! is physically irrelevant. Nevertheless, function~8!
plays a good role as the variational term.

FIG. 6. Radial spectroscopic functions~21! for d in 6Li ~left
axis, upper part of the figure! and ford in the model system with a
reduceda-N interaction~right axis, lower part of the figure!. Cal-
culations are performed withKmax

(3) 56, Kmax
(2) 550. Dashed curves

show the fraction of spectroscopic function connected with the
nary channel.
04431
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FIG. 7. Convergence of binding energy~solid curves! and mat-
ter radius~dashed curve! for the model problem ‘‘6Li with a re-
duceda-N interaction.’’ The quantitykmax is Kmax

(3) for HH calcula-
tions andKmax

(2) for BC calculations. Squares stand for both pure H
calculations and BC results withKmax

(2) ,30; diamonds for BC results
for Kmax

(2) >30, and circles for the matter radius.

FIG. 8. Correlation density for the total WFC (3)1Cort
(2) ~a! and

the binary channel functionCort
(2) ~b! for 8B. HereY is the distance

betweenp and the c.m. of7Be. Note that the total WF is smooth
The complicated spatial behavior ofCort

(2) at intermediate distance
is connected with the orthogonalization procedure~14!. From the
physical point of view it is required to provide the corre
asymptotic behavior of the WF in the regions of space whereC (3)

fails to reproduce the correct asymptotic~for the fixedKmax
(3) value!.
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VC,SS~r !5(
i

Vi
l

11exp@~r 2r i
l !/a#

,

VLS~r !5
V0

l exp@~r 2r 0
l !/a#

r ~11exp@~r 2r 0
l !/a# !2

. ~24!

The potentials reproduce well observables in binary s
systems, as described in Ref.@1#. Coulomb potentials~A3! of
a homogeneously charged sphere are used. Radii of
spheres are determined by the charge radii of the clus
r 0i j

2 55@r ch
2 ( i )1r ch

2 ( j )#/3, r ch(p)50.8 fm, r ch(
3H)

51.72(9) fm, r ch(
3He)51.93(5) fm @17#, and r ch(a)

51.67 fm @18#.
One of the important issues concerned in@2# was the cal-

culation of the astrophysical factorS17(0) by means of the
asymptotic normalization coefficients method@23,24#. This
question is closely connected with the problem of the rad
convergence of the calculations. A rather slow converge
of the three-body WF to the binary asymptotics in the case
the strong three-body Coulomb interaction~say, 8B, in con-
trast with 8Li) was found in Ref.@2#. Now we are going to
discuss this problem.

The main part of the variational calculation@2# for the 21

ground state~g.s.! consists of 42 channels withKmax
(3) 56. It

includes all possible sets of quantum numbers up toL53,
l x53, andl y53. Complete energy convergence is achiev
if we add to it 9 channels with quantum numbers of B
(7Be1p in thep wave! up toKmax

(3) 512. However, this is not
enough if we want to go quite far in ther value to calculate
MEs for electromagnetic transitions or such a subtle ‘‘o
servable’’ for g.s. WF asS17(0) value. The geometry of ou
8B WF is shown in Fig. 8. In Figs. 9–11 we study the a
curacy with which our calculations reproduce the true beh
ior of the WF at largeY. The squared ratio6 of the spectro-

6This value is proportional toS17(0) for largeY.

FIG. 9. Convergence of the full WF to the binary channel W
for 8B when the precision of the BC MEs is increased. The so
dashed, dotted, and dash-dotted curves correspond, respective
Kmax

(2) 570, 60, 50, and 40. The pure three-body calculation~no bi-
nary channel! is represented with a dash-double-dotted curve.
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scopic function~21! and the BC relative motion function
~12! are chosen to demonstrate various aspects of con
gence in Figs. 9–11. The following points should be emp
sized.

~i! The pure three-body HH method WF does not allo
one to reproduce binary asymptotics at large distances~very
many terms should be retained to reproduce largeY behav-
ior!. The dash-double-dotted curve in Fig. 9 shows HH c
culations withKmax

(3) 512, where all HHs up toKmax
(3) 56 and

only HHs with quantum numbers of the binary channel
Kmax

(3) .6 are included. AtY.8 fm the true behavior of the
WF is not reproduced.

~ii ! The MEs of the binary channel should be calculat
with a high enough precision~numberKmax

(2) ) for a chosenr
value. The higher is theY value, the more HHs in the expan
sion of the BC component of the WF should be retain
Figure 9 demonstrates that increasingKmax

(2) we increase the
distance at which the calculation is exact. If the line tends
a constant in some range ofY, then we do not need to in
crease the precision of ME calculations any more as the
binary asymptotic is achieved.

~iii ! The solid curve in Fig. 9 demonstrates that MEs
the BC were calculated well enough up tor;25 fm (Y
;26.4 fm) with Kmax

(2) 560. Figure 10 shows calculation

,
, to

FIG. 10. Convergence of the8B WF binary asymptotic when
the three-body basis is increased. The solid, dashed, dotted,
dash-dotted curves correspond, respectively, toKmax

(3) 512, 10, 8, and
6. Kmax

(2) 560 in all cases.

FIG. 11. The same as Fig. 9, but for the model problem with
Coulomb interaction in the binary channel. The ‘‘proton’’ separ
tion energy is the same as in8B.
2-9



ll
ss

L. V. GRIGORENKOet al. PHYSICAL REVIEW C 60 044312
TABLE II. Parameters of the potentials used in the calculations of8Li and 8B ~here and in Ref.@2#!. Thea-‘‘ t ’’ potential is parametrized
in Gaussian form~22!. For ‘‘t ’’- N anda-N potentials the WS form~24! is used. ‘‘t ’’- N anda-‘‘ t ’’ potentials have a repulsive term, as we
as an attractive term, put in a separate column. Each cell contains depthVi

l and widthr i
l parameters for one potential term. The diffusine

parametersa of the WS potentials are 0.7 fm for the central andSScomponents and 0.35 fm for theLS component.

Term l ‘‘ t ’’- N, WS a-‘‘ t ’’ ~Gaussian! a-N ~WS!

V0
l r 0

l V1
l r 1

l V0
l r 0

l V1
l r 1

l V0
l r 0

l

Central s 233.0 2.0 350.0 1.43 2122.2 2.1 400.0 1.75 43.0 2.0
p 235.0 2.0 2141.6 2.1 300.0 1.43 243.0 2.0
d 233.0 2.0 350.0 1.43 27.0 2.0
f 235.0 2.0 248.52 3.1

LS p 256.0 1.5 22.3 2.1 2114.29 1.5
d 256.0 1.5 2114.29 1.5
f 256.0 1.5 213.2 1.91

SS s 200.0 1.43
p 22.7 2.0
d 200.0 1.43
f 22.7 2.0
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with this value ofKmax
(2) but with Kmax

(3) 56,8,10,12. This figure
illustrates why the method is called theinterpolation ap-
proach: the three-body basis we are using should be w
enough to interpolate successfully the ‘‘intermediate’’ regi
in the space, where the asymptotic of the WF is transfer
from the three-body one to the binary one.

~iv! The binary asymptotics for8B is commonly believed
to be achieved at the distancesY;5 –8 fm ~see, for ex-
ample,@23#!. One can find in Fig. 9 that in our method com
plete convergence to the binary asymptotic takes plac
about 22–25 fm. We have done the special calculation w
the Coulomb interaction switched off in thea-p and ‘‘t ’’- p
subsystems to find out if this is not an artifact of our meth
Simultaneously the short-range strong interactions w
made less attractive to keep the ‘‘proton’’ separation ene
for ‘‘ 8B’’ around the experimental value. Although all oth
global properties of the system are practically the same,
exponential asymptotics for the binary channel in this cas
reached at essentially smaller distances~see Fig. 11! than the
Coulomb asymptotics in the8B case. This result shows tha
one should calculate WFs for larger distances if the thr
body Coulomb interaction is present.

Table III demonstrates the sensitivity of observables
8Li and 8B to the maximal radiusrmax they are calculated
for.7 For 8Li the observables are saturated atrmax;10 fm.
For bulk properties of 8B larger distances up tormax
;15 fm are important. Those observables, which are se
tive to the asymptotics@ uRn2Rpu,Q,S17(0)# stabilize only at
rmax;21–25 fm. Atrmax;15 fm their deviations from fi-
nal result are around 10%.

Table IV shows the contributions of each cluster in t
quadrupole and magnetic moments. The most serious
crepancies for observables in@25,26# are those for magnetic
moments: the theoretical value for8B is close to experimen
tal values in8Li and vice versa. In our previous calculation

7If rmax.6 fm, thenrmax'A7/8Ymax.
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@2# the discrepancy is much lower. As was discussed in@2#
those better results were obtained due to the use of exp
mental magnetic moment values for3H and 3He clusters
(2.98mN and 22.13mN , respectively!. In Refs. @25,27,26#
simple single-Gaussian WFs for3H and 3He clusters are
used and hence the magnetic moments associated with
clusters are close to single-particle ones (2.79mN and
21.91mN). If we substitute single-particle values in our ca
culations, then we obtainm(8Li) 51.16 andm(8B)51.60
which are close to those in @25,26# „m(8Li)
51.18, 1.17,m(8B)51.61, 1.42…. It is easy to find out that
with m(3H)53.28 and m(3He)522.47 the experimenta
magnetic moments of8B and 8Li are reproduced. This al-
lows us to speculate about the possible polarization of ‘t ’’
clusters in the g.s. WFs ofA58 nuclei. Such a polarization
does not destroy the three-cluster picture we use as on
few more percent of ad-wave admixture inA53 clusters is
sufficient to change the magnetic moment this way. On
other hand, if this guess is correct, then to describe s
observables asm for A58 nuclei we need a RGM-like
model with realistic interactions, treatings and d waves in
triton dynamically.

We also estimated the positions and spectroscopic fac
for various states in8Li and 8B. Calculations were done with
bound state or three-body quasiresonant boundary condit
~for details of the quasiresonant formalism see@21#!. Table V
summarizes these results. The structure information in Ta
V is given in terms ofj j coupling. This resembles the shel
model language as the outer neutron~proton! is in a state
with a definite total angular momentum (j y) with respect to
the c.m. of the system. It is preferable to present the struc
information in this form, though it is well known that ligh
nuclei ‘‘prefer’’ LS coupling. InA58 this preference can b
seen as the strong domination of one~maximum two! com-
ponents in the WF inLS coupling.

The 21 ground state in8Li and 8B is dominated by the
(LS lxl y)5(1111) component—97%. However, about 2
other components are required to obtain energy converge
2-10
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TABLE III. Sensitivity of various observables in8Li ~left part! and 8B ~right part! to the radius of integration,rmax. The symbol̀
denotes stability of the results. The values in the table are calculated for the two-body separation energies adjusted to be exac
mental.

rmax 7.5 10 15 ` 7.5 10 15 `

Rmat 2.24 2.35 2.38 2.38 2.26 2.46 2.56 2.59
Rn 2.30 2.44 2.48 2.48 2.15 2.27 2.30 2.31
Rp 2.12 2.19 2.21 2.21 2.33 2.57 2.70 2.75
uRn2Rpu 0.18 0.25 0.27 0.27 0.18 0.30 0.40 0.44
Q(fm2) 1.84 2.07 2.11 2.11 3.96 5.19 6.08 6.52
m (mN) 1.26 1.34 1.35 1.35 1.19 1.33 1.34 1.38
S17(0) 21.0 20.8 20.0 19.2
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The 11 states are the orthogonal mixture ofS50 andS
51 components. The lower state consists of~1011!, 83%
and~1111!, 15%; the upper state has the inverse correspo
ing weights. The higher 11 level is known to have a broa
width. We recall that the two-body decay properties of t
states were not considered in our calculations.

The 31 is seriously mispositioned in our calculation
This state is underbound and modification of the high an
lar momentum components of potentials, which are not w
determined experimentally, does not improve the situation
makes us think that the state is falling outside of our mo
space. The following experimental facts support this poin
view: ~i! low experimental spectroscopic factors for neutr
~proton! scattering on7Li ( 7Be) as compared to those ca
culated in our model and~ii ! the Coulomb shift is higher for
31 state (DE52.04 MeV) than for 21 or 11 (DE
51.98, 1.77 MeV) as we turn from8Li to 8B. It should
mean that 31 is more compact than 21 or 11, which is
easily understood if 31 is not a cluster state, like 21 or 11,
but a ‘‘compound nucleus’’ state.

The position and width of the 41 in 8Li were reproduced
well. The structure is dominated by a neutron in thef wave
~4113!, 45% and~4013!, 32%. This is what we would expec
from the binary model considering the low width of the sta
Nevertheless, there is a significant component with thf
wave ina-t relative motion~3131! ‘‘built’’ upon the f-wave
states in7Li. The decay width to the three-body continuu
~with the energy of the state adjusted to the exactly exp
mental value! is ;45 keV. It is compatible with the experi
mental width of the state (35615 keV) unlike the width of
binary f-wave neutron emission, which requires quite a lo
spectroscopic factor (;0.06–0.14) for a realistic radius o
the channel.

The spectroscopic factorsSj xj y
as well as the radial spec

troscopic functions~21! are especially important for est
mates of different reactions involving these nuclei in init
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or final states, for example, nucleon capture on7Li and 7Be
nuclei, nuclear fragmentation, and Coulomb dissociation
8Li and 8B. It is seen from Table V that the excited states
the 7Li and 7Be cores give essential contributions to spe
troscopic factors, especially for 11 states.

There are numerous fingerprints, both experimental
theoretical, of negative parity states in8Li and 8B @28–30#.
These states can be seen ass waves in neutron~proton! scat-
tering, and if they are situated far from the binary thresho
their signatures become too indefinite for clear experime
identification. Without further details, we got th
22, 12, 02 ordering for negative parity states in both8Li
and 8B.

The overall quality of the approach to the spectrum ofA
58 nuclei is reasonably high considering the uncertainties
experimental knowledge. Not all of the states in the spectr
(31) are within the scope of the model. Also, calculation
magnetic moments requires renormalization of the clus
properties. For all the other values being calculated~see also
@2#!, the model did not face severe problems.

VI. CONCLUSION

Techniques for explicitly incorporating two-cluster corr
lations into the three-cluster description of light nuclei ha
been developed here in the framework of the hyperspher
approach. This enables us to deal with three-body syst
where two-body and three-body thresholds are close to e
other while the two-body threshold is the lowest one. In t
way the main effects of the strong deformation and dyna
cal polarization of the two-body cores as well as the c
excitations are treated simultaneously.

Already in the case of systems like6Li, where the re-
moval energy of the two-nucleon cluster is comparable to
two-nucleon binding energy, our method allows us to obt
a faster energy convergence and a larger binding energy
-
TABLE IV. Partitions for quadrupole and magnetic momenta. The valuesqi5^(Rz
( i ))2&MZ5J give an additional insight into the quadru

pole deformation associated with individual clusters, providing comparable values for all three clusters in8Li and 8B; Q5( i 5N,a,tZiqi .

Nucleus qN (fm2) qa (fm2) q‘ ‘ t ’ ’ ( fm2) mN(orb) ma(orb) m ‘ ‘ t ’ ’ (orb) mN(spin) m ‘ ‘ t ’ ’ (spin)

8Li 1.82 0.573 0.965 0.0 0.120 0.101 21.843 2.975
8B 3.39 0.586 0.977 0.466 0.121 0.204 2.708 22.120
2-11
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TABLE V. Dominating spectroscopic factors for the8Li and 8B WFs. Calculated excitation energiesEexc are given from the ground stat
energies~calculated three-body separation energies are 4.647 and 1.874 MeV for the g.s. of8Li and 8B correspondingly!. Experimental
energies are from@22#, except the energy of the second 11 state in8B, which is from@31#.

State j x , j y Eexc E(expt) Sj xj y
(8Li) Eexc E(expt) Sj xj y

(8B)

21 1/2 3/2 0.0 0.0 0.158 0.0 0.0 0.156a

3/2 1/2 0.092 0.101
3/2 3/2 0.667 0.685

11 1/2 1/2 1.091 0.981 0.121 0.882 0.77 0.124
1/2 3/2 0.343 0.333
3/2 1/2 0.002 0.003
3/2 3/2 0.483 0.495

11 1/2 1/2 1.98 3.21 0.03 2.05 ;3.0 @31# 0.04
1/2 3/2 0.28 0.24
3/2 1/2 0.56 0.57
3/2 3/2 0.10 0.12

31 3/2 3/2 3.87 2.255 0.95 2.97 2.32 0.88
41 1/2 7/2 6.77 6.53 0.65 5.85 0.60

aThis value was given erroneously in Refs.@2,33# as 0.083. However, it does not influence the results and conclusions of Ref.@2# and
changes the results of Ref.@33# only slightly.
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is
the most extensive HH calculations done so far without
two-cluster component. In addition, in the case of thr
cluster systems with small removal energy of the two-bo
cluster, when the latter type calculations become qu
lengthy, our approach remains appropriate. It has been d
onstrated in this paper that when the removal energy is v
small, and the ordinary HH calculation runs into problem
our approach works quite well.

We have applied the approach to study the structure of
8Li and 8B nuclei considered as three-clustera13H(3He)
1N systems. Ground state properties, such as neutron,
ton, and matter radii, quadrupole and magnetic moments,
the asymptotic normalization constant, have been con
ered. In particular, the shortcomings of the three-clus
model for a description of the magnetic moments have b
discussed. Level positions and spectroscopic factors of v
ous configurations in the ground and excited states have
obtained. The three-cluster model was found to provid
good overall description of experimental data. We note t
our values of the spectroscopic factors of the8B g.s. wave
function have obtained an experimental confirmation in
experiment on Coulomb breakup of8B @32#. The 8B wave
function has also been successfully used for estimation
the 7Be momentum distributions from recently measured8B
fragmentation on a carbon target at high energy@33#.

Three-cluster states in the8Be nucleus can also be inve
tigated in the framework of our model. An approach simi
to that used in the present paper may also be applied
studying the two-body continuum in a three-cluster syste
For this purpose only the asymptotic behavior of the B
components of a WF should be modified.
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APPENDIX A: STANDARD HYPERSPHERICAL METHOD
MATRIX ELEMENTS

To solve the three-body problem the following ME
should be calculated~in Jacobi system 3!:

^V12~X!&K V23S Y2
A1

A11A2
XD L K V31S Y1

A2

A11A2
XD L .

~A1!

The main problem of ME calculations for the realistic bina
( l -dependent, etc.! potentials is that any basis functions fo
more than two particles have definite relative angular m
mentum only for one pair of particles. So only^V12(X)&
could be calculated easily. In the HH method this problem
resolved by the Raynal-Revai coefficient formalism@34#.
These coefficients expand HHs in one Jacobi system~num-
ber i ) over HHs in the other Jacobi system~numberj ):

J KLS
l xl y ~ i !5(

l̄ x l̄ y

R
l̄ xl̄ y

l xl y ~ j→ i ;KL !J KLS
l̄ xl̄ y~ j !.

It allows to express MEs in any Jacobi systemi via those in
the systemkÞ i , j , where the argument of potentialVi j is
coordinateX ~in such system only integration overdu is
numerical!:

„J
K8L8S8

l x8 l y8 ~ i !uVi j uJ KLS
l xl y ~ i !…

5 (
l̄ x8 l̄ y8 l̄ x l̄ y

R
l̄
x8 l̄

y8

l x8 l y8 ~k→ i ;K8L8!R
l̄ xl̄ y

l xl y ~k→ i ;KL !

3„J
K8L8S8

l̄ x8 l̄ y8 ~k!uVi j uJ KLS
l̄ xl̄ y~k!…. ~A2!
2-12
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Nuclear potentials are ordinary considered up tof waves,
where they could be restricted by the experimental data.
higher partial waves the potentials are taken to be zero.

The Coulomb interaction is purely central and it is t
time consuming to calculate its MEs for highK values using
the procedure~A2! described above. The second and th
MEs in Eq.~A1! of Coulomb potentials for a homogeneous
charged sphere radiusr 0i j are calculated using expansion
over spherical functions:

Vi j
(c)~r i j !55

Z1Z2a

r i j
for r i j .r 0i j ,

Z1Z2a

2r 0i j
S 32

r i j
2

r 0i j
2 D for r i j <r 0i j ,

~A3!

Vi j
(c)~ uY1Ci j Xu!5 (

l 5 l min••• l max

~Ci j /uCi j u! l

3@Yl~X̂! ^ Yl~Ŷ!#00v i j
( l )~X,Y!.

The coefficientsCi j for the third Jacobi system are given
Eq. ~A1!:

v i j
( l )~X,Y!52p~2 ! l l̂

3E
21

1

dt Pl~t!Vi j
(c)~ACi j

2 X21Y212Ci j XYt!.

~A4!

Integration in Eq.~A4! could be done analytically forVi j
(c)

given by Eq.~A3!:

„J
K8L8S8S

x8

l x8 l y8 ~ i !uVi j
(c)uJ KLSSx

l xl y ~ i !…

5 (
l 5 l min••• l max

~2 ! l x1 l y81 l 1L

4p

l̂ 2 l̂ xl̂ y

l̂ y8

3H l y l x L

l x8 l y8 l J C
l
y80l0

l x80
Cl y0l0

l x0 dL8LdS8S

3E
0

p/2

c
K8

l x8 l y8~u!v i j
( l )~X,Y!cK

l xl y~u!sin2~u!cos2~u!du.

Intermediate angular momental have very few allowed val-
ues, l min5max(ulx82lxu,uly82lyu) and l max 5 min(lx81lx ,ly81ly),
making the numerical part of the calculations very compa

APPENDIX B: ADDITIONAL MATRIX ELEMENTS
FOR THE BINARY CHANNEL EQUATION

Using the hyperspherical decomposition~15! and ~16! of
the BC function, the ME used in Eqs.~17! and ~18! can be
written as
04431
or

t.

Ai~r!5
2

f i~r!(K
1

(
ḡ i

x̄Kḡ i

i
~r!

dx̄Kḡ i

i
~r!

dr
, ~B1!

Bi~r!5
1

f i~r!(K
1

(
ḡ i

x̄Kḡ i

i
~r!F d2

dr2
2

L~L11!

r2

22M $E3sep1VKḡ i ,Kḡ i
~r!%G x̄Kḡ i

i
~r!, ~B2!

Ci 8 i~r!5
2M

f i~r!(K8K

11

(
ḡ i 8ḡ i

VK8ḡ i 8 ,Kḡ i
~r!x̄K8ḡ i 8

i 8 ~r!x̄Kḡ i

i
~r!,

DK8g8 i~r!5
2M

f i~r!(K
1

(
ḡ i

VKḡ i ,K8g8~r!x̄Kḡ i

i
~r!,

EKg,i 8ḡ i 8
~r!52M(

K8

1

VKg,K8ḡ i 8
~r!x̄K8ḡ i 8

i 8 ~r!,

where

(
K

2

[ (
K5Kmin

(3)

Kmax
(3)

, (
K

1

[ (
K5Kmax

(3)
12

Kmax
(2)

,

f i~r!5(
K

1

(
ḡ i

$x̄Kḡ i

i
~r!%2. ~B3!

We cannot improve the computation of the MEsCi 8 i ,
DK8g8 i , andEKg,i 8ḡ i 8

~if we are using noncentral potentials!

in any other way than increasingKmax
(2) . But we can improve

the computation ofAi(r), Eq. ~B1!, andf i(r), Eq. ~B3!, at
larger using an exact form ofB i

ort :

B i
ort~X,Y!5Bi~X,Y!2(

K

2

(
ḡ i

x̄Kḡ i

i
~r!JK,ḡ i

~V5!.

Then

f i~r!5~Bi uBi !2(
K

2

(
ḡ i

$x̄Kḡ i

i
~r!%2,
2-13
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Ai~r!5
4J2

f i~r!Fc l xj x
c l y

XY U 5c l xj x
c l y

2XY
1

sinu

Cx

c l y

Y
S c l xj x

X
D

X

8

1
cosu

Cy

c l xj x

X
S c l y

Y
D

Y

8 G
2

2

f i~r! (
K

2

(
ḡ i

x̄Kḡ i

i
~r!

dx̄Kḡ i

i
~r!

dr
. ~B4!

Cx andCy are defined in Eqs.~1! and~2!, J5(CxCy)
23. For

r→0 this method is less reliable than that given by E
~B1! and ~B3!, so both methods were combined in the c
culations.

The most complicated is ME~B2!, which can be written
in symbolic form as

Bi~r!52
2M

f i~r!
~B i

ortuĤ2EuB i
ort!,

whereB i
ort is asymptoticallyan eigenfuncton of Hamiltonian

such thatBi(r) →
r→`

0. However, the ME of the kinetic en
ergy,f i(r)21(B i

ortuT̂uB i
ort), is decreasing slowly. Such a be

havior is in principle compensated by the MEs of potenti
entering into the Hamiltonian. In practice the hyperspheri
MEs of potentials decrease quite rapidly withr ~for given
Kmax

(2) ), so theKmax
(2) value, which we have to use to achiev

correct behavior forBi(r), can be unreasonably large. D
composing the operatorT̂ in T̂x1T̂y it is possible to find that
for

Ex.Ey ~B5!

the long-range behavior ofBi(r) is connected to the ME o
kinetic energy (T̂x), and otherwise with (T̂y) @Ex andEy are
the binding energies of the subsystems~11! and ~13!#. It
allows us to subtract the kinetic energy ME analytically f
.

,

.

u

04431
.
-

s
l

the physical situation of interest, when the binary system
weakly bound with respect to the third particle. If we cann
perform subtraction~binary subsystem is deeply bound!,
f (r) would not achieve the correct asymptotic behavior~in
the realistic calculation!. However, we can exploit the high
flexibility of the BC function even in that case. Using th
property of the functionBi ,

~Ĥ2E!Bi5~V̂231V̂312Vy!Bi ,

whereVy is the potential which was used to construct t
function c l y

(Y), one can obtain another expression f

Bi(r):

Bi~r!5
2M

f i~r!H ~Bi uVyuBi !22(
K

2

(
ḡ i

~BiVyuJK,a l y
!x̄Kḡ i

i
~r!

2 (
K8K

22

(
ḡ i 8ḡ i

~J K8ḡ i 8
uV̂12uJKḡ i

!x̄Kḡ i 8

i 8 ~r!x̄Kḡ i

i
~r!

2 (
K8K

11

(
ḡ i 8ḡ i

~J K8ḡ i 8
uV̂231V̂31uJKḡ i

!x̄Kḡ i 8

i 8 ~r!x̄Kḡ i

i
~r!

1(
K

2

(
ḡ i

x̄Kḡ i

i
~r!F d2

2Mdr2
2

L~L11!

2Mr2
2E3sepG

3x̄Kḡ i

i
~r!J . ~B6!

The ME obtained with Eq.~B6! has the wrong behavior a
r,5 –8 fm ~for numerical reasons!. If Kmax

(2) is high enough,
then Eq.~B6! overlaps with Eq.~B2! in a wide range, so they
can be easily combined. For highKmax

(2) @Kmax
(2) 540–70 for

Eqs.~B2! and~B6! or Kmax
(2) 520–40 for Eqs.~B1! and~B4!#

different methods of ME calculation give the same result
to 20–25 fm, supplying us a good check as to how far
can go inr values without loss of calculation consistency
z.
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