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Isoscalar Hamiltonians for light atomic nuclei
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The charge-dependent realistic nuclear Hamiltonian for a nucleus, composed of neutrons and protons, can be
successfully approximated by a charge-independent one. The parameters of such a Hamiltonian, i.e., the
nucleon mass and theNN potential, depend upon the mass numberA, chargeZ, and isospin quantum number
T of state of the studied nucleus.@S0556-2813~99!03809-1#

PACS number~s!: 21.60.2n, 21.30.Fe
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I. INTRODUCTION

The model of the atomic nucleus as a system compose
neutrons and protons has been studied for over 60 years
has been found to provide a more-or-less adequate des
tion. By considering the constituents of the nucleus as st
tureless identical fermions~i.e., nucleons!, we obtain a very
useful formalism, which leads to significant simplificatio
of our understanding and description of nuclear structu
These simplifications follow from the fact that the neutr
and the proton have similar masses and that the potentia
the strong neutron-neutron~nn!, neutron-proton~np!, and
proton-proton~pp! interactions are also very similar. Ove
the intervening years, simple models without correlatio
such as the nuclear shell model, have been unable to di
guish between different parametrizations of the nucle
nucleon~NN! interaction or to detect details in the definitio
of the mass of the nucleon.

During the last decade, however, theoretical techniq
for calculating few-nucleon systems and the lightest ato
nuclei have advanced to the point that the quality of
realisticNN potential is starting to play an important role@1#.
This necessarily involves the introduction of charge dep
dence into theNN interaction. The most-recent realistic p
tentials, such as the Nijmegen@2#, Argonne@3#, or CD-Bonn
@4#, are charge dependent. On the one hand, the charge
pendence of the nuclear Hamiltonian complicates the
scription, but on the other, the deviations of charg
dependent potentials from the charge-independent o
although non-negligible, are not very large. As a con
quence, modern calculations of light nuclei use as a star
point a Hamiltonian preserving the isospin quantum num
and include charge-dependent effects perturbatively later
The charge dependence of the kinetic and potential ener
of a real nucleus, however, can only be successfully ta
into account perturbatively, when the zeroth-order, char
independent, isoscalar nuclear Hamiltonian is as close
possible to the charge-dependent one. We present he
method of construction for such a Hamiltonian.

In Secs. II and III we show that the kinetic-energy ope
tor of an atomic nucleus composed of neutrons and pro
can be precisely approximated by a corresponding oper
for a nucleus composed of nucleons, when the nucleon m
0556-2813/99/60~4!/044304~11!/$15.00 60 0443
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is defined as the mean value of the quantum-mechanical
erator for the nucleon mass. The nucleon mass obtaine
this way depends on the mass numberA and chargeZ of the
studied nucleus.

In Sec. IV we investigate the problem concerning t
definition of theNN interaction. For the sake of simplicity
we consider potentials, defined separately in different tw
nucleon channels, such as, the Reid 68@5# and Nijmegen@2#
potentials. The generalization of results given by other re
istic charge-dependent potentials, such as the CD-Bonn@4#
and Argonne-18@3# potentials, is straightforward. It is show
that the bestNN potential is a linear combination of thenn,
np, and pp potentials with coefficients, dependent not on
on the nucleus studied, i.e.,A andZ, but also on the isospin
quantum numberT of the state under consideration. So, t
isoscalar Hamiltonians that we introduce are different
different nuclei and even for different states of the sa
nucleus. The derived values for the nucleon mass and theNN
interaction must satisfy minimal requirements~e.g., for sys-
tems composed only of neutrons, the nucleon mass form
must give the neutron mass and theNN interaction must
reduce to the potential of the neutron-neutron interacti!
and must also be equal to the corresponding values for n
trivial cases suggested for three-nucleon nuclei in ear
publications@6,7#. In Sec. V we present numerical tests
our recommendations and give our conclusions in Sec. V

II. THE MASS OF THE NUCLEON

The nonrelativistic kinetic energy operator of the atom
nucleus equals

K52
\2

2mp
(
i 51

Z

¹ i
22

\2

2mn
(

i 5Z11

A

¹ i
21

\2

2M
¹R

2 , ~1!

where mp and mn are the proton and the neutron mass
respectively;M5Zmp1Nmn is the mass of the nucleus an

R5
1

M S (
i 51

Z

mpr i1 (
i 5Z11

A

mnr i D
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is the radius-vector of the center-of-mass of the nucleus.
kinetic energy operator of the nucleus, as a system of nu
ons is simpler:

K052
\2

2m (
i 51

A

¹ i
21

\2

2Am
¹R0

2 , ~2!

wherem is the nucleon mass and

R05
1

A (
i 51

A

r i

is the center-of-mass radius-vector of the nucleus compo
of nucleons.

Obviously, the operatorsK and K0 are different. In par-
ticular, the expression forK0 contains the parameterm,
which, in many applications, is defined as an average of
proton and neutron masses; i.e.,

m̄5
mn1mp

2
. ~3!

On the other hand, calculations for a neutron and pro
system involve a transformation to relative and center-
mass coordinates and a mass equal to twice the reduced

m5
2mnmp

mn1mp
. ~4!

While in the three nucleon case, it is sometimes assumed
3H and 3He are composed of identical particles, each

mass1
3 (2mn1mp), 1

3 (mn12mp) @6#, respectively.
At first glance, it looks as though we can define the op

mal kinetic energy operator, which is as close as possibl
a charge-dependent one, yet charge-independent, by pro
defining the mass of the nucleon inK0. However, the
nucleon mass is not really a free parameter. It has to
defined as the mean value of a nucleon mass operator:

m̂5
1

A (
i 51

A

m~ i !5
1

A (
i 51

A

@mnPn~ i !1mpPp~ i !#,

wherem( i ) is the mass of anith nucleon and

Pp~ i !5
1

2
2tz~ i !, Pn~ i !5

1

2
1tz~ i ! ~5!

are projectors upon proton and neutron states.
The mass of the nucleon in the nucleus (A,Z) can be

defined exactly, because in theA-nucleon state, with a de
fined isospin projection,MT5 1

2 (N2Z):
04430
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m5^MTum̂uMT&

5K MTU 1

A (
i 51

A

m~ i !UMTL
5K MTU mn1mp

2
1

~mn2mp!

A (
i 51

A

tz~ i !UMTL
5

mn1mp

2
1

~mn2mp!

A
^MTuTzuMT&

5
mn1mp

2
1

~mn2mp!

A
MT

or, in other words,

m5
1

A
~Nmn1Zmp!. ~6!

This definition of the nucleon mass coincides with that us
in the above-mentioned three-nucleon case. For light nu
with N5Z, it equals the mean value of the neutron a
proton masses. For two nucleon systems it coincides w
twice the reduced mass in cases of two protons or two n
trons and is very close to twice the neutron-proton redu
mass because

m2m̄5
2mnmp

mn1mp
2

mn1mp

2
52m̄d2'24.531024

MeV

c2
,

where the widely used small parameter is

d5
mn2mp

mn1mp
'6.88731024. ~7!

Obviously, the difference betweenm and m̄ is negligible.
RealisticNN potentials, defined by using a reduced mass
the two nucleons, cannot change significantly when
nucleon massm, defined for the two-nucleon system, is us
instead ofm.

III. INTRINSIC VARIABLES AND OPERATORS

A direct comparison of the operatorsK0 andK is impos-
sible due to different neutron and proton masses and dif
ent definitions of center-of-mass operators. On the one h
both operators,K0 andK, have redundant variables, becau
they are functions not only of one nucleon but also of cen
of-mass variables. On the other hand, both operators are
trinsic; this means dependent only on intrinsic, translatio
ally invariant variables and independent of center-of-m
radius vectors. In order to compare them, it is necessar
introduce intrinsic variables.

The Jacobi variablesh0 ,h1 , . . . ,hA21 for particles with
equal masses are well-known~see Refs.@8,9#, and references
therein!. They can be defined by a corresponding Jacobi t
4-2
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as an orthonormal set. The expressions forha in terms ofr i

and vice versa are as follows:

ha5(
i 51

A

aa,ir i , r i5 (
a50

A21

haaa,i . ~8!

Herea is an orthogonal (A3A) matrix:

(
i 51

A

aa,iab,i5da,b , (
a50

A21

aa,iaa, j5d i , j . ~9!

The translational invariance of the intrinsic variabl
h1 , . . . ,hA21 along with orthogonality gives the following
conditions for the matrixa:

(
i 51

A

aa,i5AAda,0 , a0,i5
1

AA
. ~10!

Using these variables, we can rewrite the operator~2! as
follows:

K052
\2

2m (
a51

A21

¹ha

2 . ~11!

The analogous presentation forK requires Jacobi vari-
ables for particles with different proton and neutron mass
Let us introduce Jacobi variables in the general case
which the masses of all particles are different. The reduc
to protons and neutrons will then be straightforward. Th
variables can be defined by the same kind of Jacobi tree
in the previous case.

The Jacobi tree by definition has (2A21) vertices,A of
which are vertices of the first degree~the degree of a vertex
is defined as the number of edges matching in this poi!.
They should be arranged in a line and marked with the o
particle radius-vectorsr1 ,r2 , . . . ,rA . In case of particles
with different masses, however, the vertices of the first
gree of the tree have to be marked not only by one-part
radius-vectors but also by corresponding mas
m1 ,m2 , . . . ,mA . The remaining (A21) vertices~situated
below the first group! determine the Jacobi coordinatesja
(a51,2, . . . ,A21). The degree of each equals 3, except
the deepest one which equals two. Contrary to the cas
equivalent particles, the orthogonal transformation can n
be defined only between Jacobi variablesj0 ,j1 , . . . ,jA21
and modified one-particle variablesx1 ,x2 , . . . ,xA , where
xi5Amir i . For theath vertex the Jacobi coordinate is

ja5A mL
(a)mR

(a)

mL
(a)1mR

(a) F 1

mL
(a) (

i P$L%
Amixi

2
1

mR
(a) (

i P$R%
Amixi G ,

~a51,2,. . . ,A21!. ~12!
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Here $L% is a manifold of the first-degree vertices, whic
could be reached while moving from theath vertex upwards
along the left edge, while$R% denotes the same for the righ
edge. Obviously, the new Jacobi variablesja (a
51,2, . . . ,A21), similar to the corresponding old onesha
(a51,2, . . . ,A21), are translationally invariant, becaus
they are defined as properly normalized radius vectors
tween the centers-of-mass of two subtrees, defined by
and right edges of the tree, as they are seen from theath
vertex. The masses of left and right Jacobi clusters are
fined in the following way:

mL
(a)5 (

i P$L%
mi , mR

(a)5 (
i P$R%

mi .

This set has to be completed by a zero Jacobi variable, s
ated on the left side of a second-degree vertex and pro
tional to a center-of-mass radius vector

j05
1

AM
(
i 51

A

Amixi , ~13!

whereM5( i 51
A mi is the mass of the system. In general,

ja5(
i 51

A

ba,i~m1 ,m2, . . . ,mA!xi , ~a50,1,. . . ,A21!,

~14!

where b is an orthogonal (A3A) matrix. In the case of
equivalent particles, this transformation coincides with th
defined in Eq.~8! multiplied by Am. The proof of the or-
thogonality of these transformations is given in Appendix

The tree sample for five particles is presented in Fig.
The matrixb for this tree equals

FIG. 1. An example of a Jacobi tree.
4-3
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wheremj . . . k5( i 5 j
k mi ;M5m12345. Due to the orthogonal-

ity of the transformation from one-particle variable
x1 ,x2 , . . . ,xA to a system of Jacobi variable
j0 ,j1 , . . . ,jA21, the transformation from one set to anoth
set of Jacobi variables, defined by different trees, could
determined in the same way.

The kinetic energy operator~1! in terms of these new
variables can be rewritten as

K52
\2

2 (
a51

A21

¹ja

2 . ~15!

A comparison of operators Eqs.~11! and ~15! requires the
transformation matrix between the setsj0 ,j1 , . . . ,jA21 and
h0 ,h1 , . . . ,hA21. The result cannot depend on the choi
of the Jacobi tree, so we can choose the simplest one, g
in Fig. 2, where protons are marked by the numbers 1, . . . ,Z
and neutrons by the numbersZ11, . . . ,Z1N5A. In such a
case

ja5(
i 51

A

ba,i~m1 ,m2, . . . ,mA!xi

5(
i 51

A

ba,i~m1 ,m2, . . . ,mA!Ami (
b50

A21

ab,ihb

5 (
b50

A21 S (
i 51

A

ba,i~m1 ,m2, . . . ,mA!Amiab,i D hb .

Due to the multipliersAmi , the matrix of the last transfor
mation is not an orthogonal matrix. This gives the followin
expression forK in terms of variablesha :

K52
\2

2 FZN~mn2mp!2

AMmnmp
¹h0

2 1
2AZN~mn2mp!

Amnmp
~¹h0

•¹h1
!

1
M

Amnmp
¹h1

2 1
1

mp
(
a52

Z

¹ha

2 1
1

mn
(

a5Z11

A21

¹ha

2 G .

So, the neutron and proton mass difference causes
intrinsic kinetic energy operator to depend upon the cen
04430
r
e

en

he
r-

of-mass variable. The center-of-mass starts to move in
atomic nucleus composed of nucleons instead of real pro
and neutrons. However, this effect is not significant, beca
the first term, proportional to¹h0

2 , has a very small coeffi-

cient, while the expectation value of the second term, p
portional to (¹h0

•¹h1
), vanishes either when the excitation

of the center-of-mass of a nucleus are under control or w
the wave function is intrinsic.

The difference in the kinetic-energy operators f
neutron-proton and nucleon nuclei is, thus, given by

K2K052
\2

2m Fd2
ZN

A

~mn1mp!2

Mmnmp
¹h0

2

12d
AZN

A

mn1mp

mnmp
~¹h0

•¹h1
!

1S Mm

Amnmp
21D¹h1

2 1S m

mp
21D (

a52

Z

¹ha

2

1S m

mn
21D (

a5Z11

A21

¹ha

2 G ,

whered is the parameter~7!. From the above expression, it
obvious that the mean value of the difference in kinetic e
ergies, estimated using intrinsic wave functions, equals
sum of the mean values of the last three terms and can
rewritten as

FIG. 2. The Jacobi tree for a nucleus composed ofZ protons and
N neutrons.
4-4
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^EJPMTuK2K0uEJPMT&

5F S Mm

Amnmp
21D1S m

mp
21D ~Z21!1S m

mn
21D

3~N21!G K EJPMTU2 \2

2m
¹ha

2 UEJPMTL , ~16!

because the mean value of¹ha

2 is independent ofa ~see

Appendix B!. The expression given in square brackets equ

ZN~A21!

A2

~mn2mp!2

mnmp
'

4ZN~A21!

A2
d2,

while the matrix element has the same order as the kin
energy of a single nucleon in a light nucleus (<40 MeV, see
Ref. @10#!. Consequently,

^K2K0&&1025 MeV.

This means that by using the defined value of the nucl
mass~6!, we can account for then-p mass difference in the
expression for the intrinsic kinetic energy without any pro
lems. In cases, when the mean value of the neutron and
ton masses~3! is used instead of the defined value of t
nucleon mass, this difference of expectation values~16! is
proportional tod and can cause a noticeable difference in
kinetic energiesK andK0.

IV. THE POTENTIAL OF THE NUCLEON-NUCLEON
INTERACTION

The Hamiltonian of an atomic nucleus with a charge
dependence and charge symmetry breakingNN potential has
the form

H5K1V,

where K is the translationally invariant operator of kinet
energy, Eq.~1!, and

V5 (
i ,k51(i ,k)

A

@Vpp~ i ,k!Pp~ i !Pp~k!1Vnp~ i ,k!Pn~ i !Pp~k!

1Vnn~ i ,k!Pn~ i !Pn~k!#

is the potential-energy operator@the Coulomb interaction is
included inVpp( i ,k)].

It is useful to employ the isospin formalism and th
partial-waves expansion in order to simplify the definition
the NN potential, i.e.,

V~ i ,k![V~r iks it isktk!

5 (
j ptmt

Vj ptmt~r ik!Pj ptmt
~u ikf iks it isktk!, ~17!

where r ik[(r iku ikf ik)5r i2r k is the difference of radius
vectors of theith and thekth nucleons;s it i are the spin and
isospin variables of theith nucleon, respectively;j pt are the
04430
ls

ic

n

-
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e

-

f

quantum numbers—total momentum, parity, and isospin—
the two nucleon state; andPj ptmt

(u ikf iks it isktk) is the
projection operator on this state. The correspondence
tween our notationj pt and conventional spectroscopic ide
tifiers 2s11L j is

011;1S0 , 021;3P0, 110;3S123D1 ,

121;3P1 , 120;1P1 ,••• .

Also, mt stands for the two-nucleon isospin projection;mt
51 corresponds to two neutrons;mt50, to neutron-proton;
and mt521, to two protons. Traditionally,NN potentials
are constructed by fittingnp (mt50) data fort50 states and
eithernp (mt50) or pp (mt521) data fort51 states@10#.

In general, the realistic potentials can be different formt
50,61 in each two-nucleon channel witht51. To some
extent it holds even for charge-symmetric potentials of
strong interaction, because the Coulomb interaction mus
included in Vj p(t51)(mt521)(r ik). In channels with p
5(21) j the potentialVj ptmt(r ik) is one function ofr ik ,
when t50, and three different functions ofr ik , when t51
~the best example being1S0). In channels with p5
(21) j 11 and t50, the potentialVj ptmt(r ik) can be given as
three different functions ofr ik , namely entries in a second
order symmetric matrix~such as the parametrization in th
channel 110;3S123D1, as given for the Reid68@5# and
Nijmegen @2# potentials! or nine different functions ofr ik ,
corresponding to different values ofmt when p5(21) j 11

and t51. The first channel of this kind is 221. This param-
etrization, however, is performed as three different functio
of r ik . As mentioned earlier, they obviously are different f
mt521 in comparison tomt50 or mt511, due to Cou-
lomb interaction of protons.

The charge-independent Hamiltonian of an atom
nucleus composed of nucleons is

H05K01V0 ~18!

with the kinetic energy operator, defined in Eq.~2!, and the
charge-independent potential-energy operator

V05 (
i ,k51(i ,k)

A

V0~ i ,k!, ~19!

whose partial-wave expansion is given by

V0~ i ,k![V0~r iks it isktk!

5(
j pt

Vj pt~r ik!Pj pt~u ikf iks it isktk!. ~20!

As was shown above, there are no problems with reg
to the charge-dependence of the kinetic energy, becaus
taking the proper value of the nucleon mass, one can useK0

instead ofK in the expression forH, due to the negligible
difference between these two kinetic energy operators
such a case, the HamiltonianH can be expressed in the form
4-5
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H5 (
i ,k51(i ,k)

A

h~ i ,k!, ~21!

where

h~ i ,k!52
\2

2mA
~¹ i2¹k!

21V~r i2r k ,s it isktk!.

~22!

The exactexpression for an arbitrary eigenvalue of su
an operator is~see Refs.@11,12#, and references therein!:

E JPMT5^H&E,E
JPMT

5
A~A21!

2 (
«, j ptmt

« j ptmtQ«, j ptmt
~EJPMT!, ~23!
ela
n
um
ro

04430
where the sum runs over all the two nucleon statesj pt and
all eigenvalues« of the reduced Hamiltonian~RH! operator

h[h~A21,A!52
2\2

mA
D r1V~r ,sA21tA21sAtA!

~24!

with r5rA212rA .
TheQ«, j ptmt

(EJPMT) are diagonal entries of the intrinsi

density matrix in terms of the RH eigenfunctions

Q«, j ptmt
~EJPMT![Q«, j ptmt ,«, j ptmt

~EJPMT!, ~25!
Q«, j ptmt ,«8, j 8p8t8m
t8
~EJPMT!

5 (
s1t1 . . . sA21tA21sAtAsA218 tA218 sA8 tA8

E dj1 . . . djA22djA21djA218 c
«, j ptmt

1 ~jA21sA21tA21sAtA!

3CEJPMT
~j1 . . . jA22jA21s1t1 . . . sA21tA21sAtA!3CEJPMT

1 ~j1 . . . jA22jA218 s1t1 . . . sA218 tA218 sA8tA8 !

3c
«8, j 8p8t8mt8

~jA218 sA218 tA218 sA8tA8 !, ~26!
iso-
a

sos-

qs.
il-
n-

is

of

s,

e
o-
rge-
where CEJPMT
(j1 . . . jA21s1t1 . . . sAtA) is the intrinsic

wave function of the nucleus.
According to the definition of the density matrix

Q«, j ptmt
~EJPMT!>0 and (

«, j ptmt

Q«, j ptmt
~EJPMT!51.

~27!

These are probabilities of definite states of two nucleon r
tive motion « j ptmt in the state under investigatio
EJPMT , i.e., the state specified by the exact quant
numbers—energy, total momentum, parity, and isospin p
jection of the nucleus (A,Z).

The expression for the eigenvalue of the Hamiltonian

H05 (
i ,k51(i ,k)

A

h0~ i ,k!, ~28!

where

h0~ i ,k!52
\2

2mA
~¹ i2¹k!

21V0~r i2r k ,s it isktk! ~29!

is very similar to that given by Eq.~23!:

E JPT5^H0&E,E
JPT5

A~A21!

2 (
«, j pt

« j ptQ«, j pt~EJPT!, ~30!
-

-

but is slightly simpler, because the correspondingNN poten-
tial is charge independent. As a consequence, the total
spin T is an exact quantum number. Moreover, in such
case, the eigenvalues are the same for all nuclei of the i
pin multiplet and, hence, independent onMT . Here

h0[h0~A21,A!52
2\2

mA
D r1V0~r ,sA21tA21sAtA!. ~31!

A straightforward comparison of the eigenvalues, E
~23! and~30!, is impossible, as eigenfunctions of the Ham
toniansH and H0 do not coincide. Eigenvalues and eige
functions of the corresponding reduced Hamiltonians@Eqs.
~24! and ~31!# are also different. To compare them, it
necessary to define kind of equivalent potentialV0, for
which we are looking. From partial-wave decompositions
the potentials, Eqs.~17! and~20!, it follows, that the realistic
potential in the states witht50 is the same in both case
becausemt can take only the value zero. Ift51, there are
three different pairs of nucleons (mt50,61) and theNN
potentialVj ptmt(r ik) is different in each case. Therefore, th
symmetric, charge-independent potential in an arbitrary tw
nucleon state can be defined as the sum of these cha
dependent potentials

Vj pt~r ik!5(
mt

ctmt
Vj ptmt~r ik!, ~32!
4-6
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where thectmt
are normalized coefficients:

(
mt

ctmt
51. ~33!

The optimal values of these coefficients are~see Appen-
dix C!:

c0051, ~34!

c1215
~A22MT!~A22MT22!

3A~A22!14T~T11!
5

4Z~Z21!

3A~A22!14T~T11!
,

~35!

c105
A~A22!14T~T11!28MT

2

3A~A22!14T~T11!

5
8NZ2A~A12!14T~T11!

3A~A22!14T~T11!
, ~36!

c1115
~A12MT!~A12MT22!

3A~A22!14T~T11!
5

4N~N21!

3A~A22!14T~T11!
.

~37!

These values, obtained as a result of consideration
probability distributions, have a rather simple interpretati
Having in mind the definition of marginal probabilities, a
given in Ref.@11#, and the definition of thectmt

, as given in
Eq. ~C5!, we find that these coefficients equal the number
pairs of nucleons with the isospin and corresponding pro
tion quantum numbers,t andmt , divided by the number of
pairs with the isospin quantum numbert.

Finally, the charge independent Hamiltonian can be
pressed in the form

H0~A,T,MT!5 (
i ,k51(i ,k)

A

h0~A,T,MT ; i ,k!, ~38!

where

h0~A,T,MT ; i ,k!52
\2

2m~A,MT!A
~¹ i2¹k!

2

1V0~A,T,MT ;r i2r k ,s it isktk!.

~39!

The eigenvalue ofH0(A,T,MT) is very similar to that given
by Eq. ~30!, but now has the form

E JPT~A,T,MT!5^H0~A,T,MT!&E,E
JPT

5
A~A21!

2 (
«, j pt

« j pt~A,T,MT!

3Q«, j pt~EJPT!. ~40!

From the last expression we observe that our result fo
charge-independent Hamiltonian, which includes charge
pendent effects~e.g., Coulomb interaction, charge depe
04430
of
.

f
c-

-

a
e-
-

dence of the potential and the neutron and proton mass
ference!, is a function of the parametersA,T, and MT .
Comparing with the exact expression~23!, we observe that
isospin now appears as an exact quantum number and
density matrix is independent ofMT . Consequently, the den
sity matrix is the same for all members of an isospin mult
let, as it must be for a charge independent Hamiltonian. C
trary to the commonly used expression for charg
independent potentials, i.e., Eq.~30!, the present effective
Hamiltonians@Eq. ~38!# are different for different nuclei of
an isospin multiplet and for states of the same nucleus w
different values of total isospinT.

V. NUMERICAL TESTS

The effective Hamiltonians@Eq. ~38!#, obtained above,
agree with the well-known, trivial isoscalar Hamiltonians f
nuclear matter and for states of finite nuclei with total isos
T50, because, in this case, the nucleon mass equals ha
neutron and proton masses and the effective potential is
average of the three potentials. However, even in this c
the recommendations given above allow us to express
isoscalar form the Coulomb interaction of the protons. In
light-nuclei region for isospin multiplets withTÞ0, the val-
ues of the nucleon mass and the effective potential are
ferent for nuclei with differentMT values.

For the triton (A53,T51/2,MT51/2), for example, the
mass of the nucleon is

m5
2

3
mn1

1

3
mp ,

and the equivalent charge-independent potential is

Vj p(t51)~r !5
1

3
Vj p(t51)(mt50)~r !1

2

3
Vj p(t51)(mt51)~r !

or simply

V~r !5
1

3
Vnp

t51~r !1
2

3
Vnn~r !,

which agrees with the results obtained in Ref.@6# using the
same nucleon mass and in Ref.@7# for the charge-
independent potential in the1S0 state. For 3He (A53,T
51/2,MT521/2) the mass of nucleon equals

m5
1

3
mn1

2

3
mp .

The equivalent charge-independent potential is

Vj p(t51)~r !5
1

3
Vj p(t51)(mt50)~r !1

2

3
Vj p(t51)(mt521)~r !,

with the Coulomb interaction included in the last term.
In order to test the results obtained in Sec. IV, we p

formed several calculations in the framework of the larg
basis, no-core shell-model approach@15#, using interactions
that directly break isospin as well as the correspondingNN
4-7
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interactions given by formulas~34!–~37!. The effective in-
teractions were derived from the freenp, pp, andnn interac-
tions. These effective interactions then served as input for
large-basis shell-model calculations of theA53 system, e.g.,
3H and 3He, and of theA56 system, e.g.,6Li, 6He, 6Be. In
the present calculations we employed the CD-Bonn@4# po-
tential, which includes isospin symmetry breaking terms.
addition, the Coulomb potential was added to the prot
proton interaction. To get energy convergence, one ne
Nmax.30 for the three-nucleon problem. However, for t
purpose of the present work it is enough to perform the sh
model calculations in a sufficiently large, but still easily a
cessible model space. We choseNmax58, which corresponds
to 8\V excitations above the unperturbed ground state
the A53 system and 6\V excitations for theA56 system.
For the harmonic-oscillator frequency, we picked\V519
MeV for the A53 system and\V517.2 MeV for theA
56 system. These choices follow from the phenomenolo
cal formula\V545A21/3225A22/3 MeV.

The wave functions obtained in the no-core shell-mo
approach satisfy all the requirements necessary for real
nuclear wave functions, i.e., the excitation of the center-
mass of the nucleus is under control and they correspon
exact eigenvalues with good quantum numbersJ,P, ~andT
in the case of the isospin invariant effective interaction!. The
results of our shell-model calculations are presented in Ta
I. These results demonstrate that, in general, the sugge
definitions for the nucleon mass and theNN interactions are
successful. The deviations between the exact~with charge-
symmetry breaking interactions! and the approximate~with
isospin invariant interactions! calculations are at the level o
a fraction of a percent. The best correspondence betwee
results for the charge-dependent and charge-indepen

TABLE I. Comparison of energies, in MeV, obtained in th
no-core shell-model calculations with the full charge-dependent
fective interactionsEP2N , and the corresponding isospin-invaria
effective interactionsEISO ~as defined in the text!, for A53 andA
56 nuclei. The effective interactions were derived from the C
Bonn potential@4#. Harmonic-oscillator energies of\V519 MeV
and \V517.2 MeV were employed for theA53 andA56 sys-
tems, respectively. ForA53 a complete 8\V model space was
utilized, while forA56 a complete 6\V model space was used.

AZ(JpT) EP2N EISO @EP2N2EISO#/EP2N

3H( 1
2

1 1
2 ) 28.441 28.421 22.4431023

3He(1
2

1 1
2 ) 27.668 27.643 23.2731023

6He(011) 225.665 225.830 16.4231023

6He(211) 222.944 223.085 16.1331023

6Li(1 10) 228.257 228.180 22.7331023

6Li(3 10) 225.605 225.525 23.1231023

6Li(0 11) 224.815 224.666 26.0231023

6Li(2 10) 223.146 223.071 23.2531023

6Li(2 11) 221.934 221.924 24.4731024

6Li(1 10) 220.433 220.362 23.4631023

6Be(011) 222.829 222.545 21.2531022

6Be(211) 220.227 219.851 21.8631022
04430
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Hamiltonians is obtained for3H and 3He and for all six
states of6Li. Moreover, we performed calculations for th
T51 states in6Li, using the isoscalar potential forT50.
Analogous calculations for theT50 states of the same
nucleus were also performed utilizing the isoscalar poten
for T51. In all cases the absolute values of differences
tween charge-dependent and charge-independent result
some three times larger in comparison with calculations
ing the correct value of the isospin for the state under inv
tigation. As can be seen from the results in Table I,
biggest difference between energies is obtained for6Be,
where it equals 1–2 % of the ‘‘exact’’ value, and, to som
extent, in 6He, where it does not exceed 1%.

VI. SUMMARY AND CONCLUSIONS

As is well-known, charge symmetry in nuclei is broken
the very least due to the difference between the proton
neutron masses, the charge-dependence of the strong int
tion and the Coulomb interaction among the protons. Th
effects are not very large for light nuclei in comparison w
the binding energy of the entire nucleus, but there are ca
in which they are significant and play a very important ro
such as for nuclei near drip lines, which are loosely bou
However, the description of nuclei using a fully charg
dependent Hamiltonian is complicated, so the constructio
a Hamiltonian, as close as possible to charge-indepen
one, would be useful.

The present article is devoted to the consideration of
problem. It is shown that charge-dependence of the real
Hamiltonian for light nuclei can be taken into account
replacing the realistic one by an equivalent charg
independent Hamiltonian. The parameters of such a Ha
tonian ~i.e., the nucleon mass and theNN potential! are
nucleus and state dependent. Our results can be formu
as simple recommendations for the construction of such
isoscalar Hamiltonian.

~1! Take the nucleon mass equal to

m5
1

A
~Nmn1Zmp!.

~2! Take the realisticNN potential in states with two-
nucleon isospint50 as they are defined from the neutro
proton data analyze.

~3! Take the isoscalarNN potential in states witht51 as
a linear combination, Eq.~32!, of the neutron-neutron (mt
51), neutron-proton (mt50), and proton-proton~with Cou-
lomb potential included! (mt521) realistic potentials with
coefficientsctmt

, given in Eqs.~35!–~37!.
The eigenfunctions of such a Hamiltonian have the i

spin T of the nucleus as good a quantum number, but
different for the individual members of the isospin multipl
due to the dependence of the isoscalar Hamiltonians onMT .
In general, the results obtained are self-consistent and do
conflict with the simple requirements mentioned in the Int
duction. Moreover, the isoscalar part of the Coulomb int
action has a nicer form than the earlier result suggeste
Ref. @16#, Eq. ~2.21!, because the isoscalar Coulomb intera

f-

-

4-8
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tion of the nucleons in the present work equals zero in tw
nucleon states with isospint50. Consequently, the norma
ization of this interaction to the number of proton pa
occurs naturally.

Our results can be considered to be quite good in all ca
considered, because, due to our normalization conditio
Eq. ~33!, we really have only two free parameters for t
construction of the isoscalar interaction. The approximat
given here is a good starting point for a perturbational
count of nuclear charge-dependent effects not included in
isoscalar Hamiltonian.
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APPENDIX A

The orthogonality of the transformation~14! follows di-
rectly from the observation that an arbitrary Jacobi tree
be written as a system of two subtrees, Fig. 3. The first~left!
subtree with first-degree verticesr1m1 , r2m2 , . . . ,rqmq de-
fines the Jacobi variablesj2 ,j3 , . . . ,jq , the second~right!
subtree containsrq11mq11 , rq12mq12 , . . . ,rq1tmq1t and
jq11 ,jq12 , . . . ,jq1t21, correspondingly. Obviously, it is
possible to introduce in the first and second cases the a
tional Jacobi variables proportional to the center-of-mass
ordinates of the subtrees, defined as

j215
1

Am1•••q
(
i51

q

Amixi ; and

j2q5
1

Amq11•••q1t
(

i5q11

q1t

Amixi .

The indices of these coordinates are negative, accordin
the rule that the arbitrary center-of-mass Jacobi variable s
ated near an intrinsic Jacobi variableja is labeled asj12a
(j1 andj0 , j2 andj21 , jq11 andj2q). Suppose, the trans
formations from r1m1 , r2m2 , . . . ,rqmq to j21 ,j2 ,

FIG. 3. An example of a Jacobi tree with subtrees.
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j3 , . . . ,jq and from rq11mq11 , rq12mq12 , . . . ,rq1tmq1t
to j2q ,jq11 ,jq12 , . . . ,jq1t21 are orthogonal. Then the
complete transformation is also orthogonal, because
transformation matrix fromj21 ,j2q to j0 ,j1 is orthogonal:

S j0

j1
D 5S Am1•••q

M
Amq11•••q1t

M

Amq11•••q1t

M
2Am1•••q

M

D S j21

j2q
D .

Following this process to the top of the tree, we can arr
at orthogonal two-dimensional transformations. Therefo
the complete transformation (q1t)3(q1t) is orthogonal.

APPENDIX B

The independence of the matrix element, Eq.~16!,
^EJPMTu¹ha

2 uEJPMT&, of a, the intrinsic Jacobi variable

number (a51,2, . . . ,A21), can be shown as follows. B
definition, this element equals the product of sums over s
and isospin variables and of integrals over intrinsic Jac
variables

(
s1,s2•••sA

(
t1 ,t2•••tA

E dh1E dh2•••E dhA21CEJPMT
*

3~h1h2•••hA21s1,s2•••sAt1 ,t2•••tA!

3¹ha

2 CEJPMT
~h1h2•••hA21s1,s2•••sAt1 ,t2•••tA!,

where CEJPMT
(•••) is an intrinsic wave function of an

atomic nucleus. This wave function is antisymmetric w
respect to all nucleons. However, this property in Jac
variables is not expandable in a simple way, because per
tations of one-nucleon variablesr i generate orthogonal trans
formations of Jacobi variables. We can simplify by multipl
ing the given expression by the integral

E dh0Q* ~h0!Q~h0![1,

whereQ(h0) is an arbitrary, normalized wave function o
the center-of-mass. The new wave functions

Q~h0!CEJPMT
~h1h2•••hA21s1,s2•••sAt1 ,t2•••tA!

can be rewritten as usual antisymmetric functions of o
particle variables

FEJPMT
~r1r2•••rAs1,s2•••sAt1 ,t2•••tA!.

Due to the orthogonality of the matrixa, Eq. ~8!, the inte-
grals can be transformed into one-particle variables

E dh0E dh1E dh2•••E dhA215E dr1E dr2•••E drA .

The operator can be written in the form
4-9
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¹ha

2 5 (
i , j 51

A

aa,iaa, j~¹ i•¹ j !

5(
i 51

A

aa,iaa,i¹ i
21 (

i , j 51(iÞ j )

A

aa,iaa, j~¹ i•¹ j !.

The mean value of this operator is simply

^¹ha

2 &[ (
s1,s2•••sA

(
t1 ,t2•••tA

E dr1E dr2•••

3E drAFEJPMT
* ~r1r2•••rAs1,s2•••sAt1 ,t2•••tA!

3¹ha

2 FEJPMT
~r1r2•••rAs1,s2•••sAt1 ,t2•••tA!

5(
i 51

A

aa,iaa,i^¹ i
2&1 (

i , j 51(iÞ j )

A

aa,iaa, j^~¹ i•¹ j !&.

Due to the antisymmetry of the wave functions, the mat
elementŝ ¹ i

2& and ^(¹ i•¹ j )& are the same for all possibl
values ofi and j. Thus,

^¹ha

2 &5^¹A
2&(

i 51

A

aa,iaa,i1^~¹A21•¹A!& (
i , j 51(iÞ j )

A

aa,iaa, j

5^¹A
2&1^~¹A21•¹A!&

3F(
i 51

A

aa,i (
j 51

A

aa, j2(
i 51

A

aa,iaa,i G
ge
f t

.e

f
th
m

le
u
t

ith
r
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x

5^¹A
2&2^~¹A21•¹A!&,

because all sums are independent ofa, see Eqs.~9! and~10!.
Therefore,̂ ¹ha

2 & is independent ofa (a51,2, . . . ,A21).

APPENDIX C

The relation between potentials, defined in Eq.~32!, holds
also for the reduced Hamiltonians~RH! of the different two-
nucleon states

h0,j pt5(
mt

ctmt
hj ptmt

and their matrix elements

h«,e8
0,j pt

5(
mt

ctmt
h

«,e8

j ptmt ,

because the partial-wave expressions for the kinetic ene
operators are the same in all cases. For this reason, the
ference of a diagonal matrix element of the HamiltonianH
and an eigenvalue of the HamiltonianH0 for an arbitrary
eigenstate ofH0 equals
^H2H0&E,E
JPTMT5

A~A21!

2
3 (

«,«8, j ptmt

h
«,«8

j ptmtH Q«8, j ptmt ;«, j ptmt
~EJPTMT!

2d«8,«ctmt
Q«, j pt~EJPT! J . ~C1!
nal
ible
and
re
ng
of

lute
RH
the

ll
There are nondiagonal contributions to the char
dependent density matrix, because the eigenfunctions o
three RH operatorshj ptmt (mt50,61) are different and are
not equal to the eigenfunctions of the isoscalar RHh0,j pt.
The matrix of the isoscalar RH in this case is diagonal, i

h«,«8
0,j pt

5(
mt

ctmt
h

«,«8

j ptmt5« j ptd«,«8 .

The left-hand side of Eq.~C1! is the sum of traces o
products of two symmetrical matrices, the first of these is
matrix of the RH and the second is the reduced density
trix. As is seen from Eq.~C1!, this sum contains only two
kinds of terms—one is equal to the product of diagonal e
ments of both matrices, and the other is equal to the prod
of nondiagonal elements. The last subsum is independen
the choice of the values of variational coefficientsctmt

. In
any case, its contribution is negligible in comparison w
the first subsum, which contains diagonal elements. This
-
he

.,

e
a-

-
ct
of

e-

sult is caused by the following reasons: The nondiago
elements of the charge-dependent RH matrices are neglig
in every two nucleon state, because charge-independence
charge-symmetry breaking forces in light atomic nuclei a
significantly weaker than original charge-independent stro
interaction between nucleons. The nondiagonal entries
charge-dependent density matrix are also small in abso
value, because eigenfunctions of the charge-dependent
are close to eigenfunctions of charge-independent RH for
same reason as given previously.

The most important diagonal part of the sum in Eq.~C1!
is

(
«, j ptmt

h«,«
j ptmt$Q«, j ptmt

~EJPTMT!2ctmt
Q«, j pt~EJPT!%.

~C2!

The problem is to choose the coefficientsctmt
in such a way

that this sum will have its minimal value. Let us first reca
4-10
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some definitions. The distributions of probabilities, given
Eqs. ~23! and ~30!, differ. In the last expression they ar
comparable, because corresponding density matrices are
ated by the same wave function. The relationship betw
these probabilities, following directly from the definition o
the density matrix, is~see Refs.@11# and @13#!:

(
mt

Q«, j ptmt
~EJPTMT!5Q«, j pt~EJPT!. ~C3!

This equality means that the quantity on the right-hand s
is amarginal probability~see, for example, Ref.@14#!. In the
caset50, all entries of Eq.~C2! vanish, whenc0051. This
value is consistent with the definition of the isoscalar int
action, Eqs.~32!, ~33!, because, as mentioned earlier, in th
case we have no other choice, excluding the best one. In
case whent51, the situation is not so simple, because o
the sum of the three multipliers ofh«,«

j ptmt , corresponding to
the three possible values of the isospin projectionmt , van-
ishes, due to relations~33! and ~C3!. In general, for any
value of t the relation

(
mt

$Q«, j ptmt
~EJPTMT!2ctmt

Q«, j pt~EJPT!%50

is satisfied.
This relation is an identity, and, hence, is not sufficient

define the coefficients, but gives us more choices for de
mining the minimal value of the sum given in Eq.~C2!. The
best choice occurs when the partial sum of the coefficie
over all possible two-nucleon channels is equal to ze
namely,

(
«, j p

$Q«, j ptmt
~EJPTMT!2ctmt

Q«, j pt~EJPT!%50.

This equation can also be expressed in the form
. J

. C

t.

04430
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Qtmt
~TMT!5ctmt

Qt~T!. ~C4!

The marginal probabilities are defined by

(
«, j p

Q«, j ptmt
~EJPTMT!5Qtmt

~TMT!

and

(
mt

Qtmt
~TMT!5Qt~T!

and can be extracted from the expressions for the sim
multiparticle operators with known eigenvalues, such as
mass numberA, the chargeZ and the total isospinT ~see
Refs.@11,13#!. Therefore,

Q00~TMT![Q0~T!5
A~A12!24T~T11!

4A~A21!
,

Q1~T!5
3A~A22!14T~T11!

4A~A21!
,

Q121~TMT!5
~A22MT!~A22MT22!

4A~A21!
,

Q10~TMT!5
A~A22!14T~T11!28MT

2

4A~A21!
,

Q111~TMT!5
~A12MT!~A12MT22!

4A~A21!
.

Using Eq.~C4!, we obtain

ctmt
5Qtmt

~TMT!/Qt~T!. ~C5!

Applying this expression, we obtain the values of the co
ficients given in Eqs.~34!–~37!.
-
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