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Isoscalar Hamiltonians for light atomic nuclei
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The charge-dependent realistic nuclear Hamiltonian for a nucleus, composed of neutrons and protons, can be
successfully approximated by a charge-independent one. The parameters of such a Hamiltonian, i.e., the
nucleon mass and tHéN potential, depend upon the mass numhgchargeZ, and isospin quantum number
T of state of the studied nucleUyss0556-281®9)03809-]

PACS numbd(s): 21.60—n, 21.30.Fe

I. INTRODUCTION is defined as the mean value of the quantum-mechanical op-

Th del of the atomi | ¢ d erator for the nucleon mass. The nucleon mass obtained in
€ modet ot the atomic nucleus as a system compose is way depends on the mass numBeand charge of the

neutrons and protons has been studied for over 60 years ald,died nucleus.
has been found to provide a more-or-less adequate descrip- |, sec. |v we investigate the problem concerning the
tion. By considering the constituents of the nucleus as strucgefinition of theNN interaction. For the sake of simplicity,
tureless identical fermion&.e., nucleons we obtain a very \ve consider potentials, defined separately in different two-
useful formalism, which leads to significant simplifications nycleon channels, such as, the Reid5Band Nijmeger{2]
of our understanding and description of nuclear structurepotentials. The generalization of results given by other real-
These simplifications follow from the fact that the neutronistic charge-dependent potentials, such as the CD-Bdhn
and the proton have similar masses and that the potentials ahd Argonne-1§3] potentials, is straightforward. It is shown
the strong neutron-neutrofmn), neutron-proton(np), and  that the besNN potential is a linear combination of thw,
proton-proton(pp) interactions are also very similar. Over np, and pp potentials with coefficients, dependent not only
the intervening years, simple models without correlationspn the nucleus studied, i.éA,andZ, but also on the isospin
such as the nuclear shell model, have been unable to distiguantum numbeT of the state under consideration. So, the
guish between different parametrizations of the nucleonisoscalar Hamiltonians that we introduce are different for
nucleon(NN) interaction or to detect details in the definition different nuclei and even for different states of the same
of the mass of the nucleon. nucleus. The derived values for the nucleon mass anbithe
During the last decade, however, theoretical techniquetteraction must satisfy minimal requiremertesg., for sys-
for calculating few-nucleon systems and the lightest atomidems composed only of neutrons, the nucleon mass formula
nuclei have advanced to the point that the quality of themust give the neutron mass and tN& interaction must
realisticNN potential is starting to play an important rgt. reduce to the potential of the neutron-neutron interagtion
This necessarily involves the introduction of charge depenand must also be equal to the corresponding values for non-
dence into the\N interaction. The most-recent realistic po- trivial cases suggested for three-nucleon nuclei in earlier
tentials, such as the Nijmegé], Argonne[3], or CD-Bonn publications[6,7]. In Sec. V we present numerical tests of
[4], are charge dependent. On the one hand, the charge deur recommendations and give our conclusions in Sec. VI.
pendence of the nuclear Hamiltonian complicates the de-
scription, but on the other, the deviations of charge-
dependent potentials from the charge-independent ones,
although non-negligible, are not very large. As a conse- The nonrelativistic kinetic energy operator of the atomic
quence, modern calculations of light nuclei use as a startingucleus equals
point a Hamiltonian preserving the isospin quantum number
and include charge-dependent effects perturbatively later on.
L : . 2 2 A
The charge dependence of the kinetic and potential energies __h v2_ f S oy e R
of a real nucleus, however, can only be successfully taken - 2m, <4 bo2m, i 5 T 2Mm '
into account perturbatively, when the zeroth-order, charge-
independent, isoscalar nuclear Hamiltonian is as close as
possible to the charge-dependent one. We present herewhere m, and m, are the proton and the neutron masses,
method of construction for such a Hamiltonian. respectivelyM =Zm,+Nm, is the mass of the nucleus and
In Secs. Il and Il we show that the kinetic-energy opera-
tor of an atomic nucleus composed of neutrons and protons z
can be precisely approximated by a corresponding operator R= i 2 myr; + 2 myri
for a nucleus composed of nucleons, when the nucleon mass MiE P

Il. THE MASS OF THE NUCLEON

z 2
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is the radius-vector of the center-of-mass of the nucleus. The m=<MT|rﬁ|MT>
kinetic energy operator of the nucleus, as a system of nucle-

ons is simpler: 12
=( My K; m(i)|[Mq
52 EA: 2 R
Ko=—— > V24 —V2 2) m_+m m.—m
2mi< T 2Am Ro =( My ”2 p+( ”A ) > )| My
i=1
wherem is the nucleon mass and m,+m, (my—m,)
= (M| T My)
A
Rozl >, _my+tm, (mn_mp)M
A T2 AT

is the center-of-mass radius-vector of the nucleus compose(z{’ in ather words,
of nucleons. 1

Obviously, the operator& andK° are different. In par- m=—(Nm,+2Zm,). (6)
ticular, the expression foK® contains the parametem, A
which, in many applications, is defined as an average of th

proton and neutron masses: i.e %his definition of the nucleon mass coincides with that used

in the above-mentioned three-nucleon case. For light nuclei
with N=2Z, it equals the mean value of the neutron and
m— my+mp 3) proton masses. For two nucleon systems it coincides with
2 twice the reduced mass in cases of two protons or two neu-
trons and is very close to twice the neutron-proton reduced

. mass because
On the other hand, calculations for a neutron and proton

system involve a transformation to relative and center-of-

. . — 2mym m,+m
mass coordinates and a mass equal to twice the reduced mags—m= —— P _ _1_P_

_ MeV
—mé&?~—-4.5x104——,

m,+m, 2 c2
w= M (4) where the widely used small parameter is
my+mp’
While in the three nucleon case, it is sometimes assumed that 5= M~ Mp ~6.887x 1074, @)
3H and 3He are composed of identical particles, each of my+m,

massz (2m,+m,), 5(m,+2m,) [6], respectively.

At first glance, it looks as though we can define the opti- ) — o
mal kinetic energy operator, which is as close as possible t@Pviously, the difference betweem and m is negligible.
a charge-dependent one, yet charge-independent, by propeﬁ@ahstlcNN potentials, defined by using a (educed mass for
defining the mass of the nucleon iK°. However, the the two nucleons, cannot change significantly when the
nucleon mass is not really a free parameter. It has to beucleon massn, defined for the two-nucleon system, is used

defined as the mean value of a nucleon mass operator;  instead ofy.

A lII. INTRINSIC VARIABLES AND OPERATORS
m= Z:l [mnPn(i)+mpPy(i)], A direct comparison of the operatok’ andK is impos-
sible due to different neutron and proton masses and differ-
ent definitions of center-of-mass operators. On the one hand,
wherem(i) is the mass of aith nucleon and both operatorsk® andK, have redundant variables, because
they are functions not only of one nucleon but also of center-
1 1 of-mass variables. On the other hand, both operators are in-
Ppo(i)= 5 (i), Puy()= §+rz(i) (5)  trinsic; this means dependent only on intrinsic, translation-
ally invariant variables and independent of center-of-mass
radius vectors. In order to compare them, it is necessary to

>| =

A
> m(i)=
=1

>| =

are projectors upon proton and neutron states. introduce intrinsic variables.

The mass of the nucleon in the nucleus,Z) can be The Jacobi variablegg, 71, . . ., 7a_1 for particles with
defined exactly, because in tienucleon state, with a de- equal masses are well-knowsee Refs[8,9], and references
fined isospin projectionM =3(N—2): therein. They can be defined by a corresponding Jacobi tree
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as an orthonormal set. The expressionss#grin terms ofr;
and vice versa are as follows:

A A-1
nazz acr,iri , Ii= 2 naaa,i . (8)
i=1 a=0

Herea is an orthogonal AX A) matrix:

& &
A A-1 | ¢ b
FIG. 1. An example of a Jacobi tree.
i:EJ_ aayiaﬁli:b‘aﬁ, ZO aa’iaa’j:b‘i’j . (9) P
The translational invariance of the intrinsic variablesqere {L} is a manifold of the first-degree vertices, which
7, - - . ma-1 along with orthogonality gives the following  could be reached while moving from tlgh vertex upwards
conditions for the matria: along the left edge, whiléR} denotes the same for the right

A edge. Obviously, the new Jacobi variable§, («
1 =1,2,... A—1), similar to the corresponding old oneg
izl 8,4, = VA8,0, aO,i:\/_K- (10 (e=1,2,... A—1), are translationally invariant, because
they are defined as properly normalized radius vectors be-
tween the centers-of-mass of two subtrees, defined by left

Using these variables, we can rewrite the operéprs .
g pere2p and right edges of the tree, as they are seen fromathe

follows: X ;
W vertex. The masses of left and right Jacobi clusters are de-
p2 A1 fined in the following way:
KO= — o 21 Vfla. (11)

The analogous presentation f&r requires Jacobi vari-
ables for particles with different proton and neutron masses.
Let us introduce Jacobi variables in the general case, in
which the masses of all particles are different. The reduction

to protons and neutrons will then be str.aightforward.. Theserpis set has to be completed by a zero Jacobi variable, situ-
variables can be defined by the same kind of Jacobi tree, ageq on the left side of a second-degree vertex and propor-

in the previous case. o _ tional to a center-of-mass radius vector
The Jacobi tree by definition has A2 1) vertices,A of

which are vertices of the first degréthe degree of a vertex

is defined as the number of edges matching in this point

They should be arranged in a line and marked with the one- 1 A

particle radius-vectors,,r,, ... ra. In case of particles Lr=— E \/ﬁxi' (13
with different masses, however, the vertices of the first de- VM =1

gree of the tree have to be marked not only by one-particle

radius-vectors but also by corresponding masses

m;,Mm,, ... ,Ms. The remaining A—1) vertices(situated

below the first group determine the Jacobi coordinatés  whereM =34 .m; is the mass of the system. In general,
(a=1,2,... A—1). The degree of each equals 3, except for

the deepest one which equals two. Contrary to the case of

equivalent particles, the orthogonal transformation can now

m@= > m, m@P=> m.
ie{lL} ie{R}

be defined only between Jacobi variab@&sé;, ... a1 A
and modified one-particle varlableq,le, e XAy Where §a:2 bei(My,m, ... Mm%, (@=0,1,.. A-1),
X;=ym;r; . For theath vertex the Jacobi coordinate is i=1
(14)
(a) (@)
[ m{“m{ 1
ga: (a) (a) (a) ; \/ﬁixi . .
m®+mg? | iell) where b is an orthogonal AXA) matrix. In the case of
equivalent particles, this transformation coincides with that
1 S defined in Eq.(8) multiplied by Vm. The proof of the or-
m(@ i Sk X thogonality of these transformations is given in Appendix A.
R The tree sample for five particles is presented in Fig. 1.
(a=12,...,A-1). (12 The matrixb for this tree equals
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3
3
3
3
3

=

M
M1Mys \/ M2oMys \/ M3Mys \/ MyMyp3 [MsMyp3
Mm;p3 Mmj3 Mmj3 Mmys Mmys
\/ m;ms \/ myms \/ UEP) 0 0
M12My23 M12My23 ,

E

3

N
|
(@)
(@)
o

wherem; _.,k=2:‘:jmi ;M =my,345. Due to the orthogonal- of-mass variable. The center-of-mass starts to move in an
ity of the transformation from one-particle variables atomic nucleus composed of nucleons instead of real protons
X1,X, ... Xa to a system of Jacobi variables and neutrons. However, this effect is not significant, because
&.&, ... &i_, the transformation from one set to anotherthe first term, proportional t&zo, has a very small coeffi-
set of Jacobi variables, defined by different trees, could b%ient’ while the expectation value of the second term, pro-
determined in the same way. portional to (v, - V,, ), vanishes either when the excitations

Thti klnetlcbenergytf)perato(ﬂ) in terms of these New ¢ yhe center-of-mass of a nucleus are under control or when
variables can be rewritten as the wave function is intrinsic.

p2 AL The difference in the kinetic-energy operators for
K=— > > Vg _ (15)  heutron-proton and nucleon nuclei is, thus, given by
a=1 «
A comparison of operators Eq&ll) and (15) requires the 0 h? >ZN (m,+ mp)2 )
transformation matrix between the s€s&;, ... .{a—1and K=K'=- 2m| ¢ A Mm,m, ™
Mo, M1, - - - ,Ma_1- The result cannot depend on the choice
of the Jacobi tree, so we can choose the simplest one, given VZN m,+m,
in Fig. 2, where protons are marked by the numbers 1,2 +20— = (Vo V)
and neutrons by the numbeZs-1, ... Z+N=A. In such a P ,
case Mm m
_ 2 |2 2
A * Am,m, LVt My 1)522 Vi,
§a=2 Do,i(My, My, ... Ma)X; A-1
':l + m—1) > V2
my, aiz+1 e’

I
M .

I
=

A-1
byi(my,my ... ,mp) \/miﬁzo ag,ing

wheredis the paramete(7). From the above expression, it is
A-1 A . . . . .

obvious that the mean value of the difference in kinetic en-
BZO 21 Dy,i(My,my ... \ma)Vmiag; | 7.

ergies, estimated using intrinsic wave functions, equals the
sum of the mean values of the last three terms and can be
Due to the multipliersym;, the matrix of the last transfor- réwritten as
mation is not an orthogonal matrix. This gives the following

expression foK in terms of variablegy, : r,m

ﬁ2
2

ZN(m,—my)? _, . 2JZN(m,—m,)
AMmM;m, o Am,m,

(Vﬂo'vﬂl)

z A-1
M 1 1

V2+—§V2+—§ v2 |

Amim, - momy a=2 e My o Z71 e

+

So, the neutron and proton mass difference causes the FIG. 2. The Jacobi tree for a nucleus composed pfotons and
intrinsic kinetic energy operator to depend upon the centerN neutrons.
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(EIMM+|K—KO|EITIM 1) guantum numbers—total momentum, parity, and isospin—of
the two nucleon state; anijtmt(aik@koiTiokrk) is the
:[ Mm —1|+ E_l)(z_1)+(ﬂ_1) projection operator on this state. The correspondence be-
Amymp p my, tween our notation7rt and conventional spectroscopic iden-
42 tifiers 25*1L; is
X (N—1) <5JHM - ——V2 |&J[IM > (16)
T2m ! 071~1S, 0°1~%P, 170~3S,-°D,,

because the mean value ﬁff? is independent ofx (see
Appendix B. The expression given in square brackets equals

5 Also, m; stands for the two-nucleon isospin projection;
ZN(A—1) (my—my) - 4ZN(A—1) 52 =1 corresponds to two neutrons;=0, to neutron-proton;
A2 m,mp A2 ' and m;=—1, to two protons. TraditionallyNN potentials
are constructed by fittingp (m;=0) data fort=0 states and
while the matrix element has the same order as the kinetieithernp (m;=0) or pp (m;= —1) data fort=1 state410].

171~3P;, 170~'Py,---.

energy of a single nucleon in a light nucleus40 MeV, see In general, the realistic potentials can be differentrigr
Ref.[10]). Consequently, =0,%=1 in each two-nucleon channel with-1. To some
extent it holds even for charge-symmetric potentials of the
(K=K%=10"° MeV. strong interaction, because the Coulomb interaction must be

_ _ _ included in VITt=DM="1 ) In channels with 7
This means that by using the defined value of the nucleon__(_l)j the potentialVi™™(r,) is one function ofr,
I 1k 1

mass(6), we can account for the-p mass difference in the whent=0, and three different functions of, , whent=1

expression for the intrinsic kinetic energy without any pmb'(the best example beingS,). In channels with 7=

lems. In cases, when the mean value of the neutron and PIP= 1)i+1 andt=0, the potentiaVi™™(r,) can be given as
. n - ’ I

ton masseg3) is used instead of the defined value of they o jitferent functions of ., namely entries in a second-

nucleon mass, this difference of expectation valtes) IS order symmetric matriXsuch as the parametrization in the
p.rop(.)ruonal t.oﬁand carg) cause a noticeable difference in theChannel 10~35,-3D,, as given for the Reid6@5] and
kinetic energiex andK™. Nijmegen[2] potential$ or nine different functions of .,
corresponding to different values af, when r=(—1)'*1
IV. THE POTENTIAL OF THE NUCLEON-NUCLEON andt=1. The first channel of this kind is2L. This param-

INTERACTION etrization, however, is performed as three different functions
The Hamiltonian of an atomic nucleus with a charge in-Of Tk - A; ment|0ne.d earlier, they obviously are different for
dependence and charge symmetry breakifgpotential has M= —1 in comparison tan;=0 or m;=+1, due to Cou-

the form lomb interaction of protons.
The charge-independent Hamiltonian of an atomic
H=K+V, nucleus composed of nucleons is
whereK is the translationally invariant operator of kinetic HO=KO+VO° (18)

energy, Eq(1), and
with the kinetic energy operator, defined in Eg), and the

a ) ) . ) charge-independent potential-energy operator

V= 2, [Vpp(i,K)PR(1)Pp(k) + Vi (i, K)Pr(i)Pp(k)

i,k=1(i<k) A

. . \VO= VO(i k), 19

+Vnn(i,K) Pr(i)Pr(K) ] < (i,k) (19
is the potential-energy operatfthe Coulomb interaction is ) o
included inV,(i,K)]. whose partial-wave expansion is given by

It is useful to employ the isospin formalism and the o 0

partial-waves expansion in order to simplify the definition of VALK =VA(rioiTiowm)

the NN potential, i.e., ‘
= VIT (i) Pt OikpixoiTiowm) . (20)

V(i,K)=V(rio; 7o) jmt
_ Vimtmyp \p. o 1 As was shown above, there are no problems with regard
j%nt (T4 Pjmtm (O bixorimionemids (17 e charge-dependence of the kinetic energy, because by

taking the proper value of the nucleon mass, one carkise
where ry = (ri fikdik) =r;—r¢ is the difference of radius instead ofK in the expression foH, due to the negligible
vectors of thath and thekth nucleonsi; 7; are the spin and difference between these two kinetic energy operators. In
isospin variables of thih nucleon, respectively;zt are the  such a case, the Hamiltoni&hcan be expressed in the form
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A
H= > h(ik), (21)
i k=1(i<k)
where
ﬁZ
h(i,k)=— m(vi_Vk)2+v(ri_rk10'i7'i0'k7'k)-
(22

The exactexpression for an arbitrary eigenvalue of such,;;in F=ra_,

an operator igsee Refs[11,12, and references thergin

EJHMT:<H>21}:MT

A(A-1 .
:¥ 2 8J7Ttm[Qs,jﬂtmt(5‘JHMT)l

2 g,jmtmy

(23

Qs,jﬂ'tmt,8’,]’77't’mt’((€JHMT)

- s

r !
0171 -+ - OA—1TA-10ATATA_1TA—10ATA

[ ag . dg g 08 )

PHYSICAL REVIEW C 60 044304

where the sum runs over all the two nucleon states and
all eigenvalues of the reduced HamiltoniatRH) operator

2h°
h=h(A-1A)=- mAr'{'V(rrO—AflTAflO'ATA)
(29

—ra.
TheQS,jwtmt(é’JHMT) are diagonal entries of the intrinsic

density matrix in terms of the RH eigenfunctions

Qs,jﬂ'tmt(g‘]l_[ MT) = Qs,j mtmg ,s,j‘rrtmt(g‘]H MT)’ (25)

(ér-10A-1TA-10ATA)

S,jﬂtmt

+
XWeinmy (&1 - - Ea-28a-10171 ... Oa-1TA-10ATA) X Vg (&1 - - - Ea-28p 10171 ... Op_1TA_10ATA)

! ! ! ’ !
X ws,'j,ﬁ,t,mtr(§A710-A717A710-ATA)’

where ‘IfgmMT(gl ... ér_1017 ... opTA) IS the intrinsic
wave function of the nucleus.

According to the definition of the density matrix

Qe jmm(EMIM)=0 and > Q, jmm (&M ) =1.

£,jmtmy
(27)

(26)

but is slightly simpler, because the correspondiig poten-

tial is charge independent. As a consequence, the total iso-
spin T is an exact quantum number. Moreover, in such a
case, the eigenvalues are the same for all nuclei of the isos-
pin multiplet and, hence, independent by . Here

2h?
hO=h°(A—-1A)=— mAr+VO(I’,O'A_lTA_1O'ATA). (31

These are probabilities of definite states of two nucleon rela-

tive motion ejmtm, in the state under investigation A straightforward comparison of the eigenvalues, Egs.

&IlIM+, i.e., the state specified by the exact quantum(23) and(30), is impossible, as eigenfunctions of the Hamil-

numbers—energy, total momentum, parity, and isospin protoniansH and H® do not coincide. Eigenvalues and eigen-

jection of the nucleusA,Z). functions of the corresponding reduced HamiltonigBgs.
The expression for the eigenvalue of the Hamiltonian  (24) and (31)] are also different. To compare them, it is

necessary to define kind of equivalent potentidl, for

o_ A O which we are looking. From partial-wave decompositions of
H T ikSl<w h™(i,k), (28 the potentials, Eq€17) and(20), it follows, that the realistic
potential in the states with=0 is the same in both cases,
where becausam; can take only the value zero. it=1, there are
three different pairs of nucleonsn(=0,+1) and theNN
o, 72 5 o potentialV! ™™M(r;,) is different in each case. Therefore, the
ho(i k) == 5 A (Vi= V) "+ Viri—roimoxn) (29 symmetric, charge-independent potential in an arbitrary two-
nucleon state can be defined as the sum of these charge-
is very similar to that given by Eq23): dependent potentials
EMT = (HO ;H;:%l) > &™Q, (&IIT), (30 ijt(rik):% Com, V™M i), (32

e,jmt
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where thectmt are normalized coefficients:

2 G =1 (33)
M

The optimal values of these coefficients asee Appen-
dix C):
Coo: 1, (34)

(A—2Mp)(A—2M1—2) 47(z-1)

(1T TBAA-2)+4T(T+1)  BA(A—2)+4T(T+1)’
(35)
A(A—2)+4T(T+1)-8M2
CUOT T BAA—2) +4T(T+1)
8NZ—A(A+2)+4T(T+1)
- (36)

3AA—2)+4T(T+1) °

(A+2Mp)(A+2M1—2) AN(N—1)
C1+17 3AA—2)+4T(T+1) 3AA—2)+4T(T+1)"
(37

These values, obtained as a result of consideration
probability distributions, have a rather simple interpretation.
Having in mind the definition of marginal probabilities, as

given in Ref.[11], and the definition of they,, as given in

PHYSICAL REVIEW C60 044304

dence of the potential and the neutron and proton mass dif-
ference, is a function of the parameters, T, and M.
Comparing with the exact expressié®3), we observe that
isospin now appears as an exact quantum number and the
density matrix is independent & . Consequently, the den-
sity matrix is the same for all members of an isospin multip-
let, as it must be for a charge independent Hamiltonian. Con-
trary to the commonly used expression for charge-
independent potentials, i.e., E(BO), the present effective
Hamiltonians[Eq. (38)] are different for different nuclei of

an isospin multiplet and for states of the same nucleus with
different values of total isospif.

V. NUMERICAL TESTS

The effective Hamiltonian$Eq. (38)], obtained above,
agree with the well-known, trivial isoscalar Hamiltonians for
nuclear matter and for states of finite nuclei with total isospin
T=0, because, in this case, the nucleon mass equals half of
neutron and proton masses and the effective potential is the
average of the three potentials. However, even in this case,
the recommendations given above allow us to express in
isoscalar form the Coulomb interaction of the protons. In the
light-nuclei region for isospin multiplets witfi # 0, the val-

es of the nucleon mass and the effective potential are dif-
erent for nuclei with differentV; values.

For the triton A=3,T=1/2,M+=1/2), for example, the
mass of the nucleon is

Eq. (C5), we find that these coefficients equal the number of 2 1
pairs of nucleons with the isospin and corresponding projec- m= §mn+ §mp,

tion quantum numberg,andm;, divided by the number of

pairs with the isospin quantum numbter

and the equivalent charge-independent potential is

Finally, the charge independent Hamiltonian can be ex-

pressed in the form

A
HOA,T,Mp= >  h%ATMik), (39
i,.k=1(i<k)
where
2
0 . _ L 2
h*(A, T,M+;i k)= —Zm(A,MT)A(V' Vo)

+VO(A,T,MT;ri_rk,O'iTiO'ka).
(39

The eigenvalue oH°(A,T,M+) is very similar to that given
by Eq. (30), but now has the form

EMT(AT M) =(HUA T, M)
A(A—1) _
T2 s%t ¢! ™(AT.My)

X Qg jmt(EIT). (40)

, 1 2
VITt=1)(r) = §\/JﬂT(tzl)(mFO)(r)+ §V17(t:1)(mt:1)(r)
or simply

A 2
V(r)= §Vnp (r)+ §Vnn(r)y
which agrees with the results obtained in Hé&f using the
same nucleon mass and in Rdf7] for the charge-
independent potential in théS, state. For3He (A=3,T
=1/2,M+=—1/2) the mass of nucleon equals

1 2
M= My +Zmp.

The equivalent charge-independent potential is
o i B 2 _
VITt=1) ) = §\/Jﬂr(tfl)(mro)(|—)+ §VJ7T(t71)(mt7_l)(r‘)’

with the Coulomb interaction included in the last term.
In order to test the results obtained in Sec. IV, we per-

From the last expression we observe that our result for ormed several calculations in the framework of the large-
charge-independent Hamiltonian, which includes charge debasis, no-core shell-model approddhb|, using interactions
pendent effectgde.g., Coulomb interaction, charge depen-that directly break isospin as well as the correspondhiing
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TABLE |. Comparison of energies, in MeV, obtained in the Hamiltonians is obtained foPH and *He and for all six
no-core shell-model calculations with the full charge-dependent efsiates ofSLi. Moreover, we performed calculations for the
fective interaction€,_y, and the corresponding isospin-invariant T=1 states inSLi using the isoscalar potential foF=0.
effective interaction&so (as defined in the textfor A=3 andA Analogous calculations for th&=0 states of the same
=6 nuclei. 'I_'he effective interactions were Qenved from the CD'nucleus were also performed utilizing the isoscalar potential
Bonn potentiall4]. Harmonic-oscillator energies di)=19 MeVv for T=1. In all cases the absolute values of differences be-

hQ=17.2 MeV I for thA= A= - ) .
?enn(,jls respectiveley g;:i:m;) 2Zrendp| eot; B?) n31 Ozr;? Spa(scesﬁas tween charge-dependent and charge-independent results are
utilizéd while forA.=6 a complete 0 model space was used.  SOMe three times larger in comparison with calculations us-
' ing the correct value of the isospin for the state under inves-

AZ(37T) Ep o Eiso [Ep_n—Eisol/Ep_n tigation. As can be seen from the_ re_sults in. Table 1, the
biggest difference between energies is obtained %Be,
3H(:+ D) —8.441 —8.421 —2.44x10°3 where it equals 1-2 % of the “exact” value, and, to some
Het+1 —7.668 —7.643 —3.27x10°3 extent, in®He, where it does not exceed 1%.
SHe(0"1) —25.665 —25.830 +6.42<10 3
ZL!(liO) —28.257  —28.180 273X 10_2 As is well-known, charge symmetry in nuclei is broken at
Li(370) ~ —-25.605  —25.525 —38.12<10° the very least due to the difference between the proton and
°Li(0"1)  -24.815 —24.666 —6.02x10°° neutron masses, the charge-dependence of the strong interac-
°Li(2*0)  —23.146 —23.071 —3.25x10°° tion and the Coulomb interaction among the protons. These
°Li(271) —21.934 -21.924 —4.47<10* effects are not very large for light nuclei in comparison with
®Li(170) —20.433  —20.362 ~3.46x10°° the binding energy of the entire nucleus, but there are cases,
5Be(0"1) —22.829 —22.545 —1.25x1072 in which they are significant and play a very important role,
5Be(271) —20.227 —19.851 —1.86x10°2 such as for nuclei near drip lines, which are loosely bound.

However, the description of nuclei using a fully charge-
dependent Hamiltonian is complicated, so the construction of
interactions given by formulag34)—(37). The effective in- @ Hamiltonian, as close as possible to charge-independent
teractions were derived from the freg, pp, andnninterac-  one, would be useful.

tions. These effective interactions then served as input for the The present article is devoted to the consideration of this
large-basis shell-model calculations of the: 3 system, e.g., Problem. It is shown that charge-dependence of the realistic
3H and ®He, and of theA=6 system, e.g5Li, ®He, ®Be. In  Hamiltonian for light nuclei can be taken into account by
the present calculations we employed the CD-Bpfihpo- ~ replacing the realistic one by an equivalent charge-
tential, which includes isospin symmetry breaking terms. Inihdependent Hamiltonian. The parameters of such a Hamil-
addition, the Coulomb potential was added to the protonfonian (i.e., the nucleon mass and ti¢N potentia) are

proton interaction. To get energy convergence, one need’ﬁJC'GUS and state dependent. Our results can be formulated

Nmac> 30 for the three-nucleon problem. However, for the@s simple recommendations for the construction of such an

purpose of the present work it is enough to perform the shellisoscalar Hamiltonian.

model calculations in a sufficiently large, but still easily ac- (1) Take the nucleon mass equal to
cessible model space. We chd$g,,= 8, which corresponds

to 8k () excitations above th(_a upperturbed ground state for m= E(Nmn+Zm ).
the A=3 system and ®() excitations for theA=6 system. A P
For the harmonic-oscillator frequency, we pické@ =19

MeV for the A=3 system andiQ=17.2 MeV for theA (2) Take the realistidNN potential in states with two-
—6 system. These choices follow from the phenomenologiucleon isospirt=0 as they are defined from the neutron-
cal formulaQ = 454~ Y3— 25A-2/3 MeV/. proton data analyze.

The wave functions obtained in the no-core shell-model (3) Take the isoscalaN potential in states with=1 as
approach satisfy all the requirements necessary for realisti linear combination, Eq32), of the neutron-neutronn,
nuclear wave functions, i.e., the excitation of the center-of-=1), neutron-protonrfy=0), and proton-protofwith Cou-
mass of the nucleus is under control and they correspond #§Mb potential included(m,=—1) realistic potentials with
exact eigenvalues with good quantum numhkid, (andT  coefficientscy, given in Eqs.(35—(37).
in the case of the isospin invariant effective interackidrne The eigenfunctions of such a Hamiltonian have the iso-
results of our shell-model calculations are presented in Tablspin T of the nucleus as good a quantum number, but are
I. These results demonstrate that, in general, the suggestédferent for the individual members of the isospin multiplet
definitions for the nucleon mass and tR&l interactions are due to the dependence of the isoscalar Hamiltoniansl n
successful. The deviations between the exadth charge- In general, the results obtained are self-consistent and do not
symmetry breaking interactionsnd the approximatéwith conflict with the simple requirements mentioned in the Intro-
isospin invariant interactiongalculations are at the level of duction. Moreover, the isoscalar part of the Coulomb inter-
a fraction of a percent. The best correspondence between tlaetion has a nicer form than the earlier result suggested in
results for the charge-dependent and charge-independeRef.[16], Eq.(2.21), because the isoscalar Coulomb interac-
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&, ... & and fromrg, 1Mg 1, TgioMgio, - oo FgrtMgye

to & ¢.84+1.&5+2, - - - &4+1-1 are orthogonal. Then the
complete transformation is also orthogonal, because the
transformation matrix fron_,,& g to &,§; is orthogonal:

\/m1~-~q \/mq+1~-~q+t
| o |l
FIG. 3. An example of a Jacobi tree with subtrees. & Mg+ 1--gtt _ Mg §,q
M M

tion of the nucleons in the present work equals zero in two-

nucleon states with isospin=0. Consequently, the normal-  Following this process to the top of the tree, we can arrive
ization of this interaction to the number of proton pairsat orthogonal two-dimensional transformations. Therefore,

occurs naturally. the complete transformatiom-t) X (q+t) is orthogonal.

Our results can be considered to be quite good in all cases
considered, because, due to our normalization conditions, APPENDIX B
Eqg. (33), we really have only two free parameters for the . .
construction of the isoscalar interaction. The approximation g‘]-li]h:/l |r1Vd2ep§;ST\;l10e Off theh matr!x .elimentt),. Hq.ﬁ)t’)l
given here is a good starting point for a perturbational ac-< u na| 7). of e the intrinsic Jacobi variable

count of nuclear charge-dependent effects not included in theumber @=1,2,... A—1), can be shown as follows. By

isoscalar Hamiltonian. definition, this element equals the product of sums over spin
and isospin variables and of integrals over intrinsic Jacobi
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their hospitality. atomic nucleus. This wave function is antisymmetric with
respect to all nucleons. However, this property in Jacobi
APPENDIX A variables is not expandable in a simple way, because permu-
tations of one-nucleon variablesgenerate orthogonal trans-
The orthogonality of the transformatiaid4) follows di-  formations of Jacobi variables. We can simplify by multiply-

rectly from the observation that an arbitrary Jacobi tree cafhg the given expression by the integral
be written as a system of two subtrees, Fig. 3. The (iest)

subtree with first-degree verticesmy, rom,, ... rymq de- . B

fines the Jacobi variable® &, . . . &, the secondright) f dne®* (70)O(10)=1,

subtree containg g, 1M1, g1 2Mgi2, - - - fq+tMg+t and

&+1:8q+421 - - - Eg+1-1, correspondingly. Obviously, it is where®(,) is an arbitrary, normalized wave function of

possible to introduce in the first and second cases the addike center-of-mass. The new wave functions
tional Jacobi variables proportional to the center-of-mass co-

ordinates of the subtrees, defined as O(n)Veanm (M2 Pp-10102 OATL, T2 Tp)
1 can be rewritten as usual antisymmetric functions of one-
§1= N _21 ymyx;;  and particle variables
1 q+t Deym(Fal2 TAG1 02 OATL, T2 " " TA).
m— > Jmix.
& VMgipoqepicart Due to the orthogonality of the matrix, Eq. (8), the inte-

grals can be transformed into one-particle variables
The indices of these coordinates are negative, according to
the rule that the arbitrary center-of-mass Jacobi variable situ-
ated near an intrinsic Jacobi varialdg is labeled ast; f d%f d”lf dnz"'f dﬂA—lzf drlf dfz"'f dra.
(& and &y, & andé 4, §;11 and§_). Suppose, the trans-
formations  from rymq,rom,, ... rgmy to £ 4,6, The operator can be written in the form
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A 2
=(Va) —((Va_1-Va)),
. ]Z 84,18,j(Vi-V))
A A because all sums are independen&p$ee Eqs(9) and(10).
Z ,iVi2+i 1:12(&,-) Agi84,j(Vi-V)). Therefore,(Vf,) is independent ot («=1,2,... A—1).

The mean value of this operator is simply
APPENDIX C

(v2, )= > dflf dry- The relation between potentials, defined in &%), holds
TLI2OA L 72 also for the reduced HamiltoniaiRH) of the different two-
nucleon states

XJdrA(D;JHMT(rlrz“'rAffl,O'z"'UATlaTz“'TA)

2
va,a(DEJHMT(rer TAC102" " OATL, T2 " Tp) ho,ijE Ctmthjﬂ-tmt

A

A
:21 a,i cvl(V >+| 712( i) a,iaa,j<(vi'vj)>'

and their matrix elements
Due to the antisymmetry of the wave functions, the matrix

elements(V?) and((V;-V;)) are the same for all possible

values ofi andj. Thus, poimt i 7t
] “T E Ctmt swsr t!
A A
<Vf’a>:<vi>i§1 aa,iaa,i+<(VA—l'VA)>i j:%ﬂ) 84,i84,]
5 ' because the partial-wave expressions for the kinetic energy
=(Va)+{(Va-1-Va)) operators are the same in all cases. For this reason, the dif-
ference of a diagonal matrix element of the Hamiltonk&n
> E aiZ aaj_E a,.a,, and an eigenvalue of the Hamiltonia#® for an arbitrary

eigenstate oH° equals

INTMy_ A(A—l)>< 5 Himt Qe jatm, ;e jmtm (EITTM7) -

H—H°
< > 2 58’,sctths,j7Tt(gJHT)

s,s’,jﬂ'tmt

There are nondiagonal contributions to the chargesult is caused by the following reasons: The nondiagonal
dependent density matrix, because the eigenfunctions of thelements of the charge-dependent RH matrices are negligible
three RH operatore ™™ (m,=0,+1) are different and are in every two nucleon state, because charge-independence and
not equal to the eigenfunctions of the isoscalar RH™. charge-symmetry breaking forces in light atomic nuclei are
The matrix of the isoscalar RH in this case is diagonal, i.e.significantly weaker than original charge-independent strong
interaction between nucleons. The nondiagonal entries of
charge-dependent density matrix are also small in absolute
value, because eigenfunctions of the charge-dependent RH
are close to eigenfunctions of charge-independent RH for the

The left-hand side of Eq(C1) is the sum of traces of Same reason as given previously.
products of two symmetrical matrices, the first of these is the The most important diagonal part of the sum in EQ1)
matrix of the RH and the second is the reduced density mas
trix. As is seen from Eq(C1), this sum contains only two
kinds of terms—one is equal to the product of diagonal ele- 7t
ments of both matrices, and the other is equal to the product J;mt oo 1Qejmtm (EIITMy) = Cim Q, jm(EIIT)}.
of nondiagonal elements. The last subsum is mdependent of (C2)
the choice of the values of variational coefﬁuen’gﬁ]

any case, its contribution is negligible in comparison WIthThe problem is to choose the coefficients, in such a way
the first subsum, which contains diagonal elements. This rethat this sum will have its minimal value. Let us first recall

0jmt__ jmtmy it
hs,a’ —; Ctmthe,s’ —SJ 58‘81 .
t
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some definitions. The distributions of probabilities, given in Qum(TM7)=cm Qu(T). (C4)
Egs. (23) and (30), differ. In the last expression they are ! !

comparable, because corresponding density matrices are cfBhe marginal probabilities are defined by

ated by the same wave function. The relationship between

these probabilities, following directly from the definition of ) IJTITM-) = ™

the density matrix, igsee Refs[11] and[13)]): 8%7 Qe jrim(& 1) = Qun (TMr)

and
; Qe mim(EIMTM)=Q, | ((£JIIT).  (CY)
t

2 Qun(TMp)=Q(T)
This equality means that the quantity on the right-hand side mo ! I

is amarginal probability(see, for example, Reff14]). In the

caset=0, all entries of Eq(C2) vanish, wherco,=1. This and can be extracted from the expressions for the simple
- ’ 00— +-

value is consistent with the definition of the isoscalar inter-r’m'”t'p""rtICIe operators with known eigenvalues, such as the

action, Eqs(32), (33), because, as mentioned earlier, in thismafss[;tljr;g)eﬁl,_hthe fchargeZ and the total isospifT (see
case we have no other choice, excluding the best one. In tl@e s-L14,19). Therefore,

case whert=1, the situation is not so simple, because only A(A+2)—4T(T+1)
the sum of the three multipliers dl‘ld;;mt, corresponding to Qoo TM1)=Qq(T)= AAA—1) :
the three possible values of the isospin projectign van-
ishes, due to relation§33) and (C3). In general, for any 3A(A—-2)+4T(T+1)
value oft the relation Qu(M)= JAA—T) ;
: - . = (A=2M7)(A—2M1—2)

% {Qe jrtm (EIMTM1) = i Q,  mi(EITIT)}=0 O L(TMy) = —— ,
is satisfied. 2

. L . . . - A(A—2)+4T(T+1)—8M

This relation is an identity, and, hence, is not sufficient to Qi(TMy) = ( ) ( )-8 T,

define the coefficients, but gives us more choices for deter- 4A(A—1)
mining the minimal value of the sum given in E&2). The B
best choice occurs when the partial sum of the coefficients Q41(TMy) = (A+2Mr)(A+2Mr=2)
over all possible two-nucleon channels is equal to zero, 4A(A—-1)
namely, Using Eq.(C4), we obtain

3 {Qu i (EITTMY) =€ Q. (EITTT)} =0, Com, = Qun(TM)/Q(T). €9

Y Applying this expression, we obtain the values of the coef-
This equation can also be expressed in the form ficients given in Eqs(34)—(37).
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