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A remarkable set of correlations of yrast and excited quasiband energies in collective nonrotor and rotor
nuclei is discussed. These correlations are essentially independent of the nature of ti{e.gtatgast, quasi-
y-vibrational, superdeformedof mass region, and of the type of nucléesen-even, odd, or odd-odg, and
indicate a universal behavior which apparently describes all collective low energy structures. The results also
show that, for most cases in odddeformednuclei, the band energies amt follow the rotational formula.

The nature of spherical-deformed phase/shape transitions is also discussed and related to the sketmagly
actually different behavior of the neighboring even-even core nuclei. Finally, theoretical treatments that
reproduce these correlations in even-even and Avdudiclei are discussed, and new calculations with the
geometric collective model are presentg80556-281®9)03209-4

PACS numbgs): 21.10.Re, 21.60.Ev, 27.50e, 27.60+]

I. INTRODUCTION attention to the value of a “horizontal” approach to struc-

tural evolution as a complement to the usual “vertical” ap-
The properties of the lowest excited states of atomic nuproach that focuses on individual level schemes.

clei offer a very sensitive test for nuclear structure theories. The first observation that triggered these investigations
Although level energies were recognized long ago as valuwas that the yrast energies of the collective, nonrotational
able signatures of structure, theelationshipsover large  medium and heavy even-even nuclei show linear correlations
nuclear regions have been rather little investigated until refsee Fig. 1a)] which could be interpreted in the framework
cently. During the last few years, however, a remarkable setf an anharmonic vibratqiAHV ) with a nearlyconstantan-
of correlations has been discoveldd-7] among the excita- harmonicity[1,2]. Equally simple correlations have subse-
tion energies of quasiband structures in collective nucleiquently been found for precollective nucld]. Similar en-
These discoveries have been possible by exploiting the largergy correlations have also been found for quasiband
body of data on stable and near-stable nuclei whose accumstructures in collectivg4—6] and precollectivg]7] oddA
lation over the past decades now permits a global perspectivauclei.
and a synthesis of heretofore seemingly disparate behavior. These findings, essentially empirical, are rather surpris-
The correlations found to apply to nuclei near stability offering. Such simple and almost universal correlations were not
benchmarks and challenges for confronting data soon-to-bgsredicted in advance by any nuclear model and there is still
obtained on exotic nuclei far from stability. They also drawno microscopic understanding of the observed behavior and
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TABLE |. Summary of the results of the observed AHV-type correlations. For each specified set of experimental data specified in the
columns towards the left, the table gives the slope of the first energy correl&tipK2) for n=2], the values,, as well as the & r.m.s.
deviation of the experimental points from the fitted AHV line. The experimental data are from &edad[14] (superdeformed bangsThe
quasiband labels for od8-and odd-odd nuclei are inclusive; that is, the correlations include all bands of the specifiéd.gpall normal
parity bands extracted from R¢B]) in the type of nuclei considere@.g., nonrotational foz =34-80.

Set of nuclei Range Quasibands Number of cases Slopee, (keV) lo-deviation (%) Fig.nr.

Even-even nuclei

Nonrotational 3&7<82 g.s.b.(yrash 163 2.002) 161(8) 5.0 1
Nonrotational 347<82 Quasiy 50 1.9713) 104(13) 3.7 2
Nonrotational 347<82 05 -quasiband 57 1.867) 136(18) 8.0 3
Odd-A nuclei
Nonrotational 347<80 Unique parity 329 2.02) 170011 6.4 5
Nonrotational 347<80 Normal parity 276 2.02) 116(7) 7.4 5
Rotational 63<72<77 Unique parity 99 2.02) 87(4) 3.9 6
Rotational 63<7<77 Normal parity 200 1.92) 96(3) 4.6 6
Odd-odd nuclei
Nonrotational 33%7<79 2-quasiparticle 305 2.0p 13911 6.0 7
Rotational 6&KZ<75 2-quasiparticle 101 2.0 86(6) 5.7 8
All nuclei
Mass 80 SD-bands 9 2.ap 15019 2.4 17
Mass 130 SD-bands 19 1@ 98(17) 0.9 17, 18
Mass 150 SD-bands 51 14Q7 71(8) 0.5 17, 19
Mass 190 SD-bands 51 148 47(2) 0.6 17

its universality. Nevertheless, macroscopic approaches sugiarent that there is a natural empirical separation of collec-
as the interacting boson model, as well as the interactingve nuclei into two subclasseson-rotationalnuclei (2.05
boson-fermion model, automatically reproduce, in a naturak R,,,<3.15) androtational nuclei (R,,=3.15). For oddA
way, the observed behavif,5]. As noted already, the uni- and odd-odd nuclei there is no obvious single criterion to
versality of the observed energy correlations leads to intrigudistinguish these classes of nuclei, since energy correlations
ing questions concerning their possible extension to the newepend on the spins of the levels. Hence we have investi-
nuclear regions that will become accessible with future studgated such nuclei according to the classification of their
ies based on radioactive beams. even-even cores. In this paper, we will discuss many en-
The present article begins by collecting the existing scatsembles of nuclei and types of statggast, vibrational, etg.
tered empirical results on these energy correlations in collecfable | gives a summary of, and guide to, the data shown
tive nuclei, mostly published so far in Letter forfh—7]. It ~ and the results obtained.
then extends the study of such correlations to additional

states and nuclei, such as intrinsic vibrational excitations in A. Even-even nuclei
even-even nuclei, bands in odd-odd nuclei, and superde-
formed bands. This rich experimental material points to the 1. Yrast levels

fact that these energy correlations are essentially similar, re- \ye first present the results of Ré1], since this type of
gardless of the nature of the states, of the mass region, of thgyestigation and its results became an almost standard para-
type of nucleus, and have therefore a global, universal agjigm for the subsequent studies. The idea of R&f.was
pect. A simple expression is derived which economically devery simple: instead of studying the yrast energies of even-
scribes the energies of any collective band. Finally, theoretayen nucleiE(27),E(47),E(67), ... or their ratios, such
|cal_ models which can reproduce such correlations argsR,,, as functions oZ,A or other similar quantities, as
reviewed, and new results are presented for even-even nuclggua”y done, we studied the relationshigtweerthe ener-

with the geometric collective model. gies themselves. Figurda shows the very surprising result
obtained: a plot ofE(4;) as a function ofE(2;), for all
Il. GLOBAL CORRELATIONS: EMPIRICAL RESULTS collective nonrotationalnuclei with Z from 38 to 82, shows

) ) _ ) o an unexpected linear correlation of the form
In this article we restrict ourselves to the investigation of

collectivenuclei. For even-even nuclei, a generally accepted E(4])=2.0E(2])+&y,, (1)
definition is that these are nuclei with a ratiBy,

=E(4,)/E(2;) larger than 2.0. For a clearer cutoff from where an average, is given by the intercept. It is obvious
“precollective” nuclei (with Ry, smaller than 2.0we use that, for any nucleus, a value ef can always be obtained so
the conditionR,,=2.05. During our studies it became ap- that Eq.(1) is satisfied. What is surprising about the correla-
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tion in Fig. 1(a) is thate, values are nearly independent of

nucleus or even mass region. Falf collective nuclei be- <”—1|Q|”>:611\/ﬁ
tween Sr and Pb the data are reproduced surprisingly well

with a valuee ;= 161+ 8 keV, the deviations from the linear

fit of Eq. (1) being practically random, with adl deviation T
of 5%.

The interpretation of Eq(1) is that of ananharmonic
vibrator (AHV) with constantanharmonicity{9]; the anhar-
monicity e, is the difference between the energy of the two-
phonon statd(4;) and twice the energy of the one-phonon
state,E(2]). The anharmonicity can also be regarded as the B(E2:n—n—1)=nB(E2:2; —0;)
phonon-phonon interaction. The constancy f implies

a as
1+ a_l(n_1)+ a—l(n—l)(n—Z)

4

Since B(E2;n—n—1)=(n—1|Q|n)?, we haveB(E2:2;
—0;)=a? and

1+ 221
a_l(n )

that, although Fig. 1 spans nuclei with a very large variety of a 2
structures[as indicated, for example, by the variation of +—3(n—1)(n—2)+ o (5)
E(2;)] these nuclei can be considered as belonging to a a
single underlying class, that of an interacting multiphonon .
system whose phonon-phonon interaction energy manages &'d. specifically
remain essentially constant regardless of the obvious changes 5
that must be occuring in the internal structure of the phonon ot ot At a
itself. An alternate way of stating this is that the structure of B(E2:4; —2,)=2B(E2;2, —0y)| 1+ a,|’ ©)
any of these nuclei is, to an excellent approximation, speci-
fied by the 3 energy alone. which is linear inB(E2:2f —07).
The AHV expression of Eq(1) can be generalized for  The factorn multiplying a2 [i.e., multiplying B(E2:2;
any yrast state, as follows: —07) valug] is reminiscent of the factar multiplying E(1)
in Eqg. (2) but, in fact, the behavior of thB(E2) expression
n(n—1) is not at all of the same form as the AHV expression for
E(n)=nE(1)+ £4. (2)  energies. Thentireterm in brackets in Eq5) multiplies the

2 27 —0;B(E2) value and the intercept is zero. Note that

truncation of Eq.(5) at thea, linear term gives the same
Here, n stands for ‘h-phonons.” E(n) is the energy of the 'esults asin Ref9]. _
n-phonon state, of spih=2n and the anharmonicity is, The data are shown in Figs(c} and Xd), for the entire
—E(2)—2E(1)=E(4,)—2E(2}). For the cases discussed 'ange of nuclei fronz=38-82. N ,
until now, these were the excitation energies within the yrast D€SPite the large span of nuclei comprising many differ-

quasiband of even-even nuclei. We shall later apply . ent structures from near spherical to rotational, the data clus-
to other quasiband structures as well. ter within a compact envelope that follows a linear trajectory

.ot + :
That AHV relation(1) is not an accident is supported by 2g@inst theB(E2:2; —0;) values. Of course, as in Eqd)
additional experimental data, most notably by the higher spie" (2), it is trivial to find coefficientsa, such that Eq(6) is
yrast energies using E(). Thus, for the three-phonon state satisfied for any given nucleus. The remarkable fact again is
(6"), the AHV model [9] predicts an energyE(6;) that a singlea, value reproduces all the data in Figéc)land
—3E(2]) +3e,4, wheree, is the same anharmonicity of the 1(d). B(E2) values including higher spin yrast states are also

+ : : P _ well described by Eq(5) including the terms ira, andas.
4, state. Figure () §hows that this expectation is well sup Note that the slope in Fig.(&) is 1.49 which implies that
ported by the experimental data. 2= —0.14a
Additional evidence for this AHV description of the yrast zjl'her.e islén important point of historical interest worth
states was discussed in RE2] on the basis of th&(E2) . : P P :
" . . making at this point, namely, that these results imply much
values for transitions between the states of this quasiband ; ' ; .
. o oy . e more than the linearity of the ratig,,, with R4, observed in
[e.g., the correlation oB(E2:47 —27) with B(E2:2] . ) . ¥ +
i . . Mallmann plots[11] in which the ratioE(67)/E(2;) was
—07) valueg, for which the AHV model also predicts cer- : . + + N
1 ) o . found to be linear inE(4;)/E(2;), and similarly for
tain linear correlations. This is shown as follows. FollowmgE I V/E(2H). for 1>6. In fact the i ity i Mall
the approach of Refs[9,10] we consider a system of (17)/E(2,), for - Infact the fineanty in a Malimann
n-phonon stategn), and their creation and destruction op-

plot only demonstrates a very general energy-angular mo-
eratorsB' andB. The quadrupole operator corresponding toMentum relationship and says nothing abeutTo see this,
E2 transitions is given by

we use Eq(2) to form the Mallmann energy ratios, obtaining

E(47) 2E(2I)+84_2+ €4
E(2;) E(2)) E(2))

Q=a;B+a,B'BB+a;B'B'BBB+- - -. (3) Ra= (7)

The matrix elemen{n—1|Q|n) is then given by and
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0.0 ] | ] 1
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e FIG. 3. Same as Fig. 2, forQObands in the nuclei witd =34 to
o f 82.
<
wor _ empirical correlation is well described by E@) with ane,
§=2.76(10)
b = 0.343(38) value somewhat smaller than that for the yrast stébsut
100 keV).
0 ) ) ) ) Similarly, Fig. 3 shows the same type of correlation for
0.0 0.2 0.4 0.6 0.8 1.0 the bands built on the lowest'Cstate intrinsic excitatiofthe

E(4)-E(2)) (MeV] 0, statd. Although a large ensemble of nuclei has been

FIG. 2. Energy correlation plots similar to those of Fig. 1, but chosen, and t_he nature of the dn‘fer.er;t States ce;rtalnly.
for the quasiy bands of the collective, nonrotational nuclei wh  differs, there is still a rather good linear correlation, with
between 34 and 82. The straight lines are fits to the data, with th@"ly slightly more scatter of the points than for the yrast

slopeS and intercepb as indicated. Data from Reffg]. levels. The correlation is close to E(l) with a values,
similar to that for the yrast states. Thus, it appears that the

N N correlations observed for the yrast states characterize excited
E(6;) _ BE(21)+3e, 3434 ) modes as well.
E(ZI) E(21+) UE(zf) ' Finally, we examinegotational even-even nuclei. In these
nuclei, the energies must be close to the fornilg(4;)
and hence =3.3F(2;). This can be obtained from the AHV formula,
Eq. (1), providede, is taken as;E(2;), that is, E,o(47)
Rej=3Ry/— 3. (99  =2E(2{)+3E(27). But, in this cases, will, of course, not
be constant. Indeed, since the rotational formula gives
From this equation we see that the Mallmann expressiof(21) =6 (:%/2Z) we havee,=8(#%/2Z) which should vary
effectively eliminates:,: two nuclei withe , values orders of s the rotational constart’/27. The results are shown in
magnitude apart would still lie on a linear Mallmann trajec- Fig. 4 for the nuclei in the deformed rare earth region with
tory. Indeed, the linear trajectory of a Mallmann plot auto-A~150-190 andR,;>3.24. The upper section shows that
matically results fromany two-parameter energy-angular these data lie along a line of slope 3.33. The lower section
momentum relation. Moreover, even the specific linear trenéXtracts the resulting, values and confirms that they indeed
seen in the empirical Mallmann ploRg, namely Rg,  Vary linearly with E(ZI). This behavior, of course, is ex-
~3Ry,— 3, only implies thaE(l) is proportional td and/or ~ pected. We highlight it here because we will see below that
12: it says nothing further, nor does it imply a constancy ofthe data for oddA deformed nuclei contrast markedly.
g, (or of b in the Ejiri relation[12]).

Reo=

B. Odd-A nuclei

_ _ We now examine energy relationships within the lowest

The simple method applied above to the yrast states, ok|=2 quasiband structures of odd- nuclei (one-
examining correlations between excitation energies within &uasiparticle structurg&sFrom now on, the statesit” in the
certain quasiband, can be applied to quasibands based gense of Eq(2) are those of spih=J+2n of a given qua-
intrinsic excitationg13]. Figure 2 shows the results for the siband; usually is the spin of the “bandhead,” but, in prin-
quasiy band; here, the zero-phondor the referencestate  ciple, as will be discussed below, one can use another state
is the 2¢ state and the other states are those ofAthe2  of the band as a “basis.” These considerations are also valid
sequence (4,67, .. .) built above it. One can see that the for odd-odd nuclei.

2. Intrinsic excitations
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spin of the structure is not also lowest in energy—in this case

Even-even good rotor nuclei (Ry;>3.24) one starts from the lowest state in energy. The same ap-
0.4 proach is used for the bands based on normal parity orbitals,
— considered for the first time in Rdi5].
g 03k The empirical results are displayed in Fig. 5, where all
= odd-A nuclei between Ge and Hg were taken into consider-
> oz k- ~ ation. The correlation is very similar to that in Fig. 1, the
< AHYV relation (2) describing very well the average behavior
>> of this rather large collection of data. The scatter of the
0.1 points may be somewhat larger than that in Fig. 1; on the
other hand, one should emphasize that practically all known
0.0 s ! . I s band structures in the nuclei with between 34 and 8[8]
0.20 |- are represented in Fig. 5. Regional systematics present less
scatter.
= 015 % 2. Rotational nuclei
% Band structures in rotational od&-nuclei were consid-
“ 010 ered in Ref.[6]. These results are presented in Fig. 6 in a
@ slightly different form(separately for UPO and normal parity
0.05 L R orbital bands The data again show extremely well-
correlated patterns, described by the same formula(Hg.
with constante,, even though these nuclei are rotational.
0.00 . L . L : This behavior is qualitatively different than for even-even
0.00 0.05 0.10 015 nuclei (Fig. 4). This apparent paradox and its implications

E(2") MeV] will be discussed in the next section.

FIG. 4. Energy correlation plots for the yrast bands of good
rotor even-even nucleiR,»>3.24). The solid lines show the be- C. Odd-odd nuclei
havior expected in the rotational lim{in this case, the,-value of

Eq. (1) is 2E(27)). The same type of energy correlations were investigated

for a collection of quasibands in odd-odd nuclei wittbe-
) ) tween 33 and 7@%he lowest two-quasiparticle bands in these
1. Nonrotational nuclei nucle). Figures 7 and 8 show the lowest two energy corre-

Even knowing the results for even-even nuctbat is, the  lations in these bands, separately for the nonrotational and
universality of the AHV correlatiop it is difficult to make a  rotational nuclei, respectively. All these correlations are
prediction of what is expected to happen for odd-mass nuagain found in good agreement with the AHV formu@,
clei. As is well known, the characteristics of the structureswith €4 values comparable to those found for even-even or
resulting from coupling a particle to an even-even core de0dd-A nuclei(see also Table)l
pend on many factors, important among which are the defor-
mation, the Fermi level, the single particle orbitals available, Ill. DISCUSSION
Coriolis mixing, etc., and how each of these varies with .

. T - A. Odd-A nuclei
andN. There are quite a few limiting “coupling” schemes
recognized: in some of them the quasiband structures bear To this point, we have mostly presented empirical energy
resemblance to the yrast band of the core structure, while inorrelations for quasiband structures at low excitation energy
others they are quite different. in all nuclei with Z between 34mass~70) and 80(mass

The first empirical study considered only the quasibands-200). While the results shown in Figs. 1, 4, 5 and 6 were
based on the unique parity orbitgldPO) [4]. This case was already known, those in Figs. 2 and(@ncerning intrinsic
studied first because it was considered more transparergxcitations in even-even nucleand in Figs. 7 and &for
since such orbitals have practically no mixing with otherodd-odd nucleiare essentially new. Inspection of Figs. 1 to
orbitals. For each UPO, of spjnthe spin sequences consid- 8, as well as of Table I, shows that the AHV-type of
ered were the “favored” quasiband€j), and, separately, correlation—Eq.(2)—is well obeyed by practically all qua-
when available, the “unfavored” quasiband=j—1), even siband structures considered in all collective medium-heavy
if in some cases the respective structures started at spimsiclei. From Table | one sees that thg value may vary
lower thanj. It was shown that for nonrotational nuclei with somewhat with the mass range, the type of quasiband, or
Z between 34 and 78 both sequences of states obeyed rathith the class of nucleirotational or nonrotational Still, the
nicely the AHV formula(2), with ane, value close to that of remarkable result is that for large sets of nuclei/quasibands,
the yrast states in the even-even nuclei. In this paper we rela@rcluding up to hundreds of cases, an AHV behay®rwith
the condition that for each UPO one starts always from theonstante, is observed. The only exception is rotational
state of spinj and consider now states from the lowest onebands in even-even nuclei wheke=(%%/27)I1(1+1) im-
known. The only(rare exception is when the state of lowest plies thats, varies linearly withE(2;). In oddA and odd-
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Qdd-A, non-rotational

3.0 2.0
A=69-199; 2=32-80 A=73-185; 2=32-80
2.5 | Unique parity bands . Normal parity bands
1.5 i
> 20p .
£,
s 1 '5 L -1 1.0 T
W
¥ 10}
3  x $=2012) 7 $=2.02(2)
w b=0.170(11) | ™ b=0.116(7)

o
o

0.0 1 1 0.0 1 1 1 1
3.0 7
4.0
3 50
s 20 .
>
Waol
©
3 1.0 7
% $=3.03(7) . S =3.11(6)
1.0 b = 0.462(29) b = 0.316(20)
0.0 L 1 N 1 N 1 1 1
0.0 0.5 1.0 1.50'%.0 0.2 04 0.6 0.8 1.0
E(J+2)-E(J) [MeV]

FIG. 5. Energy correlation plots for one-qp quasiband structures infoddnrotational nuclei witlZ from 34 to 80, for unique parity
(left) and normal parity(right) orbitals, respectively. The curves are straight line fits to the data, with S@pel intercepb as indicated.
The relation with Eq(2) is through the notatiofE(n)=E(J+2n)—E(J).

2

odd nuclei,e, is constantevenfor rotational nuclei. How- h
E(2)=E(J+4)~E())=57(8J+20), ...,

ever, themeaningof the observed correlations is different for
the nonrotational and rotational nuclei, respectively.
The rotational formulas that successfully describe many 52
bands in rotational nuclei are well known and it is therefore E(n)=E(J+2n)—E(J)= ==[4nJ+2n(2n+1)].
worthwhile to investigate under which circumstances they 27
may be compatible with AHV-type correlations. To be more
specific, we consider the strong coupling formula for ddd-
nuclei, for which the band energies as a function of spin read Assuming now that the moment of inertiais constant

(11)

(neglecting the Coriolis interaction we can rewrite Eqs(11) in two distinct ways as
h? 2nJ+n(2n+1
E(1)= 50101+ 1)~ K(K+1)]. 10 e(m= 20N Dy, 12

Let us choose as reference a state of §ginom the band and  or
define excitation energies in the band with respect to this
state: n(n_ 1)
E(n)=nE(1)+ — 5 a4 (13
ﬁ2
E(1)=E(J+2)—EJ)= 22(4‘]+6)’ where
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Odd-A, rotational (A=155-185)

1.0 1.0
Unique parity bands Normal parity bands

08} 4 o038}
>
o
= 06 4 06}
3
w
AL 04F 4 04}
¥
2 $=2.01(2) S =1.99(2)
w2 b=0.087(4) { o2 b =0.096(3) _

0'0 L L L L 0.0 L L L L

14} 4 1.4} .

1.2} 4 1.2} s
3 1.0} 4 1.0} .
£
3 08} 4{ o.s} .
w
g?\ 06} { os} s
3 os §=292(5) | |, §=2.88(4) |
w b =0.293(12) "l b =0.297(9)

K
0.2} 4 o0.2f s
0‘0 1 1 1 1 0.0 1 1 1 1
0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4
E(J+2)-E(J) [MeV]
FIG. 6. Same as Fig. 5, for bands in oAdrotational nuclei.
%2 ing moment of inertia, as in the case for even-even nuclei
£4=857. (14 (see Fig. 4 We have already seen, though, that thisids

the case experimentally—the data follow E3) for n=2

Equations(12) and(13) present an apparent paradox. We €xactly with slope 2.0 and finite intercepj.
first note that Eq(13) is formally identical with Eq.(2); Hence we are left with the only apparent explanation be-
thus, forn=2, E(2) is linear inE(1) with slope 2.0 and ing one in terms of a clustering of points. To test this, we
finite intercepte,. However, Eq.(12) states thatE(2) is  show again the data of Fig. 6, top, but with the rotational
linear inE(1) with slope (4+10)/(2J+3) with zerointer-  expressions of Eqs(12) and (13) superposed. Figure 10
cept. How does one understand this seemingly contradictorghows the unique parity data, Fig. 11 the normal parity data.
behavior when both formulas result directly from E¢@kl)?  Careful inspection of these figures shows that there is no
This situation is schematically illustrated in Fig. 9. clustering. The data for eachin Figs. 10, 11 arenot clus-

Assuming constant moment of inertia, the only way for-tered at a given point along the horizontal axis but span
mulas(12) and(13) with constants, can be simultaneously linear segments which doot show the behavior of Eq12).
satisfied is if the points for each value are clustered at a We can see this more clearly by showing the same data sepa-
single abscissa value. As indicated by open circles in Fig. 9ately for eachJ value. This is done in Figs. 12 and 13.
each of these clustensiustbe on the line from Eq(12) Figure 12 shows that, whenever the curves from Efjg)
corresponding to that and, taken together, they must follow and(13) differ significantly, and enough data is available, the
Eqg. (13). Then, trivially, Eq.(12) is satisfied for eachl: the  data follows the AHV line withconstante, given by Eq.
points for a givenJ are all degenerate. Equatioh3) is sat- (13) and not Eq(12). The same is true for the normal parity
isfied by connecting the points of differeiit Of course, the orbits, Fig. 13, although to a slightly lesser degree.
rotational data points could liglong each of the trajectories These results are surprising. We might have expected Eq.
of Eq. (12), with different slopes for each. Then, Eq.(13)  (12) to be satisfied and that the application of Ef) should
can still be satisfied but only with a variakdg, i.e., a chang- have required varying, values to match varying moments
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Odd-Odd, non-rotational (Z=33-79) 0Odd-Odd, rotational (Z=67-75)
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2 =3
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= Tosf

EJ./ 1L ?0.5

= 3

< ~ e S =2.00(2)
:‘j S =2.05(2) b = 0.086(6)

b=0.139(11)

0 1 1 1 1 1 0.0 L L
1.5}
sk B 5
>
QO
= =
1) —
= 310}
~2F w
= A
“.J g
o =2
3 “os} S = 2.83(10)
w1 S = 2.97(6) b = 0.296(25)
b = 0.455(27)
00 1 1
0 1 1 1 1 1 0.0 0.2 0.4 0.6

E(J+2)-E(J) [MeV]
. N . FIG. 8. Same as Fig. 7, for bands in rotational odd-odd nuclei
FIG. 7. Energy correlation plots for two-quasiparticle qua5|band(Z from 67 to 75

structures in nonrotational odd-odd nuclei, wih-33 to 79. The
curves are straight line fits to the data, of sl&and intercepb as

indicated. Formula(13) does not change ang), continues to have the

same value as in Eq14).

of inertia. In fact, however, the opposite occurs. Thesta- Equation(16) is shown in Fig. 14 for severa values in
tional bandsfollow the constant anharmonicity AHV for- €omparison to Eq(13). For K=1/2 bands the effect of the
mula with slope 2.0, instead of the rotational formula with Coriolis mixing is to shift the pointslongthe AHV line of
slope ranging from 3.0 fod= 1/2 and reaching 2.0 for very Ed. (13): their deviations from the unperturbed positipa
high J. =0 in Eq. (16)] depending on the value & This nicely
A general explanation for this unexpected behavior is not
clear. However, for certain bands it can be understood as a 1-° Rotational formalas S0 0
consequence of the Coriolis effect. Y/
The data points fod = 1/2 andJ=5/2 in Fig. 13, with low
E(1) values(below about 100 keYall come from bands
built on the proton Nilsson orbit§b41]1/2 which is strongly
Coriolis perturbed8]. For K= 1/2 bands the Coriolis mixing
modifies the rotational energy formula of E4.0) so that it
takes the form

Py

e
Y = SE)X S

05 |
Y = 2°X+0.1 [MeV]

2

T2z

E(J+4)-E(J) [MeV]

I+1
2

E(l) l(1+1)+a(—)' %2 , (15)

SW) = (4J+10)/(2J+3)
where a is the decoupling parameter. Following the same 7
procedure as above, one can easily calculate the energie: T
E(n) for the sequence of states of spind-+2n) (n %0 0.1 0.2 0.3 0.4 0.5
=0,1,2...). Thus, for the sequence of spins E(+2)-E() [MeV]
1/2,512,912.. . . thephase faCtor{_)HlIZ is —1 and the ana- FIG. 9. Schematic illustration of the rotational energy formulas
logue of formula(12) is described by Eq€12) and(13) for n=2; for easy comparison with
real data, arz,=0.1 MeV value has been chosen. The circles rep-
(16) resent the intersection of the family of lines described by #&g)
with the AHV line [Eq. (13)].

E 2nJ+n(2n+1)—na
(N=""%353)-a

E(1).
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10 R
QOdd-A, rotational; unigue parity bands y/’\\q' "a\q’ ‘3\% o '\% \ﬂa\q’
3 Z N
08| J
« 1312
o 1112
x 92
< 06 a 72 FIG. 10. The same data of Fig. 6, for unique
e v 52 parity bands in rotational odd-nuclei, but plot-
E - ted with a different symbol for eacl-value,
[} whereJ is the spin of the first state in the band.
Foal Z The family of curves described by EfL2), and
L:”’, AHV fit il the global AHV fit with Eq.(13) for n=2 are
- =7 also indicated.
02 \'g"
o”y"
0.0 ! | . 1 L 1 L 1 N
0.0 0.1 0.2 0.3 0.4

E(J+2)-E(J) [MeV]

explains the points with lovie(1) andJ=1/2 and 5/2 from coupling parametea. This may seem a tedious way to ex-
Fig. 13. Indeed, the sid=1/2 points withE(1)<<50 keV tract a quantity that has been extracted for decades from the
are[541]1/2 bands in*"Lu, %°1m, and®51631%Ho, and  lowest three spin members Kf= 1/2 rotational bands. How-
have large decoupling parameters, between about 4.0 and Zer, we note that the present method usely the favored

[8]. Similarly, the first five points withJ=5/2 andE(1)  or the unfavored states, not both. The advantage of this is
<100 keV are[541]1/2 bands in 183R?, Y71, and  that often in heavy ion induced reactions, the flowyefay
77177a, and have also large decoupling parameters.,  decay passes predominantly through one of these sequences
7.5 in ®Re, 5.4 in""Ta, and 4.2 in*"Lu). Thus, forK  (ysually the favored Where both methods of extractirgy

=1/2 bands, there is_in fact no contradiction b_etween Edvalues are available, those deduced by intersecting By.

(16) and Eq.(13). This applies to the data points fa*  \th the lines of Eq(16) are in good agreement with those

1:831'42 and 5/2. All these points, with the exception of that of ohained from a fit of Eq(15) to successive band energies
e, are situated on an AHV line of slope 2.0 and intercepg) an interesting observation is that even for strongly per-
~86 keV(slightly smaller than that of 96 keV given by the ;e =1/2 bands the AHV ling(13) still provides the

global fit in Fig. §. correctmoment of inertia of the band/ia Eq. (14)].

The gener_ahzanon of Eq12) that IS given in Eq.(16) For K#1/2 bands it is impossible to estimate the general
actually provides a means of extracting the value of the de-

@
1.0 2

T A, -
0Odd-A, rotational; normal parity bands. y/\\q/ VS, ."‘:5\'7/
4 o
” X
08 | J :
s 1312
o 1112
x 92 a
5 a 72
2 0.6 - v 52
= . 32
2 o 12 . FIG. 11. Same as Fig. 10, for normal parity
E-'{ bands.
Yo4al
T AHVfit o9
02} Y
.'Z'éo
f; R
0.0 L 1 " 1 L 1 " 1 N
0.0 0.1 0.2 0.3 0.4

E(J+2)-E(J) [MeV]
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Odd-A, rotational; unique parity bands.

0.5
J=5/2 0.7k J=7I2
0.4}
0.6}
0.4t
0.5}
0.3f
0.3t 0.4}
0.3}

0.65 0.I10 0.1%%00 0.65 : O.:IO 0.115 0.28'&00 0.65 010 0.I15 0.I20 0.28%.0 01 0:2 0.3

E(J+4)-E(J) [MeV]
(=]
8

0.9r 09+

0.9t
0.8¢

Dotted: eq. (12), for n=2

0.7+ 0.8l 0.8} Full: eq. (13), for n=2
0.6

0.7¢
0.5+ 0.7
0.4¢ 06l
0’%.1. 0:2 0:3 0:4 0.2 . 0:3 O:4 0.50'%.2 . 0:3 0:4

E(J+2)-E(J) [MeV]

FIG. 12. Similar to Fig. 10, but decomposed according to the individuadlue (the spin of the “bandhead’ In each panel the
experimental points are shown and the line described by(E).for the givenJ, as well as the line representing the global AHV fit, with
Eq. (13), to all data.

effect of the Coriolis interaction in a simple way. They will symbols representing the “heavier mass” nuclei would be
vary with nucleus, band, and mass region and therefore wsituated generallpelowthose of the “lighter mass™ group
are left with the paradoxical situation that tke“ 1/2 “rota-  (by ~15—20%), but, on the contrary, they come, in average,
tional” bands of deformed odé nuclei satisfy the AHV  slightly higher in the plot. Figure 16 shows the same effect
formula of Eq.(13) better than the rotational formula of Eq. from a different perspective. The figure gives the distribu-
(12). tions of the moments of inertia themselves, as deduced from
Although we do not understand why this occurs what rexhe value of the first energy in the bandi%2=(2J

mains striking in the plot§ of Fig. 6 is the extraordinary COM- 4 3y/E(1). Again, the distributions for the “heavier mass”
pactness of the correlation patterns around the AHV lines,,,qqj are centered on lower values than those of the “lighter

AI.thOUQh we do_not f_uIIy_und_erstand why this is so, it looks mass” nuclei. An interesting observation is also that the av-
fair to characterize this situation by the fact that the moment%rage “constant’Z value of about 462 MeV-1 which re-

of inertia of all these nuclé(in the lowest part of the bangs -
are clustered rather around the value given by the well de,?UItS fr?r::]. bo;%theu values(glable_tla, ?hr from t_he distribu- ¢
fined intercept of the AHV line. This “constant” moment of IoNS Of FIg. 15, 1S comparable wi € maximum momen

inertia behavior contrasts with the common perception tha9f+inertia reached by. the even-even rotational nuF:Iei in their
the moment of inertia varies continuously with mass, ap21 State[corresponding t&(1)~70 keV]. A possible ex-

proximately asA®?. But there seems to be a mechanismPlanation of the effect observed in Figs. 15 and 16 might be
which “compensates” this variation. Thus, in Fig. 15 we that the increase of the moment of inertia from the light rare
represent all bands in rotational nucléie data of Fig. §  earths £<70) to the heavier nucleiZ>>70) expected from
but now labeled according to two classes: “lighter mass”the A5 dependence is compensated by the larger deforma-
(A=155-169 and “heavier mass” A=171-187. Accord-  tions encountered in the former nuclei. It would be interest-
ing to the A5 dependence of, we would expect that the ing to study the phenomenon in Figs. 15 and 16 in light of
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Odd-A, rotational; normal parity bands.
0.9

=32 0g] J=512

.-":.‘

0.6f
0.7

0.5} 0.6

._.__!_-

0.54

0.4} J 0.4

03t /i 0.2

00 01 02 03 04 O

E(J+4)-E(J) [MeV]
=)

Dotted: eq. (12), for n=2

0.8
Full: eq. (13), for n=2

0.8f

0.7r

03 04 0.2 0.3 0.40'6.3 . 0.4

E(J+2)-E(J) [MeV]
FIG. 13. Same as Fig. 12, for normal parity baridata identical with those of Fig. 11

0.6L

the identical band phenomenon which has been identified7 shows the lowest correlatiorifor n=2) between ener-

both at high and low spin. gies in these bands. SD bands have been found now in at
We now turn to perhaps the most dramatic and pure of alleast four mass regions: 80, ~130, ~ 150, and~190[14].

rotational bands, namely, superdeforn{&®) bands. Figure Figure 17 shows that for each of these regions there is a

0.6 . . - - —
a=38 3 2.0 1.0
0.5
; P s FIG. 14. Schematic illustration of the effect of

04F ! the Coriolis mixing for theK=1/2 bands. The
2 ' 3 Ay e full line is the “AHV” line (13), and the dotted
S =2"%+0.1 (MeV) - - i
g Y : lines are representations of E@.6) with n=2
So3l for different values of the decoupling parameter
E a, as indicated. The open circles show the posi-
g’l‘ tions where data are expectgir a given mo-
2 02 ment of inertia, here corresponding t3=0.1
u MeV—see Eq. (14)] for different a-values,

K=1/2 bands Whe_r_eas the tilack circle shows the unperturbed
0.1 Coriolis perturbation position (for a=0).
0.0 1 I I I
0.00 0.056 0.10 0.16 0.20 0.256

E(5/2)-E(1/2) [MeV]
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FIG. 15. Energy correlation plot for odél-
rotational nuclei; this plot correspondsati data
from Fig. 6. The two symbols correspond to nu-
clei with lower masse§155 to 169—circles, and
higher masse§l71 to 187—crosses.
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20 z_621060 [ Z=7010 77

41.8(5.1)

37.0(5.7)

0.5

rather well defined correlation of the form of E4.3). The
different intercept valuetsee also Table) Ireflect the aver-
age value of the moment of inertia of the SD bands for each
mass region at the beginning of the band.

Figure 18 illustrates the in-band correlations for the first
few states in the SD bands from the mass regheal30.

SD - bands

4.0
3.5

[~ Z=38-41 (Mass ~ 80)
| S=2.00(1); b=0.150(19)

3.0
25
2.0 1 1 1 1
3 g 1.0 1.2 1.4 1.6 1.8 2.0
@ z
< B
Bt : : 2.0 | z=57-60 (Mass ~ 130)
=0 . Jon 0. 1L . o | S=190@) b=0.038(17)
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S Z=621069 Z=701t077 1.0
Z 8L 481(2.8) L 42257 = :
205 L L L
= 0.4 0.6 0.8 1.0
=)
6r r W 2.0 [ z_e2-68 (Mass ~ 150)
}5’ $=1.97(1); b=0.071(8)
o 15F
al L
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1 1 1 1 1
2l L 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1.0 | z-79-84 (Mass ~ 190)
0 K [ r $=1.98(1); b=0.047(2)
0 20 40 60 800 20 80

40
Moment of inertia (J™) [h2MeV™]

FIG. 16. Distributions of the moments of inertia of the different
rotational bands represented in Figs. 6 and 15, as deduced from th

0.5

first transition energy in the band according to formidla The few

points representing th€ = 1/2 bands with strong Coriolis perturba-
tions discussed in Sec. Il Bnith E(1)<0.1 MeV] are the only
ones not shown in these plots. Gaussian (fitstted line$ to the
distributions plotted give the indicated mean values anddévia-

tions (in units of 42 MeV™1).

known (of spin J usually unknowin

044303-12

FIG. 17. Straight line fits—with Eq13)—to energy correlation
plots for superdeformed bands in the four indicated mass regions.
The resulting slopes S and interceptare indicated. The data are
from Ref.[14], and for each band one starts from the lowest state
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2.0
SD-bands, Mass ~ 130 SD - bands, Mass ~ 150
4 -
S = 3.79(9)
b = 0.558(70) AHV:
1.8 } S=1.97(1)
A/ 0=0.071(1)
J=20
> S = 2.90(5) > !
=3 b = 0.280(40) =16 o
= =
= L
LIIJ Py
T2 ¥
P >
u_’j/ S =1.96(2) w
b = 0.098(2) 12k
12 F
2 L L L L L L L L
a T T T L 0.6 0.7 0.8 0.9 1.0
0.0 0.2 4 0.6 0.8 1.0 E(J+2)-E(J) [MeV]

FIG. 19. Energy correlation plots for the lowest states in the SD

FIG. 18. Energy correlation plots for the first states in the SDPands from thé\=150 mass region. The full line is the “"AHV" fit
bands of theA=130 mass region, and their straight line fits. [Eq. (13)] to the data, while the dotted lines represent &) for
spinsJ=20 and 40, respectively.

The behavior is again quite close to that of Ef3), with a
rather small scatter of the points; the slight increase of théional” regime (nuclei with R,,>3.15, Fig. 4 has been
deviation of the slopes of the fitted lines from the AHV val- studied in[1]. The essential aspect of this transition is shown
ues (2.0,3.0,4,0 . .) for higher n values may reflect a slight in Fig. 20: as indicated by the empirical derivative
change of the moment of inertia with increasing spin. dE(4;)/dE(2]) it is very rapid, as it takes place in a very
As is well known, for most of the SD bands, the links to narrow region ofE(2;) values around a&ritical value E,
the lower, normally-deformed states have not been found angk 125 keV. It was argued in Ref1] that this transition pre-
therefore their spin values are known only approximatelysents all the features of aitical phase transitionwhile in
Some indication of the spin values can be obtained by exanRef.[15] further support was given by examining the behav-
ining the type of plots discussed until now and their intersecior of other quantities. The question of phase transitional
tion with the lines defined by Eq12). Figure 19 shows such behavior in finite nuclei has been further addressed from a
a comparison for the SD bands from the=150 mass re- more general standpoint in R¢fL6]. Here we wish to con-
gion. This plot shows that the spin values of the lowest statesider the situation in odé- nuclei.
of these bands are between 20 and about 40, which agrees As shown by the experimental data discussed in previous
with other methods to estimate tentative assignméhd$.  sections, in both odé- and odd-odd nuclei the same two
However, spin assignments more precise than a few units aregimes are also evidenced. However, it is more difficult to
difficult to make due to the small differences between thestudy the transition between them since they are, formally,
slopes of the lines given by Eq12) for small spin differ-  very similar [both are described by the “AHV” formula
ences. Itis also difficult to say whether the experimental dat&13), the only difference being the different value of:
cluster around points representing different spins, as disabout 150 keV for the nonrotational nuclei, and about 95
cussed above. keV for the rotational ondsRecall that the rotational bands
studied do not in general follow the expected rotational for-
mula Eq.(12). To disentangle the characteristics of the tran-
sition between the two regimes in this case, it is better to
In the case of even-even nuclei, the transition between théollow a well defined structure which is found in both. A
“AHV regime” (which characterizes the large class of nu-good example is in thei 5, bands of the isotopes of Er, Yb,
clei with Ry, between 2.05 and 3.15, Fig) &nd the “rota-  Hf, and W[5,17]. The evolution of the lowest energy levels

B. Phase transitions
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FIG. 20. (a) Correlation ofE(4;) with E(27) for all collective 500 :
nuclei (Ry;>2.05) for Z=38-82. (b) The derivative 200 00 T —=00
dE(47)/dE(2]) againsE(2;) obtained from the fit of data in part E. E(17/2)-E(13/2) [keV]

(a) (see Ref[1]).
FIG. 21. lllustration for the transition between nonrotéHV-

o . . . type) and rotor oddA nuclei. The data represent the,; 5, bands in
within this structure, starting from the state with spin  he indicated nuclei, and the excitation energies are taken relative to
=13/2, is shown in Fig. 21. In the lower part of this figure the 13/2" state. In the lower part of the figure, for each isotopic
one can see that in all these isotopic chains the lowest magfain, beginning with the lighter mass, one moves downwards
isotopes belong to the AHV regime. By increasing the masslong the AHV line to the turning poinE, (at about 210 key
number one moves first downwards along the AHV line,where the curve rapidly changes the sense and approaches the ro-
with a slope 2.0 to a point where the curve turns rapidly andational limit. The upper part shows that the turning point in the
moves towards the rotational limithe line of slope 2.25, oddA nuclei corresponds to the critical poi&t (about 125 keY
corresponding td=13/2). The transition is fairly rapid—it from the even-even core nuclei].
takes place in a rather narrow rangeE(fl) values near a
critical value, E;~210 keV, which we call the “turning tional regime settles quickly in for the core nuclei, and this
point” [5,17. The derivative of a smooth curve drawn change forces a change towards the strong coupling regime
through the trajectory of the data poinE(2)/dE(1), is  in the odd-mass nuclei. Although tH&(2;) energy in the
discontinuous at the valug(1)=E,, as it has two branches cores continues to decrease, fl) energy in the strongly
which atE, go to plus and minus infinity, respectiveffor ~ coupled band starts to increase towards the strong coupling
this reason, this behavior was called an “invertedlimit E(1)= 32(ﬁ2/22) [Eq. (1] which is much larger than
A-anomaly” in Ref.[17]). the valueE(2; ) =6(%2/27) in the core. Thus, it is clear that

The upper part of Fig. 21 shows a plot B{1) for the the AHV to rotor transition in the odé- nuclei is intimately
oddA nuclei againste(1) for the even-even core, that is connected with the critical phase transition from the even-
E(17/2)—E(13/2) againsE(2;). The figure shows that the even nuclei.
turning point, which is the “critical” point of this transition,
occurs at the same;2energy of the even even core which is C. Unified formula for quasiband energies

the cr_itical PO‘”t.(S‘?e Figs. 1 or 20for that Cle}ss Of. nuclei. The empirical data presented in Sec. Il and discussed
Thaﬂ is, the variation oE(1) in oddA nuclei against the  4pqye provide rich evidence for the fact that a large variety
E(27) energy in the core shows a minimum at Bgvalue,  of quasibands in all classes of collective nuclei are, surpris-
which corresponds to the val#(2;)=E.. One can quali- ingly, well described by the AHV expression, E@) with
tatively explain the change of structure that takes placgonstantanharmonitys,. This statement even applies to de-
aroundE; . At energies ofE(2;) larger thanE,, the defor-  formed oddA rotational nuclei. The only exception is de-
mation is small and the odd particle is either weakly coupledormed even-even rotational nuclei which follow the rotor
or decoupled, therefore th&(1l) energy in the oddx  formulas[i.e., Eq.(2) with variable & ,= 87%2%/2Z]. Although
nucleus closely follows the variation &/(2;) as seen inthe the meaning of the AHV behavior is different for the nonro-
upper part of Fig. 21. At the valuE(2;)~E,, the rota- tational and rotational nuclei, an important, practical aspect
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is that almost all quasiband structures in collective nuclei camelation gradually disappears. One finds again a nice AHV

be described analytically with the same formula. correlation if one starts fronany other higher state of the
We have placed the emphasis, until now, on the lowesbandwhich is taken as origitor “‘zero-phonon” statg This

states of the bandgEq. (2) was verified, usually, up te s also illustrated in Fig. 22right-hand panels Thus, it is

=3 or 4]. We now extend the study to higher states as wellclear not only are quasiband energies well represented by the

for this purpose each band has been followed up to the highaHV formula, but, further, that the deviations of the points

est known spin, or up to the crossing with another banctorresponding to differemt values from the mean AHV be-
(upbending or backbendingA common feature of the em- hayior are highly correlated.

points around the average AHV behavior as one moves Upships between the experimental excitation energies of more
wards in the band. This is illustrated in Fig. 22 for normal than three successive states from the band, for all collective
energies in the banfh=2 in Eq.(2)]; the AHV correlation  pelow it,n—1: E,(n)=E(n)—E(n—1), the basic obser-
persists reasonably well for the third excitation energy ( vation is that, for all the bands investigated, we have, with a
:3), but, usua"y, with more scatter Of the pointS, and thereasonab|e accuracy, for any

scatter increases continuously for the higher states. The in-
creasing scatter doe®t mean, however, that the AHV cor-

E,(n)=2E,(n—1)—E (n—2). (17)
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20

. : : - a few keV to about 20 keV. Formuld9) was found more
g accurate for rotational nucléfor which c, is closer to 1.0
The recurrence relatiofil9) can be used also to give a
generalization of the AHV expression of E@) in the ap-
proximation g=1. In this case one gets, explicitly,

n(n—1) N n(n—1)(n—2)

E(n)=nE(1)+ 5 €4 6

€6,

(20

E, (n) [MeV]

with e ,=E(2)—2E(1) andeg=2c,. This is a second order
AHV expression, a generalization of E@) which, in addi-
tion to 4, has another anharmonicityg. The result is not
new: in Ref.[18] it was proposed that this next order gener-
alization of Eq.(2) is one of the best formulas to describe the
yrast bands of both the “AHV” and rotor even-even nuclei.
0.0 05 L0 L5 20 However, Eq.(20) now has a sounder basis: it is derived
2E (n-1) - E (n-2) [MeV] from the compact correlation of many experimental data
. . i . (Fig. 23, and, moreover, Eq20) is now seen as an approxi-
FIG. 23. Correlation between band “transition” energies—this ,5tion to a more general formula, E4.9).
plot shows the two .quantities which appear in the left and .right side Since Eq(19) provides, as a limit, the second order AHV
o e s s b e ooy Jormla 20, we al the recurrence formuids) 2 gener-
" : . o alized anharmonic vibratdr (GAHV). With it all band
transitions contributes— 2 points to this plot. There are about 750 . . : .
%ructures in both rotational and nonrotational nué¢éien-

bands with at least three known transitions, and one band goes up . .
n=9. The dotted line represents EJ.7), whereas the full line is even, oddA and odd-ody are well described by a single

the fit with Eq.(18) with c;=0.93 andc,=19 keV. exprgssion, the.GAHV formulél9). A good approximation
of this formula is Eq.(20); the lowest order AHV correla-
This is, in fact, an exact prediction of both the AHV equationtions discussed at length in this article are a reflection of this
(2) and of the rotational formul&L0). Figure 23 shows the More general formula, and it is seen now that the increased
correlation betweerE (n) and Z.(n—1)—E(n—2) for scatter of the points with respect to E@), illustrated by
about 750 bands for which at least three successive transiid- 22, reflects the need for an additional higher order an-
tions are knowr(yrast bands of rotational even-even nuclej harmonicity. Equation$19) or (20) can be applied to any
are also included As observed in this figure, the large num- band, up to the highest spin, with excellent result&(t ),
ber of points(about 200D are very well grouped into a com- &4 andeg are co_n5|dered free parameters and are fitted to the
pact pattern which deviates only slightly from E@7). This data. An attractive aspect of the present results is, however,
correlation is actually even better approximated by a mordhat Eg.(19) describes reasonably well large sets of bands
general equation: (or nuclej, with fixed g ,c, values.
The study of Ref[6] was restricted to the yrast bands in
E,(n)=c¢[2E(n—1)—E,(n—2)]+c;, (18 the even-even nuclei, and the 1gp bands in the Adhdclei,
) but obviously can be generalized to all the other bands added
wherec; andc, are two parameters. This new formula canj, the present work, which have been found in equally good

0.0 1 1 1

be rewritten in terms of excitation energies as agreement with the first order AHV expressig@. One can
_ B N B B speculate, although no attempts were made to look at other
E(n)=E(n=1)+¢;[2E(n—1)=3E(n—=2)+E(n—3)] excited band structurgsuch as 2qp bands in even-even nu-
+c,. (19 clei, 3gp bands in odd- nuclei, etc), that the GAHV for-

mula (19) describes welbny band structurghat is not per-

This is a recurrence formula which gives the energy ofturbed by a band crossing. The collective band structures in
any state in the band as a function of the energies of the thraguclei thus reveal a universal phenomenology.
states below it—the whole band can therefore be calculated
by starting from the experiment& (1) and E(2) values,
using some adequate values for the parameteamdc, [the
energyE(0) of the “basis” state can be chosen as Zeita The nearly universal anharmonic vibrator behavior of the
Ref. [6], least squares fits have been performed for differentowest quasiband structures in all collective nuclei is a real
sets of bands/nuclei, using formu(a9), and values of the challenge for nucler structure theories. Analytical formulas
parameters; and c, have been determined. It was found which appear to describe well both the rotational and nonro-
that a rather good description can be obtained for a largéational structures remain empirical findings. Microscopic
number of bands, up to the highest known state, with thenodel approaches aiming at unraveling the factors that de-
same valueg,C,. In general,c; was found close to 1.0 termine such a universal phenomenology have not been
(between 0.92 and 0.98-as visible in Fig. 23, and, from  made so far. On the other hand, insight into the empirical

IV. THEORETICAL CALCULATIONS
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phenomena can be gained by using phenomenological mo@ven-even nuclei. They reproduce the main features of the

els which have been successfully applied to real nuclei. Irempirical data almost exactfgompare with Fig. (a)].

this section we summarize existing interacting boson ap- In calculations for oddA nuclei done in Ref[5], the

proximation (IBA) model calculations and present new re- Hamiltonian also contains additional terms representing

sults with the geometrical collective mod&CM). single fermion energies and the interactions of the odd fer-
mion with the boson core. In the general case, where the

A. The interacting boson and interacting boson-fermion model  fermion can occupy any of several shell model orbits, the

The IBA model[19] for even-even nuclei is a rather natu- number of parameters increases very rapidly and the model
ral choice to investigate the predicted energy correlationsPecomes difficult to use in practice without some simplifica-
The IBA model embodies the well-known collective limits tion schemes. For a sing|eerbit, however, such as the UPO
(vibrational, y-soft and rotationalas well as the different case, the situation simplifies dramatically. In such a case, the
transitions between them. It spans this variety of structure#BFA Hamiltonian contains, in addition to the ECQF Hamil-
with a small number of parameters. In the same way, théonian (21), and a single fermion energy, a standard
interacting boson-fermion approximatiodBFA) model quadrupole-quadrupole and an exchange boson-fermion in-
[20], in which a particle is coupled to an IBA core, covers teraction which are characterized by only two strength pa-

the large variety of coupling schemes met in dgldiclei. rameters]', and A, respectively. The calculatio§] used
In Ref.[2], IBA calculations were made with an extended the same range dflg, €, andy values as for the even-even
consisten® formalism (ECQF Hamiltonian[21,22: case. The particle-core interaction parameters took on the
- A following ranges: —3.0<I'y (MeV) <3.0 and O
H=eny—«QQ, (21 <A, (MeV) =6.0.(The scale factovj2 was set at 0.25A
with random number generator was used to arbitrarily select val-
ues for the five quantitieNg, €, x, I'g, andA,. Any choice
Q:(sTa+de)+X(dTa)(2), for the core parameteg, €, and y that corresponds to

transitional nuclei, namely 2.65R,,,<3.15, was then used.
which spans the full variety of collective modes in terms ofn all, about 500 calculations were performed. The results are
only three parameters, «, andy. Each nucleus is charac- compared with the datéfor two unique parity orbits, dg,
terized by a boson numbélg given by half the total number and 1i,5,) in Fig. 25. Again, the calculations reproduce the
of valence particles or holes. We performed a mesh of calmain features of the experimental data—not only the linear
culations, covering all areas of the symmetry triangle. Inpatterns, but also the characteristic scatter of the points are
these calculationss was kept constant at a value that deter-reproduced.
mines the heightor intercept of the energy correlation tra- The implications of this good description of the experi-
jectories in  even-even nuclei, namelyk=0.032 mental correlations by the [B)A model calculations are
+0.002 MeV[2]. Ng, €, and y were varied in a three- rather profound. Once an appropriatevalue is chosen to
dimensional mesh through the rangessMgz=16, O<e reproduce some point on the empirical correlation plot, the
<1.25 MeV, and G<|x|<\7/2. The only condition was IBA (or IBFA) model automatically reproduces the trend of
that theRy, values covered the same range as those in Fighe data. The calculated points correspond to a few hundred
1(a), namely 2.05:R,,<3.15. Figure 24 shows the results randomly assorted values bdfg,e,x (with I'g,Ag, andvjz,
of the IBA calculationg 2] of the yrast states in nonrotational the shell occupancy, added for the ofldaucle). The key
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FIG. 25. Comparison between experimental data and IBFA model predictions. Experimental data are those for unique parity quasibands
in nonrotational oddA nuclei. All data available for the orbitalsy,, hy1;5, andiz, are contained in this plot, and the reference state is
always taken to be that of spjn(the spin of the UP® On the right are the results of several hundred IBFA model calculations, with
randomly chosen parameters, as described in the text and9Reln these calculations, one single orbital was coupled to the IBA core,
eitherggy, Or 13, as indicated. The curves are straight line fits, and give the si8p@sl the interceptb as indicated.

point is thatno attemptvhatsoever is made to “fit” the data. H=T+V, (22)
If the data were different(e.g., had a different slopethe

IB(F)A models would have not been able to reproduce themynhere

(unlessk were fitted separately for each nucleuBhus, we

are dealing here with a fundamental, and robust, prediction 1 .
of the IBA (IBFA) model. These theoretical results are not T=g-[mX w]© (23
yet fully understood, although the IBA calculations can be 2

reproduced in an approximate analytical Way|. and

B. The geometric collective model

_ 1 2 ' 4 ’
Striking as these results are, it is not known whether such V=Cy%+Cip’~ Cypcos’(3y), (24

linear correlations are a feature special to the IBA or whether D .
other collective models, based on different points of view,WhereCz,Cs,C, are parameters similar ©,,Cs, and G,
also give similar behavior. Understanding this point could,of Ref.[25] except that they absorb awkward numerical con-
for example, give some guidance as to whether the Correlas-tants- _Wlth_thls Hamiltonian a h_armon_u_: vibrator spectrum
tions will hold up in exotic nuclei far from stability. is obtained ifC,=C3=0 andC; is positive. A deformed

To test whether other models also give a slope of 2 in afotor is given if C;<0,C;,C3>0. This gives a potential
E(47)-E(27) correlation plot, we have carried out exten- With a deformed minimum i3 and ay-dependence with a
sive sets of calculations with the geometric collective modeminimum aty=0° and a slope related ©;. A y-unstable
(GCM) [25]. We use a recently developed appro§2] in  deformed nucleus is similar to the rotor but wi@;,=0.
which the Hamiltonian of Refl25] is simplified to the fol- Thus, the GCM leads to a symmetry or structural triangle
lowing form: [26] similar to that developef3] for the IBA.
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' ' rotational nuclei, and subsequently shown to exist in Add-

oL Gou i nuclei as well,also applyto excited intrinsic statege.g.,K
R =0" bands,y bands, superdeformed bandsnd to odd-odd
s nuclei. Furthermore, we have studied the GCM model and
2 slope=2.00 shown that, like the IBA, it reproduces these correlations
w 1 - extraordinarily well and robustly, that it does so for virtually
=

arbitrary combinations of parameters, and that for it to do
otherwise would be difficult or impossible.
. . All these results once again point to and reinforce the
%_0 0.5 1.0 AHV interpretation of these quasiband states.
E,» (MeV) One particularly intriguing discovery is that bandsde-
formed nuclei follow the AHV expressiomrrather than the
FIG. 26. Correlation ofE(4;) with E(2]) for nonrotational  usual rotational formula. Fd€=1/2 bands, this behavior can
nuclei [R,,<3.15 andE(2])>0.15 MeV] for a wide mesh of be understood as a consequence of the Coriolis interaction
GCM calculations withC,=—100 to —350 MeV, C;=0 to 100  but it is not understood for other bands. If it results from a
MeV, andC;=0 to 4000 MeV. second order Coriolis mixing effect, there remains no simple
understanding of why such effects are so systematic and why
With the Hamiltonian of equation®2)—(24), a full mesh  they always lead back to the AHV expression.
of calculations covering the parameter ran@gs= — 100 to Finally, it was shown that a single analytic expression,
—350 MeV, C;=0 to 100 MeV, andC,=0 to 4000 MeV  which is in essence a generalized anharmonic vibra@en-
was carried out. These ranges cover the structures in most éfalized in the sense that it contains higher order anharmo-
the structural triangle discussed in REZ6]. The mass pa- hicities) is capable of describingnytype of quasiband struc-
rameter,B,, was set at 108 10742 MeV 32, but this choice ture. Butwhythe AHV works so well, for such varied states,
only affects the scale of the calculated energies. All calculain such disparate nuclei, always with an almoshstantan-
tions that gaveRr,,<3.15 andE(2;)>0.15 MeV (i.e., all harmonicity, and why quite different model approaches are
calculations which gave nonrotational nuglare shown in  themselves virtually locked into the same results—in a ro-
Fig. 26. They are striking. Like the IBA, the GCMIso  bust way—is still unknown and, in our view, is a significant
reproduces the empirical correlations almost exactly; th&hallenge both to extend this work by studying other empiri-
slope is almost identically 2.0. The intercept is controlled bycal correlations and to investigate the predictions of micro-
the paramete€}, analogous to the dependence oin the ~ SCOPIC theories based on effective nucleon-nucleon interac-

IBA. The arbitrary parameter combinations, included in thetions.

GCM calculations, imply, as with the [B)A, that these re-

sults are highly robust and that, were the data different, the ACKNOWLEDGMENTS
GCM could not readily reproduce them.
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