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Generalized correlations of quasiband energies in nuclei
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A remarkable set of correlations of yrast and excited quasiband energies in collective nonrotor and rotor
nuclei is discussed. These correlations are essentially independent of the nature of the states~e.g., yrast, quasi-
g-vibrational, superdeformed!, of mass region, and of the type of nucleus~even-even, odd-A, or odd-odd!, and
indicate a universal behavior which apparently describes all collective low energy structures. The results also
show that, for most cases in odd-A deformednuclei, the band energies donot follow the rotational formula.
The nature of spherical-deformed phase/shape transitions is also discussed and related to the seemingly~but not
actually! different behavior of the neighboring even-even core nuclei. Finally, theoretical treatments that
reproduce these correlations in even-even and odd-A nuclei are discussed, and new calculations with the
geometric collective model are presented.@S0556-2813~99!03209-4#

PACS number~s!: 21.10.Re, 21.60.Ev, 27.50.1e, 27.60.1j
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I. INTRODUCTION

The properties of the lowest excited states of atomic
clei offer a very sensitive test for nuclear structure theor
Although level energies were recognized long ago as v
able signatures of structure, theirrelationshipsover large
nuclear regions have been rather little investigated until
cently. During the last few years, however, a remarkable
of correlations has been discovered@1–7# among the excita-
tion energies of quasiband structures in collective nuc
These discoveries have been possible by exploiting the l
body of data on stable and near-stable nuclei whose accu
lation over the past decades now permits a global perspe
and a synthesis of heretofore seemingly disparate beha
The correlations found to apply to nuclei near stability of
benchmarks and challenges for confronting data soon-to
obtained on exotic nuclei far from stability. They also dra
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attention to the value of a ‘‘horizontal’’ approach to stru
tural evolution, as a complement to the usual ‘‘vertical’’ ap
proach that focuses on individual level schemes.

The first observation that triggered these investigatio
was that the yrast energies of the collective, nonrotatio
medium and heavy even-even nuclei show linear correlati
@see Fig. 1~a!# which could be interpreted in the framewor
of an anharmonic vibrator~AHV ! with a nearlyconstantan-
harmonicity @1,2#. Equally simple correlations have subs
quently been found for precollective nuclei@3#. Similar en-
ergy correlations have also been found for quasiba
structures in collective@4–6# and precollective@7# odd-A
nuclei.

These findings, essentially empirical, are rather surp
ing. Such simple and almost universal correlations were
predicted in advance by any nuclear model and there is
no microscopic understanding of the observed behavior
f
-

.
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FIG. 1. Energy andB(E2)
correlation plots for yrast bands o
the collective nonrotational even
even nuclei withZ538 to 82@1#.
~a! The straight line is a fit to the
data with slope S52.0060.02
and intercept b50.161
60.008 MeV as indicated.~b!
The straight line is the AHV pre-
diction E(61

1)53E(21
1)13«4,

with «4 taken from the fit in the
upper panel.~c! Correlation of
B(E2;41

1
˜21

1) with B(E2;21
1

˜01
1). ~d! Correlation of

B(E2;61
1
˜41

1) with B(E2;21
1

˜01
1). The data are from Ref

@8#. The straight line in~c! and~d!
is a fit to the data with slope S an
intercept 0.
©1999 The American Physical Society03-1
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TABLE I. Summary of the results of the observed AHV-type correlations. For each specified set of experimental data specifie
columns towards the left, the table gives the slope of the first energy correlation@Eq. ~2! for n52#, the value«4, as well as the 1s r.m.s.
deviation of the experimental points from the fitted AHV line. The experimental data are from Refs.@8# and@14# ~superdeformed bands!. The
quasiband labels for odd-A and odd-odd nuclei are inclusive; that is, the correlations include all bands of the specified type~e.g., all normal
parity bands extracted from Ref.@8#! in the type of nuclei considered~e.g., nonrotational forZ534–80!.

Set of nuclei Range Quasibands Number of cases Slope«4 (keV) 1s-deviation (%) Fig.nr.

Even-even nuclei
Nonrotational 38<Z<82 g.s.b.~yrast! 163 2.00~2! 161~8! 5.0 1
Nonrotational 34<Z<82 Quasi-g 50 1.97~3! 104~13! 3.7 2
Nonrotational 34<Z<82 02

1-quasiband 57 1.86~7! 136~18! 8.0 3
Odd-A nuclei

Nonrotational 34<Z<80 Unique parity 329 2.01~2! 170~11! 6.4 5
Nonrotational 34<Z<80 Normal parity 276 2.02~2! 116~7! 7.4 5
Rotational 63<Z<77 Unique parity 99 2.01~2! 87~4! 3.9 6
Rotational 63<Z<77 Normal parity 200 1.99~2! 96~3! 4.6 6

Odd-odd nuclei
Nonrotational 33<Z<79 2-quasiparticle 305 2.05~2! 139~11! 6.0 7
Rotational 67<Z<75 2-quasiparticle 101 2.00~2! 86~6! 5.7 8

All nuclei
Mass 80 SD-bands 9 2.00~1! 150~19! 2.4 17
Mass 130 SD-bands 19 1.96~2! 98~17! 0.9 17, 18
Mass 150 SD-bands 51 1.97~1! 71~8! 0.5 17, 19
Mass 190 SD-bands 51 1.98~1! 47~2! 0.6 17
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its universality. Nevertheless, macroscopic approaches
as the interacting boson model, as well as the interac
boson-fermion model, automatically reproduce, in a natu
way, the observed behavior@2,5#. As noted already, the uni
versality of the observed energy correlations leads to intri
ing questions concerning their possible extension to the
nuclear regions that will become accessible with future st
ies based on radioactive beams.

The present article begins by collecting the existing sc
tered empirical results on these energy correlations in col
tive nuclei, mostly published so far in Letter form@1–7#. It
then extends the study of such correlations to additio
states and nuclei, such as intrinsic vibrational excitations
even-even nuclei, bands in odd-odd nuclei, and supe
formed bands. This rich experimental material points to
fact that these energy correlations are essentially similar
gardless of the nature of the states, of the mass region, o
type of nucleus, and have therefore a global, universal
pect. A simple expression is derived which economically
scribes the energies of any collective band. Finally, theo
ical models which can reproduce such correlations
reviewed, and new results are presented for even-even n
with the geometric collective model.

II. GLOBAL CORRELATIONS: EMPIRICAL RESULTS

In this article we restrict ourselves to the investigation
collectivenuclei. For even-even nuclei, a generally accep
definition is that these are nuclei with a ratioR4/2

[E(41
1)/E(21

1) larger than 2.0. For a clearer cutoff from
‘‘precollective’’ nuclei ~with R4/2 smaller than 2.0! we use
the conditionR4/2>2.05. During our studies it became a
04430
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parent that there is a natural empirical separation of col
tive nuclei into two subclasses:non-rotationalnuclei (2.05
<R4/2,3.15) androtational nuclei (R4/2>3.15). For odd-A
and odd-odd nuclei there is no obvious single criterion
distinguish these classes of nuclei, since energy correlat
depend on the spins of the levels. Hence we have inve
gated such nuclei according to the classification of th
even-even cores. In this paper, we will discuss many
sembles of nuclei and types of states~yrast, vibrational, etc.!.
Table I gives a summary of, and guide to, the data sho
and the results obtained.

A. Even-even nuclei

1. Yrast levels

We first present the results of Ref.@1#, since this type of
investigation and its results became an almost standard p
digm for the subsequent studies. The idea of Ref.@1# was
very simple: instead of studying the yrast energies of ev
even nuclei,E(21

1),E(41
1),E(61

1), . . . or their ratios, such
as R4/2, as functions ofZ,A or other similar quantities, as
usually done, we studied the relationshipsbetweenthe ener-
gies themselves. Figure 1~a! shows the very surprising resu
obtained: a plot ofE(41

1) as a function ofE(21
1), for all

collectivenonrotationalnuclei with Z from 38 to 82, shows
an unexpected linear correlation of the form

E~41
1!52.0E~21

1!1«4 , ~1!

where an average«4 is given by the interceptb. It is obvious
that, for any nucleus, a value ofe4 can always be obtained s
that Eq.~1! is satisfied. What is surprising about the corre
3-2
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GENERALIZED CORRELATIONS OF QUASIBAND . . . PHYSICAL REVIEW C60 044303
tion in Fig. 1~a! is that e4 values are nearly independent
nucleus or even mass region. Forall collective nuclei be-
tween Sr and Pb the data are reproduced surprisingly
with a value«4516168 keV, the deviations from the linea
fit of Eq. ~1! being practically random, with a 1s deviation
of 5%.

The interpretation of Eq.~1! is that of ananharmonic
vibrator ~AHV ! with constantanharmonicity@9#; the anhar-
monicity «4 is the difference between the energy of the tw
phonon stateE(41

1) and twice the energy of the one-phono
state,E(21

1). The anharmonicity can also be regarded as
phonon-phonon interaction. The constancy of«4 implies
that, although Fig. 1 spans nuclei with a very large variety
structures@as indicated, for example, by the variation
E(21

1)# these nuclei can be considered as belonging t
single underlying class, that of an interacting multiphon
system whose phonon-phonon interaction energy manag
remain essentially constant regardless of the obvious cha
that must be occuring in the internal structure of the phon
itself. An alternate way of stating this is that the structure
any of these nuclei is, to an excellent approximation, sp
fied by the 21

1 energy alone.
The AHV expression of Eq.~1! can be generalized fo

any yrast state, as follows:

E~n!5nE~1!1
n~n21!

2
«4 . ~2!

Here,n stands for ‘‘n-phonons.’’E(n) is the energy of the
n-phonon state, of spinI 52n and the anharmonicity is«4

5E(2)22E(1)[E(41
1)22E(21

1). For the cases discusse
until now, these were the excitation energies within the yr
quasiband of even-even nuclei. We shall later apply Eq.~2!
to other quasiband structures as well.

That AHV relation~1! is not an accident is supported b
additional experimental data, most notably by the higher s
yrast energies using Eq.~2!. Thus, for the three-phonon sta
(61), the AHV model @9# predicts an energyE(61

1)
53E(21

1)13«4, where«4 is the same anharmonicity of th
41

1 state. Figure 1~b! shows that this expectation is well su
ported by the experimental data.

Additional evidence for this AHV description of the yra
states was discussed in Ref.@2# on the basis of theB(E2)
values for transitions between the states of this quasib
@e.g., the correlation ofB(E2:41

1
˜21

1) with B(E2:21
1

˜01
1) values#, for which the AHV model also predicts cer

tain linear correlations. This is shown as follows. Followi
the approach of Refs.@9,10# we consider a system o
n-phonon states,un&, and their creation and destruction o
eratorsB† andB. The quadrupole operator corresponding
E2 transitions is given by

Q5a1B1a2B†BB1a3B†B†BBB1•••. ~3!

The matrix element̂n21uQun& is then given by
04430
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^n21uQun&5a1AnF11
a2

a1
~n21!1

a3

a1
~n21!~n22!

1•••G . ~4!

Since B(E2;n˜n21)5^n21uQun&2, we haveB(E2:21
1

˜01
1)5a1

2 and

B~E2:n˜n21!5nB~E2:21
1
˜01

1!F11
a2

a1
~n21!

1
a3

a1
~n21!~n22!1•••G2

, ~5!

and, specifically

B~E2:41
1
˜21

1!52B~E2;21
1
˜01

1!F11
a2

a1
G2

, ~6!

which is linear inB(E2:21
1
˜01

1).
The factorn multiplying a1

2 @i.e., multiplying B(E2:21
1

˜01
1) value# is reminiscent of the factorn multiplying E(1)

in Eq. ~2! but, in fact, the behavior of theB(E2) expression
is not at all of the same form as the AHV expression
energies. Theentire term in brackets in Eq.~5! multiplies the
21

1
˜01

1B(E2) value and the intercept is zero. Note th
truncation of Eq.~5! at the a2 linear term gives the sam
results as in Ref.@9#.

The data are shown in Figs. 1~c! and 1~d!, for the entire
range of nuclei fromZ538–82.

Despite the large span of nuclei comprising many diff
ent structures from near spherical to rotational, the data c
ter within a compact envelope that follows a linear trajecto
against theB(E2:21

1
˜01

1) values. Of course, as in Eqs.~1!
or ~2!, it is trivial to find coefficientsa2 such that Eq.~6! is
satisfied for any given nucleus. The remarkable fact agai
that a singlea2 value reproduces all the data in Figs. 1~c! and
1~d!. B(E2) values including higher spin yrast states are a
well described by Eq.~5! including the terms ina2 anda3.
Note that the slope in Fig. 1~c! is 1.49 which implies that
a2520.14a1.

There is an important point of historical interest wor
making at this point, namely, that these results imply mu
more than the linearity of the ratioRI /2 with R4/2 observed in
Mallmann plots@11# in which the ratioE(61

1)/E(21
1) was

found to be linear inE(41
1)/E(21

1), and similarly for
E(I 1)/E(21

1), for I .6. In fact the linearity in a Mallmann
plot only demonstrates a very general energy-angular
mentum relationship and says nothing aboute4. To see this,
we use Eq.~2! to form the Mallmann energy ratios, obtainin

R4/2[
E~41

1!

E~21
1!

5
2E~21

1!1«4

E~21
1!

521
«4

E~21
1!

~7!

and
3-3
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R6/2[
E~61

1!

E~21
1!

5
3E~21

1!13«4

E~21
1!

5313
«4

E~21
1!

, ~8!

and hence

R6/253R4/223. ~9!

From this equation we see that the Mallmann express
effectively eliminates«4: two nuclei with«4 values orders of
magnitude apart would still lie on a linear Mallmann traje
tory. Indeed, the linear trajectory of a Mallmann plot au
matically results fromany two-parameter energy-angula
momentum relation. Moreover, even the specific linear tre
seen in the empirical Mallmann plotR6/2 namely R6/2
;3R4/223, only implies thatE(I ) is proportional toI and/or
I 2: it says nothing further, nor does it imply a constancy
«4 ~or of b in the Ejiri relation@12#!.

2. Intrinsic excitations

The simple method applied above to the yrast states
examining correlations between excitation energies withi
certain quasiband, can be applied to quasibands base
intrinsic excitations@13#. Figure 2 shows the results for th
quasi-g band; here, the zero-phonon~or the reference! state
is the 2g

1 state and the other states are those of theDI 52
sequence (41,61, . . . ) built above it. One can see that th

FIG. 2. Energy correlation plots similar to those of Fig. 1, b
for the quasi-g bands of the collective, nonrotational nuclei withZ
between 34 and 82. The straight lines are fits to the data, with
slopeS and interceptb as indicated. Data from Ref.@8#.
04430
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empirical correlation is well described by Eq.~2! with an«4
value somewhat smaller than that for the yrast states~about
100 keV!.

Similarly, Fig. 3 shows the same type of correlation f
the bands built on the lowest 01 state intrinsic excitation~the
02

1 state!. Although a large ensemble of nuclei has be
chosen, and the nature of the different 02

1 states certainly
differs, there is still a rather good linear correlation, wi
only slightly more scatter of the points than for the yra
levels. The correlation is close to Eq.~1! with a value«4
similar to that for the yrast states. Thus, it appears that
correlations observed for the yrast states characterize ex
modes as well.

Finally, we examinerotational even-even nuclei. In thes
nuclei, the energies must be close to the formulaErot(41

1)
53.33E(21

1). This can be obtained from the AHV formula
Eq. ~1!, provided«4 is taken as4

3 E(21
1), that is,Erot(41

1)
52E(21

1)1 4
3 E(21

1). But, in this case«4 will, of course, not
be constant. Indeed, since the rotational formula gi
E(21

1)56(\2/2I) we have«458(\2/2I) which should vary
as the rotational constant\2/2I. The results are shown in
Fig. 4 for the nuclei in the deformed rare earth region w
A;1502190 andR4/2.3.24. The upper section shows th
these data lie along a line of slope 3.33. The lower sec
extracts the resulting«4 values and confirms that they indee
vary linearly with E(21

1). This behavior, of course, is ex
pected. We highlight it here because we will see below t
the data for odd-A deformed nuclei contrast markedly.

B. Odd-A nuclei

We now examine energy relationships within the lowe
DI 52 quasiband structures of odd-A nuclei ~one-
quasiparticle structures!. From now on, the states ‘‘n’’ in the
sense of Eq.~2! are those of spinI 5J12n of a given qua-
siband; usuallyJ is the spin of the ‘‘bandhead,’’ but, in prin
ciple, as will be discussed below, one can use another s
of the band as a ‘‘basis.’’ These considerations are also v
for odd-odd nuclei.

t

e

FIG. 3. Same as Fig. 2, for 02
1-bands in the nuclei withZ534 to

82.
3-4
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1. Nonrotational nuclei

Even knowing the results for even-even nuclei~that is, the
universality of the AHV correlation!, it is difficult to make a
prediction of what is expected to happen for odd-mass
clei. As is well known, the characteristics of the structu
resulting from coupling a particle to an even-even core
pend on many factors, important among which are the de
mation, the Fermi level, the single particle orbitals availab
Coriolis mixing, etc., and how each of these varies withZ
and N. There are quite a few limiting ‘‘coupling’’ scheme
recognized: in some of them the quasiband structures
resemblance to the yrast band of the core structure, whil
others they are quite different.

The first empirical study considered only the quasiba
based on the unique parity orbitals~UPO! @4#. This case was
studied first because it was considered more transpa
since such orbitals have practically no mixing with oth
orbitals. For each UPO, of spinj, the spin sequences consi
ered were the ‘‘favored’’ quasiband (J5 j ), and, separately
when available, the ‘‘unfavored’’ quasiband (J5 j 21), even
if in some cases the respective structures started at s
lower thanj. It was shown that for nonrotational nuclei wit
Z between 34 and 78 both sequences of states obeyed r
nicely the AHV formula~2!, with an«4 value close to that of
the yrast states in the even-even nuclei. In this paper we r
the condition that for each UPO one starts always from
state of spinj and consider now states from the lowest o
known. The only~rare! exception is when the state of lowe

FIG. 4. Energy correlation plots for the yrast bands of go
rotor even-even nuclei (R4/2.3.24). The solid lines show the be
havior expected in the rotational limit„in this case, the«4-value of
Eq. ~1! is 4

3 E(21
1)….
04430
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spin of the structure is not also lowest in energy—in this c
one starts from the lowest state in energy. The same
proach is used for the bands based on normal parity orbi
considered for the first time in Ref.@5#.

The empirical results are displayed in Fig. 5, where
odd-A nuclei between Ge and Hg were taken into consid
ation. The correlation is very similar to that in Fig. 1, th
AHV relation ~2! describing very well the average behavi
of this rather large collection of data. The scatter of t
points may be somewhat larger than that in Fig. 1; on
other hand, one should emphasize that practically all kno
band structures in the nuclei withZ between 34 and 80@8#
are represented in Fig. 5. Regional systematics present
scatter.

2. Rotational nuclei

Band structures in rotational odd-A nuclei were consid-
ered in Ref.@6#. These results are presented in Fig. 6 in
slightly different form~separately for UPO and normal parit
orbital bands!. The data again show extremely wel
correlated patterns, described by the same formula, Eq.~2!,
with constant«4, even though these nuclei are rotation
This behavior is qualitatively different than for even-ev
nuclei ~Fig. 4!. This apparent paradox and its implication
will be discussed in the next section.

C. Odd-odd nuclei

The same type of energy correlations were investiga
for a collection of quasibands in odd-odd nuclei withZ be-
tween 33 and 79~the lowest two-quasiparticle bands in the
nuclei!. Figures 7 and 8 show the lowest two energy cor
lations in these bands, separately for the nonrotational
rotational nuclei, respectively. All these correlations a
again found in good agreement with the AHV formula~2!,
with «4 values comparable to those found for even-even
odd-A nuclei ~see also Table I!.

III. DISCUSSION

A. Odd-A nuclei

To this point, we have mostly presented empirical ene
correlations for quasiband structures at low excitation ene
in all nuclei with Z between 34~mass;70) and 80~mass
;200). While the results shown in Figs. 1, 4, 5 and 6 we
already known, those in Figs. 2 and 3~concerning intrinsic
excitations in even-even nuclei! and in Figs. 7 and 8~for
odd-odd nuclei! are essentially new. Inspection of Figs. 1
8, as well as of Table I, shows that the AHV-type
correlation—Eq.~2!—is well obeyed by practically all qua
siband structures considered in all collective medium-he
nuclei. From Table I one sees that the«4 value may vary
somewhat with the mass range, the type of quasiband
with the class of nuclei~rotational or nonrotational!. Still, the
remarkable result is that for large sets of nuclei/quasiban
including up to hundreds of cases, an AHV behavior~2! with
constant«4 is observed. The only exception is rotation
bands in even-even nuclei whereE5(\2/2I)I (I 11) im-
plies that«4 varies linearly withE(21

1). In odd-A and odd-
3-5
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FIG. 5. Energy correlation plots for one-qp quasiband structures in odd-A nonrotational nuclei withZ from 34 to 80, for unique parity
~left! and normal parity~right! orbitals, respectively. The curves are straight line fits to the data, with slopeS and interceptb as indicated.
The relation with Eq.~2! is through the notationE(n)5E(J12n)2E(J).
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odd nuclei,«4 is constantevenfor rotational nuclei. How-
ever, themeaningof the observed correlations is different fo
the nonrotational and rotational nuclei, respectively.

The rotational formulas that successfully describe ma
bands in rotational nuclei are well known and it is therefo
worthwhile to investigate under which circumstances th
may be compatible with AHV-type correlations. To be mo
specific, we consider the strong coupling formula for oddA
nuclei, for which the band energies as a function of spin r
~neglecting the Coriolis interaction!

E~ I !5
\2

2I @ I ~ I 11!2K~K11!#. ~10!

Let us choose as reference a state of spinJ from the band and
define excitation energies in the band with respect to
state:

E~1!5E~J12!2E~J!5
\2

2I ~4J16!,
04430
y

y

d

is

E~2!5E~J14!2E~J!5
\2

2I ~8J120!, . . . ,

E~n!5E~J12n!2E~J!5
\2

2I @4nJ12n~2n11!#.

~11!

Assuming now that the moment of inertiaI is constant
we can rewrite Eqs.~11! in two distinct ways as

E~n!5
2nJ1n~2n11!

2J13
E~1!, ~12!

or

E~n!5nE~1!1
n~n21!

2
«4 , ~13!

where
3-6



GENERALIZED CORRELATIONS OF QUASIBAND . . . PHYSICAL REVIEW C60 044303
FIG. 6. Same as Fig. 5, for bands in odd-A rotational nuclei.
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«458
\2

2I . ~14!

Equations~12! and~13! present an apparent paradox. W
first note that Eq.~13! is formally identical with Eq.~2!;
thus, forn52, E(2) is linear inE(1) with slope 2.0 and
finite intercept «4. However, Eq.~12! states thatE(2) is
linear inE(1) with slope (4J110)/(2J13) with zerointer-
cept. How does one understand this seemingly contradic
behavior when both formulas result directly from Eqs.~11!?
This situation is schematically illustrated in Fig. 9.

Assuming constant moment of inertia, the only way fo
mulas~12! and ~13! with constant«4 can be simultaneously
satisfied is if the points for eachJ value are clustered at
single abscissa value. As indicated by open circles in Fig
each of these clustersmust be on the line from Eq.~12!
corresponding to thatJ and, taken together, they must follo
Eq. ~13!. Then, trivially, Eq.~12! is satisfied for eachJ: the
points for a givenJ are all degenerate. Equation~13! is sat-
isfied by connecting the points of differentJ. Of course, the
rotational data points could liealong each of the trajectories
of Eq. ~12!, with different slopes for eachJ. Then, Eq.~13!
can still be satisfied but only with a variable«4, i.e., a chang-
04430
ry

-

9

ing moment of inertia, as in the case for even-even nu
~see Fig. 4!. We have already seen, though, that this isnot
the case experimentally—the data follow Eq.~13! for n52
exactly with slope 2.0 and finite intercept«4.

Hence we are left with the only apparent explanation
ing one in terms of a clustering of points. To test this, w
show again the data of Fig. 6, top, but with the rotation
expressions of Eqs.~12! and ~13! superposed. Figure 10
shows the unique parity data, Fig. 11 the normal parity da
Careful inspection of these figures shows that there is
clustering. The data for eachJ in Figs. 10, 11 arenot clus-
tered at a given point along the horizontal axis but sp
linear segments which donot show the behavior of Eq.~12!.
We can see this more clearly by showing the same data s
rately for eachJ value. This is done in Figs. 12 and 13
Figure 12 shows that, whenever the curves from Eqs.~12!
and~13! differ significantly, and enough data is available, t
data follows the AHV line withconstant«4 given by Eq.
~13! and not Eq.~12!. The same is true for the normal parit
orbits, Fig. 13, although to a slightly lesser degree.

These results are surprising. We might have expected
~12! to be satisfied and that the application of Eq.~13! should
have required varying«4 values to match varying moment
3-7
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of inertia. In fact, however, the opposite occurs. Theserota-
tional bandsfollow the constant anharmonicity AHV for
mula with slope 2.0, instead of the rotational formula w
slope ranging from 3.0 forJ51/2 and reaching 2.0 for very
high J.

A general explanation for this unexpected behavior is
clear. However, for certain bands it can be understood a
consequence of the Coriolis effect.

The data points forJ51/2 andJ55/2 in Fig. 13, with low
E(1) values~below about 100 keV! all come from bands
built on the proton Nilsson orbital@541#1/2 which is strongly
Coriolis perturbed@8#. ForK51/2 bands the Coriolis mixing
modifies the rotational energy formula of Eq.~10! so that it
takes the form

E~ I !5
\2

2I F I ~ I 11!1a~2 ! I 11/2S I 1
1

2D G , ~15!

where a is the decoupling parameter. Following the sam
procedure as above, one can easily calculate the ene
E(n) for the sequence of states of spins (J12n) (n
50,1,2, . . . ). Thus, for the sequence of spin
1/2,5/2,9/2, . . . thephase factor (2) I 11/2 is 21 and the ana-
logue of formula~12! is

E~n!5
2nJ1n~2n11!2na

~2J13!2a
E~1!. ~16!

FIG. 7. Energy correlation plots for two-quasiparticle quasiba
structures in nonrotational odd-odd nuclei, withZ533 to 79. The
curves are straight line fits to the data, of slopeSand interceptb as
indicated.
04430
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Formula~13! does not change and«4 continues to have the
same value as in Eq.~14!.

Equation~16! is shown in Fig. 14 for severala values in
comparison to Eq.~13!. For K51/2 bands the effect of the
Coriolis mixing is to shift the pointsalong the AHV line of
Eq. ~13!: their deviations from the unperturbed position@a
50 in Eq. ~16!# depending on the value ofa. This nicely

d
FIG. 8. Same as Fig. 7, for bands in rotational odd-odd nu

(Z from 67 to 75!.

FIG. 9. Schematic illustration of the rotational energy formu
described by Eqs.~12! and~13! for n52; for easy comparison with
real data, an«450.1 MeV value has been chosen. The circles re
resent the intersection of the family of lines described by Eq.~12!
with the AHV line @Eq. ~13!#.
3-8
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FIG. 10. The same data of Fig. 6, for uniqu
parity bands in rotational odd-A nuclei, but plot-
ted with a different symbol for eachJ-value,
whereJ is the spin of the first state in the band
The family of curves described by Eq.~12!, and
the global AHV fit with Eq. ~13! for n52 are
also indicated.
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explains the points with lowE(1) andJ51/2 and 5/2 from
Fig. 13. Indeed, the sixJ51/2 points withE(1),50 keV
are@541#1/2 bands in171Lu, 169,167Tm, and165,163,161Ho, and
have large decoupling parameters, between about 4.0 an
@8#. Similarly, the first five points withJ55/2 and E(1)
,100 keV are @541#1/2 bands in 183Re, 177,175Lu, and
177,175Ta, and have also large decoupling parameters~e.g.,
7.5 in 183Re, 5.4 in 177Ta, and 4.2 in173Lu). Thus, forK
51/2 bands, there is in fact no contradiction between
~16! and Eq. ~13!. This applies to the data points forJ
51/2 and 5/2. All these points, with the exception of that
183Re, are situated on an AHV line of slope 2.0 and interc
;86 keV ~slightly smaller than that of 96 keV given by th
global fit in Fig. 6!.

The generalization of Eq.~12! that is given in Eq.~16!
actually provides a means of extracting the value of the
04430
2.3

.

f
t

coupling parametera. This may seem a tedious way to e
tract a quantity that has been extracted for decades from
lowest three spin members ofK51/2 rotational bands. How-
ever, we note that the present method usesonly the favored
or the unfavored states, not both. The advantage of thi
that often in heavy ion induced reactions, the flow ofg-ray
decay passes predominantly through one of these seque
~usually the favored!. Where both methods of extractinga
values are available, those deduced by intersecting Eq.~13!
with the lines of Eq.~16! are in good agreement with thos
obtained from a fit of Eq.~15! to successive band energie
@8#. An interesting observation is that even for strongly p
turbed K51/2 bands the AHV line~13! still provides the
correct moment of inertia of the band@via Eq. ~14!#.

For KÞ1/2 bands it is impossible to estimate the gene
ty
FIG. 11. Same as Fig. 10, for normal pari
bands.
3-9



th

BUCURESCU, ZAMFIR, CASTEN, AND CHOU PHYSICAL REVIEW C60 044303
FIG. 12. Similar to Fig. 10, but decomposed according to the individualJ-value ~the spin of the ‘‘bandhead’’!. In each panel the
experimental points are shown and the line described by Eq.~12! for the givenJ, as well as the line representing the global AHV fit, wi
Eq. ~13!, to all data.
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effect of the Coriolis interaction in a simple way. They w
vary with nucleus, band, and mass region and therefore
are left with the paradoxical situation that theKÞ1/2 ‘‘rota-
tional’’ bands of deformed odd-A nuclei satisfy the AHV
formula of Eq.~13! better than the rotational formula of Eq
~12!.

Although we do not understand why this occurs what
mains striking in the plots of Fig. 6 is the extraordinary co
pactness of the correlation patterns around the AHV lin
Although we do not fully understand why this is so, it loo
fair to characterize this situation by the fact that the mome
of inertia of all these nuclei~in the lowest part of the bands!
are clustered rather around the value given by the well
fined intercept of the AHV line. This ‘‘constant’’ moment o
inertia behavior contrasts with the common perception t
the moment of inertia varies continuously with mass, a
proximately asA5/3. But there seems to be a mechanis
which ‘‘compensates’’ this variation. Thus, in Fig. 15 w
represent all bands in rotational nuclei~the data of Fig. 6!,
but now labeled according to two classes: ‘‘lighter mas
(A5155–169! and ‘‘heavier mass’’ (A5171–187!. Accord-
ing to theA5/3 dependence ofI, we would expect that the
04430
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symbols representing the ‘‘heavier mass’’ nuclei would
situated generallybelow those of the ‘‘lighter mass’’ group
~by ;15220%), but, on the contrary, they come, in averag
slightly higher in the plot. Figure 16 shows the same eff
from a different perspective. The figure gives the distrib
tions of the moments of inertia themselves, as deduced f
the value of the first energy in the band:I/\25(2J
13)/E(1). Again, the distributions for the ‘‘heavier mass
nuclei are centered on lower values than those of the ‘‘ligh
mass’’ nuclei. An interesting observation is also that the
erage ‘‘constant’’I value of about 40\2 MeV21 which re-
sults from both the«4 values~Table I!, or from the distribu-
tions of Fig. 16, is comparable with the maximum mome
of inertia reached by the even-even rotational nuclei in th
21

1 state@corresponding toE(1)'70 keV#. A possible ex-
planation of the effect observed in Figs. 15 and 16 might
that the increase of the moment of inertia from the light ra
earths (Z,70) to the heavier nuclei (Z.70) expected from
the A5/3 dependence is compensated by the larger defor
tions encountered in the former nuclei. It would be intere
ing to study the phenomenon in Figs. 15 and 16 in light
3-10
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FIG. 13. Same as Fig. 12, for normal parity bands~data identical with those of Fig. 11!.
fie

f a
n at

is a
the identical band phenomenon which has been identi
both at high and low spin.

We now turn to perhaps the most dramatic and pure o
rotational bands, namely, superdeformed~SD! bands. Figure
04430
d

ll

17 shows the lowest correlations~for n52) between ener-
gies in these bands. SD bands have been found now i
least four mass regions:;80, ;130, ;150, and;190 @14#.
Figure 17 shows that for each of these regions there
f

er
si-

ed
FIG. 14. Schematic illustration of the effect o
the Coriolis mixing for theK51/2 bands. The
full line is the ‘‘AHV’’ line ~13!, and the dotted
lines are representations of Eq.~16! with n52
for different values of the decoupling paramet
a, as indicated. The open circles show the po
tions where data are expected@for a given mo-
ment of inertia, here corresponding to«450.1
MeV—see Eq. ~14!# for different a-values,
whereas the black circle shows the unperturb
position ~for a50).
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FIG. 15. Energy correlation plot for odd-A
rotational nuclei; this plot corresponds toall data
from Fig. 6. The two symbols correspond to n
clei with lower masses~155 to 169!—circles, and
higher masses~171 to 187!—crosses.
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FIG. 16. Distributions of the moments of inertia of the differe
rotational bands represented in Figs. 6 and 15, as deduced from
first transition energy in the band according to formula~4!. The few
points representing theK51/2 bands with strong Coriolis perturba
tions discussed in Sec. III B@with E(1),0.1 MeV# are the only
ones not shown in these plots. Gaussian fits~dotted lines! to the
distributions plotted give the indicated mean values and 1s devia-
tions ~in units of \2 MeV21).
04430
rather well defined correlation of the form of Eq.~13!. The
different intercept values~see also Table I! reflect the aver-
age value of the moment of inertia of the SD bands for e
mass region at the beginning of the band.

Figure 18 illustrates the in-band correlations for the fi
few states in the SD bands from the mass regionA'130.

the

FIG. 17. Straight line fits—with Eq.~13!—to energy correlation
plots for superdeformed bands in the four indicated mass regi
The resulting slopes S and interceptsb are indicated. The data ar
from Ref. @14#, and for each band one starts from the lowest st
known ~of spin J usually unknown!.
3-12
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The behavior is again quite close to that of Eq.~13!, with a
rather small scatter of the points; the slight increase of
deviation of the slopes of the fitted lines from the AHV va
ues (2.0,3.0,4.0, . . . ) for higher n values may reflect a sligh
change of the moment of inertia with increasing spin.

As is well known, for most of the SD bands, the links
the lower, normally-deformed states have not been found
therefore their spin values are known only approximate
Some indication of the spin values can be obtained by ex
ining the type of plots discussed until now and their inters
tion with the lines defined by Eq.~12!. Figure 19 shows such
a comparison for the SD bands from theA'150 mass re-
gion. This plot shows that the spin values of the lowest sta
of these bands are between 20 and about 40, which ag
with other methods to estimate tentative assignments@14#.
However, spin assignments more precise than a few units
difficult to make due to the small differences between
slopes of the lines given by Eq.~12! for small spin differ-
ences. It is also difficult to say whether the experimental d
cluster around points representing different spins, as
cussed above.

B. Phase transitions

In the case of even-even nuclei, the transition between
‘‘AHV regime’’ ~which characterizes the large class of n
clei with R4/2 between 2.05 and 3.15, Fig. 1! and the ‘‘rota-

FIG. 18. Energy correlation plots for the first states in the
bands of theA5130 mass region, and their straight line fits.
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tional’’ regime ~nuclei with R4/2.3.15, Fig. 4! has been
studied in@1#. The essential aspect of this transition is sho
in Fig. 20: as indicated by the empirical derivativ
dE(41

1)/dE(21
1) it is very rapid, as it takes place in a ver

narrow region ofE(21
1) values around acritical value Ec

'125 keV. It was argued in Ref.@1# that this transition pre-
sents all the features of acritical phase transition, while in
Ref. @15# further support was given by examining the beha
ior of other quantities. The question of phase transitio
behavior in finite nuclei has been further addressed from
more general standpoint in Ref.@16#. Here we wish to con-
sider the situation in odd-A nuclei.

As shown by the experimental data discussed in previ
sections, in both odd-A and odd-odd nuclei the same tw
regimes are also evidenced. However, it is more difficult
study the transition between them since they are, forma
very similar @both are described by the ‘‘AHV’’ formula
~13!, the only difference being the different value of«4:
about 150 keV for the nonrotational nuclei, and about
keV for the rotational ones#. Recall that the rotational band
studied do not in general follow the expected rotational f
mula Eq.~12!. To disentangle the characteristics of the tra
sition between the two regimes in this case, it is better
follow a well defined structure which is found in both.
good example is in then i 13/2 bands of the isotopes of Er, Yb
Hf, and W @5,17#. The evolution of the lowest energy leve

FIG. 19. Energy correlation plots for the lowest states in the
bands from theA5150 mass region. The full line is the ‘‘AHV’’ fit
@Eq. ~13!# to the data, while the dotted lines represent Eq.~12! for
spinsJ520 and 40, respectively.
3-13
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within this structure, starting from the state with spinJ
513/2, is shown in Fig. 21. In the lower part of this figu
one can see that in all these isotopic chains the lowest m
isotopes belong to the AHV regime. By increasing the m
number one moves first downwards along the AHV lin
with a slope 2.0 to a point where the curve turns rapidly a
moves towards the rotational limit~the line of slope 2.25,
corresponding toJ513/2). The transition is fairly rapid—it
takes place in a rather narrow range ofE(1) values near a
critical value, Et'210 keV, which we call the ‘‘turning
point’’ @5,17#. The derivative of a smooth curve draw
through the trajectory of the data points,dE(2)/dE(1), is
discontinuous at the valueE(1)5Et , as it has two branche
which at Et go to plus and minus infinity, respectively~for
this reason, this behavior was called an ‘‘invert
l-anomaly’’ in Ref.@17#!.

The upper part of Fig. 21 shows a plot ofE(1) for the
odd-A nuclei againstE(1) for the even-even core, that
E(17/2)2E(13/2) againstE(21

1). The figure shows that the
turning point, which is the ‘‘critical’’ point of this transition
occurs at the same 21

1 energy of the even even core which
the critical point~see Figs. 1 or 20! for that class of nuclei.
That is, the variation ofE(1) in odd-A nuclei against the
E(21

1) energy in the core shows a minimum at theEt value,
which corresponds to the valueE(21

1)5Ec . One can quali-
tatively explain the change of structure that takes pl
aroundEt . At energies ofE(21

1) larger thanEc , the defor-
mation is small and the odd particle is either weakly coup
or decoupled, therefore theE(1) energy in the odd-A
nucleus closely follows the variation ofE(21

1) as seen in the
upper part of Fig. 21. At the valueE(21

1)'Ec , the rota-

FIG. 20. ~a! Correlation ofE(41
1) with E(21

1) for all collective
nuclei (R4/2>2.05) for Z538–82. ~b! The derivative
dE(41

1)/dE(21
1) againstE(21

1) obtained from the fit of data in par
~a! ~see Ref.@1#!.
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tional regime settles quickly in for the core nuclei, and th
change forces a change towards the strong coupling reg
in the odd-mass nuclei. Although theE(21

1) energy in the
cores continues to decrease, theE(1) energy in the strongly
coupled band starts to increase towards the strong coup
limit E(1)532(\2/2I) @Eq. ~11!# which is much larger than
the valueE(21

1)56(\2/2I) in the core. Thus, it is clear tha
the AHV to rotor transition in the odd-A nuclei is intimately
connected with the critical phase transition from the ev
even nuclei.

C. Unified formula for quasiband energies

The empirical data presented in Sec. II and discus
above provide rich evidence for the fact that a large vari
of quasibands in all classes of collective nuclei are, surp
ingly, well described by the AHV expression, Eq.~2! with
constantanharmonity«4. This statement even applies to d
formed odd-A rotational nuclei. The only exception is de
formed even-even rotational nuclei which follow the rot
formulas@i.e., Eq.~2! with variable «458\2/2I#. Although
the meaning of the AHV behavior is different for the nonr
tational and rotational nuclei, an important, practical asp

FIG. 21. Illustration for the transition between nonrotor~AHV-
type! and rotor odd-A nuclei. The data represent then i 13/2 bands in
the indicated nuclei, and the excitation energies are taken relativ
the 13/21 state. In the lower part of the figure, for each isotop
chain, beginning with the lighter mass, one moves downwa
along the AHV line to the turning pointEt ~at about 210 keV!
where the curve rapidly changes the sense and approaches th
tational limit. The upper part shows that the turning point in t
odd-A nuclei corresponds to the critical pointEc ~about 125 keV!
from the even-even core nuclei@1#.
3-14
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FIG. 22. Illustration of the
scatter of the points in energy cor
relation plots. The experimenta
data are the same with those
Fig. 5. In the left hand panels th
reference state is the lowest sta
from the band ~of spin J),
whereas in the right hand panels
is the second state~of spin J12).
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is that almost all quasiband structures in collective nuclei
be described analytically with the same formula.

We have placed the emphasis, until now, on the low
states of the bands@Eq. ~2! was verified, usually, up ton
53 or 4#. We now extend the study to higher states as w
for this purpose each band has been followed up to the h
est known spin, or up to the crossing with another ba
~upbending or backbending!. A common feature of the em
pirical AHV correlations is the increase of the scatter of t
points around the average AHV behavior as one moves
wards in the band. This is illustrated in Fig. 22 for norm
parity bands in odd-A nonrotational nuclei withZ532–80.
The data show the best AHV correlation for the first tw
energies in the band@n52 in Eq. ~2!#; the AHV correlation
persists reasonably well for the third excitation energyn
53), but, usually, with more scatter of the points, and
scatter increases continuously for the higher states. The
creasing scatter doesnot mean, however, that the AHV cor
04430
n

st

l;
h-
d

p-
l

e
in-

relation gradually disappears. One finds again a nice A
correlation if one starts fromany other higher state of the
bandwhich is taken as origin~or ‘‘zero-phonon’’ state!. This
is also illustrated in Fig. 22~right-hand panels!. Thus, it is
clear not only are quasiband energies well represented by
AHV formula, but, further, that the deviations of the poin
corresponding to differentn values from the mean AHV be
havior are highly correlated.

These correlations can be unraveled by studying relat
ships between the experimental excitation energies of m
than three successive states from the band, for all collec
even-even and odd-A nuclei @6#. If we denote byEg(n) the
‘‘transition energy’’ from the staten of the band to the state
below it, n21: Eg(n)5E(n)2E(n21), the basic obser-
vation is that, for all the bands investigated, we have, wit
reasonable accuracy, for anyn,

Eg~n!52Eg~n21!2Eg~n22!. ~17!
3-15
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This is, in fact, an exact prediction of both the AHV equati
~2! and of the rotational formula~10!. Figure 23 shows the
correlation betweenEg(n) and 2Eg(n21)2Eg(n22) for
about 750 bands for which at least three successive tra
tions are known~yrast bands of rotational even-even nuc
are also included!. As observed in this figure, the large num
ber of points~about 2000! are very well grouped into a com
pact pattern which deviates only slightly from Eq.~17!. This
correlation is actually even better approximated by a m
general equation:

Eg~n!5c1@2Eg~n21!2Eg~n22!#1c2 , ~18!

wherec1 andc2 are two parameters. This new formula c
be rewritten in terms of excitation energies as

E~n!5E~n21!1c1@2E~n21!23E~n22!1E~n23!#

1c2. ~19!

This is a recurrence formula which gives the energy
any state in the band as a function of the energies of the t
states below it—the whole band can therefore be calcula
by starting from the experimentalE(1) and E(2) values,
using some adequate values for the parametersc1 andc2 @the
energyE(0) of the ‘‘basis’’ state can be chosen as zero#. In
Ref. @6#, least squares fits have been performed for differ
sets of bands/nuclei, using formula~19!, and values of the
parametersc1 and c2 have been determined. It was foun
that a rather good description can be obtained for a la
number of bands, up to the highest known state, with
same valuesc1 ,c2. In general,c1 was found close to 1.0
~between 0.92 and 0.98!—as visible in Fig. 23, andc2 from

FIG. 23. Correlation between band ‘‘transition’’ energies—th
plot shows the two quantities which appear in the left and right s
of Eq. ~17!, respectively. The data are those for both rotational a
nonrotational even-even and odd-A nuclei. A band withn known
transitions contributesn22 points to this plot. There are about 75
bands with at least three known transitions, and one band goes
n59. The dotted line represents Eq.~17!, whereas the full line is
the fit with Eq.~18! with c150.93 andc2519 keV.
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a few keV to about 20 keV. Formula~19! was found more
accurate for rotational nuclei~for which c1 is closer to 1.0!.

The recurrence relation~19! can be used also to give
generalization of the AHV expression of Eq.~2! in the ap-
proximation c151. In this case one gets, explicitly,

E~n!5nE~1!1
n~n21!

2
«41

n~n21!~n22!

6
«6 ,

~20!

with «45E(2)22E(1) and«652c2. This is a second orde
AHV expression, a generalization of Eq.~2! which, in addi-
tion to «4, has another anharmonicity,«6. The result is not
new: in Ref.@18# it was proposed that this next order gene
alization of Eq.~2! is one of the best formulas to describe t
yrast bands of both the ‘‘AHV’’ and rotor even-even nucle
However, Eq.~20! now has a sounder basis: it is derive
from the compact correlation of many experimental d
~Fig. 23!, and, moreover, Eq.~20! is now seen as an approx
mation to a more general formula, Eq.~19!.

Since Eq.~19! provides, as a limit, the second order AH
formula ~20!, we call the recurrence formula~19! a ‘‘gener-
alized anharmonic vibrator’’ ~GAHV!. With it all band
structures in both rotational and nonrotational nuclei~even-
even, odd-A and odd-odd! are well described by a singl
expression, the GAHV formula~19!. A good approximation
of this formula is Eq.~20!; the lowest order AHV correla-
tions discussed at length in this article are a reflection of
more general formula, and it is seen now that the increa
scatter of the points with respect to Eq.~2!, illustrated by
Fig. 22, reflects the need for an additional higher order
harmonicity. Equations~19! or ~20! can be applied to any
band, up to the highest spin, with excellent results, ifE(1),
«4 and«6 are considered free parameters and are fitted to
data. An attractive aspect of the present results is, howe
that Eq.~19! describes reasonably well large sets of ban
~or nuclei!, with fixed c1 ,c2 values.

The study of Ref.@6# was restricted to the yrast bands
the even-even nuclei, and the 1qp bands in the odd-A nuclei,
but obviously can be generalized to all the other bands ad
in the present work, which have been found in equally go
agreement with the first order AHV expression~2!. One can
speculate, although no attempts were made to look at o
excited band structures~such as 2qp bands in even-even n
clei, 3qp bands in odd-A nuclei, etc.!, that the GAHV for-
mula ~19! describes wellany band structurethat is not per-
turbed by a band crossing. The collective band structure
nuclei thus reveal a universal phenomenology.

IV. THEORETICAL CALCULATIONS

The nearly universal anharmonic vibrator behavior of t
lowest quasiband structures in all collective nuclei is a r
challenge for nucler structure theories. Analytical formu
which appear to describe well both the rotational and non
tational structures remain empirical findings. Microscop
model approaches aiming at unraveling the factors that
termine such a universal phenomenology have not b
made so far. On the other hand, insight into the empiri
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FIG. 24. IBA calculations with k
50.03 MeV for a wide mesh ofe, x, and NB

values that giveR4/252.05–3.15.~a! Correlation
of E(41
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phenomena can be gained by using phenomenological m
els which have been successfully applied to real nuclei
this section we summarize existing interacting boson
proximation ~IBA ! model calculations and present new r
sults with the geometrical collective model~GCM!.

A. The interacting boson and interacting boson-fermion model

The IBA model@19# for even-even nuclei is a rather nat
ral choice to investigate the predicted energy correlatio
The IBA model embodies the well-known collective limi
~vibrational, g-soft and rotational! as well as the differen
transitions between them. It spans this variety of structu
with a small number of parameters. In the same way,
interacting boson-fermion approximation~IBFA! model
@20#, in which a particle is coupled to an IBA core, cove
the large variety of coupling schemes met in odd-A nuclei.

In Ref. @2#, IBA calculations were made with an extende
consistent-Q formalism ~ECQF! Hamiltonian@21,22#:

H5«n̂d2kQ̂Q̂, ~21!

with

Q̂5~s†d̃1d†s!1x~d†d̃!(2),

which spans the full variety of collective modes in terms
only three parameters,«, k, andx. Each nucleus is charac
terized by a boson numberNB given by half the total numbe
of valence particles or holes. We performed a mesh of
culations, covering all areas of the symmetry triangle.
these calculations,k was kept constant at a value that det
mines the height~or intercept! of the energy correlation tra
jectories in even-even nuclei, namelyk50.032
60.002 MeV @2#. NB , e, and x were varied in a three
dimensional mesh through the ranges 4<NB<16, 0<e
<1.25 MeV, and 0<uxu<A7/2. The only condition was
that theR4/2 values covered the same range as those in
1~a!, namely 2.05<R4/2<3.15. Figure 24 shows the resul
of the IBA calculations@2# of the yrast states in nonrotation
04430
d-
n
-

s.

s
e

f

l-

-
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even-even nuclei. They reproduce the main features of
empirical data almost exactly@compare with Fig. 1~a!#.

In calculations for odd-A nuclei done in Ref.@5#, the
Hamiltonian also contains additional terms represent
single fermion energies and the interactions of the odd
mion with the boson core. In the general case, where
fermion can occupy any of several shell model orbits,
number of parameters increases very rapidly and the m
becomes difficult to use in practice without some simplific
tion schemes. For a single-j orbit, however, such as the UPO
case, the situation simplifies dramatically. In such a case,
IBFA Hamiltonian contains, in addition to the ECQF Ham
tonian ~21!, and a single fermion energy, a standa
quadrupole-quadrupole and an exchange boson-fermion
teraction which are characterized by only two strength
rameters,G0 andL0, respectively. The calculations@5# used
the same range ofNB , e, andx values as for the even-eve
case. The particle-core interaction parameters took on
following ranges: 23.0<G0 (MeV) <3.0 and 0
<L0 (MeV) <6.0.~The scale factorv j

2 was set at 0.25.! A
random number generator was used to arbitrarily select
ues for the five quantitiesNB , e, x, G0, andL0. Any choice
for the core parametersNB , e, and x that corresponds to
transitional nuclei, namely 2.05<R4/2<3.15, was then used
In all, about 500 calculations were performed. The results
compared with the data~for two unique parity orbits, 1g9/2
and 1i 13/2) in Fig. 25. Again, the calculations reproduce th
main features of the experimental data—not only the lin
patterns, but also the characteristic scatter of the points
reproduced.

The implications of this good description of the expe
mental correlations by the IB~F!A model calculations are
rather profound. Once an appropriatek value is chosen to
reproduce some point on the empirical correlation plot,
IBA ~or IBFA! model automatically reproduces the trend
the data. The calculated points correspond to a few hund
randomly assorted values ofNB ,«,x ~with G0 ,L0, andv j

2 ,
the shell occupancy, added for the odd-A nuclei!. The key
3-17
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FIG. 25. Comparison between experimental data and IBFA model predictions. Experimental data are those for unique parity qu
in nonrotational odd-A nuclei. All data available for the orbitalsg9/2, h11/2, and i 13/2 are contained in this plot, and the reference state
always taken to be that of spinj ~the spin of the UPO!. On the right are the results of several hundred IBFA model calculations,
randomly chosen parameters, as described in the text and Ref.@5#. In these calculations, one single orbital was coupled to the IBA c
eitherg9/2 or i 13/2, as indicated. The curves are straight line fits, and give the slopesS and the interceptsb as indicated.
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point is thatno attemptwhatsoever is made to ‘‘fit’’ the data
If the data were different,~e.g., had a different slope!, the
IB~F!A models would have not been able to reproduce th
~unlessk were fitted separately for each nucleus!. Thus, we
are dealing here with a fundamental, and robust, predic
of the IBA ~IBFA! model. These theoretical results are n
yet fully understood, although the IBA calculations can
reproduced in an approximate analytical way@24#.

B. The geometric collective model

Striking as these results are, it is not known whether s
linear correlations are a feature special to the IBA or whet
other collective models, based on different points of vie
also give similar behavior. Understanding this point cou
for example, give some guidance as to whether the corr
tions will hold up in exotic nuclei far from stability.

To test whether other models also give a slope of 2 in
E(41

1) –E(21
1) correlation plot, we have carried out exte

sive sets of calculations with the geometric collective mo
~GCM! @25#. We use a recently developed approach@26# in
which the Hamiltonian of Ref.@25# is simplified to the fol-
lowing form:
04430
n
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H5T1V, ~22!

where

T5
1

B2
@p̂3p̂# (0) ~23!

and

V5C28b
21C48b

42C38b cos3~3g!, ~24!

whereC28 ,C38 ,C48 are parameters similar toC2 ,C3, and C4

of Ref. @25# except that they absorb awkward numerical co
stants. With this Hamiltonian a harmonic vibrator spectru
is obtained ifC485C3850 and C28 is positive. A deformed
rotor is given if C28,0,C48 ,C38.0. This gives a potentia
with a deformed minimum inb and ag-dependence with a
minimum atg50° and a slope related toC38 . A g-unstable
deformed nucleus is similar to the rotor but withC3850.
Thus, the GCM leads to a symmetry or structural trian
@26# similar to that developed@23# for the IBA.
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GENERALIZED CORRELATIONS OF QUASIBAND . . . PHYSICAL REVIEW C60 044303
With the Hamiltonian of equations~22!–~24!, a full mesh
of calculations covering the parameter rangesC2852100 to
2350 MeV, C3850 to 100 MeV, andC4850 to 4000 MeV
was carried out. These ranges cover the structures in mo
the structural triangle discussed in Ref.@26#. The mass pa-
rameter,B2, was set at 100310242 MeV s2, but this choice
only affects the scale of the calculated energies. All calcu
tions that gaveR4/2,3.15 andE(21

1).0.15 MeV ~i.e., all
calculations which gave nonrotational nuclei! are shown in
Fig. 26. They are striking. Like the IBA, the GCMalso
reproduces the empirical correlations almost exactly;
slope is almost identically 2.0. The intercept is controlled
the parameterC28 , analogous to the dependence onk in the
IBA. The arbitrary parameter combinations, included in t
GCM calculations, imply, as with the IB~F!A, that these re-
sults are highly robust and that, were the data different,
GCM could not readily reproduce them.

V. CONCLUSIONS

To summarize, we have shown that the linear correlati
of yrast energies originally discovered in even-even n

FIG. 26. Correlation ofE(41
1) with E(21

1) for nonrotational
nuclei @R4/2,3.15 andE(21

1).0.15 MeV] for a wide mesh of
GCM calculations withC2852100 to 2350 MeV, C3850 to 100
MeV, andC4850 to 4000 MeV.
et

et

an
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rotational nuclei, and subsequently shown to exist in oddA
nuclei as well,also applyto excited intrinsic states~e.g.,K
501 bands,g bands, superdeformed bands!, and to odd-odd
nuclei. Furthermore, we have studied the GCM model a
shown that, like the IBA, it reproduces these correlatio
extraordinarily well and robustly, that it does so for virtual
arbitrary combinations of parameters, and that for it to
otherwise would be difficult or impossible.

All these results once again point to and reinforce
AHV interpretation of these quasiband states.

One particularly intriguing discovery is that bands inde-
formed nuclei follow the AHV expressionrather than the
usual rotational formula. ForK51/2 bands, this behavior ca
be understood as a consequence of the Coriolis interac
but it is not understood for other bands. If it results from
second order Coriolis mixing effect, there remains no sim
understanding of why such effects are so systematic and
they always lead back to the AHV expression.

Finally, it was shown that a single analytic expressio
which is in essence a generalized anharmonic vibrator~gen-
eralized in the sense that it contains higher order anhar
nicities! is capable of describingany type of quasiband struc
ture. Butwhy the AHV works so well, for such varied state
in such disparate nuclei, always with an almostconstantan-
harmonicity, and why quite different model approaches
themselves virtually locked into the same results—in a
bust way—is still unknown and, in our view, is a significa
challenge both to extend this work by studying other emp
cal correlations and to investigate the predictions of mic
scopic theories based on effective nucleon-nucleon inte
tions.
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