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Monopole collective motion in helium and oxygen nuclei
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We review the rationale for basing the calculation of collective motion on the periodic solutions of the
time-dependent Hartree-Fock mean field. With suitable discretization, we find a family of these solutions and
we apply a simple quantization rule. Results are presentefiHerand®0. [S0556-281@9)04009-1

PACS numbgs): 21.60.Jz, 21.10.Re, 27.16h, 27.20+n

[. INTRODUCTION parameters. But our calculations show the TDHF equations
to be highly nonlinear at the energies of interest for the type

In a previous papefl], we reported some preliminary of nuclear collective motion we are studying here.
calculations of the quasiperiodic solutions of the nonlinear In the present work we are dealing only with bound col-
time-dependent Hartree-FockTDHF) equations for the lective motion, starting with monopole vibrations of closed-
monopole oscillations of théHe nucleus. The present paper shell nuclei. Our first step consists in finding families of
reports some additional results, with some improvements iperiodic solutions of the TDHF equatiof8]. Our second
the method, for botfHe and 0. step is to requantize. Why periodic solutions? Actually, it is

The TDHF approximation for nuclear phenomd@&is a  not necessary to go through periodic solutions; it is just a
particular example of a very general method for dealing withconvenience. The periodic solutions, which we also call
many-body and field-theoretical problems, namely, the meanycles, come to mind for at least two reasons. The first is that
field approximation3]. The essence of the mean field ap-they are the classical objects that share one important prop-
proach is the assumption that there exists a single function arty with the quantal stationary states: they are invariants of
space and time, as well as other coordinates, the mean fielthe motion. This leads one to think that there might be some
which is the approximate, average result of the quantunctonnection between the stationary states and the cycles. The
fluctuations undergone by the system. For instance, in theecond reason is that they are finite in duration; after one
nuclear TDHF case, the mean field is the single-partig® period, they just repeat themselves. If, on the other hand, one
potential which constitutes the major part of the interactiontries to quantize a nonperiodic TDHF solution, one will have
seen by each particle. One aspect of all mean field approxthe problem of deciding how much of this infinitely long
mations is that the mean field is treated like a classical quarfunction of time is necessary for quantization, and therefore
tity, a ¢ number. For the nuclear TDHF example, once againhow much of it one must calculate.
the SP potential can be plotted as a functiom ahdt (pos- Little will be said in this paper about quantization. We use
sibly nonloca), doing whatever it does when the nucleusthe Bohr-Sommerfeld formula, derived in this context by a
rotates, or changes its shape, or breathes, or when two nucheriety of authors long agi®]. Actually, this formula is only
collide, just like our classical eye and our classical braina very rough approximation. We are actively engaged in
would have it do. working out a much better quantization method.

The consequence of such an approach is that, once it has The present work constitutes only the early steps in what
been carried out, one has to requantize somehow. The lack &f expected to be a large endeavor, extending to many kinds
requantization is the basic reason why TDHF theory does natf collective motion and to all sorts of nuclei, including
work for predicting all of the results of heavy ion collisions, heavy ones. In keeping with this situation, we are using for
for instance. We are not claiming here that TDHF theorythis beginning a simple version of the Skyrme poterit)
treats a nucleus completely classically. Certainly not; the SBpin and isospin independent, with an attractive term propor-
wave functions are still Schdinger probability amplitudes, tional to the density and a repulsive term proportional to the
of course. But having made one object classical, the measquare of the density. It contains two arbitrary coefficients
field, is enough to require repair. Thus every successfulvhich can be fitted to give a fairly good account of the pe-
TDHF application is followed by a second stage, the requanriodic table [6]. It is also possible, for each closed-shell
tization. This stage is always present, explicitly or implicitly. nucleus, to choose these coefficients so as to give correctly

The TDHF approximation is nonlinear. When it is linear- the total energy and the nuclear radius.
ized in the vicinity of the ground state, it becomes the ran- Section Il of the paper reviews this nuclear model. Sec-
dom phase approximatioRPA), a small amplitude limit tion Il examines the cyclegwhich are actuallyquasi-

[3]. The RPA has been used extensively to describe nuclegreriodic) and sets down the quantization rule. Section IV
collective motion[4], but the accuracy of such an approachdiscusses the space and time discretizations which are nec-
is open to question. Excitation energies and transition probessary for a numerical calculation. This includes the neces-
abilities can be fitted as long as one allows for adjustablesity of obeying exactly the conservation laws for energy and
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probability. Section V gives some details of the numericalThe two positive constantg and3 are connected as follows
method. Section VI presents results fthe and?®0. Section  to the usua[3] Skyrme parameters, andts:
VII contains some conclusions and outlook.

Il. MODEL a=—gl, B=+ 75ls. (7

One way to derive the TDHF equations is by using the
time-dependent variational principle with a Slater determi-
nant trial function[7]. Let the latter be made up of the SP
wave functionsy(r,t), each with degeneraay,. Degen-
eracy is possible because we are ignoring the spin and isos-

(Note that the definitions ofr and B differ from those we
used in[1].) The variation ofS with respect to the)'s and
J*’s yields the Hamilton-like equations

pin degrees of freedom. For instance, fitde there is but a i Gup (1) =
single (r,t), with g=4. Under these assumptions, the et SYk(rt)’
guantity to be varied, which generalizes Hamilton’s action, is
written
_iath(rit):

Oifa(r,t)’
S[lﬁ*'lﬂ]:f dt[E gaf d3r wz(r!t)iatlpa(r’t)
@ which are the TDHF equation and its complex conjugate.
The explicit form of the former is
_H[lﬂ*:‘ﬂ]}, (1)
iatwa(r!t):H(rlt)wa(r!t)! (8)

where’H is the many-body Hamiltonian. We follow the usual
classical mechanics convention of calling this quantity
the Hamiltonian, when it is considered as a function of the _
independent variables, and of callingBf the energyl(i.e., H(r O =K+wlp(r,0] ©
the total many-body energywhen it is considered as a
simple number. We use units such thatc=m=1. The
wave functiony, and its complex conjugate’ must be d
treated as independent variables in the variation. w(p)= d—[pV(p)]. (10
Before writing the Skyrme Hamiltoniaf(, we introduce p
the nuclear density

with the SP HamiltoniaH given by

and the one-body potential

With expression6) for V), this is
p(r0)=2 gl (1.2 () W(p)=—2ap+38p> (11)

We note in passing that a nonlinear Salinger equation
very similar to Eq.(8), with a density-dependent potential,
1 was used by one of Us] in an exploration of nuclear hy-
f d3r * (r,H)Ky(r,t)= Ef d3r |V y(r,1)|? drodynamics.
There are two conservation laws associated with TDHF
1 motion, and they play an important role in the search for
=- EJ d3r % (r,t) V2(r t). cycles. They are the conservation of the overlaps between SP
wave functions and the conservation of the total many-body
(3 energy. The former follows in the usual way from the Her-
miticity of the SP Hamiltoniar{9). It implies that the motion

We define also the kinetic energy operalor

Then’ has the form of the Slater determinant is unitary and that the normaliza-
tions are conserved separately for eagh. To show the
H[lﬂ*ylﬂ]:J d*r > ga s (r,OIK+Vp(r,0)}(r,0), conservation of the total enerdy, which is expressior(s),
a let us calculate its time derivative

(4)
. . dE 1 d
which can also be written EZJ d3r[§ 2 9adi| V| + g{PV(P)}atP}-
1 , (12)
52 9lVelP+pVp) | (5

Hw - | o
By Eq. (10) this can be rewritten

The many-body potential(p) is given by

d_E_ 3 1 2 2}
V(p)=—ap+ﬁp2. (6) dt _é gaf d r[23t|vdla| +W(p)‘9t|dja| . (13)
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And this last expression vanishes, separately for egacds a  this (E,r) plot, one can follow how the various families
consequence of the TDHF equation and its complex conjueonnect to each other through bifurcations of many kinds.

gate. Indeed, it can be written The existence of bifurcations is one of the signatures of non-
linearity and chaos. One aim of our work could be to under-
(ol H| o) + (b H|01ha), stand exactly what bifurcations there are and how much non-

linearity there is in nuclear collective motion. We have not
progressed very much in that direction yet, but we expect to
il —H and — il |= H. work on it in the future. The figures of Sec. VI do not show
|9t =Hle) (hal = (¥l any bifurcations, but this does not mean that they do not

Note, however, that the SP energies are not conserved aneiist.

as usual, the total energy is not the sum of the SP energies. FOr a generic Hamiltonian problem in classical mechan-
ics, the number of cycle families is infinite. In fact, the cycles

Ill. CYCLES are dense in phase space. But the number of cycles whose
period is smaller than some givenand with a given energy,
The TDHF equation(8) does have truly periodic solu- is finite. These shortest cycles are the most important ones.
tions. In general, however, such a solution does not have thehey organize phase space around themselves. Stable cycles
¥,'s correctly normalized. This is because the equation idie at the center of regular regions and unstable cycles at the
nonlinear, and one cannot simply multiply a solution by ancenter of chaotic regions. One knows a lot about the system
arbitrary constant. If we were doing field theory instead ofalready if one knows only a few of its shortest cycles. For
many-body physics, these solutions would be perfectly aceur case of many-body collective motion, the situation is
ceptable. But here we require unit normalizations. The priceexactly the same with one possible difference. Collective
of this requirement is that we have to be satisfied with quamotion is often especially slow compared to other possible
siperiodic solutions, i.e., solutions which repeat themselvesotions of the system. This slowness leads to longer periods.

which vanishes by virtue of

after periodr except for a phase factor Hence the cycles of interest in collective motion are not nec-
iy essarily the absolute shortest. For instance, in the RPA treat-
a(rtt7)=e e (r,t). (14 ment of the monopole oscillations of a closed-shell nucleus,

the breathing mode is the solution with the longest period.
"The possible interaction between one long-period family of
collective cycles and a number of other families of shorter

The angled,, is sometimes called the Floquet index. We ca
then define a new functios,, by the formula

—amingt periods is one of the causes of dissipation.
vo(r)=e a(r0), (15) For the present paper we have calculated only one family
and by choosing, such that of cycles, which is obviously a collective family. We know
that other families exist because we have seen them numeri-
N,7=16,, (16)  cally, and in any case they are present in the linear limit of
the RPA. But we are not prepared to talk about them at this
we can makep,, truly periodic: time.
Once the familiegor family) of cycles have been found,
Do, 1+ 7) =y (r,1). (17 the second step in the approach is quantization. As we said in

The cost now is that the TDHF equation contains an addi_Sec. I, our provisional recipe for this is the Bohr-Sommerfeld

tional real termx . which we call the quasienerav. The formula. For the future, we are working on a much better
equation is a q 9y- method. The Bohr-Sommerfeld formul&] involves the re-

duced actionJ”, which is the same as the familigp- dq,
19, (1) =[K+W{p(r,0)} =\, ]ba(r,t). (19 but calculateq for.the periodic pagt of the wave function,
rather thany itself:

We can also think o, as a Lagrange multiplier that we
introduce to satisfy the constraint on the normalization of b [7 3w
é.,,. The densityp and the SP potentiaV are truly periodic, Jr=i fo dt; gaJ d°r ¢ (1, 1) dr,(r,t)
and ¢, is a true Floquet solution in this periodic potential.
Moreover, the SP density matrix and, hence, the expectations T 3 N
of all SP operators are also periodic. Hence it is reasonable to = jo dt; gaJ d°r [, (r,0)]da(r,1). (19
think of these solutions as periodic and to drop the “quasi”
qualifier. From now on we deal only with the wave functions
¢ and we call the solutions cycles.

As in all generic Hamiltonian problems, the cycles occur b
in one-parameter families. See R¢f] for an example. J7=nh, (20)
Along such a family, the energy changes continuously, and
so do the period, the action, and other observables. A comwheren is an integer and Planck’s constdnis 27 in our
mon way of looking at things is to represent each family byunits. The reduced actiofl9) increases smoothly along the
aline in the €,7) plane. This is known as arE(7) plot. On  (E,7) line, beginning at the value O for the ground state,

Then the quantization rule is
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where ¢,, is independent ot. The Bohr-Sommerfeld rule R [df\2 1]_, M1 e
says that the energy of the first excited state is the energy at fo r(a) = |2fit mE:l (fne1— )+ 2f |
which J® reaches .
(26)
IV. DISCRETIZATION Again, Eq.(24) remains true after discretization.

Now we consider the time discretization. When one cal-

We use only the simplest possible discretizations, so thagulates cycles for Hamiltonian systems with many degrees of
we may reserve the major fraction of the numerical powerfreedom, it is very important to have a time discretization
for obtaining the cycles. The angular part of the calculationsyhich conserves exactly the discretized approximations of
is usually completely standard and in fact, for the presengl| the constants of the motion. This is because the phenom-
paper, trivial. Hence, the wave functions to be discretizednon known asliding tends to make the computer algorithm
have two variables, the radius and the time. We replacgery unstable otherwisgl0]. In the present case, given the
#(r,t) by ¢, wheremis a space index anda time index.  conservation laws mentioned in Sec. Il, it is necessary first to
The interesting discretization problems concern the time demake each step of the propagation strictly unitary and, sec-
pendence; they arise because we wartb be periodic. The ond, to conserve the total energy. The discretization that we
space discretization does not matter. used in Ref[1], which had been used much earlier in Ref.

We have used two kinds of space discretization, which wg11], does both. I is the time index an is the size of the
call end pointandmidpoint They seem to be comparable in time step, unitarity is ensured by writing
accuracy. Consider a functidrfr) defined for G=r=<R and
required to vanish at both ends, as is the case with the radial [N H=U, (n+1)| D), (27
wave functions we shall need. Let the interval be divided
into equal subintervals of size. In the end point method,,  With
is the value off (r) at one of the points separating two sub- . )
intervals. If there areV + 1 subintervals, there arfél vari- .. 1=3ieH,(n+3)
ablesf,,, with I=m=M. We may also introducé, and Ua(nt2)= 1+ LieH (n+ %)’
fu.1, but they vanish. The three formulas needed to do all 2 e

the calculations are HereH,(n+3) is the SP Hamiltonian of Eq18) taken at
time (n+3)e,

(28)

M
R
Jdrin=o 2 fn, (D) Ho(n+ 5 =K+wlp(n+H]-1,, (29

and sinceH , is Hermitian, U, is obviously unitary. The

d?f 1 discretized equivalent of Eq10) is
(ﬁ) :;(fm+1_2fm+fm—1)v (22)
m w[p(n+ %)]: pn+1V(pn+l)_ paV(pn) . (30
for m on the interval (m=<M), and Pr1™Pn
With the potential(6), this becomes
R (df\2 1 Y ,
Jodr a) = mZO(fm+1_fm) : (23 Wp(N+3)]1= = a(pps1+pn)+ B(Ph 1+ Por1pnt ph)-
- (3D
It is important to note that the relation It is now easy to show conservation of energy, using
again the reasoning used at the end of Sec. Il to show it for
R [df\2 R d?f continuous time. For this purpose, it is not necessary to dis-
J; df(ﬁ) == fo drf ﬁ (24 cretize space explicitly; only time discretization is involved.

The energy(4), discretized, becomes

remains true after the discretization; otherwise, the Hermitic-

ity of the kinetic energy operator would be compromised. In En=2 9a<¢2|K|¢2>+f d*r paV(pp). (32
the midpoint method, on the other harfg, is the value of *
f(r) in the middle of a subinterval. Let there b subinter-
vals, this time, andV variablesf ,,, with 1I=m=M. To ex-

press the fact that(r) vanishes at =0 andr=R, we must i1 i1 . N
introduce two more quantities En+1—En:§a‘4 9ol (ba 1K ) —(#LlK[#5)]

Instead of the time derivativel2) we calculate

fO:_fl and fM l:_fM' (25)

" +f dsr[Pn+1V(Pn+1)_PnV(Pn)]- (33
Of the three formulas needed, the first two, E(&l) and

(22), are the same as before. But Eg3) is changed to By Eg. (30) this can be written
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ST H(r,0)=Pelcop!M(r,0)+ c1 ¥ (r, A4 ].  Otherwise,
En+1_En:§ 9al (05 KIgo ) —(HhlK| 0] at high excitations, the energy drops down uncontrollably.
This projection is the most important difference with the
method of Ref[1]. Steps(ii)—(iv) must be repeated until
+§ gaf d*r[h(rn+Dge(rin+1) convergence is achieved.
A few comments are in ordea) The conservation of
—x(r,n) ¢, (r,n)w(p(r,n+3)) (34 energy and particle number is built into our algorithm at each
time and iteration step. We have tested this aspect of our
or algorithm numerically. A typical run may contain 3@ime
steps, performed in double precision. For each time step the
Eni1—En=2 Gul{(d" HH(n+ 1)+ N o7 Y nonlinear equations must be solved. We solve them by suc-
@ cessive approximations, which may involve 10-20 itera-
n 1 n tions. At the end of the run we find that the total particle
—(BalHa(n+2)+Nal0)]- (39 number has been preserved up to 1 part it? 40d the total
energy up to 1 part in 28, Because the iterative procedure
preserves the total particle number and the total energy, it is
quite stable and the stability is not affected by the number of
iterations at each steb) As explained in Ref[10], the
conservation of particle number and energy reduces the total
V. NUMERICAL METHOD number of equations bjA+ 1, which allows us to impose
A+1 additional crucial equations, thghasecondition for
each single-particle wave function and thetisliding condi-
tion. In our realization of these conditions, we impose the
our last paper using this method. We already mentioned iffhasecondition by requiring that the first space component
[1], Sec. IV, that we were developing a much more powerfult time 0 for eachw, u,(1,0), be real. Thentisliding con-
and stable method, based on the ideas of Réll, and com- dition is realized by keeping the real partwf(1,0), for one

pletely different from the present approach. The new method Only; fixed within certain appropriate bounds. Our experi-
is now working well, and we are switching to it for future €NCe shows that an adjustment of this value may accelerate

investigations. the convergence of the iterative procedui®. The conver-
Returning now to the old method, we use as a starting®Nce of the_ periodicity is measured by the standard devia-

point a solution of the static Hartree-Fock problem in whichtion of the difference between the space components of the

the SP Hamiltonian is Eq9), with p independent of time, Wave functions at=0, andt=r,

plus a constraining potential of the forgr2. The values of 1

v range from 1.5 10 ° to 7x10 # (in natural unitg, with 02=—— > |u(m,1)—u,(mN+1)% (36)

higher y's leading to higher energy cycles. These static MA

equations are solved in imaginary time by iteration. Then we ) . ) o
“let loose” this originally static Slater determinant by re- Where M is the number of mesh points in space. This is
moving yr2, and it propagates according to the TDHF equa_S|gnn‘-|cantly more 5632n5|t|ve than simply looking at the initial
tion (8) or (18). It has been known for some tinja2] that ~ and final values ofr<).

the TDHF solution so obtained is almost periodic, at least for

sufficiently low energies. Our job is then to modify it gently VI. RESULTS

until it.bec_omes rigorously SO- We do this by successive We have applied the above model and method to the cal-
approximations, which are complicated by the fact that the

equations are nonlinear, and thatg, and\ all change with Culation of monopole vibrations ifie and™0, disregard-
egch iteration ' ' 9 ing the Coulomb interaction between the protons. In helium

i . . . . there is only one wave functiofonly one «) with degen-
oo e e e o . Do ST8Y9=4In 0xygen e are wo's.anes wave i
AK 7K the values ofp,, , A, 7 for thekth 'trajectory, ang degeneracgs=4 and onep wave withg, =12 (recall that

e Ukt ¢/ ) X our Skyrme interaction has no spin dependgnée usual
y UM(t,t’) the appropriate evolution operator. Th(gn the\ve can writeé (r,t) in terms of a radial wave function
steps are the followingi) Define initial valuesr'®, A, (r,t) and a spherical harmonic, times a spin-isospin func-
and qb[f](r,O) at a particular energk. (ii) For thekth itera- tign which we do not need to show,

tion, if the evolutionU™(74,0) is unity, then stop. Other-

wise, (iii) evolve a complete trajectory, i.epl¥(r, ) 1 .

=UM(AY 0)pM(r,0). (iv) Compute values of, \,, and bal(r )= T Ua(r DY) m(r), (37)
¢, at the k+1)th iteration from their values at thkth

iteration. Although the evolution conserves the energy exandu, must vanish at =0 and at some large box radius
actly, the process for defining an improved value of the state=R. The normalization igdr|u,(r)|?=1 and the density is
¢ requires a projection to keep the energy constantgiven by

The brackets in this last expression vanish for eacas a
result of Eq.(27), sinceU ,(n+3) andH (n+3) commute.
HenceE, . ,=E,.

The numerical method is the same one we usefilin
with some improvements. Many of our results are new, how
ever, including everything concernin§O. This is probably
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TABLE I. The parameters, andt; defining the interaction, the

Hartree-Fock ground state energy and rms radius, the Bohr- _16 | ]
Sommerfeld monopole excitation energy, and the period for the

nuclei “He and 0.

4He lGO
to (MeV fm3) —1090.0 —1132.4
t; (MeV fm®) 17288.0 23610.4
Egs. (MeV) —33.24 —128.0
ays. (fm) 1.732 2.710
EX (MeV) 26.49 29.49
m (fm/c) 48.16 42.88
1
p(r)=—= 2 galu(r.nf2 (38)
Aare

In terms of the radial wave function, the TDHF equat{@8)
becomes

. 1,
idu,(r,t)y=— E(?r u,(r,t)

I‘“(I“H)Jr 1=\ t)
— ) TW r — r .
o2 {p(r, 0} =Na|ua(r,

(39

The parameters, andt; are given in Table | for each
nucleus. For*He, they are the parameters of RES]. For

160, they are fitted in the HF ground state to the rms radiu
and the binding energy. We have calculated one family o
cycles for each nucleus, going from the breathing mode RPA
solution of the TDHF equation at low energy, up to the ex-au

citation energy where the reduced actidR equals 2r,

PHYSICAL REVIEW G0 044302
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FIG. 2. The excitation enerdy*, the reduced actiod”, and the
quasienergy\ as functions of the period for the monopole vibra-
tions in the nucleu$He.

partway up to the first excited quantized energy. Figure 2
displays three properties of théHe family. The bottom

graph is the E,7) plot, from the RPA to the Bohr-
1Sommerfeld excited state. The middle graph is the reduced

ction, which goes from 0 to2. And the top graph is the
asienergy.
Figure 3 is the same fof®0. This time there are two

which is the energy where the Bohr-Sommerfeld rule woulddu@sienergies, one for tisstate and one for the state. We

locate the first excited state.
We begin by showing in Figl a typical rate of conver-
gence for the iteration procedure. This is for a cycle'%®

E'=12.8 MeV

1=42.3fm/c

0 500 1000 1500
Iteration

note that the oxygen plots are much more linear than those
for helium. This is presumably due to the much larger num-

ber of particles in oxygen, which makes the motion much

more collective for a given excitation energy.

Figure 4 demonstrates that, in helium too, tiie ) plot
can be perfectly linear at sufficiently low energy. These con-
siderations lead us to surmise that problems due to nonlin-
earity and chaos will be more severe in cases of not-very-
collective motion. Of course, from the point of view of
monopole collective motion, helium is the least interesting
nucleus. But it is also the easiest to calculate, which makes it
a precious entity to test new methods on.

The coordinate space behavior of the helium cycle whose
reduced action is 2 is illustrated in Fig. 5. Shown in the
figure are the Hartree-Fock ground-state density and snap-
shots of the periodic density at two times; the time at
which the rms radius is a maximum, ang when it is a
minimum. An important feature of this figure is the large
amplitude of the spatial oscillation of the central density. In

FIG. 1. The standard deviation in the periodic wave function,this case the collective motion is very far removed from the

Eq. (36), as a function of iteration number for a cycle ¥D. The
excitation energy and the period are on the figure.

approximations that validate the RPA method. For large am-
plitude oscillations the local density is far from harmonic. It
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0 L ‘ i FIG. 5. The nuclear density vsin *He in the ground state and

41.0 415 420 425 430 in the TDHF cycle whose reduced action is exactly. Z'he times

T (fm/c) t, andt, correspond to maximum and minimum rms radius, respec-
tively, and they are half a period apart.
FIG. 3. The excitation enerdy*, the reduced actiod”, and the
quasienergies s and\ , as functions of the period for the monopole
vibrations in the nucleug®o.

is more difficult to compress the central nuclear matter than 0.10
to stretch it.
Similar plots for oxygen are in Fig. 6. Again we compare

the ground state density with that of the cycle whose reduced 0.05
action is 2r. Here we observe that the difference between
the ground state density and the periodic density comes
mainly from thep-wave contribution and peaks in the sur-
face. As with “He, the amplitude of the periodic motion is
large and not calculable with the RPA method. For both 0.10 S
nuclei, it appears that the motion undergone by the excited

0.00

0.15 T

0.05
E
Q.
0.10 - b 0.00
g
> 0.10
0.05 - b
0.05
‘ ‘ 0.00

0.00 ; ‘
0.00 0.01 0.02
T/l

FIG. 6. The HF ground state density 80 compared to the
FIG. 4. The E,7) plot for the low-excitation cycles ofHe, periodic TDHF density at two times;, at which the rms radius is
illustrating the linear behavior from which the RPA period can bemaximum, and,, at which it is minimum. The cycle is chosen so
extrapolated. The curves are scaled by the Hartree-Fock grounthat the reduced action is exactlyr2 The contributions to the total
state energyEy =—33.24 MeV and by the RPA period, density from thes-wave and the-wave components are compared
=44.77 fmlc. separately.
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0.75 . 1 ; ‘ r VII. CONCLUSION AND OUTLOOK

The main conclusion is that it is possible to extend peri-
odic solutions of the time-dependent Hartree-Fock equation
into the nonlinear region in a systematic, reliable, and accu-

0.50 | i rate way. Thus we have accessed all those nonlinear phe-
i \ nomena which lie beyond the RPA. Until now, these had
o — He been handled in a piecemeal fashion which always seemed to
‘“9 =0 contain an element of guesswork and wishful thinking. So

far, we have applied the method to helium and oxygen. This
is the first time that periodic TDHF orbits have been calcu-
025 P lated in %0 [13]. Now we intend to extend the results to
P heavier nuclei and to other collective modes. We have done
. much additional work on helium, which is not reported here
e because it uses our new numerical method, and this work
e shows the nonlinear effects in this nucleus to be huge. It is
0.00 L2 s : . . likely that similarly large nonlinear effects will occur in
00 50 100 150 200 250 300 some other nuclei for some other collective modes.
E (MeV) Two important improvements are in the offing, and we
FIG. 7. The fractional change in the time-averaged mean squargl_an at least two other publlca}tlons in the near future. One
radius, (r2>/r§)—1, as a function of excitation energy for the cycle will be about the new numerical method — faster, more
families in “He and 0. The radius of the Hartree-Fock ground &ccurate, and more robust than the one used here. The devel-
state ist . opment work on it is finished; time is needed only to port it
to faster computers and to generate more data. The other big

) ) , improvement is the new quantization method. It has been
state is rather complex, though this cannot be seen directigciad on a few simple systems and appears very promising.

from the (E,7) plot. As more and more energy goes into jt js not fully developed for nuclear collective motion yet.
exciting periodic motion, the nucleus appears to undergo

stretching at the surface, as seen in Fig. 7, which shows the ACKNOWLEDGMENTS
time average of the mean square radius as a function of the . . .
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