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Monopole collective motion in helium and oxygen nuclei
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We review the rationale for basing the calculation of collective motion on the periodic solutions of the
time-dependent Hartree-Fock mean field. With suitable discretization, we find a family of these solutions and
we apply a simple quantization rule. Results are presented for4He and16O. @S0556-2813~99!04009-1#

PACS number~s!: 21.60.Jz, 21.10.Re, 27.10.1h, 27.20.1n
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I. INTRODUCTION

In a previous paper@1#, we reported some preliminar
calculations of the quasiperiodic solutions of the nonlin
time-dependent Hartree-Fock~TDHF! equations for the
monopole oscillations of the4He nucleus. The present pap
reports some additional results, with some improvement
the method, for both4He and 16O.

The TDHF approximation for nuclear phenomena@2# is a
particular example of a very general method for dealing w
many-body and field-theoretical problems, namely, the m
field approximation@3#. The essence of the mean field a
proach is the assumption that there exists a single functio
space and time, as well as other coordinates, the mean
which is the approximate, average result of the quant
fluctuations undergone by the system. For instance, in
nuclear TDHF case, the mean field is the single-particle~SP!
potential which constitutes the major part of the interact
seen by each particle. One aspect of all mean field appr
mations is that the mean field is treated like a classical qu
tity, a c number. For the nuclear TDHF example, once aga
the SP potential can be plotted as a function ofr andt ~pos-
sibly nonlocal!, doing whatever it does when the nucle
rotates, or changes its shape, or breathes, or when two n
collide, just like our classical eye and our classical br
would have it do.

The consequence of such an approach is that, once i
been carried out, one has to requantize somehow. The lac
requantization is the basic reason why TDHF theory does
work for predicting all of the results of heavy ion collision
for instance. We are not claiming here that TDHF theo
treats a nucleus completely classically. Certainly not; the
wave functions are still Schro¨dinger probability amplitudes
of course. But having made one object classical, the m
field, is enough to require repair. Thus every succes
TDHF application is followed by a second stage, the requ
tization. This stage is always present, explicitly or implicitl

The TDHF approximation is nonlinear. When it is linea
ized in the vicinity of the ground state, it becomes the ra
dom phase approximation~RPA!, a small amplitude limit
@3#. The RPA has been used extensively to describe nuc
collective motion@4#, but the accuracy of such an approa
is open to question. Excitation energies and transition pr
abilities can be fitted as long as one allows for adjusta
0556-2813/99/60~4!/044302~9!/$15.00 60 0443
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parameters. But our calculations show the TDHF equati
to be highly nonlinear at the energies of interest for the ty
of nuclear collective motion we are studying here.

In the present work we are dealing only with bound c
lective motion, starting with monopole vibrations of close
shell nuclei. Our first step consists in finding families
periodic solutions of the TDHF equations@3#. Our second
step is to requantize. Why periodic solutions? Actually, it
not necessary to go through periodic solutions; it is jus
convenience. The periodic solutions, which we also c
cycles, come to mind for at least two reasons. The first is
they are the classical objects that share one important p
erty with the quantal stationary states: they are invariants
the motion. This leads one to think that there might be so
connection between the stationary states and the cycles.
second reason is that they are finite in duration; after
period, they just repeat themselves. If, on the other hand,
tries to quantize a nonperiodic TDHF solution, one will ha
the problem of deciding how much of this infinitely lon
function of time is necessary for quantization, and theref
how much of it one must calculate.

Little will be said in this paper about quantization. We u
the Bohr-Sommerfeld formula, derived in this context by
variety of authors long ago@5#. Actually, this formula is only
a very rough approximation. We are actively engaged
working out a much better quantization method.

The present work constitutes only the early steps in w
is expected to be a large endeavor, extending to many k
of collective motion and to all sorts of nuclei, includin
heavy ones. In keeping with this situation, we are using
this beginning a simple version of the Skyrme potential@3#,
spin and isospin independent, with an attractive term prop
tional to the density and a repulsive term proportional to
square of the density. It contains two arbitrary coefficie
which can be fitted to give a fairly good account of the p
riodic table @6#. It is also possible, for each closed-she
nucleus, to choose these coefficients so as to give corre
the total energy and the nuclear radius.

Section II of the paper reviews this nuclear model. S
tion III examines the cycles~which are actuallyquasi-
periodic! and sets down the quantization rule. Section
discusses the space and time discretizations which are
essary for a numerical calculation. This includes the nec
sity of obeying exactly the conservation laws for energy a
©1999 The American Physical Society02-1
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probability. Section V gives some details of the numeri
method. Section VI presents results for4He and16O. Section
VII contains some conclusions and outlook.

II. MODEL

One way to derive the TDHF equations is by using t
time-dependent variational principle with a Slater determ
nant trial function@7#. Let the latter be made up of the S
wave functionsca(r ,t), each with degeneracyga . Degen-
eracy is possible because we are ignoring the spin and
pin degrees of freedom. For instance, for4He there is but a
single c(r ,t), with g54. Under these assumptions, th
quantity to be varied, which generalizes Hamilton’s action
written

S@c* ,c#5E dtF(
a

gaE d3r ca* ~r ,t !i ] tca~r ,t !

2H@c* ,c#G , ~1!

whereH is the many-body Hamiltonian. We follow the usu
classical mechanics convention of calling this quantityH,
the Hamiltonian, when it is considered as a function of
independent variables, and of calling itE, the energy~i.e.,
the total many-body energy!, when it is considered as
simple number. We use units such that\5c5m51. The
wave functionca and its complex conjugateca* must be
treated as independent variables in the variation.

Before writing the Skyrme HamiltonianH, we introduce
the nuclear density

r~r ,t !5(
a

gauca~r ,t !u2. ~2!

We define also the kinetic energy operatorK:

E d3r c* ~r ,t !Kc~r ,t !5
1

2E d3r u¹c~r ,t !u2

52
1

2E d3r c* ~r ,t !¹2c~r ,t !.

~3!

ThenH has the form

H@c* ,c#5E d3r(
a

gaca* ~r ,t !@K1V$r~r ,t !%#ca~r ,t !,

~4!

which can also be written

H@c* ,c#5E d3r F1

2 (
a

gau¹cau21rV~r!G . ~5!

The many-body potentialV(r) is given by

V~r!52ar1br2. ~6!
04430
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The two positive constantsa andb are connected as follow
to the usual@3# Skyrme parameterst0 and t3:

a52
3

8
t0 , b51

1

16
t3 . ~7!

~Note that the definitions ofa and b differ from those we
used in@1#.! The variation ofS with respect to thec ’s and
c* ’s yields the Hamilton-like equations

i ] tca~r ,t !5
dH

dca* ~r ,t !
,

2 i ] tca* ~r ,t !5
dH

dca~r ,t !
,

which are the TDHF equation and its complex conjuga
The explicit form of the former is

i ] tca~r ,t !5H~r ,t !ca~r ,t !, ~8!

with the SP HamiltonianH given by

H~r ,t !5K1w@r~r ,t !# ~9!

and the one-body potential

w~r!5
d

dr
@rV~r!#. ~10!

With expression~6! for V, this is

w~r!522ar13br2. ~11!

We note in passing that a nonlinear Schro¨dinger equation
very similar to Eq.~8!, with a density-dependent potentia
was used by one of us@8# in an exploration of nuclear hy
drodynamics.

There are two conservation laws associated with TD
motion, and they play an important role in the search
cycles. They are the conservation of the overlaps between
wave functions and the conservation of the total many-bo
energy. The former follows in the usual way from the He
miticity of the SP Hamiltonian~9!. It implies that the motion
of the Slater determinant is unitary and that the normali
tions are conserved separately for eachca . To show the
conservation of the total energyE, which is expression~5!,
let us calculate its time derivative

dE

dt
5E d3r F1

2 (
a

ga] tu¹cau21
d

dr
$rV~r!%] trG .

~12!

By Eq. ~10! this can be rewritten

dE

dt
5(

a
gaE d3r F1

2
] tu¹cau21w~r!] tucau2G . ~13!
2-2
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And this last expression vanishes, separately for eacha, as a
consequence of the TDHF equation and its complex co
gate. Indeed, it can be written

^] tcauHuca&1^cauHu] tca&,

which vanishes by virtue of

i u] tca&5Huca& and 2 i ^] tcau5^cauH.

Note, however, that the SP energies are not conserved
as usual, the total energy is not the sum of the SP energ

III. CYCLES

The TDHF equation~8! does have truly periodic solu
tions. In general, however, such a solution does not have
ca’s correctly normalized. This is because the equation
nonlinear, and one cannot simply multiply a solution by
arbitrary constant. If we were doing field theory instead
many-body physics, these solutions would be perfectly
ceptable. But here we require unit normalizations. The p
of this requirement is that we have to be satisfied with q
siperiodic solutions, i.e., solutions which repeat themsel
after periodt except for a phase factor

ca~r ,t1t!5e2 iuaca~r ,t !. ~14!

The angleua is sometimes called the Floquet index. We c
then define a new functionfa by the formula

ca~r ,t !5e2 ilatfa~r ,t !, ~15!

and by choosingla such that

lat5ua , ~16!

we can makefa truly periodic:

fa~r ,t1t!5fa~r ,t !. ~17!

The cost now is that the TDHF equation contains an ad
tional real termla , which we call the quasienergy. Th
equation is

i ] tfa~r ,t !5@K1w$r~r ,t !%2la#fa~r ,t !. ~18!

We can also think ofla as a Lagrange multiplier that w
introduce to satisfy the constraint on the normalization
fa . The densityr and the SP potentialw are truly periodic,
and ca is a true Floquet solution in this periodic potentia
Moreover, the SP density matrix and, hence, the expectat
of all SP operators are also periodic. Hence it is reasonab
think of these solutions as periodic and to drop the ‘‘qua
qualifier. From now on we deal only with the wave functio
f and we call the solutions cycles.

As in all generic Hamiltonian problems, the cycles occ
in one-parameter families. See Ref.@9# for an example.
Along such a family, the energy changes continuously,
so do the period, the action, and other observables. A c
mon way of looking at things is to represent each family
a line in the (E,t) plane. This is known as an (E,t) plot. On
04430
-

nd,
s.

he
is

f
c-
e
-
s

i-

f

ns
to
’

r

d
-

this (E,t) plot, one can follow how the various familie
connect to each other through bifurcations of many kin
The existence of bifurcations is one of the signatures of n
linearity and chaos. One aim of our work could be to und
stand exactly what bifurcations there are and how much n
linearity there is in nuclear collective motion. We have n
progressed very much in that direction yet, but we expec
work on it in the future. The figures of Sec. VI do not sho
any bifurcations, but this does not mean that they do
exist.

For a generic Hamiltonian problem in classical mecha
ics, the number of cycle families is infinite. In fact, the cycl
are dense in phase space. But the number of cycles w
period is smaller than some givent, and with a given energy
is finite. These shortest cycles are the most important o
They organize phase space around themselves. Stable c
lie at the center of regular regions and unstable cycles at
center of chaotic regions. One knows a lot about the sys
already if one knows only a few of its shortest cycles. F
our case of many-body collective motion, the situation
exactly the same with one possible difference. Collect
motion is often especially slow compared to other possi
motions of the system. This slowness leads to longer peri
Hence the cycles of interest in collective motion are not n
essarily the absolute shortest. For instance, in the RPA tr
ment of the monopole oscillations of a closed-shell nucle
the breathing mode is the solution with the longest peri
The possible interaction between one long-period family
collective cycles and a number of other families of shor
periods is one of the causes of dissipation.

For the present paper we have calculated only one fam
of cycles, which is obviously a collective family. We kno
that other families exist because we have seen them num
cally, and in any case they are present in the linear limit
the RPA. But we are not prepared to talk about them at
time.

Once the families~or family! of cycles have been found
the second step in the approach is quantization. As we sa
Sec. I, our provisional recipe for this is the Bohr-Sommerfe
formula. For the future, we are working on a much bet
method. The Bohr-Sommerfeld formula@5# involves the re-
duced actionJP, which is the same as the familiarrp•dq,
but calculated for the periodic partf of the wave function,
rather thanc itself:

JP5 i E
0

t

dt(
a

gaE d3r fa* ~r ,t !] tfa~r ,t !

52 i E
0

t

dt(
a

gaE d3r @] tfa* ~r ,t !#fa~r ,t !. ~19!

Then the quantization rule is

JP5nh, ~20!

wheren is an integer and Planck’s constanth is 2p in our
units. The reduced action~19! increases smoothly along th
(E,t) line, beginning at the value 0 for the ground sta
2-3
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where fa is independent oft. The Bohr-Sommerfeld rule
says that the energy of the first excited state is the energ
which JP reaches 2p.

IV. DISCRETIZATION

We use only the simplest possible discretizations, so
we may reserve the major fraction of the numerical pow
for obtaining the cycles. The angular part of the calculatio
is usually completely standard and in fact, for the pres
paper, trivial. Hence, the wave functions to be discretiz
have two variables, the radius and the time. We repl
f(r ,t) by fmn , wherem is a space index andn a time index.
The interesting discretization problems concern the time
pendence; they arise because we wantf to be periodic. The
space discretization does not matter.

We have used two kinds of space discretization, which
call end pointandmidpoint. They seem to be comparable
accuracy. Consider a functionf (r ) defined for 0<r<R and
required to vanish at both ends, as is the case with the ra
wave functions we shall need. Let the interval be divid
into equal subintervals of sizes. In the end point method,f m
is the value off (r ) at one of the points separating two su
intervals. If there areM11 subintervals, there areM vari-
ables f m , with 1<m<M . We may also introducef 0 and
f M11, but they vanish. The three formulas needed to do
the calculations are

E
0

R

dr f ~r !5s (
m51

M

f m , ~21!

S d2f

dr2D
m

5
1

s2
~ f m1122 f m1 f m21!, ~22!

for m on the interval (1<m<M ), and

E
0

R

drS d f

dr D
2

5
1

s (
m50

M

~ f m112 f m!2. ~23!

It is important to note that the relation

E
0

R

drS d f

dr D
2

52E
0

R

dr f S d2f

dr2D ~24!

remains true after the discretization; otherwise, the Hermi
ity of the kinetic energy operator would be compromised.
the midpoint method, on the other hand,f m is the value of
f (r ) in the middle of a subinterval. Let there beM subinter-
vals, this time, andM variablesf m , with 1<m<M . To ex-
press the fact thatf (r ) vanishes atr 50 andr 5R, we must
introduce two more quantities

f 052 f 1 and f M1152 f M . ~25!

Of the three formulas needed, the first two, Eqs.~21! and
~22!, are the same as before. But Eq.~23! is changed to
04430
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E
0

R

drS d f

dr D
2

5
1

s F2 f 1
21 (

m51

M21

~ f m112 f m!212 f M
2 G .

~26!

Again, Eq.~24! remains true after discretization.
Now we consider the time discretization. When one c

culates cycles for Hamiltonian systems with many degree
freedom, it is very important to have a time discretizati
which conserves exactly the discretized approximations
all the constants of the motion. This is because the phen
enon known assliding tends to make the computer algorith
very unstable otherwise@10#. In the present case, given th
conservation laws mentioned in Sec. II, it is necessary firs
make each step of the propagation strictly unitary and, s
ond, to conserve the total energy. The discretization that
used in Ref.@1#, which had been used much earlier in Re
@11#, does both. Ifn is the time index ande is the size of the
time step, unitarity is ensured by writing

ufa
n11&5Ua~n1 1

2 !ufa
n&, ~27!

with

Ua~n1 1
2 !5

12 1
2 i eHa~n1 1

2 !

11 1
2 i eHa~n1 1

2 !
. ~28!

Here Ha(n1 1
2 ) is the SP Hamiltonian of Eq.~18! taken at

time (n1 1
2 )e,

Ha~n1 1
2 !5K1w@r~n1 1

2 !#2la , ~29!

and sinceHa is Hermitian, Ua is obviously unitary. The
discretized equivalent of Eq.~10! is

w@r~n1 1
2 !#5

rn11V~rn11!2rnV~rn!

rn112rn
. ~30!

With the potential~6!, this becomes

w@r~n1 1
2 !#52a~rn111rn!1b~rn11

2 1rn11rn1rn
2!.
~31!

It is now easy to show conservation of energy, usi
again the reasoning used at the end of Sec. II to show it
continuous time. For this purpose, it is not necessary to
cretize space explicitly; only time discretization is involve
The energy~4!, discretized, becomes

En5(
a

ga^fa
n uKufa

n&1E d3r rnV~rn!. ~32!

Instead of the time derivative~12! we calculate

En112En5(
a

ga@^fa
n11uKufa

n11&2^fa
n uKufa

n&#

1E d3r @rn11V~rn11!2rnV~rn!#. ~33!

By Eq. ~30! this can be written
2-4
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En112En5(
a

ga@^fa
n11uKufa

n11&2^fa
n uKufa

n&#

1(
a

gaE d3r @fa* ~r ,n11!fa~r ,n11!

2fa* ~r ,n!fa~r ,n!#w„r~r ,n1 1
2 !… ~34!

or

En112En5(
a

ga@^fa
n11uHa~n1 1

2 !1laufa
n11&

2^fa
n uHa~n1 1

2 !1laufa
n&#. ~35!

The brackets in this last expression vanish for eacha as a
result of Eq.~27!, sinceUa(n1 1

2 ) andHa(n1 1
2 ) commute.

HenceEn115En .

V. NUMERICAL METHOD

The numerical method is the same one we used in@1#,
with some improvements. Many of our results are new, ho
ever, including everything concerning16O. This is probably
our last paper using this method. We already mentioned
@1#, Sec. IV, that we were developing a much more power
and stable method, based on the ideas of Ref.@10#, and com-
pletely different from the present approach. The new met
is now working well, and we are switching to it for futur
investigations.

Returning now to the old method, we use as a start
point a solution of the static Hartree-Fock problem in whi
the SP Hamiltonian is Eq.~9!, with r independent of time,
plus a constraining potential of the formgr 2. The values of
g range from 1.531025 to 731024 ~in natural units!, with
higher g ’s leading to higher energy cycles. These sta
equations are solved in imaginary time by iteration. Then
‘‘let loose’’ this originally static Slater determinant by re
movinggr 2, and it propagates according to the TDHF equ
tion ~8! or ~18!. It has been known for some time@12# that
the TDHF solution so obtained is almost periodic, at least
sufficiently low energies. Our job is then to modify it gent
until it becomes rigorously so. We do this by success
approximations, which are complicated by the fact that
equations are nonlinear, and thatt, E, andl all change with
each iteration.

Some details are given in Sec. IV of@1#. The iteration
procedure can be summarized as follows. Denote byfa

[k] ,
la

[k] , t [k] the values offa , la , t for thekth trajectory, and
by U [k] (t,t8) the appropriate evolution operator. Then t
steps are the following:~i! Define initial valuest [0] , la

[0] ,
andfa

[0] (r ,0) at a particular energyE. ~ii ! For thekth itera-
tion, if the evolutionU [k] (t [k] ,0) is unity, then stop. Other
wise, ~iii ! evolve a complete trajectory, i.e.fa

[k] (r ,t [k] )
5U [k] (t [k] ,0)fa

[k] (r ,0). ~iv! Compute values oft, la , and
fa at the (k11)th iteration from their values at thekth
iteration. Although the evolution conserves the energy
actly, the process for defining an improved value of the s
f requires a projection to keep the energy consta
04430
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fa
[k11](r ,0)5PE@c0fa

[k] (r ,0)1c1fa
[k] (r ,t [k] )#. Otherwise,

at high excitations, the energy drops down uncontrollab
This projection is the most important difference with th
method of Ref.@1#. Steps~ii !–~iv! must be repeated unti
convergence is achieved.

A few comments are in order.~a! The conservation of
energy and particle number is built into our algorithm at ea
time and iteration step. We have tested this aspect of
algorithm numerically. A typical run may contain 103 time
steps, performed in double precision. For each time step
nonlinear equations must be solved. We solve them by s
cessive approximations, which may involve 10–20 ite
tions. At the end of the run we find that the total partic
number has been preserved up to 1 part in 1015 and the total
energy up to 1 part in 1013. Because the iterative procedu
preserves the total particle number and the total energy,
quite stable and the stability is not affected by the numbe
iterations at each step.~b! As explained in Ref.@10#, the
conservation of particle number and energy reduces the
number of equations byA11, which allows us to impose
A11 additional crucial equations, thephasecondition for
each single-particle wave function and theantislidingcondi-
tion. In our realization of these conditions, we impose t
phasecondition by requiring that the first space compone
at time 0 for eacha, ua(1,0), be real. Theantisliding con-
dition is realized by keeping the real part ofua(1,0), for one
a only, fixed within certain appropriate bounds. Our expe
ence shows that an adjustment of this value may accele
the convergence of the iterative procedure.~c! The conver-
gence of the periodicity is measured by the standard de
tion of the difference between the space components of
wave functions att50, andt5t,

s25
1

MA (
m,a

uua~m,1!2ua~m,N11!u2, ~36!

where M is the number of mesh points in space. This
significantly more sensitive than simply looking at the initi
and final values of̂ r 2&.

VI. RESULTS

We have applied the above model and method to the
culation of monopole vibrations in4He and 16O, disregard-
ing the Coulomb interaction between the protons. In heli
there is only one wave function~only onea) with degen-
eracyg54. In oxygen there are twoa ’s, ones wave with
degeneracygs54 and onep wave with gp512 ~recall that
our Skyrme interaction has no spin dependence!. As usual
we can writefa(r ,t) in terms of a radial wave function
ua(r ,t) and a spherical harmonic, times a spin-isospin fu
tion which we do not need to show,

fa~r ,t !5
1

r
ua~r ,t !Yl am~ r̂ !, ~37!

andua must vanish atr 50 and at some large box radiusr
5R. The normalization is*druua(r )u251 and the density is
given by
2-5
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r~r ,t !5
1

4pr 2 (
a

gauua~r ,t !u2. ~38!

In terms of the radial wave function, the TDHF equation~18!
becomes

i ] tua~r ,t !52
1

2
] r

2ua~r ,t !

1F l a~ l a11!

2r 2
1w$r~r ,t !%2laGua~r ,t !.

~39!

The parameterst0 and t3 are given in Table I for each
nucleus. For4He, they are the parameters of Ref.@6#. For
16O, they are fitted in the HF ground state to the rms rad
and the binding energy. We have calculated one family
cycles for each nucleus, going from the breathing mode R
solution of the TDHF equation at low energy, up to the e
citation energy where the reduced actionJP equals 2p,
which is the energy where the Bohr-Sommerfeld rule wo
locate the first excited state.

We begin by showing in Fig. 1 a typical rate of conver-
gence for the iteration procedure. This is for a cycle of16O

TABLE I. The parameterst0 andt3 defining the interaction, the
Hartree-Fock ground state energy and rms radius, the B
Sommerfeld monopole excitation energy, and the period for
nuclei 4He and16O.

4He 16O

t0 (MeV fm3) 21090.0 21132.4
t3 (MeV fm6) 17288.0 23610.4
Eg.s. ~MeV! 233.24 2128.0
ag.s. ~fm! 1.732 2.710
Em* ~MeV! 26.49 29.49
tm (fm/c) 48.16 42.88

FIG. 1. The standard deviation in the periodic wave functio
Eq. ~36!, as a function of iteration number for a cycle of16O. The
excitation energy and the period are on the figure.
04430
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partway up to the first excited quantized energy. Figure
displays three properties of the4He family. The bottom
graph is the (E,t) plot, from the RPA to the Bohr-
Sommerfeld excited state. The middle graph is the redu
action, which goes from 0 to 2p. And the top graph is the
quasienergy.

Figure 3 is the same for16O. This time there are two
quasienergies, one for thes state and one for thep state. We
note that the oxygen plots are much more linear than th
for helium. This is presumably due to the much larger nu
ber of particles in oxygen, which makes the motion mu
more collective for a given excitation energy.

Figure 4 demonstrates that, in helium too, the (E,t) plot
can be perfectly linear at sufficiently low energy. These co
siderations lead us to surmise that problems due to non
earity and chaos will be more severe in cases of not-ve
collective motion. Of course, from the point of view o
monopole collective motion, helium is the least interesti
nucleus. But it is also the easiest to calculate, which make
a precious entity to test new methods on.

The coordinate space behavior of the helium cycle wh
reduced action is 2p is illustrated in Fig. 5. Shown in the
figure are the Hartree-Fock ground-state density and sn
shots of the periodic density at two times:t1, the time at
which the rms radius is a maximum, andt2, when it is a
minimum. An important feature of this figure is the larg
amplitude of the spatial oscillation of the central density.
this case the collective motion is very far removed from t
approximations that validate the RPA method. For large a
plitude oscillations the local density is far from harmonic.

r-
e

,

FIG. 2. The excitation energyE* , the reduced actionJP, and the
quasienergyl as functions of the period for the monopole vibr
tions in the nucleus4He.
2-6
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is more difficult to compress the central nuclear matter th
to stretch it.

Similar plots for oxygen are in Fig. 6. Again we compa
the ground state density with that of the cycle whose redu
action is 2p. Here we observe that the difference betwe
the ground state density and the periodic density com
mainly from thep-wave contribution and peaks in the su
face. As with 4He, the amplitude of the periodic motion
large and not calculable with the RPA method. For bo
nuclei, it appears that the motion undergone by the exc

FIG. 3. The excitation energyE* , the reduced actionJP, and the
quasienergiesls andlp as functions of the period for the monopo
vibrations in the nucleus16O.

FIG. 4. The (E,t) plot for the low-excitation cycles of4He,
illustrating the linear behavior from which the RPA period can
extrapolated. The curves are scaled by the Hartree-Fock gro
state energyEg.s.5233.24 MeV and by the RPA periodt0

544.77 fm/c.
04430
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FIG. 5. The nuclear density vsr in 4He in the ground state and
in the TDHF cycle whose reduced action is exactly 2p. The times
t1 andt2 correspond to maximum and minimum rms radius, resp
tively, and they are half a period apart.

FIG. 6. The HF ground state density of16O compared to the
periodic TDHF density at two times:t1, at which the rms radius is
maximum, andt2, at which it is minimum. The cycle is chosen s
that the reduced action is exactly 2p. The contributions to the tota
density from thes-wave and thep-wave components are compare
separately.
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state is rather complex, though this cannot be seen dire
from the (E,t) plot. As more and more energy goes in
exciting periodic motion, the nucleus appears to unde
stretching at the surface, as seen in Fig. 7, which shows
time average of the mean square radius as a function o
excitation energy for both4He and 16O. Again we would
like to emphasize that the periodic motion consists of la
amplitude collective behavior and is very different from t
small amplitude linear response of the nucleus as calcul
with the RPA. One would expect that the quantized solut
from this approach would be especially meaningful for n
clei with a double-well structure of the energy surface
configuration space, when the large amplitude oscillati
would be dramatically different from the oscillations arou
a single local minimum, and the RPA approximation wou
be totally invalid.

FIG. 7. The fractional change in the time-averaged mean sq
radius, (̂ r 2&/r 0

2)21, as a function of excitation energy for the cyc
families in 4He and 16O. The radius of the Hartree-Fock groun
state isr 0.
ys
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VII. CONCLUSION AND OUTLOOK

The main conclusion is that it is possible to extend pe
odic solutions of the time-dependent Hartree-Fock equa
into the nonlinear region in a systematic, reliable, and ac
rate way. Thus we have accessed all those nonlinear
nomena which lie beyond the RPA. Until now, these h
been handled in a piecemeal fashion which always seeme
contain an element of guesswork and wishful thinking.
far, we have applied the method to helium and oxygen. T
is the first time that periodic TDHF orbits have been calc
lated in 16O @13#. Now we intend to extend the results t
heavier nuclei and to other collective modes. We have d
much additional work on helium, which is not reported he
because it uses our new numerical method, and this w
shows the nonlinear effects in this nucleus to be huge. I
likely that similarly large nonlinear effects will occur in
some other nuclei for some other collective modes.

Two important improvements are in the offing, and w
plan at least two other publications in the near future. O
will be about the new numerical method — faster, mo
accurate, and more robust than the one used here. The d
opment work on it is finished; time is needed only to port
to faster computers and to generate more data. The othe
improvement is the new quantization method. It has be
tested on a few simple systems and appears very promis
It is not fully developed for nuclear collective motion yet.
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