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Gauging of equations method. II. Electromagnetic currents of three identical particles

A. N. Kvinikhidze* and B. Blankleider
Department of Physics, The Flinders University of South Australia, Bedford Park, SA 5042, Australia

~Received 4 January 1999; published 3 September 1999!

The gauging of equations method, introduced in the preceding paper, is applied to the four-dimensional
integral equations describing the strong interactions of three identical relativistic particles. In this way we
obtain gauge-invariant expressions for all possible electromagnetic transition currents of the identical three-
particle system. In the three-nucleon system with no isospin violation, for example, our expressions describe
the electromagnetic form factors of3H, pd→pdg, g3He→pd, g3He→ppn, etc. A feature of our approach is
that gauge invariance is achieved through the coupling of the photon to all possible places in the~nonpertur-
bative! strong interaction model. Moreover, once the proper identical particle symmetry is incorporated into the
integral equations describing the strong interactions, the gauging procedure automatically provides electromag-
netic transition currents with the proper symmetry. In this way the gauging of equations method results in a
unified description of strong and electromagnetic interaction of strongly interacting systems.
@S0556-2813~99!04709-3#

PACS number~s!: 11.10.St, 13.40.2f, 21.45.1v, 25.30.2c
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I. INTRODUCTION

In the preceding paper@1# ~referred to as I in the follow-
ing!, we have introduced the gauging of equations method
a means of incorporating an external electromagnetic fi
into descriptions of quarks or hadrons whose strong inte
tions are described nonperturbatively by integral equatio
The feature of this method is that it couples an external p
ton to all possible places in the strong interaction mo
despite its nonperturbative nature. Gauge invariance in
approach is therefore implemented in the way prescribed
quantum field theory~QFT!. In I we demonstrated the gaug
ing procedure in the example of three distinguishable p
ticles. In this paper we would like to demonstrate the sa
method as applied to the case of indistinguishable parti
where the strong interaction equations have the added c
plexity of identical particle symmetry.

As in I, the discussion here is restricted to the case wh
the three strongly interacting particles have no coupling
two-body channels. Thus we have in mind identical parti
systems like three quarksqqq or three nucleonsNNN. This
is not an essential restriction, and indeed we have rece
applied the gauging of equations method to thepNN system
where coupling to theNN channel is included@2#. How-
ever, the purpose of this paper~together with I! is to present
the basic details of the gauging of equations method, an
such, coupling to two-body channels presents an unneces
complication. We note that the main results of this wo
have previously been summarized in conference proceed
@3#.

In dealing with identical particles, one is faced with th
problem of incorporating the proper particle-exchange sy
metry into the equations describing both their strong a
electromagnetic interactions. In quantum mechanics the s
dard procedure is to explicitly symmetrize~or antisymme-
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trize! the corresponding distinguishable particle equatio
However, such a procedure is not justified within a fie
theoretic approach. As the basis of our approach here is Q
we present a derivation of the strong interaction equati
for three identical particles that is consistent with QFT, a
that is therefore very different from the derivations found
standard texts on the quantum mechanical three-body p
lem @4#.

Once the identical particle equations for the strong int
actions are derived, it is a feature of the gauging of equati
method that it may be applied directly to these equatio
thereby automatically generating electromagnetic transi
currents with the proper symmetry. Thus the main effort
generating practical expressions for the transition curre
reduces down to a careful choice for the identical parti
strong interaction equations that are to be gauged. Here
also show that for three identical particles an optimal cho
is provided by an equation of Alt-Grassberger-Sand
~AGS! form @5#, but which is, however, different from the
AGS equation used previously in the literature for thre
nucleon calculations.

II. GAUGING THE THREE-PARTICLE GREEN
FUNCTION

The gauging of equations method, introduced in I a
used there to gauge the equations of three distinguish
particles, does not change when the particles are ident
Indeed, the main steps taken in I to derive the electrom
netic transition currents can be repeated for identical p
ticles, although it is necessary to guarantee the proper id
tical particle symmetry of all perturbative diagrams at ea
step of the derivation. In this respect, it should be noted t
we do not follow the common procedure of symmetrizing
antisymmetrizing the distinguishable particle results. Suc
procedure is strictly valid only within the context of secon
quantization in quantum mechanics, while here the theor
cal framework is that of relativistic quantum field theor
Instead we follow the standard rules of QFT for construct

f
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A. N. KVINIKHIDZE AND B. BLANKLEIDER PHYSICAL REVIEW C 60 044004
Green functions for identical particles. The details of the
rules as applied to few-body integral equations have b
given by us in Ref.@6#.

The strong interactions of three identical particles are
scribed in quantum field theory by the Green functionG
defined by

~2p!4d4~p181p281p382p12p22p3!G~p18p28p38 ;p1p2p3!

5E d4y1d4y2d4y3d4x1d4x2d4x3

3ei (p18y11p28y21p38y32p1x12p2x22p3x3)

3^0uTC~y1!C~y2!C~y3!C̄~x1!C̄~x2!C̄~x3!u0&.

~1!

HereC andC̄ are Heisenberg fields,T is the time ordering
operator, andu0& is the physical vacuum state. The intera
tion of this three-particle system with an external elect
magnetic field is then described by the corresponding se
point functionGm defined by

Gm~k1k2k3 ;p1p2p3!

5E d4y1d4y2d4y3d4x1d4x2d4x3

3ei (k1y11k2y21k3y32p1x12p2x22p3x3)

3^0uTC~y1!C~y2!C~y3!C̄~x1!C̄~x2!

3C̄~x3!Jm~0!u0&, ~2!

whereJm is the quantized electromagnetic current opera
and ei is the charge of thei th particle. If the particles are
isotopic doublets, thenei includes an isospin factor, e.g. fo
nucleonsei5

1
2 @11t3

( i )#ep wheret3 is the Pauli matrix for
the third component of isospin, andep is the charge of the
proton. The Ward-Takahashi~WT! identity @7#, which pro-
vides an important constraint onGm, takes the same form a
in the distinguishable particles case@1#:

qmGm~k1k2k3 ;p1p2p3!

5 i @e1G~k12q,k2k3 ;p1p2p3!

1e2G~k1 ,k22q,k3 ;p1p2p3!

1e3G~k1k2 ,k32q;p1p2p3!

2G~k1k2k3 ;p11q,p2p3!e1

2G~k1k2k3 ;p1 ,p21q,p3!e2

2G~k1k2k3 ;p1p2 ,p31q!e3#, ~3!

or in the shorthand notation introduced in Ref.@1#,
04400
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qmGm~k1k2k3 ;p1p2p3!
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3

@eiG~ki2q;p1p2p3!2G~k1k2k3 ;pi1q!ei #. ~4!

To be definite, we shall assume that our three identical p
ticles are fermions~for three identical bosons one can simp
replace antisymmetric operations by symmetric ones in
following discussion!. Then the field theoretic expressions
Eqs.~1! and~2! automatically guarantee the proper antisy
metry of the three-particle Green functionG and the seven-
point functionGm. On the other hand, the free Green fun
tion G0 defined by

G05d1d2d3 , ~5!

wheredi is the dressed propagator of particlei, is not anti-
symmetric in its particle labels; thus, for identical fermion
G0 is not equal to the fully disconnected part ofG ~which we
shall denote byGd). Indeed, it can be easily shown@6# that
to obtainGd , one needs only to antisymmetrizeG0 accord-
ing to the equation

(
P

G0~182838,123!5Gd~182838,123!, ~6!

where the sum is over all permutationsP of either the initial-
or final-state particle labels, and is understood to includ
factor (21)P511 or 21 depending on whether the perm
tation is even or odd, respectively. In Eq.~6! we use a sym-
bolic notation where integers represent the momenta and
quantum numbers of the corresponding particles, w
primes distinguishing the final states. To specify permutat
sums over just the initial-state momentum labels, we use
letter R ~right!; similarly, L ~left! represents sums over pe
mutations of just the final-state momentum labels. The sy
bol P will be used only when it makes no difference whic
sum R or L, is taken. Quantities antisymmetrized in one
these ways will be indicated by the appropriate superscr
Thus, for example, ifA is a quantity depending on thre
initial and three final particle labels, then

AR~182838,123!5A~182838,123!2A~182838,213!

1A~182838,231!2•••, ~7!

AL~182838,123!5A~182838,123!2A~281838,123!

1A~283818,123!2•••, ~8!

with similar expressions holding for quantities having a
number of identical legs. In general we write

AR[(
R

A, ~9!

AL[(
L

A, ~10!
4-2
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GAUGING OF EQUATIONS METHOD. II. . . . PHYSICAL REVIEW C60 044004
AP[(
P

A5AR5AL. ~11!

Defining the kernelK to be the set of all possible three
particle irreducible Feynman diagrams for the 3→3 process,
we may write the Green functionG as @6#

G5G0
P1

1

3!
G0KG, ~12!

where the 1/3! factor reflects the fact that bothG andK are
fully antisymmetric in their particle labels. We write the di
connected part ofK, indicated by subscriptd, in terms of the
identical particle two-body potentialv:

Kd~182838,123!5 (
LcRc

v~2838,23!d21~1!d~18,1!,

~13!

whered(18,1) represents the momentum conserving Dirad
function (2p)4d4(p182p1), while Lc andRc indicate that the
sum is taken over cyclic permutations of the left lab
(182838) and right labels~123!, respectively~note that the
sum is restricted to cyclic permutations because the pote
v is already antisymmetric in its labels@6#!.

Defining

Vi~18283,123!5v~ j 8k8, jk !d21~ i !d~ i 8,i !, ~14!

where (i jk ) is a cyclic permutation of (123), we have tha

Kd5(
Pc

~V11V21V3!, ~15!

where it makes no difference over which labels, left or rig
the cyclic permutations are taken. Unlike theVi of the dis-
tinguishable particle case@see Eq.~61! of I#, the one here
consists of a two-body potentialv that is antisymmetric un-
der the interchange of its initial- or final-state labels. Den
ing the connected part of the kernel byKc , we define the
3→3 potentialV by

V5
1

2
~V11V21V3!1

1

6
Kc . ~16!

Although V is not fully antisymmetric, it does have the us
ful symmetry property

Pi j VPi j 5V ~17!

where Pi j is the operator that exchanges thei th and j th
momentum, spin, and isospin labels. Since

K5(
P

V, ~18!

Eq. ~12! can be written as

G5G0
P1G0VG. ~19!
04400
ial

,

-

Formally, Eq. ~19! differs from the equivalent relation fo
distinguishable particles@Eq. ~59! of I# only in the explicit
antisymmetrization of the inhomogeneous term. We the
fore proceed as for the distinguishable particle case
gauge Eq.~19! directly:

Gm5G0
Pm1~G0V!mG1G0VGm. ~20!

Before solving this equation forGm it is useful to note that

G0
Pm5G0

mP5G0
PG0

21G0
m . ~21!

Indeed the combinationG0
PG0

21 plays the role of the anti-
symmetrization operator since

@G0
PG0

21#~18283,123!5(
P

d~18,1!d~28,2!. ~22!

Note that there is no factord(38,3) on the right side of Eq.
~22! because an overall momentum conservation delta fu
tion has been removed from our expressions. We can th
fore write Eq.~20! as

Gm5~12G0V!21FG0
PG0

21G0
m1G0

PG0
21 1

6
~G0V!mGG ,

~23!

where the inclusion ofG0
PG0

21 in the last term is compen
sated exactly by 1/6 sinceV satisfies the symmetry propert
of Eq. ~17! andG is already fully antisymmetric. From Eq
~19! it follows that

~12G0V!21G0
P5G, ~24!

and using this we obtain

Gm5GG0
21FG0

m1
1

6
~G0

mVG1G0VmG!G ~25!

5
1

6
G@G0

21G0
mG0

21~6G01G0VG!1VmG#.

~26!

In the last equation, we may replace the 6G0 by G0
P because

of the antisymmetry of theG outside the square bracket, an
using Eq.~19! we finally get that

Gm5GGmG, ~27!

where

Gm5
1

6
~G0

21G0
mG0

211Vm! ~28!

is the electromagnetic vertex function for three identical p
ticles. The extra factor of 1/6 compared with the result
distinguishable particles reflects the fact that hereGm is to be
sandwiched between fully antisymmetric functions. Negle
ing three-body forces, Eq.~16! implies that

Vm5
1

2
~V1

m1V2
m1V3

m!, ~29!
4-3
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A. N. KVINIKHIDZE AND B. BLANKLEIDER PHYSICAL REVIEW C 60 044004
with an extra factor of 1/2 compared with the distinguisha
particle case.

Writing Eq. ~14! in the shorthand notation

Vi5v idi
21 , ~30!

wherev i denotesv( j 8k8, jk), we may gauge this equation t
obtain

Vi
m5vmdi

212v iG i
m , ~31!

whereG i
m is the one-particle electromagnetic vertex functi

defined by the equation

di
m5diG i

mdi , ~32!

and where we have used the fact that (di
21)m52G i

m @1#.
Similarly gauging Eq.~5! we find that

G0
21G0

mG0
215(

i 51

3

G i
mD0i

21 , ~33!

where

D0i5djdk . ~34!

Using these results in Eq.~28! we can express the electro
magnetic vertex function as

Gm5
1

6 (
i 51

3 S G i
mD0i

211
1

2
v i

mdi
212

1

2
v iG i

mD . ~35!

All electromagnetic transition currents of three identical p
ticles can be obtained from Eq.~27! by taking appropriate
residues at two- and three-body bound-state poles ofG. If G
admits a three-body bound state, it can be shown that

G~p18p28p38 ;p1p2p3!

; i
CP~p18p28p38!C̄P~p1p2p3!

P22M2
as P2→M2,

~36!

whereP is the total momentum,M is the bound-state mass
and CP is the three-particle bound-state wave function d
fined by

~2p!4d4~P2p12p22p3!CP~p1p2p3!

5E d4x1d4x2d4x3ei (p1x11p2x21p3x3)

3^0uTC~x1!C~x2!C~x3!uP&. ~37!

Here uP& is the eigenstate of the full Hamiltonian corr
sponding to the three-particle bound state with momen
Pm.

The three-body bound-state currentj m is found by taking
left and right residues ofGm at the three-body bound-sta
poles. By exposing such poles in the field theoretic expr
sion of Eq.~2! one finds that
04400
e

-

-

m

s-

j m5^Jm&[^KuJm~0!uP&, ~38!

whereK25P25M2. To find j m for a particular model, one
can alternatively use Eq.~27! to take residues at the three
body bound-state poles. In this way one finds that

j m5C̄KGmCP . ~39!

Although this expression is formally identical to the boun
state current for distinguishable particles@Eq. ~80! of I#, here
the vertex function is given by Eq.~35!, and the wave func-
tion is that for identical particles.

The normalization condition for the wave function in th
case of identical particles follows from the fact that

G~G0
212V!G5GG0

21G0
P56G. ~40!

After taking residues at the three-body bound-state pole
G one finds that

i C̄P

]

]P2
~G0

212V!CP56. ~41!

Note that this result differs from the one for distinguishab
particles where unity appears on the right-hand side~RHS!
@Eq. ~82! of I#. This is a consequence of our conventio
where the same expression, Eq.~37!, is used to define the
bound-state wave function for both identical and distingui
able particles~in the latter case, however, the fields obta
particle labels!.

We can repeat the above procedure and take residue
Eq. ~27! at the two-body bound-state poles ofG, thereby
obtaining electromagnetic transition currents involving tw
body bound states. This procedure was carried out in de
for the distinguishable particle case in I. However, as d
cussed in I, the expressions obtained in this way explic
involve potentials and gauged potentials, and conseque
may not be very convenient for practical calculations. He
we shall therefore forego any further discussion of this p
cedure, and instead go on to an alternative approach base
the Alt-Grassberger-Sandhas equations@5# which lead, after
gauging, to electromagnetic transition currents expresse
terms oft matrices and gaugedt matrices.

III. AGS AMPLITUDES FOR IDENTICAL PARTICLES

The AGS equations have long provided a practical way
describe the scattering of three particles in quantum mech
ics. Not only do they lead~after one iteration! to equations
with a connected kernel, but they also have the feature
having the two-body inputs in terms oft matrices rather than
potentials. As we would also like to have these advantage
the case of three relativistic particles, we shall utilize fou
dimensional versions of the AGS equations, which for d
tinguishable particles were given by Eqs.~118! of I.

Our goal here is to extend the discussion of Sec. III C o
to the case of three identical particles. That is, we would l
to express the electromagnetic transition currents of all p
sible processes involving three identical particles in terms
AGS amplitudes and gauged AGS amplitudes. Although
4-4



ll
ns
s
f
tio
ar

is
to

fo

lin
r-

ic

.

th

o

t

n

le
th

le

to

al-
ble

be
-

ysi-

e

.
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handling of identical particles in the AGS formulation is we
documented@4#, as far as we know all previous discussio
do this by antisymmetrizing the distinguishable particle ca
As stated previously, such a procedure is inappropriate
the field theoretic approach undertaken here. In this sec
we shall therefore define AGS amplitudes for identical p
ticles and relate them to the 3→3 Green functionG in a way
that is consistent with field theory. Moreover, we do th
with the view of gauging our final expressions, a task left
the following sections.

Our starting point here shall be the Green function
three identical particles as given by Eq.~19!. The natural
way to introduce the AGS operatorsUi j for three identical
particles is via the distinguishable particle case. Recal
that Eq. ~19! differs from the one for distinguishable pa
ticles in that the inhomogeneous termG0

P is explicitly anti-
symmetrized, we are led to introduce a new three-part
Green functionGD defined by the equation

GD5G01G0VGD, ~42!

where the inhomogeneous termG0 is not antisymmetrized
By its structure, Eq.~42! looks like the equation for the
Green function of three distinguishable particles@Eq. ~59! of
I# and therefore allows us to define the AGS operators in
standard way. Nevertheless,GD should not be identified with
the distinguishable particle Green function as theV in Eq.
~42! is defined in terms of antisymmetric potentialsv @see
Eqs.~14! and ~16!# while theV for distinguishable particles
is defined in terms of two-body potentials which are n
antisymmetric. The fully antisymmetric Green functionG
can be obtained fromGD simply by antisymmetrizing:

G5GDL5GDR5GDP. ~43!

Neglecting the three-body forceVc , we now proceed by
analogy with the distinguishable particles case and define
AGS operatorsUi j through the equation

GD5Gid i j 1GiUi j Gj , ~44!

whereGi satisfies the equation

Gi5G01
1

2
G0ViGi ~45!

~note that the inhomogeneous term in the last equation is
antisymmetrized, in contrast to theGi used for identical par-
ticles in Ref. @6#!. The factor of 1/2 in Eq.~45! originates
from Eq.~16! where it is clear that 1/2Vi is the disconnected
potential to be identified with the distinguishable partic
case. Taking this into account, the AGS equations for
operatorsUi j become

Ui j 5G0
21d̄ i j 1

1

2 (
k51

3

d̄ ikTkG0Uk j ,

Ui j 5G0
21d̄ i j 1

1

2 (
k51

3

UikG0Tkd̄k j , ~46!
04400
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where theTi satisfy the equation

Ti5Vi1
1

2
ViG0Ti ~47!

and are given in terms of the two-bodyt matricest i by

Ti5t idi
21 . ~48!

Note thatt i is shorthand fort( j 8k8, jk) and is fully antisym-
metric under the interchange of its initial or final partic
labels.

As discussed in I, for gauging purposes it is preferable
work in terms of AGS Green functions

Ũ i j 5G0Ui j G0 , ~49!

which now satisfy the equations

Ũ i j 5G0d̄ i j 1
1

2 (
k51

3

d̄ ikG0TkŨk j ,

Ũ i j 5G0d̄ i j 1
1

2 (
k51

3

Ũ ikTkG0d̄k j . ~50!

By using the above equations one can show that

GD5G01
1

2 (
i

G0TiG01
1

4 (
i ,k

G0TiŨ ikTkG0 . ~51!

In this way we obtain that

G5G0
P1

1

2 (
i

G0TiG0
P1

1

4 (
i ,k

G0TiŨ ikTkG0
P ~52!

5G0
P1

1

2 (
i

G0
PTiG01

1

4 (
i ,k

G0
PTiŨ ikTkG0 .

~53!

By taking appropriate residues, either of these relations
lows us to obtain the scattering amplitudes for all possi
processes in the system of three identical particles. To
specific, let us choose Eq.~52! to discuss the taking of resi
dues. As only the last term in Eq.~52! is connected, only this
term need be considered for the purposes of extracting ph
cal three-particle amplitudes. We therefore define

Gc5
1

4 (
i ,k

G0TiŨ ikTkG0
P . ~54!

By writing out this sum explicitly and making use of th
symmetry properties ofŨ ik discussed in Appendix A, it is
possible to rewrite Eq.~54! in terms of just one AGS-like
Green functionŨ:

Gc5 (
LcRc

G0T1ŨT1G0 . ~55!

A detailed derivation of Eq.~55! is presented in Appendix C
The full Green function can then be written as
4-5
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A. N. KVINIKHIDZE AND B. BLANKLEIDER PHYSICAL REVIEW C 60 044004
G5G0
P1 (

LcRc

~G0T1G01G0T1ŨT1G0!. ~56!

As discussed in Appendix C, there is a variety of ways
chooseŨ without affecting the value ofG. One form that has
previously been used in three-nucleon calculations@8# is

Ũ5
1

2
X̃, ~57!

with X̃ obeying the equation@see Eq.~C4!#

X̃5G0P1
1

2
PG0T1X̃, ~58!

whereP5P12P311P31P12 is the sum of two successive cy
clic permutations. The choice forŨ specified by Eq.~57! is
unsatisfactory for our purposes since the presence of a
of two permutations in both the inhomogeneous term a
kernel of Eq.~58! makes the gauging of this expression p
ticularly cumbersome. Fortunately there is another way
chooseŨ that avoids these difficulties. As shown in Appe
dix C, we can take

Ũ52Z̃P12 ~59!

where the AGS-like Green functionZ̃ obeys the equation

Z̃5G02G0P12T1Z̃, ~60!

with no permutation sums involved. This is the form forŨ
that we shall use in the next section for the purposes
gauging. By displaying all momentum variables in Eq.~55! it
is easy to see that the connected part of the Green func
can be written directly in terms ofZ̃ as

Gc5 (
LcRc

G0T1Z̃T2G0 . ~61!

A. Nd˜Nd amplitude

For notational purposes, we shall refer to our three id
tical strongly interacting fermions as a ‘‘nucleons’’ (NNN)
although the true identity of these particles is arbitrary. Sim
larly we refer to a two-body bound state as a ‘‘deuteron’’~d!
and a three-body bound state as ‘‘3H.’’ This enables us to
write the various reactions that can take place between
three identical particles in a familiar way.

Using this notation, we can obtain the amplitude forNd
→Nd, by follow the usual procedure of taking residues
the two-body bound-state poles ofG. Indeed for identical
particles it can be shown that if quantum field theory adm
the existence of two-body bound states, then the Green f
tion G(k1k2k3 ;p1p2p3) possesses poles with respect to a
of the variables (ki1kj )

2 or (pi1pj )
2. To be definite, con-

sider the variables (k21k3)2 and (p21p3)2 for the three-
particle system. In the vicinity of the corresponding tw
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body poles, only the connected part ofG contributes and we
have that

Gc~k1k2k3 ;p1p2p3!

; i
cK1

~k2k3!d~k1!

~k21k3!22m2
Tdd~k1K1 ;p1P1!i

d~p1!c̄P1
~p2p3!

~p21p3!22m2
,

~62!

whereK15k21k3 , P15p21p3 , cK1
is the deuteron wave

function @defined analogously to Eq.~37!#, m is the mass of
the deuteron, andTdd(k1K1 ;p1P1) is the physical scattering
amplitude for N(p1)1d(P1)→N(k1)1d(K1). The same
scattering amplitude could be picked out in the other ch
nels, for example,

Gc~k1k2k3 ;p1p2p3!

; i
cK1

~k2k3!d~k1!

~k21k3!22m2
Tdd~k1K1 ;p3P3!i

d~p3!c̄P3
~p1p2!

~p11p2!22m2
,

~63!

whereTdd(k1K1 ;p3P3) depends on the variablesp3 , P3 in
just the same way asTdd(k1K1 ;p1P1) depends onp1 , P1.
On the other hand,Gc is given by Eq.~55! which when
written out explicitly reads

Gc~k1k2k3 ;p1p2p3!

5 (
LcRc

E dk28 dp28 D0~k2k3!t~k2k3 ;k28k38!

3Ũ~k1k28k38 ;p1p28p38!t~p28p38 ;p2p3!D0~p2p3!, ~64!

wherek281k385K1 and p281p385P1. In Eq. ~64!, D0 is the
free two-body propagator, and the poles at (k21k3)25m2

and (p21p3)25m2 are contained in the two-bodyt matrices
t(k2k3 ;k28k38) and t(p28p38 ;p2p3), respectively. In particular,

t~k2k3 ;k28k38!; i
fK1

~k2k3!f̄K1
~k28k38!

K1
22m2

, ~65!

wheref and f̄ are two-body bound-state vertex function
defined by the equations

c5G0f, c̄5f̄G0 . ~66!

Note that the two-bodyt matrix satisfies the integral equatio

t5v1
1

2
vD0t. ~67!

With particlei as spectator, this equation when multiplied
di

21 gives Eq.~47!. The full two-body Green functionD is
given by analogy with Eq.~12! as

D5D0
P1

1

2
D0vD. ~68!
4-6
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The normalization condition for our two-body wave functio
is therefore given by

i c̄P

]

]P2 S D0
212

1

2
v DcP52, ~69!

a fact that follows from the same argument that led to E
~41! but adapted to the case of two identical particles.

Comparing Eq.~62! with Eq. ~64! in the vicinity of the
two poles gives theNd elastic scattering amplitude as

Tdd~k1K1 ;p1P1!

5E dk28 dp28 d21~k1!f̄K1
~k28k38!

3Ũ~k1k28k38 ;p1p28p38!fP1
~p28p38!d21~p1!. ~70!

This equation can be written symbolically as

Tdd5d1
21f̄1Ũ f1dp1

21 ~71!

or in terms of deuteron wave functions as

Tdd5c̄1U c1 . ~72!

B. Nd˜NNN amplitude

The amplitude for the breakup reactionNd→NNN is
found by taking the residue of the Green functionG at the
initial-state deuteron pole. Choosing momentum variable
above, we may express the connected part of the Green f
tion Gc in the vicinity of the initial bound-state pole as

Gc~k1k2k3 ;p1p2p3!

;d~k1!d~k2!d~k3! T0d~k1k2k3 ;p1P1!

3 i
d~p1!c̄P1

~p2p3!

~p21p3!22m2
, ~73!

where (p21p3)2→m2. This relation defines the breakup am
plitude T0d(k1k2k3 ;p1P1). Comparing this with the behav
ior of Eq. ~64! in the vicinity of the same pole we deduc
that

T0d~k1k2k3 ;p1P1!

5(
Lc

E dk28 dp28d
21~k1!t~k2k3 ;k28k38!

3Ũ~k1k28k38 ;p1p28p38!fP1
~p28p38!d21~p1!.

~74!

Written symbolically this gives

T0d5(
Lc

T1Ũf1d1
215(

Lc

T1G0Uc1 . ~75!

Using Eq.~59! and Eq.~60! we may eliminateT1 from the
last equation to obtain
04400
.

as
c-

T0d5(
Lc

~P12ZP122G0
21!c1 . ~76!

IV. GAUGING THE IDENTICAL PARTICLE AGS
EQUATIONS

Having developed the necessary expressions descri
three identical particles in the purely strong interaction s
tor, we are now ready to carry out the gauging procedure
will generate the coupling to an external electromagne
field. We follow the same procedure as used for distingui
able particles in Sec. III C of I.

A. Nd˜Nd transition current

The Nd→Nd electromagnetic transition currentj dd
m de-

scribes, for example, the processNd→gNd. To obtain the
expression forj dd

m we write Eq.~71! as

T̃dd5f̄1Ũ f1 , ~77!

where

T̃dd5d1Tddd1 . ~78!

Gauging Eq.~77! gives

T̃dd
m 5f̄1

mŨf11f̄1Ũf1
m1f̄1Ũmf1 . ~79!

The Nd→Nd electromagnetic transition current is the
given by

j dd
m 5d1

21~f̄1
mŨf11f̄1Ũf1

m1f̄1Ũmf1!d1
21 . ~80!

In Eq. ~79!, f̄1
m andf1

m are the gauged two-body bound-sta
vertex functions which follow from the solution of the two
body problem for particles 2 and 3. Dropping the specta
particle label, the bound-state equation forf is

f5
1

2
vD0f. ~81!

Gauging this equation and using Eq.~68! gives

fm5
1

4
D0

21D@vD0#mf. ~82!

By using the fact that

D5G0
P1D0tD0 , ~83!

the previous equation can also be written as

fm5S 11
1

2
tD0D S D0

21D0
mD0

211
1

2
vmDc2D0

21D0
mD0

21c,

~84!

which is the identical particle version of Eq.~38! of I.
To determinej dd

m all that is left is to specify a practica

expression forŨm. If we make the choiceŨ52Z̃P12 as in
4-7
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Eq. ~59!, thenŨm52Z̃mP12 and the problem reduces to th
of gauging Eq.~60! in order to obtainZ̃m. Equation~60! is a
relatively simple equation that has only one type of disc
nectedness in the kernel, and unlike the corresponding e
tion for the distinguishable particle case@see Eqs.~126! of I#,
Eq. ~60! is not a matrix equation. We write Eq.~60! as

Z̃5G02D0tP12Z̃, ~85!

where it is to be understood thatt5t2 andD05d3d1. Gaug-
ing this equation gives

Z̃m5G0
m2D0

mtP12Z̃2D0tmP12Z̃2D0tP12Z̃
m, ~86!

so that

~11D0tP12!Z̃
m5G0

m2D0
mtP12Z̃2D0tmP12Z̃.

With the help of Eq.~85! we then obtain

Z̃m5Z̃G0
21G0

m2Z̃G0
21D0

mtP12Z̃2Z̃G0
21D0tmP12Z̃.

Using

G0
21D05d21 and G0

m5dmD01dD0
m ,

whered5d2 anddm5d2
m , then gives

Z̃m5Z̃d21dm1Z̃D0
21D0

mG0
21~G02D0tP12Z̃!

2Z̃d21tmP12Z̃

and therefore

Z̃m5Z̃d21dm1Z̃~D0
21D0

mD0
21d212d21tmP12!Z̃. ~87!

This equation, illustrated in Fig. 1, describes the attachm
of photons at all possible places in the multiple-scatter
series of three identical particles. As such, it forms the c
tral result in the gauged identical three-quark or three-had
problem. The structure of this equation may seem surpris
in that the second line is gauged only when it is right ext
nal @the first term on the RHS of Eq.~87!# whereas the first
and third lines are gauged everywhere~becauseZ̃ contains
all possible diagrams, includingG0). That there is no incon-
sistency can be seen graphically from Fig. 2. There we sh
a contribution to the termZ̃(D0

21D0
mD0

21d21)Z̃ where the

single-scattering contribution to eachZ̃ is used and the inter

FIG. 1. Graphical representation of Eq.~87! for the gauged

AGS-like Green functionZ̃m.
04400
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mediate line 1 is gauged. Because this is a Feynman
gram, the gauging of the intermediate line 1 is the same
the gauging of the left external line 2. To be noted is t
crucial role the permutation operatorP12 plays in the equa-
tion for Z̃, Eq. ~60!—this operator is responsible for th
crossing of the lines in the single-scattering contributio
shown in Fig. 2.

B. Nd˜NNN transition current

The t matrix T0d for the breakup processNd→NNN was
given in Eq.~76!. We follow the same procedure as given
Sec. III C 4 for distinguishable particles. Thus we do n
gaugeT0d directly but instead introduce the Green functio
quantity

T̃0d5G0T0dd15(
Lc

~P12Z̃P122G0!f1 . ~88!

The electromagnetic current forNd→gNNN is then given
by

j 0d
m 5G0

21T̃0d
m d1

21 . ~89!

GaugingT̃0d , one obtains

j 0d
m 5(

Lc

~P12G0
21Z̃mG0

21P122G0
21G0

mG0
21!c1

1(
Lc

~P12ZP122G0
21!D01f1

m . ~90!

C. Three-nucleon bound-state current

For three identical nucleons the electromagnetic bou
state currentj m was expressed in terms of the two-nucle
potentialv and gauged potentialvm by Eq.~35! and Eq.~39!.
This was achieved by expressing the seven-point function
Gm5GGmG and then taking the left and right residues ofGm

at the three-body bound-state poles. The connection withj m

follows from the general structure ofGm in the vicinity of
these poles:

Gm5
iCK

K22M2
j m

i C̄P

P22M2
. ~91!

In this subsection we shall determine an alternative exp
sion for j m that is given in terms of the two-nucleont matrix
t and gaugedt matrix tm. To do this, we again take left an
right residues ofGm at the three-body bound-state pole

FIG. 2. A contribution to the termZ̃(D0
21D0

mD0
21d21)Z̃ show-

ing how it leads to the gauging of the left external particle 2.
4-8
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however, this time we use an expression forGm which is
obtained by gauging Eq.~56! whereG is written in terms of
the AGS Green functionŨ. For the purpose of taking res
dues it is sufficient to gauge just the connected part ofG.
Thus, making the choiceŨ52Z̃P12, we are led to the
gauging of Eq.~61!:

Gc
m5 (

LcRc

@~G0T1!mZ̃T2G01G0T1Z̃mT2G0

1G0T1Z̃~T2G0!m#. ~92!

As discussed in Appendix C 2,Z̃ contains the three-nucleo
bound-state pole with the pole structure being given by
~C22!. The bound-state poles ofGc

m can therefore be re
vealed by simply using Eq.~87! to express the middle term
of Eq. ~92! ~containingZ̃m) in terms ofZ̃ factors. It is seen
that only this middle term contains both the left and rig
bound-state poles; thus, in the vicinity of these poles one
write the seven-point function as

Gm5 (
LcRc

G0T1

iC2
KC̄1

K

K22M2
~D0

21D0
mD0

21d21

2d21tmP12!
iC2

PC̄1
P

P22M2
T2G0 . ~93!

Now using the results of Appendix B, we have thatCK

5(Lc
G0T1C2

K andC̄P5(Rc
C̄1

PT2G0. Comparing with Eq.

~91! and usingC252P12C̄1 then gives the desired expre
sion

j m5C̄1
K@d2

21t2
m2~G1

md3
211G3

md1
21!d2

21P12#C1
P . ~94!

Using the bound-state equations forC1 and C̄1 @Eq. ~B11!
and Eq.~B12!#, it is easy to see that

C̄1
KG1

md3
21d2

21P12C1
P5C̄1

KG2
md3

21d1
21P12C1

P . ~95!

We may thus write Eq.~94! as

j m5C̄1
KP12d1

21t1
mP12C1

P2C̄1
K~G2

md3
21d1

21

1G3
md1

21d2
21!P12C1

P , ~96!

whose form corresponds to the bound-state current given
us in Ref.@9# in the context of the spectator approach to t
three-nucleon system.

Equation~96! may appear to be in a form where the fir
term on the RHS corresponds to the two-body interact
current and the second term corresponds to the one-b
current. Yet this is not the case sincetm in fact contains both
types of contribution. To see this explicitly we gauge E
~67! for t in this way obtaining

tm5
1

2
tD0

mt1S 11
1

2
tD0D vmS 11

1

2
D0t D . ~97!
04400
.

t
n

by

n
dy

.

The first term on the RHS corresponds to a one-body cur
while the second term gives the two-body interaction curre
Thus the total one-body current contribution to the thre
nucleon bound-state current is

j one-body
m 5C̄1

KFP12

1

2
d1

21t1D0
mt1P122~G2

md3
21d1

21

1G3
md1

21d2
21!P12GC1

P . ~98!

Again using the bound-state equations forC1 and C̄1, we
may write this result as

j one-body
m 5C̄1

K~G2
md3

21d1
211G3

md1
21d2

21!S 1

2
2P12DC1

P .

~99!

D. Current conservation

To prove current conservation for observables expres
in terms ofZ̃m, it is useful to first deduce the WT identity fo
Z̃m. To do this we write Eq.~87! as

Z̃m5Z̃d2
21d2

m1Z̃L2
mZ̃, ~100!

where

L2
m5~G1

md3
211G3

md1
21!d2

212d2
21t2

mP12, ~101!

and then follow the procedure of I in Sec. III B 2. Thus w
introduce the quantities

êi~k1k2k3 ,p1p2p3!5 iei~2p!12d4~ki2pi2q!

3d4~kj2pj !d
4~kk2pk!, ~102!

wherei jk represent a cyclic ordering of 123. This allows
to write the WT identities for the gauged two-body potent
and gauged one-particle propagator in three-particle spac
terms of commutators as

qmv i
mI i5@ êj1êk ,v i #, qmdi

mI j I k5@ êi ,di #, ~103!

where I i , I j , and I k are unit operators in the space of pa
ticles i, j, andk respectively. Using Eqs.~103!, it is then easy
to see that

qmt2
mI 25@ ê31ê1 ,t2#, qmG i I j I k52@ êi ,di

21#.
~104!

The first term on the RHS of Eq.~100! contracted withqm
thus gives

qmZ̃d2
21d2

m5qmZ̃G2
md252Z̃@ ê2 ,d2

21#d2

52Z̃@ ê2 ,G0
21#G0 , ~105!

while for the last term of Eq.~100! we first deduce that

qmL2
m52@ ê31ê1 ,G0

21#2@ ê31ê1 ,t2#d2
21P12.

~106!
4-9
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By using

Z̃215G0
211d2

21t2P12, ~107!

which follows from Eq.~85!, the previous equation reduce
to

qmL2
m52@ ê31ê1 ,Z̃21#1~G0

212Z̃21!~ ê12ê2!.
~108!

The WT identity for the last term of Eq.~100! thus becomes

qmZ̃L2
mZ̃5@ ê31ê1 ,Z̃#2~ ê11ê2!Z̃1Z̃G0

21~ ê12ê2!Z̃.
~109!

To simplify this expression further we use Eq.~107! and the
fact that@ ê2 , t̂2#50, to obtain

Z̃G0
21ê1Z̃5ê1Z̃2Z̃d2

21t2P12ê1Z̃5ê1Z̃2Z̃d2
21ê2t2P12Z̃

5ê1Z̃2Z̃G0
21ê2G0d2

21t2P12Z̃5ê1Z̃1Z̃G0
21ê2Z̃

2Z̃G0
21ê2G0 . ~110!

Substituting this result into Eq.~109!, we obtain

qmZ̃L2
mZ̃5@ ê,Z̃#1Z̃@ ê2 ,G0

21#G0 , ~111!

whereê5ê11ê21ê3. Combining Eq.~111! with Eq. ~105!
we finally obtain the WT forZ̃m:

qmZ̃m5@ ê,Z̃#. ~112!

The expression for the three-nucleon bound-state currenj m,
Eq. ~94!, can be written as

j m5C̄1
KL2

mC2
P ~113!

and on comparison with Eq.~100! is recognized to be the
result of taking simultaneous residues ofZ̃m at the initial and
final bound-state poles. Taking such simultaneous resid
of Eq. ~112!, the left-hand side of this equation givesqm j m,
while the right-hand side gives zero sinceZ̃ has only a single
pole; in this way we obtain the current conservation equa
for the bound-state current:qm j m50.

To prove that theNd→Nd electromagnetic transition cur
rent of Eq.~80! is conserved, we write the WT identity fo
f1

m and f̄1
m @see Eqs.~153! of I# in three-particle space as

qmf1
mI 15~ ê21ê3!f1 , qmf̄1

mI 152f̄1~ ê21ê3!,
~114!

and note that Eq.~112! implies

qmŨm5@ ê,Ũ#, ~115!

whereŨ52Z̃P12. Using the last three equations, we obta
from Eq. ~80! that
04400
es

n

qm j dd
m 5d1

21f̄1@ ê1 ,Ũ#f1d1
215d1

21ê1d1f̄1d2d3Ud2d3f1

2f̄1d2d3Ud2d3f1d1ê1d1
21 . ~116!

By shifting momentum arguments, theê1 factors stop the
cancellation of externald1

21 terms with the neighboringd1

propagators contained inŨ. Thus for on-mass-shell nucleon
d1

2150, and both terms on the RHS of Eq.~116! become
zero.

E. Normalization condition and charge conservation

The normalization condition for the three-body boun
state wave function that was given in Eq.~41! follows almost
immediately from the basic integral equation forG, Eq. ~19!.
The expression obtained gives the normalization condition
terms of the three-body potentialV and therefore in terms o
input two-body potentials. The disadvantage of these qua
ties has already been discussed. To obtain the normaliza
condition without explicit reference toV we follow a similar
procedure to that forG, but instead use the AGS Green fun
tion Z̃. From Eq.~107! it follows that

Z̃5Z̃~G0
211d2

21t2P12!Z̃. ~117!

Using the pole structure ofZ̃ given in Eq.~C22! and then
taking residues, one obtains

i C̄1
P ]

]P2
~G0

211d2
21t2P12!C2

P51, ~118!

which is the normalization condition expressed in terms
the input two-bodyt matrix and Faddeev components of th
bound-state wave function.

Analogous to the normalization condition for the thre
body bound-state wave function is a condition known
‘‘charge conservation’’ for the three-body bound-state el
tromagnetic current. The field theoretic definition of th
three-body bound-state current is given by Eq.~38!. From
this expression, the translational invariance of the elec
magnetic current operator, and the fact thatuP& is an eigen-
state of the charge operator, it is easy to show that

j m~P,P!52ePm, ~119!

wheree is the charge of the three-body bound state. Equa
~119! constitutes the charge conservation condition and c
responds to the fact that the full charge of the three partic
is being probed by the external electromagnetic probe.
such, it is an essential condition that needs to be satisfie
any model calculation. Within our model the expression
j m is given by Eq.~96!. Assuming the Ward identities for th
one- and two-body input, it is a matter of simple algebra
prove that this expression does indeed satisfy the charge
servation condition of Eq.~119!. Such a proof has alread
been given by us in Ref.@9# for the case of the three-nucleo
bound-state current within the spectator approach. As the
a direct one-to-one correspondence between Eq.~96! and the
4-10
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bound-state current in the spectator approach†Eq. ~25! of
Ref. @9#‡, this proof need not be repeated here.

V. SUMMARY

We have applied the gauging of equations method, in
duced in the preceding paper for distinguishable particles@1#,
to the integral equations describing the strong interaction
three identical relativistic particles. For simplicity of prese
tation, we restricted the discussion to identical particle s
tems like that of three quarks (qqq) or three nucleons
(NNN) where there is no strong interaction coupling to tw
particle channels. Once the strong interaction equations
specified, the gauging of equations method couples an e
nal photon to all possible places in the strong interact
model, while at the same time preserving the proper ident
particle symmetry of the original equations. In this way w
have obtained gauge-invariant expressions for the var
electromagnetic transition currents of such identical thr
particle systems.

Two essentially different integral equations were gaug
The first was the integral equation for the three-parti
Green functionG, Eq.~12!. This equation has a disconnecte
kernel that is defined in terms of the two-body potentialv.
As a result, the electromagnetic transition currents that
low are themselves expressed in terms ofv and the gauged
potentialvm. Although formally correct, such expressions f
the transition currents may not be the most useful for pr
tical calculations. We have therefore considered an alte
tive formulation of the strong interaction problem in terms
four-dimensional versions of the well-known AGS equ
tions. Such integral equations have a kernel that is conne
~after one iteration! and are expressed in terms of two-bodt
matrices. For identical particles there are many ways to
fine the AGS amplitude, all giving the same three-bo
Green functionG. We have introduced an AGS amplitud
that satisfies a particularly simple AGS equation, Eq.~60!,
where the inhomogeneous term consists of a single un
muted term. This equation is ideal for our gauging pro
dure. By contrast, the AGS equation used previously
three-nucleon calculations@8# is inconvenient for gauging
purposes as both its inhomogeneous term and kernel co
of sums over two different permutations. After gauging, o
AGS equation gives practical expressions in terms of
two-body t matrix t and gaugedt matrix tm, for all the elec-
tromagnetic transition currents of three identical particles
this sense, the gauging of equations method has provid
unified description of the strong and electromagnetic inter
tions of the identical three-particle system.
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APPENDIX A: SYMMETRY PROPERTIES
OF Ũ ij FOR IDENTICAL PARTICLES

Here we derive some useful properties of the AGS Gr
functions Ũ ik in the case of identical particles. Althoug
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these properties are well known, we include them here b
for completeness and to show how they may be deri
within the formalism used in this paper.

Using the definition ofŨ ik given in Eq.~44!, it is easy to
show that

Ũ ik5 d̄ ikG01
1

2 (
j

d̄ i j G0VjG0d̄ jk

1
1

4 (
jn

d̄ i j G0VjG
DVnG0d̄nk . ~A1!

For the casek51 we explicitly have that

Ũ115
1

2
G0~V21V3!G01

1

4
G0~V21V3!GD~V21V3!G0 ,

Ũ215G01
1

2
G0V3G01

1

4
G0~V11V3!GD~V21V3!G0 ,

Ũ315G01
1

2
G0V2G01

1

4
G0~V11V2!GD~V21V3!G0 .

~A2!

From Eqs.~17! and ~42! it follows that GD commutes with
all elements of the symmetry groupS3 : Pi j G

DPi j 5GD ~of
course forG there is the stronger symmetry propertyPi j G
5GPi j 52G). Now using the fact that

P23V1P235V1 , P23V2P235V3 , P23V3P235V2 ,
~A3!

the following two relations are easily deduced from Eq
~A2!:

P23Ũ21P235Ũ31, P23Ũ31P235Ũ21. ~A4!

In a similar way one can deduce how any AGS Green fu
tion transforms under the simultaneous exchange of two
responding left- and right-particle labels. The following is
complete list for the casek51:

P12Ũ11P125Ũ22, P12Ũ21P125Ũ12, P12Ũ31P125Ũ32,

P23Ũ11P235Ũ11, P23Ũ21P235Ũ31, P23Ũ31P235Ũ21,

P31Ũ11P315Ũ33, P31Ũ21P315Ũ23, P31Ũ31P315Ũ13.

The corresponding transformations fork52 andk53 can be
written down by inspection.

APPENDIX B: THREE-BODY BOUND-STATE WAVE
FUNCTION FOR IDENTICAL PARTICLES

The three-body Green functionG is defined by Eq.~1!. If
the field theory admits a three-body bound state, thenG’s
behavior in the vicinity of the bound-state pole is given
Eq. ~36! where the bound-state wave functionCP is defined
in Eq. ~37!. These equations are true whether the three p
ticles are identical or not.
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In the identical particle case the bound-state wave eq
tion follows from Eq.~19!, G5G0

P1G0VG, by taking resi-
dues at the three-body bound-state pole:

C5G0VC, ~B1!

whereV is given by Eq.~16!. In the absence of three-bod
forces,

V5
1

2
~V11V21V3!, ~B2!

and the Faddeev wave function components are defined

C i5
1

2
G0ViC, ~B3!

so that

C5C11C21C3 . ~B4!

Using Eq. ~47! it then follows from Eq.~B3! that theC i
satisfy the coupled equations

C i5
1

2
G0Ti~C j1Ck!, ~B5!

wherei jk are cyclic.
By writing Eq. ~B3! explicitly showing particle labels, for

example,

C1~123!5
1

2
D0~23!v~23,2838!C~12838!, ~B6!

the following symmetry relations are easily deduced:

P23C152C1 , P12C152C2 , P31C152C3 ,

P31C252C2 , P23C252C3 , P12C252C1 ,

P12C352C3 , P31C352C1 , P23C352C2 .
~B7!
04400
a-

y

These symmetry relations enable us to write Eq.~B4! as

C~123!5C1~123!1C2~123!1C3~123!

5C1~123!1C1~231!1C1~312!, ~B8!

or in general for any fixedi,

C5(
Pc

C i , ~B9!

the sum being over cyclic permutations of the particle labe
Similarly the symmetry relations~B7! enable us to write Eqs
~B5! for i 51 as

C1~123!5D0~23!t~23,2838!C1~28381! ~B10!

or in general, for anyi,

C i52G0Ti Pi j C i52G0Ti PikC i . ~B11!

Similarly,

C̄ i52C̄ i Pi j TiG052C̄ i PikTiG0. ~B12!

APPENDIX C: THE GREEN FUNCTION Z̃

In dealing with identical particles, only one AGS-lik
Green functionŨ is needed to describe all possible proces
of the three-body system. The connected part of the th
body Green function,Gc , is expressed in terms ofŨ accord-
ing to Eq. ~55!. In this appendix we present a derivation
Eq. ~55! and show how various forms forŨ can be specified.
One of these involves the AGS-like Green functionZ̃ which,
because of its simplicity, is chosen for the purposes of ga
ing. The pole structure ofZ̃ is also discussed.

1. Derivation

Writing out the sums in Eq.~54! and showing particle
labels explicitly, this equation can be written as
Gc~123,182838!5
1

4
D0~23!t~23,2939!@Ũ11~12939,182-3-!t~2-3-,2838!D0~2838!

1Ũ12~12939,1-283-!t~3-1-,3818!D0~3818!1Ũ13~12939,1-2-38!t~1-2-,1828!D0~1828!#P

1
1

4
D0~31!t~31,3919!@Ũ21~19239,182-3-!t~2-3-,2838!D0~2838!

1Ũ22~19239,1-283-!t~3-1-,3818!D0~3818!1Ũ23~19239,1-2-38!t~1-2-,1828!D0~1828!#P

1
1

4
D0~12!t~12,1929!@Ũ31~19293,182-3-!t~2-3-,2838!D0~2838!

1Ũ32~19293,1-283-!t~3-1-,3818!D0~3818!1Ũ33~19293,1-2-38!t~1-2-,1828!D0~1828!#P,

~C1!
4-12
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where integrals over double- and triple-primed momenta
understood. The symbolsP in the above equation indicat
sums over all permutations of the initial~right! particle la-
bels. Carrying out these permutation sums and taking
account the symmetries of theŨ i j discussed in Appendix A
this equation can be simplified to read

Gc~123,182838!

5
1

2
PcD0~23!t~23,2939!X̃~12939,182-3-!

3t~2-3-,2838!D0~2838!Pc , ~C2!

where the symbolsPc indicate sums over cyclic permuta
tions of both initial- and final-state particle labels, and whe
the Green functionX̃(123,182838) is defined by

X̃~123,182838!5Ũ11~123,182838!1Ũ12~123,381828!

1Ũ12~132,281838!. ~C3!

Note the symmetry relationX̃5P23X̃P23. The last two terms
of Eq. ~C3! contribute equally to Eq.~C2!; nevertheless, we
do not defineX̃ as Ũ11(123,182838)12Ũ12(123,381828) as
this would not make it easy to write an integral equation
X̃. Using the AGS equations forŨ11 andŨ12, it follows that
the X̃ of Eq. ~C3! satisfies the integral equation

X̃~123,182838!5G0~123,381828!1G0~132,281838!

1
1

2
D0~12!t~12,1929!X̃~31929,182838!

1
1

2
D0~31!t~31,3919!X̃~23919,182838!.

~C4!

Writing Eq. ~C2! in the shorthand form as

Gc5
1

2
PcG0T1X̃T1G0Pc , ~C5!

we have in this way derived Eq.~55! with Ũ being specifi-
cally given byŨ51/2X̃. This form for Ũ has been used b
Glöckle et al. in practical calculations@8#. However, it is
possible to choose other forms forŨ, and as we show below
one of these is particularly simple.

Since the two-bodyt matrices in Eq.~C2! are fully anti-
symmetric, we can equally well write this equation as

Gc~123,182838!

5
1

2
Pc D0~23!t~23,2939!Ỹ~12939,182-3-!

3t~2-3-,2838!D0~2838!Pc , ~C6!

where
04400
re

to

e

r

Ỹ~123,182838!5
1

2
@X̃~123,182838!2X̃~132,182838!#.

~C7!

We note thatỸ has the symmetry propertyP23Ỹ5ỸP235

2Ỹ and satisfies the integral equation

Ỹ~123,182838!5
1

2
@G0~123,381828!1G0~123,283818!

2G0~132,381828!2G0~132,283818!#

1
1

2
D0~12!t~12,1929!Ỹ~31929,182838!

1
1

2
D0~31!t~31,3919!Ỹ~23919,182838!.

~C8!

Although this appears to be a more complicated equa
than Eq.~C4!, it is easily shown thatỸ can alternatively be
specified as

Ỹ~123,182838!5
1

2
@ Z̃~123,381828!1Z̃~123,283818!

2Z̃~132,381828!2Z̃~132,283818!#,

~C9!

whereZ̃ satisfies the especially simple equation

Z̃~123,182838!5G0~123,182838!

1D0~31!t~31,3919!Z̃~23919,182838!.

~C10!

This equation constitutes a threefold reduction in the size
the kernel in comparison with the original AGS equation
Eqs.~50!. One can write Eq.~C10! in shorthand form as

Z̃5G02G0T2P12Z̃5G02G0P12T1Z̃, ~C11!

the last version of which is illustrated in Fig. 3.
It is recognized that the kernel of this equation is identi

to the kernel of the bound-state equation forC2. As Eq.
~C11! implies Z̃215G0

211T2P12, it also follows that

Z̃5G02Z̃T2P12G05G02Z̃P12T1G0 , ~C12!

which is an alternative equation forZ̃ whose kernel is iden-

tical to the kernel of the bound-state equation forC̄1.

FIG. 3. Illustration of Eq.~C10! showing how the final state

momenta of the AGS-like Green functionZ̃ are permuted in the
integral term.
4-13



ic

en

at

e

th
te

on

ob-

at

A. N. KVINIKHIDZE AND B. BLANKLEIDER PHYSICAL REVIEW C 60 044004
Substituting Eq.~C9! into Eq. ~C6! and taking into ac-
count the antisymmetry of the two-bodyt matrices we obtain

Gc~123,182838!5
1

2
PcD0~23!t~23,2939!

3@ Z̃~12939,3-182-!

1Z̃~12939,2-3-18!#

3t~2-3-,2838!D0~2838!Pc .

~C13!

The two Z̃ terms in Eq.~C13! in fact contribute equally to
Gc . This can be seen by using Eq.~C12! to write

Z̃~123,381828!5G0~123,381828!

1Z̃~123,192938!t~1929,1828!D0~1828!,

~C14!

Z̃~123,283818!5G0~123,283818!

1Z̃~123,391928!t~3919,3818!D0~3818!.

~C15!

When used in Eq.~C13!, the antisymmetry of the two-bodyt
matrices makes the last terms of these equations ident
while the cyclic permutation operatorsPc ensure the identity
of their inhomogeneous terms. Using the antisymmetry oft ’s
once more, we arrive at our final form for the AGS Gre
function Ũ that is to be used in Eq.~55!:

Ũ52Z̃P12, ~C16!

where Z̃ is given by Eq.~C10!. In view of the numerical
simplicity of the equation forZ̃, it is this form forŨ that we
choose in this paper for the purposes of gauging.

2. Pole structure of Z̃

If the three-body system admits a three-body bound st
it is clear from Eq.~55! that Ũ and, therefore,Z̃ have a pole
at the bound-state massM. Writing the pole structure ofZ̃ as
o

o
ali

04400
al,

e,

Z̃~123,182838!; i
R~123,182838!

P22M2
, ~C17!

it is our goal to deduce the explicit form of the residu
R(123,182838).

Taking the residue of Eq.~C10! at the bound-state pole
gives the equation

R~123,182838!5D0~31!t~31,3919!R~23919,182838!.

~C18!

With the initial momenta fixed, this equation coincides wi
the equation forC2(123), the third Faddeev bound-sta
wave function component—see Eq.~B11!. On the other
hand, we can use Eq.~C12! to write

Z̃~123,182838!5G0~123,182838!

1Z̃~123,293918!t~2939,2838!D0~2838!.

~C19!

Taking residues of this equation gives

R~123,182838!5R~123,293918!t~2939,2838!D0~2838!,

~C20!

which for fixed final momenta coincides with the equati

for C̄1(182838)—see Eq. ~B12!. We may thus write

R(123,182838)5CC2(123)C̄1(182838) whereC is a con-
stant. To determineC we useŨ52Z̃P12 in Eq. ~55! and
take residues of both sides of the equation, in this way
taining

iCC̄52PcG0T1CC2C̄1P12T1G0Pc . ~C21!

Using the results of Appendix B it is then easily seen th
C5 i . We have thus shown that the pole structure ofZ̃ is
given by

Z̃~123,182838!; i
C2~123!C̄1~182838!

P22M2
. ~C22!
w-
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