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Gauging of equations method. Il. Electromagnetic currents of three identical particles
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The gauging of equations method, introduced in the preceding paper, is applied to the four-dimensional
integral equations describing the strong interactions of three identical relativistic particles. In this way we
obtain gauge-invariant expressions for all possible electromagnetic transition currents of the identical three-
particle system. In the three-nucleon system with no isospin violation, for example, our expressions describe
the electromagnetic form factors 8fl, pd— pdy, y*He—pd, y*He— ppn, etc. A feature of our approach is
that gauge invariance is achieved through the coupling of the photon to all possible placesgniongbertur-
bative strong interaction model. Moreover, once the proper identical particle symmetry is incorporated into the
integral equations describing the strong interactions, the gauging procedure automatically provides electromag-
netic transition currents with the proper symmetry. In this way the gauging of equations method results in a
unified description of strong and electromagnetic interaction of strongly interacting systems.
[S0556-28189)04709-3

PACS numbgs): 11.10.St, 13.40:f, 21.45+v, 25.30-C

[. INTRODUCTION trize) the corresponding distinguishable particle equations.
However, such a procedure is not justified within a field
In the preceding papé] (referred to as | in the follow- theoretic approach. As the basis of our approach here is QFT,
ing), we have introduced the gauging of equations method awe present a derivation of the strong interaction equations
a means of incorporating an external electromagnetic fieldor three identical particles that is consistent with QFT, and
into descriptions of quarks or hadrons whose strong interadhat is therefore very different from the derivations found in
tions are described nonperturbatively by integral equationsstandard texts on the quantum mechanical three-body prob-
The feature of this method is that it couples an external pholem [4].
ton to all possible places in the strong interaction model Once the identical particle equations for the strong inter-
despite its nonperturbative nature. Gauge invariance in ouictions are derived, it is a feature of the gauging of equations
approach is therefore implemented in the way prescribed bynethod that it may be applied directly to these equations,
quantum field theoryQFT). In | we demonstrated the gaug- thereby automatically generating electromagnetic transition
ing procedure in the example of three distinguishable parcurrents with the proper symmetry. Thus the main effort in
ticles. In this paper we would like to demonstrate the sam@enerating practical expressions for the transition currents
method as applied to the case of indistinguishable particlegeduces down to a careful choice for the identical particle
where the strong interaction equations have the added corgtrong interaction equations that are to be gauged. Here we
plexity of identical particle symmetry. also show that for three identical particles an optimal choice
As in |, the discussion here is restricted to the case wheris provided by an equation of Alt-Grassberger-Sandhas
the three strongly interacting particles have no coupling tdAGS) form [5], but which is, however, different from the
two-body channels. Thus we have in mind identical particleAGS equation used previously in the literature for three-
systems like three quarksgq or three nucleonsINN. This ~ nucleon calculations.
is not an essential restriction, and indeed we have recently
applied the gauging of equations method to #i¢N system
where coupling to theN\N channel is included2]. How-
ever, the purpose of this papgogether with } is to present
the basic details of the gauging of equations method, and as The gauging of equations method, introduced in | and
such, coupling to two-body channels presents an unnecessanged there to gauge the equations of three distinguishable
complication. We note that the main results of this workparticles, does not change when the patrticles are identical.
have previously been summarized in conference proceedingadeed, the main steps taken in | to derive the electromag-
[3]. netic transition currents can be repeated for identical par-
In dealing with identical particles, one is faced with the ticles, although it is necessary to guarantee the proper iden-
problem of incorporating the proper particle-exchange symtical particle symmetry of all perturbative diagrams at each
metry into the equations describing both their strong andstep of the derivation. In this respect, it should be noted that
electromagnetic interactions. In quantum mechanics the stamve do not follow the common procedure of symmetrizing or
dard procedure is to explicitly symmetriZer antisymme-  antisymmetrizing the distinguishable particle results. Such a
procedure is strictly valid only within the context of second
quantization in quantum mechanics, while here the theoreti-
*On leave from Mathematical Institute of Georgian Academy ofcal framework is that of relativistic quantum field theory.
Sciences, Thilisi, Georgia. Instead we follow the standard rules of QFT for constructing

Il. GAUGING THE THREE-PARTICLE GREEN
FUNCTION
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Green functions for identical particles. The details of theSQ:]MGM(klksz;plpzp3)
rules as applied to few-body integral equations have been
given by us in Ref[6]. . _ _
The strong interactions of three identical particles are de- :'21 [€:G(Ki—0a;p1P2p3) — G(kikoks;pi+a)e]. (4)
scribed in quantum field theory by the Green functiGn

defined by To be definite, we shall assume that our three identical par-

ticles are fermionsfor three identical bosons one can simply

(2m)46%(pi+ Ps+ Ps—P1— P2— P3) G(PiP4P4; P1P2P3) replace antisymmetric operations by symmetric ones in the
following discussion Then the field theoretic expressions of
Egs.(1) and(2) automatically guarantee the proper antisym-
_ 4 4 4 4 4 4
_f d%y 1 dy,d"ysd %, d"xod g metry of the three-particle Green functi@and the seven-

point functionG*. On the other hand, the free Green func-
tion G, defined by

X (O] T (Y)W (Y)W (y3) W (X)W (X)W (X3)|0). Go=d,d,ds, ®)
)

x @ (P1Y1+P2Ya+Pay3—P1X1—P2Xo—PaXa)

whered; is the dressed propagator of parti¢lés not anti-
_ symmetric in its particle labels; thus, for identical fermions,
Here W andW¥ are Heisenberg fieldg; is the time ordering G is not equal to the fully disconnected part@{which we
operator, and0) is the physical vacuum state. The interac-shall denote byGg). Indeed, it can be easily shoW8] that
tion of this three-particle system with an external electro-to obtainG4, one needs only to antisymmetrig, accord-
magnetic field is then described by the corresponding severRg to the equation
point functionG* defined by

> Gy(1'273',123 =G4(1'2'3",123), (6)
G*(kikaks;p1p2pa) P
_ A A N R A where the sum is over all permutatioR®f either the initial-
_f d%y 1 dy,d"ysd %, d"xod g or final-state particle labels, and is understood to include a

factor (—1)"=+1 or — 1 depending on whether the permu-
tation is even or odd, respectively. In E&) we use a sym-
bolic notation where integers represent the momenta and all
guantum numbers of the corresponding particles, with
primes distinguishing the final states. To specify permutation
sums over just the initial-state momentum labels, we use the
letter R (right); similarly, L (left) represents sums over per-
where J* is the quantized electromagnetic current operatofnutations of just the final-state momentum labels. The sym-
ande is the charge of théth particle. If the particles are POl P will be used only when it makes no difference which
isotopic doublets, thes; includes an isospin factor, e.g. for SUMRorL, is taken. Quantities antisymmetrized in one of
nucleonse, = [ 1+ Tg)]ep where 5 is the Pauli matrix for these ways will be |nd|c_ated by th_e appropriate superscript.
the third component of isospin, arg is the charge of the Thl.JS’ for examp_le, A IS a quantity depending on three
proton. The Ward-TakahaskWT) identity [7], which pro- initial and three final particle labels, then

vides an important constraint @, takes the same form as Roarero U et
in the distinguishable particles calH: AN(1'2'3",123 =A(1'2'3",123 - A(1'2'3",213

+A(12'3",23)—- - -, )

x @l (K1y1+kaya+Kayg—P1X1—PaXo—P3Xs)

X (O TW (y) W (y2) W (ya) ¥ (x1) W (X,)

X W (x5)J4(0)|0), (2)

0,,G*(kikaK3;P1p2P3)
=i[e1G(k;—0,koK3;p1P2P3)

+€,G(kq,k,—0,K3;p1P2P3)

.G (Kiky Ka—q: with similar expressions holding for quantities having any
3G(kikz k30 p1P2Ps) number of identical legs. In general we write

AL(1'2'37,123 =A(1'2"3",123 —A(2'1'3",123
+A(2'3'1',123—- - -, 8

—G(kikzKsz;p1+0,p2ps)e;

—G(kikokz;p1,p2+0,p3)e; AREER: A, 9
—G(kikoks;p1p2,pst+a)es], (©))
_ o . AL=2 A, (10)
or in the shorthand notation introduced in Rf], C
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Formally, Eq.(19) differs from the equivalent relation for
AP=2 A=AR=AL. (11)  distinguishable particleEEq. (59) of 1] only in the explicit
F antisymmetrization of the inhomogeneous term. We there-
fore proceed as for the distinguishable particle case and

Defining the kerneK to be the set of all possible three- ;
gauge Eq(19) directly:

particle irreducible Feynman diagrams for the>3 process,

we may write the Green functio® as[6] G“=G§“+(GOV)”“G+GOVG“. (20)
G=GP+ iGOKG (12) Before solving this equation fd&* it is useful to note that
3! '
GHr=GEP=GlG, Gy, (21)

where the 1/3! factor reflects the fact that b@handK are

fully antisymmetric in their particle labels. We write the dis- Indeed the combinatioG{G,* plays the role of the anti-

connected part ok, indicated by subscridd, in terms of the  symmetrization operator since

identical particle two-body potentiaf:

[GhG,1(172/3,123=2, &§(1',1)8(2'.2). (22

Kg(1'2'3",123 = > v(2'3',23d"X(1)5(1',1), P

Fefte (13  Note that there is no facta¥(3',3) on the right side of Eq.
(22) because an overall momentum conservation delta func-

whered(1’,1) represents the momentum conserving Difac tion has been removed from our expressions. We can there-

function (2)*8*(p;—p1), while L, andR, indicate that the fore write Eq.(20) as

sum is taken over cyclic permutations of the left labels

(1’2’_3’) an_d right Iabe_ls(123), respectively(note that the C GH=(1-GyV) L G(F,’GgngJrGgGalE(GoV)“G ,

sum is restricted to cyclic permutations because the potential 6

v is already antisymmetric in its lab€]6]). (23)

Defining where the inclusion 0G{G,* in the last term is compen-

Vi(1'2'3,123 =v(j'K’,jk)d " L(i)a(i",i) (14) sated exactly by 1/6 sincé satisfies the symmetry property
' ’ ' n of Eq. (17) and G is already fully antisymmetric. From Eq.
where (jk) is a cyclic permutation of (123), we have that (19) it follows that

(1-GoV) 'Gi=G, (24)

Ka=2 (Vit+VotVy), (15) o _
Pc and using this we obtain

where it makes no difference over which labels, left or right, 1 1
the cyclic permutations are taken. Unlike tkig of the dis- GH=GGy | G+ 5 (GpVG+ GV G) (25
tinguishable particle cageee Eq.(61) of 1], the one here
consists of a two-body potential that is antisymmetric un- 1
der the interchange of its initial- or final-state labels. Denot- =5G[G6166‘G51(6Go+ GoVG) +V#G].
ing the connected part of the kernel By, we define the (26)
3—3 potentialV by
In the last equation, we may replace thé gby GS because

1 1 of the antisymmetry of th& outside the square bracket, and
V=5 (Vat Vot Ve + gKe. 19 Using Eq.(19) we finally get that
AlthoughV is not fully antisymmetric, it does have the use- GH=GI'*G, (27)
ful symmetry property where
[H=5(Gy GGy '+ V) (28)

where P;; is the operator that exchanges tite and jth

momentum, spin, and isospin labels. Since is the electromagnetic vertex function for three identical par-

ticles. The extra factor of 1/6 compared with the result for
K= 2 Vv, (18 distinguishable particles reflects the fact that Hetds to be
P sandwiched between fully antisymmetric functions. Neglect-

) ing three-body forces, Eq16) implies that
Eqg. (12) can be written as

1
G=GE+GyVG. (19 VE=Z(VI+V3+Vs), (29
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with an extra factor of 1/2 compared with the distinguishable j = (I"=(K[I*(0)|P), (38
particle case.
Writing Eq. (14) in the shorthand notation whereK?=P?=M?2. To find j* for a particular model, one
can alternatively use Eq27) to take residues at the three-
Vi=vid t, (30 body bound-state poles. In this way one finds that

wherevi denotes/(j'k’,jk), we may gauge this equation to j"=‘1_’KF"\I’p. (39)
obtain
Although this expression is formally identical to the bound-
state current for distinguishable partic[&s). (80) of I], here
the vertex function is given by E@35), and the wave func-
tion is that for identical particles.

The normalization condition for the wave function in the

VE=yrd -y TE, (31)

wherel'# is the one-particle electromagnetic vertex function
defined by the equation

dr=d;T d;, (32  case of identical particles follows from the fact that
-1 _ -1~P_
and where we have used the fact thdf t)*=—T"F [1]. G(Go "~ V)G=GGy Go=6G. (40
Similarly gauging Eq(5) we find that After taking residues at the three-body bound-state poles of
3 G one finds that
Gy'G4Gy '=2) T1'Dy ', (33 5
i=1 —
iVp—(Gyl—V)¥p=6. (41)
where IP?
Do =d;d. (34)  Note that this result differs from the one for distinguishable

particles where unity appears on the right-hand $RIES
Using these results in E@28) we can express the electro- [Eq. (82) of I]. This is a consequence of our convention
magnetic vertex function as where the same expression, Eg§7), is used to define the
bound-state wave function for both identical and distinguish-
able particles(in the latter case, however, the fields obtain
particle labels
We can repeat the above procedure and take residues of
All electromagnetic transition currents of three identical par-Eq. (27) at the two-body bound-state poles Gf thereby
ticles can be obtained from E¢R7) by taking appropriate obtaining electromagnetic transition currents involving two-
residues at two- and three-body bound-state poles.df G~ body bound states. This procedure was carried out in detail
admits a three-body bound state, it can be shown that for the distinguishable particle case in I. However, as dis-
cussed in I, the expressions obtained in this way explicitly
G(p1p2P3;P1P2P3) involve potentials and gauged potentials, and consequently
_ may not be very convenient for practical calculations. Here
 We(p1p2P3) ¥ e(P1P2Ps) 5 ) we shall therefore forego any further discussion of this pro-
~l pP2_ M2 as P*—M%, cedure, and instead go on to an alternative approach based on
the Alt-Grassberger-Sandhas equatifswhich lead, after
(36) gauging, to electromagnetic transition currents expressed in
terms oft matrices and gaugetdmatrices.

3

1 1 1
ruzg 2’1 I“Dgt+ Evi“d[l— Evil“{‘ . (3

whereP is the total momentunM is the bound-state mass,

and ¥ is the three-particle bound-state wave function de- L. AGS AMPLITUDES FOR IDENTICAL PARTICLES

fined by
The AGS equations have long provided a practical way to
(2m)*6%(P—p1= P2~ Pa) ¥p(P1P2Ps3) describe the scattering of three particles in quantum mechan-
ics. Not only do they leadafter one iterationto equations
= f d*x,d*x,d*x5e! (PrX1t P2X2tP3xs) with a connected kernel, but they also have the feature of
having the two-body inputs in terms bfatrices rather than
X (0| TW (X)W (X)W (X3)|P). (37)  potentials. As we would also like to have these advantages in

the case of three relativistic particles, we shall utilize four-
Here |P) is the eigenstate of the full Hamiltonian corre- dimensional versions of the AGS equations, which for dis-
sponding to the three-particle bound state with momentuninguishable particles were given by Eq&18) of I.
P~ Our goal here is to extend the discussion of Sec. 111 C of |
The three-body bound-state currgfitis found by taking to the case of three identical particles. That is, we would like
left and right residues o6* at the three-body bound-state to express the electromagnetic transition currents of all pos-
poles. By exposing such poles in the field theoretic expressible processes involving three identical particles in terms of
sion of Eq.(2) one finds that AGS amplitudes and gauged AGS amplitudes. Although the
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handling of identical particles in the AGS formulation is well where theT; satisfy the equation

documented4], as far as we know all previous discussions

do this by antisymmetrizing the distinguishable particle case. T =V 4 EV-G T 47)
As stated previously, such a procedure is inappropriate for A Mot

the field theoretic approach undertaken here. In this section

we shall therefore define AGS amplitudes for identical parand are given in terms of the two-bodynatricest; by
ticles and relate them to the-33 Green functiorG in a way 1

that is consistent with field theory. Moreover, we do this Ti=td; ~. (48)
with the view of gauging our final expressions, a task left to
the following sections.

Our starting point here shall be the Green function for
three |d_ent|cal particles as given by EQ.9). The_ natl_JraI As discussed in |, for gauging purposes it is preferable to
way to introduce the AGS operatots; for three identical work in terms of AGS Green functions
particles is via the distinguishable partlcle case. Recalling
that Eq.(19) differs from the one for distinguishable par- U.=GU. G (49)
ticles in that the inhomogeneous te(EJg is explicitly anti- o
symmetrized, we are led to introduce a new three-particlevhich now satisfy the equations
Green functionGP defined by the equation

Note thatt; is shorthand fot(j'k’,jk) and is fully antisym-
metric under the interchange of its initial or final particle
labels.

- 1 -
GP =G+ GoVGP, (42) U;;=G, 52 GoTiUy;,
where the inhomogeneous tei@y is not antisymmetrized. 1 3
By its structure, Eq.(42) looks like the equation for the ™ - T.God..
Green function of three distinguishable partid&s|. (59) of Ui "3 Z ik TkGodk; (50

I] and therefore allows us to define the AGS operators in the

standard way. NeverthelessP should not be identified with BY using the above equations one can show that
the distinguishable particle Green function as thén Eq. 1

(42) is defined in terms of antisymmetric potentialgsee GP= G0+ 2 GoTiGo+ —
Egs.(14) and(16)] while theV for distinguishable particles 41
is defined in terms of two-body potentials which are not
antisymmetric. The fully antisymmetric Green functi@h
can be obtained fron®P simply by antisymmetrizing:

E GoTiUyTiGo. (51)

In this way we obtain that

G=G{+ = 2 G TGP+E GoT;UyT G5 (52
G= GDL GDR GDP (43) 0 0 0 4 “ 0'iYik 'k“o
Neglecting the three-body forc¥., we now proceed by P } P }
analogy with the distinguishable particles case and define the =Got 2 Z GOTiGO+4 “ GoTiUiTiGo.
AGS operatordJ;; through the equation (53
GD=Gi5ij +GU;;G;j, (44 By taking appropriate residues, either of these relations al-
lows us to obtain the scattering amplitudes for all possible
whereG; satisfies the equation processes in the system of three identical particles. To be

specific, let us choose E¢2) to discuss the taking of resi-
dues. As only the last term in E2) is connected, only this
term need be considered for the purposes of extracting physi-
cal three-particle amplitudes. We therefore define

(note that the inhomogeneous term in the last equation is not
antisymmetrized, in contrast to ti@& used for identical par-
ticles in Ref.[6]). The factor of 1/2 in Eq(45) originates
from Eq.(16) where it is clear that 1X2 is the disconnected
potential to be identified with the distinguishable particle By writing out this sum explicitly and making use of the
case. Taking this into account, the AGS equations for theymmetry properties ob);, discussed in Appendix A, it is
operatorsJ;; become possible to rewrite Eq(54) in terms of just one AGS-like

Green functionJ:

1
Gi:GO+ EGoviGi (45)

1 ~
=2 2 GoTiUiTiGs. (54

G0 l5lj+ 2 5|kaG Uka
G.= 2 GoT,UT,Gy. (55)
C C
3

Uii=Gg 15 + 1 2 U.kGoTk5k1 ’ (46) A detailed derivation_ of Eq55) is presen_ted in Appendix C.
The full Green function can then be written as
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b - body poles, only the connected part@fcontributes and we
G=Gg+ 2 (GeTiGo+GoTiUTiGo). (56 have that
c'*c

Ge(kikoks;
As discussed in Appendix C, there is a variety of ways to c(KikzKs;P1P2P3)

choosel without affecting the value d&. One form that has i, (kokz)d(ky) d(pl)Epl(psz)
previously been used in three-nucleon calculati@jss ~i——————=Tq4kiKq1;p1P) | ———————,
(Ko +kg)?—m? (P2t p3)®—m?
~ 1.
0=3%, (57) (62
whereK;=k,+ks, P1=ps+p3, i, is the deuteron wave
with X obeying the equatiofsee Eq(C4)] function[defined analogously to E437)], mis the mass of

the deuteron, antly4(k,K4;p1P4) is the physical scattering
~ 1 ~ amplitude for N(p4) +d(P;)—N(k;)+d(K;). The same
X=GoP+ 5PGoTaX, (58)  scattering amplitude could be picked out in the other chan-
nels, for example,
whereP=P,P3;+ P3P, is the sum of two successive cy- .
. . . ~ - . Ge(kikoks;p1p2ps)
clic permutations. The choice fds specified by Eq(57) is -
unsatisfactory fo_r our purposes si_nce the presence of a sum le(k2k3)d(k1) d(p3) ¢P3(plp2)
of two permutations in both the inhomogeneous term and  ~i ——————T;4(k1K1;psP3)i ——————,
kernel of Eq.(58) makes the gauging of this expression par- (katkz)*—m (P1+p2)°—m
ticularly cumbersome. Fortunately there is another way to (63)
choosel that avoids these difficulties. As shown in Appen- _ _
dix C, we can take whereTy4(k,K1;p3P3) depends on the variablgs, P3 in
just the same way a8y4(k,K4;p1P;) depends orp;, P;.
U=-27P,, (59) On the other hand@G, is given by Eq.(55 which when
written out explicitly reads

where the AGS-like Green functiah obeys the equation Ge(KykoKs:p1paps)

Z=Go—GoP,T,Z, 60 — i
0 ToriEt (%0 :LER dk; dp; Do(kaks)t(koks;koks)

with no permutation sums involved. This is the form for _

that we shall use in the next section for the purposes of XU (kqkK3;p1p2P3)t(P2P3;P2P3)Do(P2oPs),  (64)

gauging. By displaying all momentum variables in Esp) it L L, _

is easy to see that the connected part of the Green functiofhereka+kz=K; andpy+pz=P;. In Eq. (64), D, is the

~ two- 2_ 2
can be written directly in terms & as free two-body propagator, and the poles jtk;)"=m
and (p,+ p3)“=m- are contained in the two-bodymatrices

t(koks;koks) andt(psps;papa), respectively. In particular,

GC=LER GoT1ZT,Gy. (61) a
e &k, (KaKs) i (KoK3)
t(koks;koky) ~i -, , (65)
A. Nd—Nd amplitude Ki—m

For notational purposes, we shall refer to our three idenyhere ¢ and ¢ are two-body bound-state vertex functions
tical strongly interacting fermions as a “nucleonsN8N)  gefined by the equations
although the true identity of these particles is arbitrary. Simi-
larly we refer to a two-body bound state as a “deuterdd)’ y=God, =dGy. (66)
and a three-body bound state asH.” This enables us to
write the various reactions that can take place between anMote that the two-bodymatrix satisfies the integral equation
three identical particles in a familiar way.

Using this notation, we can obtain the amplitude fod t=vi EvD t 67)
—Nd, by follow the usual procedure of taking residues at 270
the two-body bound-state poles & Indeed for identical
particles it can be shown that if quantum field theory admitsWith particlei as spectator, this equation when multiplied by
the existence of two-body bound states, then the Green fune, * gives Eq.(47). The full two-body Green functiol is
tion G(k;koks;p1p,ps) possesses poles with respect to anygiven by analogy with Eq(12) as
of the variables K; +k;)? or (p;+p;)2. To be definite, con-
sider the variablesk,+k3)2 and (p,+ p3)? for the three- D=DP+ ED vD 68)
particle system. In the vicinity of the corresponding two- 0" pTorE
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The normalization condition for our two-body wave function

is therefore given by TOd:LE (P12ZP1,~Gg M)y (76)
[
o 1
ip——5| Do = 5V |we=2, (69) IV. GAUGING THE IDENTICAL PARTICLE AGS
P EQUATIONS
a fact that follows from the same argument that led to Eq. Having developed the necessary expressions describing
(41) but adapted to the case of two identical particles. three identical particles in the purely strong interaction sec-
Comparing Eq/(62) with Eq. (64) in the vicinity of the  tor, we are now ready to carry out the gauging procedure that
two poles gives théld elastic scattering amplitude as will generate the coupling to an external electromagnetic
T (KKe Do P field. We follow the same procedure as used for distinguish-
dd(KiK1:paPy) able particles in Sec. IlIC of I.
:f dk; dp; d™*(ky) di (Koks) A. Nd—Nd transition current
~ _ The Nd—Nd electromagnetic transition currepfy de-
! . ’ ot Pt 1 d
XU (kikaK3;p1paPs) ép, (P2P3)d ™ (Pa). (70 seribes, for example, the procelsl— yNd. To obtain the
. ” .
This equation can be written symbolically as expression foijyq we write Eq.(71) as
Tae=d1 ' $10 ¢1d, (71) Tga=h1U &1, (77)
where

or in terms of deuteron wave functions as

Tag= U 1. (72 Tae=daTagd. (78
Gauging Eq.(77) gives
B. Nd—NNN amplitude o o o

The amplitude for the breakup reactidtd—NNN is Taa= P1U b1+ p1 Ut + d U . (79
found by taking the residue of the Green functi@Gnat the
initial-state deuteron pole. Choosing momentum variables
above, we may express the connected part of the Green funglVe
tion G, in the vicinity of the initial bound-state pole as

aghe Nd—Nd electromagnetic transition current is then
iven by

jthy=di (LU py+ 910 gt + ¢, UFgpy)dt. (80)

Ge(kikoks;p1p2pa) —
In Eq.(79), ¢f and ¢/ are the gauged two-body bound-state

~d(ky)d(kz)d(ka) Tog(kikaks;p1P1) vertex functions which follow from the solution of the two-
q — body problem for particles 2 and 3. Dropping the spectator
i (pl)’/’Pl(pzp3) (73) particle label, the bound-state equation #iis

| ’
(p2+p3)2—m?

where (,+ p3)>—m?. This relation defines the breakup am-
plitude Toq(kq1koks;p1P1). Comparing this with the behav- _ _ _ _ _
ior of Eq. (64) in the vicinity of the same pole we deduce Gauging this equation and using E8) gives
that

1
$=5VDod. 81

1
_T -1
Tod(kikaks;p1P1) ¢*=7Do DIvDo]*¢. (82
=> fdkédpéd’l(kl)t(kzkg;kéké) By using the fact that
LC
D=G{+DotDy, (83)

x U (kikyks; plpépé)d’Pl(pépé)d_l(pl)- _ _ _
the previous equation can also be written as

(74)
. . L 1 1
Written symbolically this gives pr=|1+ EtDO) D51D5D51+ Evu lﬂ—Dc?lDéLDEllﬁ,
~ _ (84)
Tog= 2 TiU:dy =2 T1GoU . (75
ke Le which is the identical particle version of E(8) of I.
Using Eq.(59) and Eq.(60) we may eliminateT, from the To determigej 4q @ll that is left is to s~pecify~a practical
last equation to obtain expression folJ*. If we make the choicé) =—-2ZP4, as in
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Q Q

: : 1
+ §—| b4 l— < —_—— - Dq ) :|7|:§ FIG. 2. A contribution to the terrZ(D, 'D4D, *d~)Z show-

g é ing how it leads to the gauging of the left external particle 2.

FIG. 1. Graphical representation of E(B7) for the gauged Mediate line 1 is gauged. Because this is a Feynman dia-
AGS-like Green functiorZ*. gram, the gauging of the intermediate line 1 is the same as

the gauging of the left external line 2. To be noted is the

Eq. (59), thenU¥= —Z#P_, and the problem reduces to that crucial rgle the permutation operatBy, plays in the equa-
tion for Z, Eq. (60)—this operator is responsible for the

of gauging Eq(60) in order to obtairZ*. Equation(60) is a ) . ; . . N
relgtivgly g;imoplfle <)equation that has only gne typ(e o)f discon.crossing of the lines in the single-scattering contributions
nectedness in the kernel, and unlike the corresponding equgbown in Fig. 2.
tion for the distinguishable particle calsee Eqs(126) of 1],

Eq. (60) is not a matrix equation. We write E¢60) as B. Nd—NNN transition current
~ ~ Thet matrix Tyq for the breakup proceddd— NNN was
Z=Go—DotP1yZ, (859 given in Eq.(76). We follow the same procedure as given in

Sec. IIC4 for distinguishable particles. Thus we do not

where itis to be understood thet t, andDo=dd;. Gaug- gaugeTy directly but instead introduce the Green function

ing this equation gives

quantity
ZM=Gl—D§tP1Z — Dot“P1Z —DotP1,2",  (86) - -
Toa=GoToad1= > (P12ZP1,—Go) by (88)
so that Le
(1+DgtPy,)Z#= Gh— Dgtplzz_ DthP 2. 'tl)'ce electromagnetic current fddd— yNNN is then given

With the help of Eq(85) we then obtain ~
o ~ s B j6a=Go 'Téady ™. (89
ZM=7Gy'Gl—ZGy 'D4tP 1,2 —ZGy 'Dot#P 2.

. GaugingT,4, one obtains
Using

G, 'Do=d™' and G4=d"Dy+dD¥, jgd=L2 (P1.Gy Y2#Go 'P1— Gy 'GEG, Yy
C

whered=d, andd*=d%, then gives

e e - +2) (P1ZP1,— Gy Do h . (90)
Z#=7d 'd*+ZDy DGy (Gy—DotP1,2) Le

—zd lVLPlZZ C. Three-nucleon bound-state current

and therefore For three identical nucleons the electromagnetic bound-
state currenj# was expressed in terms of the two-nucleon

Zr=7d *d*+Z(Dy 'DED, td t—d 't#P,)Z. (87)  potentialv and gauged potentiat by Eq.(35) and Eq.(39).

This was achieved by expressing the seven-point function as

This equation, illustrated in Fig. 1, describes the attachment#=GI'*G and then taking the left and right residuesaf

of photons at all possible places in the multiple-scatteringat the three-body bound-state poles. The connection jith

series of three identical particles. As such, it forms the cenfollows from the general structure @* in the vicinity of

tral result in the gauged identical three-quark or three-hadroghese poles:

problem. The structure of this equation may seem surprising .

in that the second line is gauged only when it is right exter- Wy R

nal [the first term on the RHS of E487)] whereas the first Gr= " (93)

~ K2_ M 2 P2_ M 2"
and third lines are gauged everywhéhecauseZ contains

a_II possible diagrams, mcluc_hr@o). That _there IS N0 INCON- "~ 1his subsection we shall determine an alternative expres-
sistency can be seen graphically from Fig. 2. There we Sho\gion forj# that is given in terms of the two-nucledmatrix

a contribution to the terrri(DalDéiDaldfl)? where the  { and gauged matrix t*. To do this, we again take left and
single-scattering contribution to eaghis used and the inter- right residues ofG* at the three-body bound-state poles;
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however, this time we use an expression @& which is  The first term on the RHS corresponds to a one-body current
obtained by gauging Eq56) whereG is written in terms of ~ while the second term gives the two-body interaction current.
the AGS Green functiof). For the purpose of taking resi- Thus the total one-body current contribution to the three-
dues it is sufficient to gauge just the connected parGof nucleon bound-state current is

Thus, making the choicé&)=—ZP;,, we are led to the

. . - 1 1
gauging of Eq(61): j o epod Vi Plzfdl 1t DBt Py,— (Thdz 1)t

Ge= > [(GoT)*ZT,Go+ GoT1Z2#T,Gg
CR

Re +T4d; My 1Py, | WY (98)

+GoT1Z(T5Go) . (92 N . =
Again using the bound-state equations ; and ¥, we
As discussed in Appendix C Z, contains the three-nucleon May write this result as

bound-state pole with the pole structure being given by Eq. o 1

(C22. The .bound-sfcate poles d@B% can therefo're be re- igne-body:‘l’f(rgdildflﬂLTéLdIldle) E_p12 vl
vealed by simply using Eq87) to express the middle term

of Eq. (92) (containingZ*) in terms ofZ factors. It is seen (99
that only this middle term contains both the left and right ,
bound-state poles; thus, in the vicinity of these poles one can D. Current conservation
write the seven-point function as To prove current conservation for observables expressed
P in terms ofZ*, it is useful to first deduce the WT identity for
IWo¥1 g 141 Z*. To do this we write Eq(87) as
GH= GyT,———=(D, DiD, "d )
LCERC 0 1K2—M2( o Yo%o o o
B Z+=7d,'d4+ZA4Z, (100
Al Py P
_ oW
—d 4P yy) P2—M2TZGO' (93)  Where

Ay=(T#dyt+T4d; Hd, —dy 5Py, (10D
Now using the results of Appendix B, we have th#i 4 then foll H q . N
_ K e TP . . and then follow the procedure of | in Sec. IlIB2. Thus we
—ELCGOTl\PZ and‘Pp—E_Rc‘PszGo. Comparing with Eq. introduce the quantities
(92) and using¥,= — P,V then gives the desired expres-

sion &i(kikoKs,p1pops) = iej(2m)125% ki—p;—q)
— X 8%k —p;) 8*(ke—py), (102
j# =W d; M4 (Dhd; S+ T Y, Pl WE . (94 (=P 4P, (102
_ whereijk represent a cyclic ordering of 123. This allows us
Using the bound-state equations &, and¥, [Eq. (B11)  to write the WT identities for the gauged two-body potential
and Eq.(B12)], it is easy to see that and gauged one-particle propagator in three-particle space in
o o terms of commutators as
VAT #d; td, TP W P =T Ad d PP, (95 .. .
11505 "dz Pog¥y =W3T5ds "dy Pugby. (99 quvili=le+eqvil, q.dfllh=[g,d], (103
We may thus write Eq(94) as

wherel;, I;, andl, are unit operators in the space of par-
j,u:‘I,TPlzdIlt;fPlzq,]F-’_\I,T(F;zid;ldil :g:l;a:é, {h;ndk respectively. Using Eq$103), it is then easy

+15d; 'y )P1YY, (96) - .

a.thl=[es+ey,tz],  q,0illh=—[e.d .

whose form corresponds to the bound-state current given by (1049

us in Ref.[9] in the context of the spectator approach to the . .

three-nucl[e(])n system. P bp 'Lhe f|r_st term on the RHS of Eq100 contracted withg,
Equation(96) may appear to be in a form where the first (NUS gives

term on the RHS corresponds to the two-body interaction

FA- Ak —  TTHEA. — —TTa -1
current and the second term corresponds to the one-body G,2d, 705 =0,2T5d,= ~2[€;,d, 7]d;

current. Yet this is not the case sinein fact contains both _ —2[& GG (105
types of contribution. To see this explicitly we gauge Eq. 20 =0
(67) for t in this way obtaining while for the last term of Eq(100) we first deduce that
1 1 1 A Tt e - _ra.+e -1
He Z{DE - " - q.A5=—[este;,Gy ]—[esteq,tz]d; "Pyy.
t4=StDft+| 1+ 5tDo || 1+ ZDOt). (97) " (106
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By using Quila=di *pale;,01¢d; P =d; *e,d; h1d,d5Ud,ds b
7 1=Gyl+d; Mt,Py,, (107) — $10505Ud,da¢prdierd; (116

which follows from Eq.(85), the previous equation reduces By shifting momentum arguments, tieg factors stop the
to cancellation of externaiil’l terms with the neighboring,
b _TA LA -1 -1_5-1\/4a _2 propagators contained . Thus for on-mass-shell nucleons
AuA2=~[est e, 2 (G =2 (e eZ)'(108) d; =0, and both terms on the RHS of E{.16) become
zero.
The WT identity for the last term of E¢100) thus becomes
o A m e e i A E. Normalization condition and charge conservation
AuZA5Z=[€3t e, 2]~ (€11 €)Z+ZGy (&1 €p)Z. The normalization condition for the three-body bound-
(109 state wave function that was given in E41) follows almost
To simplify this expression further we use EG07) and the mmediately from the basic integral equation f8rEq.(19).
fact that[,,,]=0, to obtain The expression obtained gives the normallzatlo_n condition in
2:"2 ' terms of the three-body potentidlland therefore in terms of
input two-body potentials. The disadvantage of these quanti-
ties has already been discussed. To obtain the normalization
condition without explicit reference t@ we follow a similar
procedure to that foG, but instead use the AGS Green func-

2G51é12= élz_idgltzplzél’z: élz_idgléztzplzz

= élz—ZGalé2G0d£1t2P122= é12+2661é22

~7Gy8,G,. (110 tionZ. From Eq.(107) it follows that
Substituting this result into Eq109), we obtain Z=7(Gy ' +d; 't,P1)Z. (117
0,ZA47=[eZ]+Z[e;,G4 ]Gy, (111))  Using the pole structure ot given in Eq.(C22 and then

taking residues, one obtains
wheree=e, +e,+e;. Combining Eq.(111) with Eq. (105
. . = .. — 9
we finally obtain the WT forz#: i\PTE(GalJFd;ltzplz)\Pg:l’ (118
q.2"=[eZ]. (112
which is the normalization condition expressed in terms of
The expression for the three-nucleon bound-state cujfgnt the input two-bodyt matrix and Faddeev components of the

Eq. (94), can be written as bound-state wave function.
. Analogous to the normalization condition for the three-
jM:\If?A/Z’“\PE (113 body bound-state wave function is a condition known as

“charge conservation” for the three-body bound-state elec-
and on comparison with Eq100) is recognized to be the tromagnetic current. The field theoretic definition of the

result of taking simultaneous residuesZ#f at the initial and ~ three-body bound-state current is given by E8f). From
final bound-state poles. Taking such simultaneous residud§is expression, the translational invariance of the electro-
of Eq. (112), the left-hand side of this equation givasj*, magnetic current operator, and the fact tRY is an eigen-
while the right-hand side gives zero sinééas only a single state of the charge operator, it is easy to show that

pole; in this way we obtain the current conservation equation
for the bound-state curreng, j*“=0.

To prove that_ théNd—Nd electromagnetic transition €U \whereeis the charge of the three-body bound state. Equation
rent of @'(80) Is conserved, we write the WT identity for (119 constitutes the charge conservation condition and cor-
¢t and ¢ [see Eqs(153 of 1] in three-particle space as  responds to the fact that the full charge of the three particles

o _ . is being probed by the external electromagnetic probe. As
duoili=(extes)dr, q,711=—di(exte3), such, it is an essential condition that needs to be satisfied by
(114  any model calculation. Within our model the expression for
j* is given by Eq.(96). Assuming the Ward identities for the

j“(P,P)=2eP, (119

and note that Eq(112) implies one- and two-body input, it is a matter of simple algebra to
_ o prove that this expression does indeed satisfy the charge con-
q,U“=[eU], (115  servation condition of Eq(119. Such a proof has already

5 3 been given by us in Ref9] for the case of the three-nucleon
whereU = —ZP,,. Using the last three equations, we obtainbound-state current within the spectator approach. As there is
from Eq. (80) that a direct one-to-one correspondence between(®g).and the

044004-10



GAUGING OF EQUATIONS METHOD. II. ... PHYSICAL REVIEW G50 044004

bound-state current in the spectator approfeh. (25 of  these properties are well known, we include them here both

Ref.[9]], this proof need not be repeated here. for completeness and to show how they may be derived
within the formalism used in this paper.
V. SUMMARY Using the definition ofJ;, given in Eq.(44), it is easy to
show that

We have applied the gauging of equations method, intro-
duced in the preceding paper for distinguishable partidgs o 1 o o
to the_mteg_ral equations desc_nblng the strong interactions of Uik=0ikGo+ > 2 6i;GoV;Goojk
three identical relativistic particles. For simplicity of presen- !
tation, we restricted the discussion to identical particle sys- 1. .
tems like that of three quarksq@q) or three nucleons +Z E 8;;GoV;GPVGodnk- (A1)
(NNN) where there is no strong interaction coupling to two- In
particle channels. Once the strong interaction equations al
specified, the gauging of equations method couples an exter-
nal photon to all possible places in the strong interaction 1
model, while at the same time preserving the proper identical Ull— 5 Go(Vo+V3)Go+ ZGO(V2+V3)GD(V2+V3)GO,
particle symmetry of the original equations. In this way we
have obtained gauge-invariant expressions for the various
electromagnetic transition currents of such identical three- U21— Go+ =
particle systems.

Two essentially different integral equations were gauged.

The first was the integral equation for the three-particle {j. —g +EG V.G +EG D

. . . ) 31=Go 0V2Go o(V1+V3)G=(V,+V3)G.
Green functiorG, Eq.(12). This equation has a disconnected 2
kernel that is defined in terms of the two-body potential (A2)
As a result, the electromagnetic transition currents that fol-
low are themselves expressed in terms/adnd the gauged
potentialv#. Although formally correct, such expressions for
the transition currents may not be the most useful for prac-"
tical calculations. We have therefore considered an alterna-
tive formulation of the strong interaction problem interms of  p_\/.p,.=V,, PyVoPos=Va, PoV3Pas=V,,
four-dimensional versions of the well-known AGS equa- (A3)
tions. Such integral equations have a kernel that is connected
(after one iterationand are expressed in terms of two-bddy the following two relations are easily deduced from Eqgs.
matrices. For identical particles there are many ways to detA2):
fine the AGS amplitude, all giving the same three-body _ ~ - -
Green functionG. We have introduced an AGS amplitude P23U31P23=Uz;,  PagUziP2s=Uy;. (A4)

that satisfies a particularly simple AGS equation, Ef),
where the inhomogeneous term consists of a single unpe?n a similar way one can deduce how any AGS Green func-
muted term. This equation is ideal for our gauging proce- tion transforms under the simultaneous exchange of two cor-

dure. By contrast, the AGS equation used previously iresponding left- and right-particle labels. The following is a

three-nucleon calculation8] is inconvenient for gauging Ccomplete list for the cask=1:
purposes as both its inhomogeneous term and kernel consist -~

of sums over two different permutations. After gauging, our PiU 11P12_U22*
AGS equation gives practical expressions in terms of the _ - - - - -
two-bodyt matrix t and gauged matrix t“, for all the elec-  P23U11P23=U11,  P2aU21P3s=Usz1,  PgU31Prs=Uyy,
tromagnetic transition currents of three identical particles. In _ _ _ _
this sense, the gauging of equations method has provided Eglu 11P31—U33, P31U2P31=Us3, P3U3P31=Ug3.

un|f|ed descrlptlon of the strong and electromagnetlc interac-

written down by inspection.

For the cask=1 we explicitly have that

1 1
5 GoV3Got Go(V1+ V3)GP(V,+V3) Gy,

From Eqs.(17) and (42) it follows that GP commutes with
all elements of the symmetry grouy: P,]G Pij =GP (of

course forG there is the stronger symmetry propeFtyG

GPjj=—G). Now using the fact that

PlzU 21P12= U 125 F:'120 31P12= U 32
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The three-body Green functida is defined by Eq(1). If

APPENDIX A: SYMMETRY PROPERTIES the field theory admits a three-body bound state, tGem
OF Uj; FOR IDENTICAL PARTICLES behavior in the vicinity of the bound-state pole is given by
Eq. (36) where the bound-state wave functit} is defined
Here we derive some useful properties of the AGS Greem Eq. (37). These equations are true whether the three par-
functions U;, in the case of identical particles. Although ticles are identical or not.

044004-11



A. N. KVINIKHIDZE AND B. BLANKLEIDER PHYSICAL REVIEW C 60 044004

In the identical particle case the bound-state wave equaFhese symmetry relations enable us to write Bf}) as
tion follows from Eq.(19), G=G§{+ GyVG, by taking resi-
dues at the three-body bound-state pole: V(123 =W (123 +W,(123 +W5(123

= ,(123+V,(23) +V,(312, (B9

V=GV, (B1)
whereV is given by Eq.(16). In the absence of three-body or in general for any fixed,
forces,
. T=> ¥, (BY)
PC
V=§(Vl+V2+V3), (BZ)

the sum being over cyclic permutations of the particle labels.

and the Faddeev wave function components are defined b)?ég‘)”gm tﬁ‘i sglsmmetry relation$7) enable us to write Egs.

1
Wi=5GoVi¥, (B3) V(123 =D(23)1(23,23")W,(2'3"'1)  (B10)
or in general, for any,
so that g 4
\If:\lfl-i-\lfz-i-\lfg_ (B4) \I,iz _GOTiPij\Piz _GOTiPik\I,i' (Bll)
Similarly,
Using Eq.(47) it then follows from Eq.(B3) that the W, y
satisfy the coupled equations W= — WP, T,Gy=—V;P,T,Go. (B12)
1
lFi:EGoTi(\Pi”L‘Pk)’ (BS) APPENDIX C: THE GREEN FUNCTION Z
whereijk are cyclic. In dealing with identical particles, only one AGS-like
By writing Eq. (B3) explicitly showing particle labels, for Green functiorlJ is needed to describe all possible processes
example, of the three-body system. The connected part of the three-

1 body Green functionG,, is expressed in terms &f accord-
W,(123 = =Dy(23)v(23,23")W(12'3"), (B6) ing to Eq.(55). In this appendix we pr(isent a derivation of
2 Eq. (55) and show how various forms f&t can be specified.

the following symmetry relations are easily deduced: One of these involves the AGS-like Green functiomwhich,
because of its simplicity, is chosen for the purposes of gaug-
PpW=-V;, Pp¥,=-V¥,, Py¥,;=-¥;, ing. The pole structure a is also discussed.
PaWo=—Vy, PyWpo=—V;, Pp¥=-¥, 1. Derivation
PioWs=—W3, PyWy=—V;, Pyu¥;=—"¥,. Writing out the sums in Eq(54) and showing particle

(B7) labels explicitly, this equation can be written as

G.(123,12'3")= %D0(23)t(23,2’3”)[011(12”3”,1’2”’3”’)t(2”’3”’,2’3’)D0(2’3’)
+0,,(12'37,1"2"3")1(3"1",3'1')D(3' 1) + U4 12/3",172"3" )t(1"2",1'2" )Dy(1'2") P
+ %D0(31)t(31,3’1”)[021(1”23’,1’2”’3”’)t(2"’3”’,2’3’)D0(2’3’)
+0,(1723,1"2"3")1(3"1",3'1")D(3' 1) + Uy 1723',172"3" )t(1"2",1'2' )Dy(1'2") ]P
+ %DO(12)t(12,1”2”)[031(1”2”3,1’2”’3"’)t(2”’3'”,2’3’)D0(2’3’)

+032(1//2”3,]-/”2/3///)t(3///1///,3/1/)D0(3/1/)+033(1"2//3,]-///2///3/)t(l”/z/”,l!2/)D0(1/2!)]P,
(Cy
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where integrals over double- and triple-primed momenta are" " 1 r— i — 1
understood. The symboB in the above equation indicate 2% [—2 = 2—2 — zDQ(T ol
sums over all permutations of the initiglight) particle la-

bels. Carrying out these permutation sums and taking into FIG. 3. lllustration of Eq.(C10) showing how the final state
account the symmetries of th}lj discussed in Appendix A, momenta of the AGS-like Green functiéh are permuted in the
this equation can be simplified to read integral term.

G.(123,12'3") N 1 -
¥(123,12'3")= 5[X(123,12'3") - X(132,12'3")].

1 ~
= 5PDy(23)1(23,23)X(12'3" 1'2"3") cn
X1(2"3" 2'3')Dy(2'3") Py, (c2 We note thatY has the symmetry propert§,sY =Y P,s=

—Y and satisfies the integral equation
where the symbol$, indicate sums over cyclic permuta-
tions of both initial- and final-state particle labels, and where

- 1
- i ) Y(123,12'3")=-[G(123,31'2")+Gy(123,23'1")
the Green functiorX(123,12'3’) is defined by 2

X(123,12'3")=U,4(123,12'3")+ U,4(123,31'2") ~Go(182,3172) = Go(132,23'1)]

~ 1 ~

+0,4132,21'3"). (C3) +5Dg(12(12,12)V(31'2",1'2'3)
Note the symmetry relatiok= P,gXP,3. The last two terms 1 B
of Eq. (C3) contribute equally to E¢(C2); nevertheless, we + EDo(31)t(31,3’1”)Y(23”1",1’2’3’)-
do not defineX asU,,(123,12'3')+20,,123,31'2') as
this would not make it easy to write an integral equation for (C8
X. Using the AGS equations fd¥y; andUy,, itfollows that  ajthough this appears to be a more complicated equation
the X of Eq. (C3) satisfies the integral equation than Eq.(C4), it is easily shown tha¥ can alternatively be

specified as

X(123,12'3")=Gy(123,31'2")+Gy(132,21'3")

- 1. -
1 - Y(123,12'3")= Z[Z(123,31'2")+Z(123,23'1")
+ 5Do(12)(12,12")X(31'2",1'2'3) 2

1 ~7(132,31'2')-7(132,23'1")],
+5Do(3D1(31,31)X(23'1",1'2'3"). (C9)
(C4  whereZ satisfies the especially simple equation

Writing Eg. (C2) in the shorthand form as 7(123,12'3')=Gy(123,12'3")

1 ~ ZVAY, rqn qrorar
GCZEPCGOTIXTlGOPCr (CS) +D0(31)t(31,31 )Z(23'1",1'2'3").
(C10

we have in this way derived E¢SS) with U being specifi- - Thjs equation constitutes a threefold reduction in the size of
cally given byU=1/2X. This form forU has been used by the kernel in comparison with the original AGS equations,

Glockle et al. in practical calculationg8]. However, it is  Egs.(50). One can write Eq(C10) in shorthand form as
possible to choose other forms fdr, and as we show below,

one of these is particularly simple. Z=Gy— GoT,P1,2=Gy—GoP1,T1Z, (C11)
Since the two-body matrices in Eq(C2) are fully anti- . L o
symmetric, we can equally well write this equation as the last version of which is illustrated in Fig. 3.

It is recognized that the kernel of this equation is identical

G.(123,12'3") to the kernel~of the bound-state equation fBp. As Eq.
(C11) impliesZ ™ *=G, '+ T,P,, it also follows that

1 ~
— _PC D0(23)t(23,2,3”)Y(12’3”,1’2"’3”’) _ _ 5
2 Z:GO_ZT2P1260:G0_2P12T1G0, (C12)

X1(2737,2'3")Do(2'3") Pe, (C6) which is an alternative equation f@ whose kernel is iden-

where tical to the kernel of the bound-state equation oy.
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Substituting Eq.(C9) into Eg. (C6) and taking into ac- ~ R(123,12'3")
count the antisymmetry of the two-bodynatrices we obtain Z(123,12'3")~i W (C1Y)
1
G(123,12'3 ):EPCD0(23)t(23'23 ) it is our goal to deduce the explicit form of the residue
B R(123,12'3").
X[Z(12'3",3"1'2") Taking the residue of Eq.C10) at the bound-state pole

_ gives the equation
+ Z( 12/3//’21//3///1 /)]

X1(2"3",2'3")Dy(2'3" )P, .
(C13

R(123,12'3")=D,(31)t(31,3'1")R(23'1",1'2'3").
(C18)

~ With the initial momenta fixed, this equation coincides with
The twoZ terms in Eq.(C13 in fact contribute equally to the equation for¥,(123), the third Faddeev bound-state
G.. This can be seen by using Ef12) to write wave function component—see E@11). On the other
5 hand, we can use E§C12) to write
Z(123,31'2')=G(123,31'2")
~ 7(123,12'3")=G,(123,12'3’
+27(123,12"3")t(1"2",1'2")Dy(1'2"), ( )=Gol )
(C14 +7(123,23"1")t(2"3",2'3")Dy(2'3").
~ (C19
Z(123,23'1')=G(123,23'1")
~ Taking residues of this equation gives
+2(123,31"2")t(3"1",3'1")Dy(3'1").

(C15 R(123,12'3")=R(123,23"1)t(2"3",2'3")Dy(2'3"),

When used in Eq(C13), the antisymmetry of the two-body (€20
matrices makes the last terms of these equations identicakhich for fixed final momenta coincides with the equation

while 'th'e cyclic permutation opera}oPsc ensure the identity for 51(1,2,3,)_5% Eq. (B12. We may thus write
of their inhomogeneous terms. Using the antisymmetrysof o) — o, )
once more, we arrive at our final form for the AGS GreenR(123,12'3")=CW¥,(123)¥,(1'2"3") whereC is a con-

function U that is to be used in Eq55): stant. To determin€ we useU=—ZP,, in Eq. (55 and

take residues of both sides of the equation, in this way ob-
D = _zplz, (C16) taining

whereZ is given by Eq.(C10. In view of the numerical iWW=—P_,G,T,C¥,¥,P;T,GoP..  (C20)

simplicity of the equation foZ, it is this form forU that we

choose in this paper for the purposes of gauging. Using the results of Appendix B it is then easily seen that
C=i. We have thus shown that the pole structureZofs

2. Pole structure ofZ given by

If the three-body system admits a three-body bound state,

it is clear from Eq.(55) thatU and, thereforeZ have a pole Wo(123W,(1'2'3")

A ' 7(123,12'3")~i > (C22
at the bound-state mab& Writing the pole structure of as Ps—M
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