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Gauging of equations method. I. Electromagnetic currents of three distinguishable particles

A. N. Kvinikhidze* and B. Blankleider
Department of Physics, The Flinders University of South Australia, Bedford Park, SA 5042, Australia

~Received 4 January 1999; published 3 September 1999!

We present a general method for incorporating an external electromagnetic field into descriptions of few-
body systems whose strong interactions are described by integral equations. In particular, we address the case
where the integral equations are those of quantum field theory and effectively sum up an infinite number of
Feynman diagrams. The method involves the idea of gauging the integral equations themselves, and results in
electromagnetic amplitudes where an external photon is effectively coupled to every part of every strong
interaction diagram in the model. Current conservation is therefore implemented in the way prescribed by
quantum field theory. We apply our gauging procedure to the four-dimensional integral equations describing a
system of three distinguishable relativistic particles. In this way we obtain the expressions needed to calculate
all possible electromagnetic processes of the three-body system. An interesting aspect of our results is the
natural appearance of a subtraction term needed to avoid the overcounting of diagrams.
@S0556-2813~99!04609-9#

PACS number~s!: 11.10.St, 13.40.2f, 21.45.1v, 25.30.2c
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I. INTRODUCTION

With the advent of new experimental facilities like th
Thomas Jefferson National Accelerator Facility~TJAF!, the
Electron Stretcher Accelerator~ELSA!, and the Mainz Mi-
crotron~MAMI !, there is currently great interest in the use
photons and electrons to probe the structure of hadronic
tems. In practice, this means using electromagnetic probe
induce a variety of reactions among hadrons. Here we s
be concerned with those reactions where effectively only
external photon is involved. This includes not only photoa
sorption and photoproduction reactions, but also elect
scattering and electroproduction when calculated to the l
est order in the electromagnetic interaction. On the theor
cal side such reactions are described by^Jm&, the matrix
element of the electromagnetic current operator, and it m
ultimately be the goal of the theorist to construct mod
where^Jm& describes the experimental data as accuratel
possible.

An essential constraint on̂Jm& is that it must obey cur-
rent conservation, expressed by the continuity equa
]m^Jm&50. Current conservation is a consequence of cha
conservation and is therefore a fundamental property of
theory. On the other hand, because one uses models to
proximate the full theory, current conservation is not gu
anteeda priori. For this reason, much effort has been d
voted to the question of how to impose current conserva
within a particular model of strong interactions. In a semin
paper, Gross and Riska~GR! @1# have shown how to con
struct the conserved current of two nucleons described by
Bethe-Salpeter~BS! equation. By analyzing specific meso
exchange diagrams of the BS kernel, they showed that
rent conservation is achieved when the two-nucleon inte
tion current is constructed by attaching photons to
possible places in the BS kernel. Although indispensable
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the case of a two-body system, this result does not appl
systems consisting of three or more particles. There is a
no straightforward way to use this result to construct
electromagnetic current of three particles even in the c
where only two-body strong interactions are present.

Here we would therefore like to present a differe
method for constructing conserved currents that is applica
to any number of particles whose strong interaction p
cesses are described nonperturbatively by integral equat
This method involves a direct gauging of the equations the
selves in the sense that a vector indexm is added to all terms
of the equations in such a way that a linear equation
m-labeled quantities results. Proceeding in this way, we
tain integral equations for the gauged quantities of inter
~e.g., the gauged Green functionGm or the gauged scatterin
t matrix Tm) expressed in terms of other gauged quantit
that are known or that can be easily constructed~typically
the gauged one-particle propagatordm and the gauged two
particle potentialvm). This approach, which we shall simpl
refer to asgauging the equations, results in the external pho
ton being effectively coupled everywhere in the strong int
action model, so that current conservation is guaranteed

Using this method for the case of two nucleons, we obt
that the hadronic current is a sum of matrix elements of
gauged nucleon propagators and the gauged BS kernel.
our result, in this case, coincides with the one of GR. Ho
ever, our method is also easily applied to other systems
the simplest strongly interacting system going beyond
two-body problem is that of three particles, we choose
illustrate the general nature of our gauging method by app
ing it to the relativistic three-body problem whose stro
interactions are described by standard four-dimensional i
gral equations. That is, we consider systems like that of th
nucleons or three quarks whose strong interaction proce
do not involve coupling to the two-body sector. To keep t
presentation as simple as possible we restrict the discus
to the case of three distinguishable particles. The gaugin
three identical particles involves additional considerations

f
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particle exchange symmetry and is the subject of the acc
panying paper@2#.

Although four-dimensional three-body equations have
ready been pursued numerically by Rupp and Tjon@3#, there
has not been a generalization of the Gross-Riska result to
case of three particles. As a result, there is presently no
orous derivation of the conserved current for a relativis
three-body systems. This paper is therefore devoted to sh
ing how the gauging of relativistic three-body equatio
leads to gauge-invariant expressions for the various elec
magnetic transition currents of a three-particle system. It
feature of our approach that the gauge invariance of our
pressions is not imposed in anad hoc fashion, but rather
according to the way prescribed by field theory, namely,
coupling photons to all possible places in the strong inter
tion model.

To show the flexibility of the gauging method, we apply
to two different relativistic three-body equations. The first
these is the integral equation for the 3→3 Green function
whose kernel is defined in terms of two-body potentials. T
leads to three-body electromagnetic currents which are
pressed in terms of two-body potentialsv and gauged two-
body potentialsvm. In the second approach, we gauge t
four-dimensional version of the Alt-Grassberger-Sand
equations@4# in order to obtain electromagnetic currents th
are expressed in terms of two-bodyt matricest and gauged
two-body t matricestm. Our final results consist of gauge
invariant expressions for the electromagnetic current of
three-particle bound state, as well as the various electrom
netic transition currents of three particles. Thus, in the c
of three distinguishable nucleons, our expressions desc
the electromagnetic form factors of the boundNNN system
(3H), and the processesNd→Ndg, Nd→gNNN, g3H
→Nd, andg3H→NNN.

A notorious problem plaguing many four-dimensional a
proaches is the overcounting of diagrams. For perturba
graphs, such overcounting can be corrected simply by s
tracting the overcounted terms. However, when overcoun
occurs within the scattering integral equations themselv
the way to solve the overcounting problem becomes hig
non-trivial. Indeed, only recently has such an overcount
problem been solved in the context of four-dimensional
tegral equations for thepNN system@5,6#.

Overcounting can arise when reducible diagrams h
ambiguous last cuts@5,7,8#. An example of an ambiguou
last cut for the four-body problem is given in Fig. 1~a!. Luck-
ily, there is no overcounting in the four-dimensional scatt
ing equations considered here. This is because of the pu
three-body nature of our system~there is no coupling to two-
body channels! which makes all last cuts unique—see F
1~b!. However, as soon as coupling to an external photo
made, the system effectively obtains coupling to the fo
body sector and overcounting again becomes a possib
To see this explicitly, consider the calculation of electro
scattering off a three-body system in the relativistic impu
approximation. One contribution to this process is given
Fig. 1~c!. The diagram shown contains ambiguous last c
of the same type as in Fig. 1~a!. This ambiguity needs to be
carefully taken into account when summing the full pert
04400
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bation series for the electron scattering process. For exam
to find the expression describing electron scattering of
bound three-body system in the relativistic impulse appro
mation, one cannot simply use the direct generalization
the nonrelativistic expression as given diagrammatically
Fig. 1~d!. Interpreted as a Feynman graph, this diagram ov
counts interactions between the two spectator particles~the
lowest two lines in the diagram! since such interactions ar
contained in both the initial and final three-body bound-st
wave functions. This overcounting corresponds to the d
gram of Fig. 1~c! being included twice, once for each last c
shown. Just this type of overcounting appears to be pre
in Rupp and Tjon’s calculation of the electromagnetic fo
factors of 3H.

An important feature of the gauging of equations meth
is that it not only attaches photons everywhere in the thr
body amplitude, but it also does this without introducing a
overcounting. Indeed, it is found that the gauging proced
itself gives rise to subtraction terms that effectively remo
all overcounted contributions. In this way the complicatio
brought about by ambiguous last cuts like that of Fig. 1~c!
are taken care of automatically.

Preliminary results of the present paper~I! and the follow-
ing paper~II ! were first reported a few years ago@9#. At
about the same time, an effectively identical gauging meth
was presented independently by Haberzettl and applie
the pN system@10#. In the meantime we have applied th
gauging of equations method to the spectator formalism
Gross@11# to generate gauge-invariant three-dimensional
pressions describing any hadronic or quark system inter
ing with an external electromagnetic probe@12#. In particu-
lar, we have derived the three-dimensional expressions
the various electromagnetic transition currents of the thr
nucleon system within the spectator approach@13#. In this
sense, the results of Ref.@13# can be considered as a gaug
invariant three-dimensional reduction of the fou
dimensional results presented in I and II. We have also
plied the gauging of equations method to thepNN system
@14# where, as previously mentioned, the overcounting
diagrams provides an extra degree of complexity. For th
works the present paper and II together form the basic th
retical foundation, and provide the references where all
missing details are given.

Although the power of the gauging of equations method
well demonstrated in the example of the three-body sys

FIG. 1. Examples of last cuts~dashed lines! in relativistic three-
and four-body processes.~a! Ambiguous last cuts in the four-bod
problem. ~b! Unique last cut in the three-body problem.~c! Am-
biguous last cuts in electron scattering~top line! off three particles
~bottom three straight lines!. ~d! The traditional picture of elastic
electron scattering off a three-body bound state in impulse appr
mation. Interpreted as a Feynman graph~with the ellipses represent
ing the bound state wave function!, this diagram is consistent with
the graph of~c! being included twice, once for each last cut show
The diagram in~d! therefore contains overcounting.
3-2
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GAUGING OF EQUATIONS METHOD. I. . . . PHYSICAL REVIEW C60 044003
considered here, it should be emphasized that the s
method is just as easily applied to other strongly interact
systems~quark or hadron! including those where the numbe
of particles is not conserved. Indeed, as mentioned ab
this method has recently been used to gauge thepN @10# and
pNN systems@14# where pion absorption is included.

As the gauging of equations method couples one exte
photon everywhere in the strong interaction model, it a
forms the basis for exact descriptions of more complica
electromagnetic processes. For example, we have rec
shown how to use this method to incorporate aninternal
photon into all possible places in a strongly interacting s
tem @15#. The resulting expressions provide a way to calc
late the complete set of lowest order electromagnetic cor
tions to any strong interaction model described by integ
equations. Being complete, these electromagnetic correc
are therefore gauge-invariant. The gauging method can
be used to describe processes with more than one pho
For example, by gauging a strong interaction scattering eq
tion twice, we would obtain gauge-invariant expressions
the corresponding Compton scattering process.

Finally, it is important to note that although we are co
cerned in this paper with the electromagnetic interaction
which gauge invariance~or current conservation! is a major
issue, the gauging of equations method itself is totally in
pendent of the type of external field involved. In this conte
the vector nature of the external field is not of importan
and can equally well be a scalar, axial vector, or eve
tensor field. Thus, for example, all the expressions for tr
sition currents developed in this paper hold also for ca
where the external field is due to strongly or weakly int
acting probes for which current is not conserved~of course
the exact form of the gauged inputs would need to be cho
appropriately!.

II. GAUGING TWO DISTINGUISHABLE PARTICLES

A. Gauging the two-particle Green function G

Gross and Riska@1# have shown how to construct a co
served current for the two-particle system described by
Bethe-Salpeter equation. In addition to the one-body curr
which in general is not conserved, one also needs the t
body interaction current obtained by attaching a photon
each place inside all the Feynman diagrams defining the
kernel. Such a current satisfies the two-body Wa
Takahashi~WT! identity @16# corresponding to the given
model of strong interactions. On mass shell, this iden
guarantees that the matrix element of the current oper
satisfies the continuity equation. To obtain their result, Gr
and Riska applied the one-body WT identities@17# to a num-
ber of meson-exchange diagrams of the BS kernel. Here
would like to introduce a different method, that of gaugi
equations, by rederiving the Gross-Riska result for the c
of two particles. In the subsequent sections, we shall ill
trate the general nature of our method by applying it to
case of the three-particle system.

The two-body WT identity@16# can be written as
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qmGm~k1k2 ;p1p2!

5 i @e1G~k12q,k2 ;p1p2!1e2G~k1 ,k22q;p1p2!

2G~k1k2 ;p11q,p2!e12G~k1k2 ;p1 ,p21q!e2#, ~1!

where p1p2 (k1k2) are initial ~final! momenta of the par-
ticles, the photon is taken to be incoming with momentumq
so thatk11k25p11p21q, G is the full two-body Green
function given by

~2p!4d4~p181p282p12p2!G~p18p28 ;p1p2!

5E d4y1d4y2d4x1d4x2ei (p18y11p28y22p1x12p2x2)

3^0uTC (1)~y1!C (2)~y2!C̄ (1)~x1!C̄ (2)~x2!u0&, ~2!

andGm is the corresponding five-point function:

Gm~k1k2 ;p1p2!

5E d4y1d4y2d4x1d4x2ei (k1y11k2y22p1x12p2x2)

3^0uTC (1)~y1!C (2)~y2!C̄ (1)~x1!C̄ (2)~x2!Jm~0!u0&.

~3!

In the above,C ( i ) andC̄ ( i ) are Heisenberg fields of particl
i corresponding to some strong interaction LagrangianL, T
is the time ordering operator,Jm is the quantized electromag
netic current operator,u0& the physical vacuum, andei is the
charge of thei th particle. If the particles are isotopi
doublets, thenei includes an isospin factor; e.g., for nucleo
ei5

1
2 @11t3

( i )#ep wheret3 is the Pauli matrix for the third
component of isospin, andep is the charge of the proton.

It is evident from the application of Wick’s theorem t
Eq. ~3! thatGm contains all diagrams that can be construc
from G by attaching an external photon to all possible plac
~i.e., to all propagators and all vertices! in the Feynman dia-
grams ofG. It might also be useful to write down anothe
well-known expression forGm which identifies the proce-
dure of attaching single external photons with the ma
ematical procedure of taking a functional derivative:

Gm~k1k2 ;p1p2!5 i
d

dAm~0!
GA~k1k2 ;p1p2!U

Am50

, ~4!

where

GA~k1k2 ;p1p2!

5E d4y1d4y2d4x1d4x2 ei (k1y11k2y22p1x12p2x2)

3^0uTC (1)~y1!C (2)~y2!C̄ (1)~x1!C̄ (2)~x2!

3expS 2 i E Jm~x!Am~x!d4xD u0&, ~5!
3-3
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A. N. KVINIKHIDZE AND B. BLANKLEIDER PHYSICAL REVIEW C 60 044003
with Am(x) being an external nonquantized electromagne
field. Note thatGA is just the translationally noninvarian
Green function corresponding to the LagrangianLA(x)
5L(x)2Jm(x)Am(x).

For local field theory with distinguishable particles th
electromagnetic current operator is given by

Jm~x!52 i(
i 51

2
]L

]~]mC ( i )!
eiC

( i )1Jother
m ~x!, ~6!

whereJother
m (x) consists of partial derivatives with respect

all other fields that are present in the LagrangianL. Note that
we have used translational invariance to write Eq.~3! in
terms ofJm(0), and wehave defined bothG and Gm to be
without total four-momentum conservingd functions. In Eq.
~1! we have used a notation where the two-body Green fu
tion G is labeled by four momentum variables even thou
only three are independent. Such notation allows us to w
down the WT identity in an especially simple form that ea
ily generalizes to any number of particles.

One can classify the contributions toGm into two groups
@18#. The first of these consists of all Feynman diagrams t
can be constructed fromG by attaching a photon to an ap
propriate diagram ofG. An example is given in Fig. 2~a!.
The second group consists of diagrams that cannot be
tained fromG by attaching a photon, an example of which
given in Fig. 2~b!. The special feature of the second group
that each contributing Feynman diagram satisfies gauge
variance all on its own.

The goal of this paper is to show how to construct
gauge-invariantGm by attaching a photon to all possib
places in every Feynman diagram contributing toG. We
shall refer to this attaching of photons everywhere as
gauging of G. On the other hand, diagrams like that of Fi
2~b! are current conserving from the outset, and their c
struction is a separate problem which will not be conside
here. Thus for the purposes of this paper, we takeGm to be
the result of the gauging ofG, with the understanding tha
the neglected contributions can always be added separ
without affecting the question of gauge invariance.

In a similar way, we use a superscriptm to indicate the
vector quantity obtained by attaching photons everywher
an amplitude or potential. However, in this case we will
quire thatno photons be attached to external linesof Feyn-
man diagrams making up the amplitude; nevertheless,
shall still refer to the process of attaching the photons to
other places in the amplitude asgauging.

FIG. 2. Examples of the two types of Feynman diagram mak
up Gm. ~a! A diagram that can be constructed by attaching a pho
to a strong interaction diagram ofG. ~b! A diagram that cannot be
constructed by attaching a photon to a diagram ofG.
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The WT identity is usually given in terms of the exa
strong interaction Green functions of the underlying fie
theory. It follows that this identity must also be valid to an
order with respect the strong interaction coupling consta
Here we would like to point out that the WT identity is als
valid for any particular single diagram of the strong intera
tion. This is because one can always construct a Lagran
with respect to which the diagram in question represents
only case of some given order of the strong interaction.
this case, theG in the WT identity is given by just one
diagram of the strong interaction, andGm is the sum of the
diagrams obtained fromG by attaching the photon every
where. In the same way, the WT identity is valid for any su
of diagrams included inG. Having this in mind, we conside
G to be given by the Bethe-Salpeter equation where the
nel V is given by a model consisting of any number of co
nected two-particle irreducible Feynman diagrams.

We start by expressingG in terms of its fully discon-
nected partG0 and the kernelV:

G5G01G0VG. ~7!

This is a symbolic equation that, for the case of two-parti
scattering, represents a shorthand notation for

G~p18p28 ;p1p2!5G0~p18p28 ;p1p2!

1E d4r 1

~2p!4

d4s1

~2p!4
G0~p18p28 ;r 1r 2!

3V~r 1r 2 ;s1s2!G~s1s2 ;p1p2!, ~8!

where it is understood thatp181p285p11p25r 11r 25s1

1s2. In Eq. ~8!, neither the Green functions nor the kern
containd functions corresponding to total momentum co
servation. Thus the disconnected Green functionG0 contains
only oned function and can be written as

G0~p18p28 ;p1p2!5~2p!4d4~p182p1!d1~p1!d2~p2!

5~2p!4d4~p282p2!d1~p1!d2~p2!, ~9!

wheredi is the dressed propagator of particlei. To save on
notation we write Eq.~9! symbolically as

G05d1d2 , ~10!

where momentum labels and the momentum conservind
function @together with factor (2p)4] have been suppressed

Equation~7! is basically a topological statement regardi
the two-particle irreducible structure of Feynman diagra
belonging toG; as such, it can be utilized directly to expre
the structure of the same Feynman diagrams, but with p
tons attached everywhere. Thus from Eq.~7! it immediately
follows that

Gm5G0
m1G0

mVG1G0VmG1G0VGm. ~11!

This result expressesGm in terms of an integral equation
and illustrates what we mean bygauging an equation, in this
case the gauging of Eq.~7!. Implied in Eq.~11! is the result

g
n

3-4
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@G0VG#m5G0
mVG1G0VmG1G0VGm, ~12!

which illustrates a rule for the gauging of products that
identical to the product rule for derivatives. Indeed, althou
we stress the topological origin of Eq.~11! and Eq. ~12!
~namely, that photons are attached everywhere!, the same
result can be obtained by writing an integral equation forGA
and taking the functional derivative atAm50 as in Eq.~4!.1
e
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n
v-
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h
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ro
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ub

04400
h

The advantage of the topological argument is its simplic
its validity does not depend on the model chosen forV, it is
independent of the nature of the external field or parti
being attached~e.g., the external particle could just as so
be a pion as a photon!, and it can be applied to any nonpe
turbative description~e.g., a three-dimensional one! that may
not even be based on field theory. Again, Eq.~11! is a sym-
bolic equation representing
Gm~k1k2 ;p1p2!5G0
m~k1k2 ;p1p2!1E d4r 1

~2p!4

d4s1

~2p!4
G0

m~k1k2 ;r 1r 2!V~r 1r 2 ;s1s2!G~s1s2 ;p1p2!

1E d4t1

~2p!4

d4u1

~2p!4
G0~k1k2 ;t1t2!Vm~ t1t2 ;u1u2!G~u1u2 ;p1p2!

1E d4v1

~2p!4

d4w1

~2p!4
G0~k1k2 ;v1v2!V~v1v2 ;w1w2!Gm~w1w2 ;p1p2!, ~13!
on

ac-

on
of
aug-

-
he
where now the presence or absence of a photon with mom
tum q needs to be taken into account in specifying the m
mentum conservation relations:k11k25p11p21q, where
k11k25t11t25v11v25w11w2, and p11p25r 11r 2
5s11s25u11u2.

In Eq. ~11!, bothGm andG0
m are obtained from the Gree

functionsG and G0, respectively, by attaching photons e
erywhere. It is therefore important to note that the gaug
potentialVm is similarly obtained fromV, but with no pho-
tons attached to external legs. This is because such cont
tions are already taken into account in the termsG0

mVG and
G0VGm of Eq. ~11!. Equations~7! and~11! are a set of linear
integral equations forG andGm, and could be solved as suc
if V and Vm were given. However, we can also formal
solve the equation forGm, and thus express it directly in
terms ofG. Simple algebra gives

Gm2G0VGm5G0
m1G0

mVG1G0VmG,

Gm5~ I 2G0V!21@G0
m~11VG!1G0VmG#

5G~G0
21G0

mG0
211Vm!G, ~14!

where Eq.~7! was used in the last step. Defining the elect
magnetic vertex functionGm by

Gm5GGmG, ~15!

Eq. ~14! gives the essential result of this section:

Gm5G0
m1Vm, ~16!

1We note that in Ref.@10# the product rule, as illustrated in Eq
~12!, was by contrast obtained through the use of the minimal s
stitution prescription.
n-
-

d

u-

-

where

G0
m5G0

21G0
mG0

21 . ~17!

By gauging Eq.~10! one obtains

G0
m5d1

md21d1d2
m , ~18!

so that

G0
m5G1

md2
211d1

21G2
m , ~19!

whereG i
m is the one-particle electromagnetic vertex functi

defined by the equation

di
m5di G i

mdi . ~20!

Note that for nucleons, to lowest order in the strong inter
tion, G i

m5eig
m wheregm is a Dirac matrix. In Eq.~16!, G0

m

is thus the sum of single-particle currents, andVm is the
two-body interaction current of the given model. Equati
~16! is illustrated in Fig. 3. This is the essential result
Gross and Riska, and has been derived here using the g
ing of equations method.

-
FIG. 3. Illustration of Eq.~16! expressing the two-particle elec

tromagnetic vertex functionGm as a sum one-body currents and t
two-particle interaction current.
3-5
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B. Ward-Takahashi identity for Gµ

The validity of Eq.~11! for the gauging ofG is clear from
the topological argument given above. We would nevert
less like to show explicitly that theGm, constructed in this
way, satisfies the WT identity. To do this, we first prove th
the gauged potentialVm satisfies the WT identity even
though no photons are attached to its external legs. Usin
shorthand notation defined by

G~k1k2 ;pi1q!5H G~k1k2 ;p11q,p2! ~ i 51!,

G~k1k2 ;p1 ,p21q! ~ i 52!,
~21!

G~ki2q;p1p2!5H G~k12q,k2 ;p1p2! ~ i 51!,

G~k1 ,k22q;p1p2! ~ i 52!,
~22!

we can write the WT identities forG0
m and the quantity

@G0VG0#m as

qmG0
m~k1k2 ;p1p2!5 i(

i 51

2

@eiG0~ki2q;p1p2!

2G0~k1k2 ;pi1q!ei #, ~23!

qm@G0VG0#m~k1k2 ;p1p2!5 i(
i 51

2

@eiG0VG0~ki2q;p1p2!

2G0VG0~k1k2 ;pi1q!ei #.

~24!

Note that@G0VG0#m satisfies the WT identity because, u
like Vm, it has photons attached everywhere. Although E
~23! and Eq.~24! would be automatically true if field theor
were being solved exactly, here we work within a stro
interaction model specified by the input quantitiesV andG0;
as such, these equations are assumed to be true by con
tion.

Using the product rule of Eq.~12!, we have that

qm@G0VG0#m~k1k2 ;p1p2!5qmG0
mVG0~k1k2 ;p1p2!

1G0 qmVmG0~k1k2 ;p1p2!

1G0VqmG0
m~k1k2 ;p1p2!.

~25!

Writing out the integrals implied by this expression@see Eqs.
~8! and ~13!# and using Eqs.~23!, ~24!, and ~9!, we obtain
that

qmVm~k1k2 ;p1p2!5 i(
i 51

2

@eiV~ki2q;p1p2!

2V~k1k2 ;pi1q!ei #, ~26!

which is the WT identity forVm. We may now use Eqs.~26!
and ~23! together with Eq. ~16! to evaluate
qmGm(k1k2 ;p1p2). Taking into account thatG0

212V5G21,
we obtain
04400
-

t

a

.

ruc-

qmGm~k1k2 ;p1p2!5 i(
i 51

2

@G21~k1k2 ;pi1q!ei

2eiG
21~ki2q;p1p2!#. ~27!

Using this result and Eq.~15! it immediately follows that

qmGm~k1k2 ;p1p2!5 i(
i 51

2

@eiG~ki2q;p1p2!

2G~k1k2 ;pi1q!ei #, ~28!

thus proving the WT identity for theGm obtained by the
gauging of equations method.

C. Gauging the two-body bound-state wave functionc

So far we have defined ‘‘gauging’’ to be the proce
where photons are attached to all places in perturbation
grams. As Green functions and potentials have a diagr
matic interpretation, the gauging of these quantities
therefore a clear meaning. On the other hand, the bound-
wave function is a purely nonperturbative quantity, and th
cannot be associated with perturbation diagrams. One
nevertheless define the gauged bound-state wave functiocm

by formally gauging the bound-state Bethe-Salpeter equa
using our product rule. Thus by gauging the equation

c5G0Vc, ~29!

we obtain

cm5~G0V!mc1G0Vcm, ~30!

in this way definingcm. Here the symbolc represents the
two-body bound-state wave functioncP(p1p2) defined by

~2p!4d4~P2p12p2!cP~p1p2!

5E d4x1d4x2ei (p1x11p2x2)^0uTC (1)~x1!C (2)~x2!uP&,

~31!

whereP25m2 with m being the mass of the bound two-bod
system. To save on notation, we do not write explicit sp
and isospin labels in the stateuP& or in the wave function
cP ; nevertheless, such labels~and, if necessary, sums ove
such labels! are to be understood as implicitly present.

It is now straightforward to show that thecm defined by
Eq. ~30! is just the quantitycm(k1k2 ;P) given by

cm~k1k2 ;P!5E d4x1d4x2ei (k1x11k2x2)^0uTC (1)~x1!

3C (2)~x2!Jm~0!uP&, ~32!

wherek11k25P1q. The proof of this proceeds as follows
Assuming the field theory under consideration admits a tw
body bound state, the Green functionG, defined by Eq.~2!,
exhibits a pole atP25m2 where P is the total four-
3-6
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momentum of the bound two-body system. Indeed from
~2! it can be shown that, asP2→m2,

G~p18p28 ,p1p2!; i
cP~p18p28!c̄P~p1p2!

P22m2
, ~33!

where P5p11p25p181p28 and cP is given by Eq.~31!.
Similarly from Eq.~3! one can show that, forP2→m2,

Gm~k1k2 ,p1p2!; i
cm~k1k2 ;P!c̄P~p1p2!

P22m2
, ~34!

with cm(k1k2 ;P) given by Eq.~32!. Using the last two re-
sults in Eq.~11!, equating the residues atP25m2, and writ-
ing cm as shorthand forcm(k1k2 ;P), we obtain that

cmc̄5~G0V!mcc̄1G0Vcmc̄. ~35!

We therefore deduce that thecm given by Eq. ~32! does
indeed satisfy Eq.~30!. Equations~29! and ~30! form a
coupled set of equations which can be formally solved
cm, giving

cm5~12G0V!21~G0V!mc5GG0
21~G0V!mc

5G~G0
21G0

mG0
211Vm!c. ~36!

Recalling Eq.~16! we obtain

cm5GGmc. ~37!

A comparison with Eq.~15! shows thatcm can be obtained
from Gm by taking the right-hand residue at the two-bo
bound-state pole@this of course is also obvious from Eq
~34!#. As such,G0

21cm is just the transition current describ
ing the photodisintegration and electrodisintegration of
two-body bound state, as discussed shortly.

It is often convenient to work with the bound-state vert
function f defined by the equations

c5G0f, c̄5f̄G0 . ~38!

To gaugef we follow the same idea as for the bound-sta
wave function; namely, we definefm by formally gauging
the bound-state equation forf @which follows from Eq.
~29!#. In this way we obtain the coupled set of equations

f5VG0f, ~39!

fm5~VG0!mf1VG0fm, ~40!

which can be solved as above to give

fm5G0
21G~VG0!mf. ~41!

Writing (VG0)m5VmG01VG0
m andG0

21G511TG0 where
T is the t matrix defined by

G5G01G0TG0 , ~42!

Eq. ~41! reduces after some simple algebra to the result
04400
.

r

e

fm5~11TG0!Gmc2G0
mc. ~43!

D. Ward-Takahashi identities for cµ and fµ

The WT identity for cm follows from Eq. ~37! and the
WT identity for Gm, Eq. ~27!. Writing Eq. ~37! in its full
numerical form

cm~k1k2 ;P!5E d4t1

~2p!4

d4p1

~2p!4
G~k1k2 ;t1t2!

3Gm~ t1t2 ;p1p2!c~p1p2 ;P!, ~44!

we may use Eq.~27! to obtain

qmcm~k1k2 ;P!5E d4t1

~2p!4

d4p1

~2p!4
G~k1k2 ;t1t2!i

3(
i 51

2

@G21~ t1t2 ;pi1q!ei2ei

3G21~ t i2q;p1p2!#c~p1p2 ;P!.

~45!

Since G21cP50, the second term in the square brack
does not contribute and the above equation reduces dow
the WT identity forcm,

qmcm~k1k2 ;P!5 i @e1c~k12q,k2 ;P!1e2c~k1 ,k22q;P!#.

~46!

The WT identity forfm is found in a similar manner. Writ-
ten out numerically, Eq.~41! is

fm~k1k2 ;P!5E d4t1

~2p!4

d4p1

~2p!4
@G0

21G#~k1k2 ;t1t2!

3@VG0#m~ t1t2 ;p1p2!f~p1p2 ;P!. ~47!

Note that the square brackets here indicate the resultant f
tion to which the following momentum variables refer. A
@VG0#m is a gauged input, it satisfies the Ward-Takaha
identity from the outset. We can therefore write

qmfm~k1k2 ;P!5E d4t1

~2p!4

d4p1

~2p!4
@G0

21G#

3~k1k2 ;t1t2!i(
i 51

2

$ei@VG0#~ t i2q;p1p2!

2@VG0#~ t1t2 ;pi1q!ei%f~p1p2 ;P!.

~48!

The first term in the curly brackets can be integrated overp1
using the fact thatVG0f5f. Similarly the second term in
the curly brackets can be integrated overt1 using the fact
that G0

21GVG05G0
21G21. Only one term survives,
3-7
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qmfm~k1k2 ;P!5E d4p1

~2p!4
i(
i 51

2

~2p!4d4

3~ki2pi2q!eif~p1p2 ;P!, ~49!

which gives the Ward-Takahashi identity forfm:

qmfm~k1k2 ;P!5 i @e1f~k12q,k2 ;P!1e2f~k1 ,k22q;P!#.

~50!

Note that neither of the WT identities of Eq.~46! nor Eq.
~50! are zero, even for on-mass-shellk1 andk2. Thus neither
cm nor fm obey current conservation.

E. Two-body electromagnetic transition currents

To obtain the physicalt matrix for any reaction involving
an electromagnetic probe interacting with a quark or h
ronic system, it is sufficient to specify the correspondi
matrix element of the electromagnetic current operator.
refer to such a matrix element simply as anelectromagnetic
transition currentand denote it using the symbolj m. Thus,
for example, a process like two-nucleon bremsstrahlu
NN→gNN is described by theNN→NN electromagnetic
transition currentj 00

m given by

j 00
m 5G0

21GmG0
21 . ~51!

The physicalt matrix is then found by contractingj 00
m with

the photon polarization vector«m .
For processes with one two-body bound state, like d

teron photodisintegration, one determines the electrom
netic transition currentj 0

m from Gm by taking the appropriate
residue at the bound-state pole. Thus, to determine thei j )
→ i j electromagnetic transition current describing the p
cessg( i j )→ i j where a photon is absorbed on the bou
state (i j ) producing free particlesi andj in the final state, we
take the residue of Eq.~15! on the right to obtain

j 0
m5G0

21GGmc ~52!

5~11TG0!Gmc, ~53!

whereT is the off-shell two-bodyt matrix. As noted previ-
ously, a comparison with Eq.~37! shows that the (i j )→ i j
electromagnetic transition current and the gauged bou
state wave function are simply related by

j 0
m5G0

21cm. ~54!

It is also interesting to examine the relationship betweenj 0
m

and the gauged bound-state vertex functionfm. From Eq.
~43! one immediately obtains that

j 0
m5fm1G0

mG0f. ~55!

From this equation it is evident that the difference betwe
fm and the electromagnetic transition currentj 0

m is that fm

has no photons attached to external legs. This suggests
fm does not conserve current, whilej 0

m does. Indeedqm j 0
m

5G0
21qmcm50 for on-mass-shell external legs since t
04400
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momentum shifts (2q) contained in the WT identity forcm,
Eq. ~46!, ensure that the poles ofqmcm do not cancel the
zero ofG0

21.
Last, we consider the case where an electromagn

probe interacts with two particles which are bound in bo
initial and final states, for example, elastic electron-deute
scattering. Such processes are described by the electro
netic bound-state currentj m which can be found from Eq
~15! by taking residues at both the initial and final boun
state poles. As these bound states can have different
momenta, we write the bound-state current as

j m5c̄KGmcP , ~56!

whereK25P25m2. Current conservation forj m is obtained
by using the WT identity forGm, Eq. ~27!, and the bound-
state equationc̄G215G21c50.

III. GAUGING THREE DISTINGUISHABLE PARTICLES

Having gauged the two-body system, we are ready to
ply the gauging of equations method to the substantia
more complicated case of three strongly interacting partic

A. Gauging the three-particle Green function

The Ward-Takahashi identity for three particles can
derived by following the same procedure as used by Be
@16# for the two-particle case. One obtains

qmGm~k1k2k3 ;p1p2p3!

5 i @e1G~k12q,k2k3 ;p1p2p3!

1e2G~k1 ,k22q,k3 ;p1p2p3!

1e3G~k1k2 ,k32q;p1p2p3!2G~k1k2k3 ;p1

1q,p2p3!e12G~k1k2k3 ;p1 ,p21q,p3!e2

2G~k1k2k3 ;p1p2 ,p31q!e3#. ~57!

By extending the shorthand notation of Eqs.~21! and~22! to
the case of three particles, the three-particle Ward-Takah
identity can then be written more concisely as

qmGm~k1k2k3 ;p1p2p3!5 i(
i 51

3

@eiG~ki2q;p1p2p3!

2G~k1k2k3 ;pi1q!ei #. ~58!

HereG is the full Green function of the three-particle syste

~2p!4d4~p181p281p382p12p22p3!G~p18p28p38 ;p1p2p3!

5E d4y1d4y2d4y3d4x1d4x2d4x3

3ei (p18y11p28y21p38y32p1x12p2x22p3x3)

3^0uTC (1)~y1!C (2)~y2!C (3)~y3!

3C̄ (1)~x1!C̄ (2)~x2!C̄ (3)~x3!u0& ~59!

andGm is the corresponding seven-point function:
3-8
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Gm~k1k2k3 ;p1p2p3!

5E d4y1d4y2d4y3d4x1d4x2d4x3

3ei (k1y11k2y21k3y32p1x12p2x22p3x3)

3^0uTC (1)~y1!C (2)~y2!C (3)~y3!C̄ (1)~x1!

3C̄ (2)~x2!C̄ (3)~x3!Jm~0!u0&. ~60!

In practice, the Green function for three distinguisha
particles is specified by the integral equation

G5G01G0VG, ~61!

where the potentialV is three-particle irreducible and, in th
absence of three-body forces, is written as a sum of th
disconnected potentialsVi :

V5V11V21V3 . ~62!

Here we use the usual spectator notation of three-b
theory: defining (i jk ) to be a cyclic permutation of~123!, Vi
is the potential where particlesj andk are interacting while
particle i is a spectator. Explicitly we have that

Vi~p18p28p38 ,p1p2p3!

5v i~pj8pk8 ,pj pk!di
21~pi !~2p!4d4~pi82pi !,

~63!

wherev i is the two-body potential between particlesj andk.
Neither Vi nor v i contains total momentum conservingd
functions, and the presence ofd4(pi82pi) in Eq. ~63! is due
purely to the disconnectedness of the potentialVi . In keep-
ing with our shorthand notation, we write Eq.~63! as

Vi5v idi
21 . ~64!

Our goal is to gauge Eq.~61! and in this way obtain the
electromagnetic transition currents for the three-body s
tem. As the gauging procedure is symbolically identical
that already presented for the two-body system, we conc
that Eqs. ~15!–~17! apply also to the three-body system
Thus the seven-point function can be written as

Gm5GGmG, ~65!

where the electromagnetic vertex function for three partic
is given by

Gm5G0
21G0

mG0
211Vm. ~66!

In the three-particle case, however,V is given by Eqs.~62!
and ~64! so that

Vm5V1
m1V2

m1V3
m . ~67!

To obtainVi
m all that is needed is to gauge theVi of Eq. ~64!.

Yet because of the presence of the inverse propagatordi
21 in

Vi , there is some question of how to do this consistently.
04400
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unambiguous answer is provided by gauging Eq.~61! with V
explicitly given by Eq.~62! and Eq.~64!. In this case we
write Eq. ~61! as

G5G01(
i

G0ViG5G01(
i

D0iv iG, ~68!

whereD0i is the fully disconnected two-particle propagat
defined by

D0i5djdk . ~69!

The gauging of Eq.~68! thus involves the term

~G0ViG!m5~D0iv iG!m5~D0i
m v i1D0iv i

m!G1D0iv iG
m.
~70!

Now using the fact thatD0i
m 5(G0

m2D0idi
m)di

21 , the above
equation gives

~G0ViG!m5@G0
mVi2G0G i

mv i1G0~v i
mdi

21!#G1G0ViG
m

5G0
mViG1G0~2G i

mv i1v i
mdi

21!G1G0ViG
m,

~71!

from which it follows that

Vi
m5v i

mdi
212v iG i

m . ~72!

It is seen that the same result would follow from gauging E
~64! directly using our product rule, as long as we use
prescription

~di
21!m52G i

m . ~73!

This prescription can also be obtained by formally gaug
the identitydidi

2151 and taking 1m50. The expression for
the gauged potentialVi

m , Eq.~72!, is illustrated in Fig. 4. The
negative sign in front of the termv iG i

m may appear to be
surprising, yet it is just what is needed to stop overcounti
Consider for example the gauging of the termG0VG appear-
ing in Eq.~61!: (G0VG)m5G0

mVG1G0VmG1G0VGm. It is
apparent that the rightmost diagram of Fig. 4 appears in e
of the three termsG0

mVG, G0VmG, and G0VGm. Thus the
negative sign in question is needed to ensure that this
gram contributes only once to the gauging ofG0VG.

The fully disconnected three-particle Green functionG0 is
given by

G05didjdk , ~74!

FIG. 4. Illustration of Eq.~72! for the gauged disconnected po
tential Vi

m .
3-9
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where two momentum conservingd functions are implied in
the used shorthand notation. Gauging this expressions g

G0
m5(

i 51

3

di
mdjdk5(

i 51

3

di
mD0i , ~75!

where the sum is over the three cyclic permutations of (i jk ).
The impulse term in Eq.~66! can then be written as

G0
21G0

mG0
215(

i 51

3

G i
mD0i

21 . ~76!

Using this and Eq.~72! in Eq. ~66! then gives

Gm5(
i 51

3

~G i
mD0i

211v i
mdi

212v iG i
m!, ~77!

which we illustrate in Fig. 5.
Noting that the full two-body Green functionDi satisfies

the equation

Di5D0i1D0iv iDi , ~78!

we can also write Eq.~77! as

Gm5(
i 51

3

~G i
mDi

211v i
mdi

21!. ~79!

Equation~79! @or equivalently Eq.~77!# is the main result of
this section and extends the Gross-Riska result of Eq.~16! to
the three-particle sector. It gives the precise way that
one- and two-body currents need to combine in order to
tain proper gauge invariance.

B. Three-body bound-state current

The three-body bound-state currentj m describes processe
where a system of three strongly interacting particles
bound both before and after the interaction with an elec
magnetic probe. Examples include elastic electron scatte
from 3H and 3He @19#, and elastic electron scattering fro
the proton considered as a bound three-quark system@20#.

The bound-state currentj m is found by taking left and
right residues of Eq.~65! at the initial and final three-particle
bound-state poles. WithM being the mass of the bound stat
it can be shown that

FIG. 5. Illustration of Eq.~77! expressing the three-particle ele
tromagnetic vertex functionGm as a sum of one- and two-particl
currents.
04400
es

e
-

s
-

ng

,

G~p18p28p38 ;p1p2p3!

; i
CP~p18p28p38!C̄P~p1p2p3!

P22M2
as P2→M2,

~80!

where CP is the three-particle bound-state wave functi
defined by

~2p!4d4~P2p12p22p3!CP~p1p2p3!

5E d4x1d4x2d4x3ei (p1x11p2x21p3x3)

3^0uTC (1)~x1!C (2)~x2!C (3)~x3!uP&. ~81!

Here uP& is the eigenstate of the full Hamiltonian corre
sponding to the three-particle bound state with moment
Pm. We thus find that

j m5C̄KGmCP ~82!

5(
i 51

3

C̄K~G i
mD0i

211v i
mdi

212v iG i
m!CP . ~83!

Note that the wave functionCP used here satisfies Eq.~80!,
and thus fulfills the normalization condition~for distinguish-
able particles!

i C̄P

]

]P2
~G0

212V!CP51. ~84!

This result follows upon taking residues of the identityG
5GG21G and using the fact thatG215G0

212V. By expos-
ing the bound-state poles in theGm of Eq. ~60!, one finds that
j m is also the matrix element of the current operator

j m5^Jm&[^KuJm~0!uP&, ~85!

whereK25P25M2. In terms of j m, the familiar charge and
magnetic form factors of spin-1/2 bound three-body syste
are given by

FC
2 ~q2!5( u j 0u2, ~86!

FM
2 ~q2!5

2MN
2

m2Q2 ( F2
Q2

4M2
u j 0u21S 11

Q2

4M2D u j u2G ,

~87!

where( indicates a sum over final spins and an average o
initial spins~recall that statesuP& and wave functionsCP are
to be understood as having implicit spin and isospin labe!.
In Eq. ~87!, m is the magnetic moment of the bound sta
MN is the nucleon mass, andQ252q2.
3-10
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1. Role of the subtraction term in the bound-state current

When used to calculate the bound-state currentj m, the
role of the subtraction term in Eq.~77! is seen especially
well by writing the bound-state wave function in terms of
usual Faddeev components:

C5(
i 51

3

C i , ~88!

whereC is written without a momentum subscript to save
notation, and where

C i5D0iv iC. ~89!

For this purpose it is sufficient to consider just the one-bo
current contributions toj m,

j one-body
m 5(

i 51

3

C̄G i
m~D0i

212v i !C. ~90!

Using Eq.~89! this then evaluates to

j one-body
m 5(

i 51

3

C̄G i
mD0i

21~C j1Ck!. ~91!

This equation is not symmetrical with respect to the initi
and final-state wave functions. That this must be so can
seen as follows. The termG i

mD0i
21 corresponds to a first orde

electromagnetic interaction with particlei. During this inter-
action, particlesj andk can be interacting, and this contribu
tion is contained fully in the final-state wave functionC̄. To
avoid overcounting, there must be no precedingj -k interac-
tion coming from the initial-state wave function. This inde
is the case since, as is evident from Eq.~89!, the very last
interaction inC i is between particlesj and k, and just this
component is missing from the right-hand side~RHS! of Eq.
~91!.

Another way to write Eq.~91! is

j one-body
m 5C̄G0

mC2(
i 51

3

C̄G i
mD0i

21C i , ~92!

whereG0
m5( i 51

3 G i
mD0i

21 is the electromagnetic vertex func
tion in the impulse approximation. In a three-dimension

approach, the term that is graphically similar toC̄G0
mC

would correspond to the correct expression for the total o
body current. In a four-dimensional approach, however,
needs to subtract the last term of Eq.~92! in order to avoid
the overcounting just discussed. In this regard we note
the pioneering four-dimensional calculation of Ref.@3# used
C̄G0

mC as the expression for the one-body current, a
therefore the results of this calculation contain overcounti

Further insight into the nature of the overcounting pro
lem can be gained by assuming, as was done in Ref.@3#, that
the input two-body potentials are separable. In this case
have

v i~pj8pk8 ,pj pk!5hi~pj8pk8!lhi~pj pk!, ~93!
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wherehi is the separable potential form factor with particlei
being a spectator. We write Eq.~93! in our shorthand nota-
tion as

v i5hilh̄i . ~94!

The two-bodyt matrix is then given by

t i5hit i h̄i , ~95!

where

t i
215l212h̄iD0ihi . ~96!

For separable potentials we follow Ref.@3# and introduce the
‘‘spectator bound-state form factor’’Xi defined by

C i5G0hit iXi . ~97!

As the Faddeev equation for the wave function compone
is

C i5D0i t i~C j1Ck!, ~98!

wherei jk are cyclic, it follows that

Xi5di
21h̄i~C j1Ck!. ~99!

Using these relations in Eq.~91! it is easy to show that

j one-body
m 5(

i
S X̄idi

mt iXi1 (
j ,kÞ i

X̄ jt jhjD0idi
mhktkXkD ,

~100!

which has a straightforward graphical interpretation. D
picted in Fig. 6~a! are the topologically distinct contribution
to the sums in Eq.~100!. One can similarly write

C̄G0
mC5(

i
S X̄idi

mt iXi1 (
j ,kÞ i

X̄ jt j h̄ jD0idi
mhktkXk

1X̄idi
mt il i

21t iXi D , ~101!

which, compared to the previous equation, contains an e
term given by

FIG. 6. ~a! The one-body electromagnetic current when tw
body interactions are separable.~b! The overcounting term presen

in C̄G0
mC. The double line with the black dot represents the dres

quasiparticle propagatort, the small open circle represents th
separable potential form factorh, and the large ellipses represe
the spectator bound-state form factorX.
3-11
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C̄G i
mv iC5(

i
X̄idi

mt il i
21t iXi . ~102!

This term, depicted in Fig. 6~b!, represents what is bein
overcounted in Eq.~101!. Considering this overcounting
term together with the first term in Eq.~101! @depicted by the
first term in Fig. 6~a!#, we see that the role of the overcoun
ing term is to overdress the quasiparticle propagator w
the spectator particle is being gauged. Thus, in the separ
case, the use of the expressionC̄G0

mC to calculate the one
body electromagnetic current is equivalent to overdress
the quasiparticle propagator in the first term of Fig. 6~a!.

2. Gauge invariance of the bound-state current

To prove the gauge invariance of Eq.~83! for the three-
body bound-state current, it is convenient to use a symb
notation for the WT identities. To do this we introduce t
operatorsêi whose numerical form is defined by

êi~k1k2k3 ,p1p2p3!5 iei~2p!12d4~ki2pi2q!

3d4~kj2pj !d
4~kk2pk!, ~103!

wherei jk represents a cyclic ordering of 123. Then the W
identities for the gauged two-body potential and gauged o
particle propagator can be written in three-particle space
terms of commutators as

qmv i
m5@ êj1êk ,v i #, qmdi

m5@ êi ,di #. ~104!

Here the quantitiesv i
m and v i are understood to implicitly

contain an identity operator in the space of particlei, in this
way making them operators in three-particle space. Simila
di

m anddi are understood to contain identity operators in
space of particlesj andk.

Writing Eq. ~77! in the form

Gm5(
i 51

3

~di
21di

mdi
21dj

21dk
211v i

mdi
212v idi

21di
mdi

21!

~105!

and using the WT identities of Eq.~104!, the first term on the
RHS of Eq.~105! gives

qm(
i 51

3

di
21di

mdi
21dj

21dk
2152@ ê,G0

21#, ~106!

where

ê5ê11ê21ê3 . ~107!

Similarly for the last two terms of Eq.~105! we have that

qm~v i
mdi

212v idi
21di

mdi
21!5@ êj1êk ,v i #di

211v i@ êi ,di
21#

5@ ê,v idi
21# ~108!

and therefore
04400
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qm(
i 51

3

~v i
mdi

212v idi
21di

mdi
21!5@e,V#, ~109!

whereV is the full potential as given by Eq.~62!. We have
thus shown that

qmGm52@ ê,G21#, ~110!

whereG215G0
212V is the inverse of the full Green func

tion. It is recognized that Eq.~110! is just the shorthand
three-particle version of the two-particle result given in E
~27!. Current conservation and therefore the gauge inv
ance of the bound-state current follows immediately. It
worth noting that the presence of the subtraction term@last
term in Eq.~105!# is essential for current conservation.

3. Generalization to all transition currents

Electromagnetic currents for all possible transitions c
be constructed by following the same procedure as above
the three-body bound-state current. That is, one can b
with the expressionGm5GGmG and then take residues a
the relevant initial- and final-state poles. In this respect i
important to note that the Green functionG has poles corre-
sponding not only to single-particle propagators and thr
body bound states, but also to two-body bound states.
example, it can be shown that, in the vicinity of a two-bo
bound state of particles 2 and 3,

G~k1k2k3 ,p1p2p3!

; i
cK1

~k2k3!d~k1!

K1
22m2

C̄K1k1

out ~p1p2p3! as K1
2→m2,

~111!

wherem is the bound-state mass of particles 2 and 3, a
K15k21k3. Similarly

G~k1k2k3 ,p1p2p3!

; iCP1p1

in ~k1k2k3!
d~p1!c̄P1

~p2p3!

P1
22m2

as P1
2→m2,

~112!

where P15p21p3. The seven-point functionGm has the
same poles asG and one can show, for example, that, in t
vicinity of these poles,

Gm~k1k2k3 ,p1p2p3!

; i
cK1

~k2k3!d~k1!

K1
22m2

^out,K1k1uJm~0!uP1p1 ,in& i

3
d~p1!c̄P1

~p2p3!

P1
22m2

. ~113!

Analogous expressions forG andGm hold in the vicinity of
any poles of G corresponding to physical initial and fina
3-12
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states. The in- and out-wave functions appearing in th
expressions are defined generally by

~2p!4d4~P2p12p22p3!C j
in~p1p2p3!

5E d4x1d4x2d4x3ei (p1x11p2x21p3x3)

3^0uTC (1)~x1!C (2)~x2!C (3)~x3!u j , in&,

~114!

~2p!4d4~K2k12k22k3!C̄ i
out~k1k2k3!

5E d4y1d4y2d4y3e2 i (k1y11k2y21k3y3)

3^out,i uTC̄ (1)~y1!C̄ (2)~y2!C̄ (3)~y3!u0&,

~115!

whereu j , in& andu i ,out& are the in and out states of quantu
field theory~QFT! for the physical initial and final states o
total momentumP and K, respectively. Here we follow the
usual convention where the indexj 51,2,3 labels a state
where particlej is free and the other two particles are boun
and j 50 labels the state where all three particles are free
the case of an initial three-body bound state, the indexj and
label ‘‘in’’ are dropped~for three-body bound states there
no difference between in and out states as only one phys
particle is involved!. Similar conventions hold for the inde
i. For a given model specified by the three-body potentiaV,
the in- and out-wave functions are specified by the equat

C̄ i
out5C̄ i

(0)1C̄ i
out~V2Vi !Gi ,

C j
in5C j

(0)1Gj~V2Vj !C i
in , ~116!

where, fori 50, Vi50, C i
(0) is the wave function of three

free particles, andGi is the free Green function, while, fo
i 51,2,3, Vi is given by Eq.~64!, C i

(0) is the wave function
of a free particlei and a bound (jk) pair, andGi is the
disconnected Green function with particlesj and k interact-
ing andi being a spectator, i.e.,

Gi5diDi . ~117!

Equations~116! hold also for three-body bound states if w

drop the inhomogeneous termsC̄ i
(0) andC j

(0) but otherwise
usei , j 50.

Taking the right and left residues ofGm at the initial- and
final-state poles, it is easy to see from the above equat
that the general expression for an electromagnetic trans
current is

j i j
m5^out,i uJm~0!u j , in&5C̄ i

outGmC j
in . ~118!

Equation~118! is valid no matter whether the initial or fina
states consist of three free particles, one free and two bo
particles, or the three-body bound state. Likewise the pr
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of current conservation for Eq.~118! is the same for all
cases: one uses Eq.~110! and the fact that

C̄ i
outG2150, G21C j

in50 ~119!

to deduce

qmC̄ i
outGmC j

in5E d4k1

~2p!4

d4k2

~2p!4

d4p1

~2p!4

d4p2

~2p!4
i

3(
l 51

3

C̄ i
out~k1k2k3!@G21~k1k2k3 ,pl1q!el

2elG
21~kl2q;p1p2p3!#C j

in~p1p2p3!50.

~120!

C. Gauging the AGS equations

In the previous subsection we constructed the electrom
netic currents for all possible transitions of the three-parti
system. The expression derived, Eq.~118!, expresses the
transition currents in terms of the vertex functionGm which
in turn is given in terms of the gauged three-body poten
Vm—see Eq.~66!. Although this formally solves the problem
of how to gauge a three-body system, it needs to be rec
nized that Eq.~118! may not always be very useful for prac
tical calculations. For example, in the present fou
dimensional case where the three-particle potential
assumed to be of the simple form given by Eq.~62! and Eq.
~64!, the numerical evaluation of Eqs.~116! for the scattering
in- and out-wave functions is problematic. This difficulty
due to the disconnectedness of the three-particle pote
which forms the kernel for these integral equations. For ot
cases the use of Eq.~118! can similarly be impractical. In the
four-dimensional description of thepNN system@5,6#, the
possibility of pion absorption together with overcountin
problems makes thepNN potentialV difficult to specify, let
alone calculate. Likewise in the spectator approach to
three-nucleon problem where spectator nucleons are pu
mass shell@11#, the effective three-nucleon potential is n
easily revealed.

All these problems can be resolved by avoiding the use
potentials in the formulation of the strong interaction thre
body problem. This is just what is done in the case of thr
dimensional quantum mechanics by using the A
Grassberger-Sandhas~AGS! equations@4# to describe the
strong interactions of three particles. The AGS equatio
take as input two-bodyt matrices, rather than potentials, r
sult ~after one iteration! in a connected kernel, and form on
of the standard tools for doing practical three-body calcu
tions. These same benefits can be obtained in four dim
sions by using equations that are the four-dimensional an
of the AGS equations. Indeed such equations~which we also
refer to as the AGS equations! have already been used in th
successful formulation of thepNN problem@5,6# and in the
three-nucleon problem within the spectator approach@11#.
Thus for practical reasons it is important to apply our gau
ing of equations method directly to the AGS equations the
3-13
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selves. In this way we shall obtain a gauge-invariant gen
alization of the AGS formulation to systems consisting
three particles with an added external photon.

1. j„ki …˜ i „ jk … transition current

Our starting point is the four-dimensional version of t
AGS equations describing the scattering of three stron
interacting particles. These AGS equations can be writte
the two forms

Ui j 5G0
21d̄ i j 1 (

k51

3

d̄ ikTkG0Uk j ,

Ui j 5G0
21d̄ i j 1 (

k51

3

UikG0Tkd̄k j , ~121!

where the AGS amplitudeUi j describes the processj (ki)
→ i ( jk), i.e., the scattering of particlej off the (ki) quasi-
particle, leading to a final state consisting of particlei and
the (jk) quasiparticle. If the quasiparticles form boun
states, then the amplitudeUi j is related to thet matrix for the
physical j (ki)→ i ( jk) process by

Ti j 5c̄ iUi j c j , ~122!

wherec i is the two-body bound-state wave function of t
( jk) system. In Eq.~121!, Tk is defined by

Tk5tkdk
21 , ~123!

where tk is the two-particlet matrix for the scattering of
particles i and j. The AGS equations of Eq.~121! can be
written in matrix form as

U5G0
21I1ITG0U, U5G0

21I1UG0T I, ~124!

where the (i ,k)th elements of matricesU, T, andI are de-
fined by

@U# ik5Ui j , ~125!

@T # ik5d ikTk , ~126!

@I # ik5 d̄ ik512d ik . ~127!

Although one could now gauge the matrixU by gauging
Eqs. ~124! in the usual way, the presence ofG0

21 in Eqs.
~124! makes it more convenient to instead gauge the Gr
function quantity

Ũ5G0UG0 , ~128!

which satisfies the equations

Ũ5IG01IG0T Ũ, Ũ5G0I1Ũ TG0I. ~129!

At this stage it is convenient to make use of the two-bo
bound-state vertex functionf i , defined as in Eqs.~38! by

c i5D0if i , c̄ i5f̄ iD0i . ~130!
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Then thet matrix of Eq.~122! can be written as

Ti j 5f̄ iD0iUi j D0 jf j5f̄ idi
21Ũ i j dj

21f j . ~131!

As previously discussed, gauged potentials andt matrices do
not have photons attached to external legs. Yet such att
ments are necessary for gauge invariance. For this reaso
do not gauge thet matrix Ti j , but instead introduce the quan
tity

T̃i j 5diTi j dj , ~132!

which contains extra propagators for the initial- and fin
state spectator particles. It is by gaugingT̃i j that photons get
attached to all possible places in thej (ki)→ i ( jk) process.
Of course, after gauging, it is necessary to remove th
propagators to get the corresponding electromagnetic tra
tion currentj i j

m ; thus

j i j
m5di

21T̃i j
mdj

21 . ~133!

From Eq.~131! we find that

T̃i j 5f̄ i Ũ i j f j . ~134!

Gauging this equation gives

T̃i j
m5f̄ i

mŨ i j f j1f̄ i Ũ i j f j
m1f̄ i Ũ i j

mf j . ~135!

Heref̄ i
m andf j

m are the gauged two-body bound-state ver
functions discussed in Sec. II. Being gauged quantities of
two-body problem, they form an input to the gauged thre
body problem. AsŨ i j is assumed to be known from th
solution of the strong interaction three-body problem, on
the gauged AGS Green functionŨ i j

m is left to be determined.

We could findŨ i j
m by gauging Eqs.~129! explicitly; how-

ever, this is not really necessary as there is a one-to-
correspondence with the previous gauging of Eq.~61!. In-
deed Eq.~129! follows formally from Eq.~61! upon the fol-
lowing substitutions:

G→Ũ, G0→IG0 , V→T. ~136!

Moreover, just as Eq.~62! expressesV as a sum of three
componentsVi5v idi

21 , we can similarly writeT as a sum

T5W11W21W3 , ~137!

where

Wi5widi
21 . ~138!

As matrix T is specified by Eqs.~123! and ~126!, it follows
that wi is a matrix whose (n,m)th element is given by

@wi #nm5dnid imt i . ~139!

With the correspondence now complete, we can immedia
use Eq.~77! to write down the gauged matrixŨm. We obtain
3-14
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Ũm5Ũ Gm Ũ, ~140!

whereGm is a matrix whose (n,m)th element is

Gnm
m 5(

i 51

3

~I nm
21G i

mD0i
211dnid imt i

mdi
212dnid imt iG i

m!

~141!

5I nm
21(

i 51

3

G i
mD0i

211dnmtn
mdn

212dnmtnGn
m . ~142!

Alternatively, we may writeGm in matrix form as

Gm5(
i 51

3

~I 21G i
mD0i

211wi
mdi

212wiG i
m!. ~143!

The use of the same symbolGm for both the vertex function
of Eq. ~77! and the matrix of Eq.~143! should not cause
confusion as only the latter appears in matrix expressio
On the other hand, using the same symbol has the advan
of emphasizing the formal similarity between the two. F
example, the matrix form of Eq.~143! is equally well illus-
trated by Fig. 5 withv ’s replaced byw’s.

2. Current conservation

In this subsection we would like to show that the curre
j i j
m as specified by Eqs.~133! and ~135! is conserved. To do

FIG. 7. Illustration of the variables involved in the evaluation

qmf̄ i Ũ i j
mf j (kiKi ;pj Pj ) as in Eq.~154!.
04400
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this we first show that the gauged AGS Green functionŨm

satisfies the Ward-Takahashi identity. Writing Eq.~143! as

Gm5I 21G0
21G0

mG0
211(

i 51

3

~wi
mdi

212wiG i
m!, ~144!

we may use the Ward-Takahashi identities for the in
quantitieswi

m andG i
m :

qmwi
m~kjkk ;pj pk!5 i(

lÞ i
@elwi~kl2q;pj pk!

2wi~kjkk ;pl1q!el # ~145!

qmG i
m~ki ,pi !5 i @di

21~ki !ei2eidi
21~pi !#, ~146!

where the former equation follows from identical argume
to that proving Eq.~26!, and where the latter equation fo
lows from

qmdi
m~ki ,pi !5 i @eidi~pi !2di~ki !ei #. ~147!

From the Ward-Takahashi identity forG0
m , it is also easy to

show that

qmG0
m~k1k2k3 ;p1p2p3!5 i(

i 51

3

@G0
21~k1k2k3 ;pi1q!ei

2eiG0
21~ki2q;p1p2p3!#,

~148!

where

G0
m5G0

21G0
mG0

21 . ~149!

Using these results in Eq.~144! gives
qmGm~k1k2k3 ;p1p2p3!5 i(
i 51

3 H I 21@G0
21~k1k2k3 ;pi1q!ei2eiG0

21~ki2q;p1p2p3!#1di
21~ki ,pi !

3(
lÞ i

@elwi~kl2q;pj pk!2wi~kjkk ;pl1q!el #2wi~kjkk ;pj pk!@di
21~ki !ei2eidi

21~pi !#J .

~150!

As ( i 51
3 ( lÞ iaibl5( i 51

3 ( lÞ ialbi , we can rewrite Eq.~150! as

qmGm~k1k2k3 ;p1p2p3!5 i(
i 51

3 FI 21G0
21~k1k2k3 ;pi1q!2(

lÞ i
dl

21~kl ,pl !wl~kmkn ;pi1q!2wi~kjkk ;pj pk!di
21~ki !Gei

2 i(
i 51

3

eiFI 21G0
21~ki2q;p1p2p3!2(

lÞ i
dl

21~kl ,pl !wl~ki2q;pmpn!2wi~kjkk ;pj pk!di
21~pi !G ,

~151!
3-15
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where (i jk ) and (lmn) are both cyclic permutations of (123). Recognizing that the square bracket terms of Eq.~151!
correspond exactly to the expression forŨ21 derived from Eqs.~129!, we may write

qmGm~k1k2k3 ;p1p2p3!5 i(
i 51

3

@Ũ21~k1k2k3 ;pi1q!ei2ei Ũ21~ki2q;p1p2p3!#. ~152!

Using Eq.~140!, we thus obtain the Ward-Takahashi identity forŨm:

qmŨm~k1k2k3 ;p1p2p3!5 i(
i 51

3

@ei Ũ~ki2q;p1p2p3!2Ũ~k1k2k3 ;pi1q!ei #. ~153!

Next we use this result and the last term of Eq.~135! to write

qmf̄ i Ũ i j
mf j~kiKi ;pj Pj !5 i E ~2p!28d4~Ki2kj2kk!d

4~Pj2pi2pk!d
4kj d4kk d4pk d4pi

H f̄ i~kjkk ;Ki !@eiŨ i j ~ki2q;p1p2p3!2Ũ i j ~k1k2k3 ;pj1q!ej #f j~pkpi ;Pj !

1(
lÞ i

f̄ i~kjkk;Ki !elŨ i j ~kl2q ;p1p2p3!f j~pkpi ;Pj !

2(
lÞ j

f̄ i~kjkk ;Ki !Ũ i j ~k1k2k3 ;pl1q!elf j~pkpi ;Pj !J . ~154!

where the momentum variables are as specified in Fig. 7. To find the contribution of this term toqm j i j
m , we need to multiply

it by di
21(ki)dj

21(pj ) and then take the on-mass-shell limit, i.e.,di
21(ki)→0 anddj

21(pj )→0. Doing this we see that the firs
term in the curly brackets will give zero and in this sense is gauge invariant. On the other hand, the last two terms in t
brackets will not give zero since the factordi

21(ki)dj
21(pj ) will be canceled by propagatorsdi(ki) anddj (pj ) contained in the

Ũ i j . Thus, the contribution of the last two terms of Eq.~154! to j i j
m will not be gauge invariant. However, it is now easy

check that gauge invariance is restored by including the other two terms definingT̃i j
m in Eq. ~135!. To do this, we change

integration variables in the last two terms of Eq.~154!:

qmf̄ i Ũ i j
mf j~kiKi ;pj Pj !5 i E d4kj d4kk d4pk d4pi ~2p!28H d4~Ki2kj2kk!d

4~Pj2pi2pk!f̄ i~kjkk ;Ki !@eiŨ i j ~ki2q;p1p2p3!

2Ũ i j ~k1k2k3 ;pj1q!ej #f j~pkpi ;Pj !1d4~Ki2kj2kk2q!d4~Pj2pi2pk!

3(
lÞ i

f̄ i~kl1q;Ki !elŨ i j ~k1k2k3 ;p1p2p3!f j~pkpi ;Pj !2d4~Ki2kj2kk!

3d4~Pj1q2pi2pk!(
lÞ j

f̄ i~kjkk ;Ki !Ũ i j ~k1k2k3 ;p1p2p3!elf j~pl2q;Pj !J . ~155!
Making use of the WT identity of Eq.~50!, we have that

qmf j
m~pkpi ;Pj !5 i(

lÞ j
elf j~pl2q;Pj !,

qmf̄ i
m~kjkk ;Ki !52 i(

lÞ i
f̄ i~kl1q;Ki !el , ~156!

and it becomes evident that the last two terms of Eq.~155!
correspond exactly to2qmf̄ i

mŨ i j f j2f̄ i Ũ i j qmf j
m . Thus

contracting Eq.~135! with qm gives
04400
qmT̃i j
m5 i E d4kj d4kk d4pk d4pi~2p!28

3d4~Ki2kj2kk!d
4~Pj2pi2pk!

3f̄ i~kjkk ;Ki !@eiŨ i j ~ki2q;p1p2p3!

2Ũ i j ~k1k2k3 ;pj1q!ej #f j~pkpi ;Pj !, ~157!

and the current conservation ofj i j
m follows.

3. Ũ µ written without subtraction terms

The gauged AGS Green functionŨnm
m is expressed by

Eqs.~140! and ~142! as
3-16
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Ũnm
m 5(

i 51

3

@~ Ũ I 21G i
mD0i

21Ũ!nm1Ũnit i
mdi

21Ũ im

2Ũnit iG i
mŨ im#. ~158!

This form for Ũnm
m may be the best for practical calculation

but the presence of the minus sign in the subtraction te
2Ũnit iG i

mŨ im does make the perturbation theory expans

of Ũnm
m difficult to see. Indeed, if we were to use Eq.~158!

directly for this purpose, we would need to carefully ke
track of the cancellations between contributions of the s
traction term and the contributions coming from the te
(Ũ I 21G i

mD0i
21Ũ)nm . For this reason we would like to find

an alternative expression forŨnm
m where all terms contribute

with a positive sign.
In order to expose the term in (Ũ I 21G i

mD0i
21Ũ)nm that

will cancel the subtraction term, we use the AGS equatio
Eqs.~129!, to write

~ Ũ I 21G i
mD0i

21Ũ!nm5@~11ŨT!di
mD0i I~TŨ11!#nm

5 d̄nmdi
mD0i1(

l 51

3

Ũnlt ldl
21d̄ lmdi

mD0i

1 (
k51

3

di
mD0i d̄nktkdk

21Ũkm

1 (
l ,k51

3

Ũnlt ldl
21d̄ lkdi

mD0i tkdk
21Ũkm .

~159!

The last term in this equation can be written as

(
l ,k51

3

Ũnlt ldl
21d̄ lkdi

mD0i tkdk
21Ũkm5 (

l ,k51

3

Ũnlt ldl
21

3~d l i 1 d̄ l i !d̄ lkdi
mD0i~d ik1 d̄ ik!tkdk

21Ũkm .

Expanding out the brackets we obtain four terms, three
which can be simplified:

(
l ,k51

3

Ũnlt ldl
21d l i d̄ lkdi

mD0id iktkdk
21Ũkm50, ~160!

(
l ,k51

3

Ũnlt ldl
21d l i d̄ lkdi

mD0i d̄ iktkdk
21Ũkm

5Ũnit idi
21di

mdi
21~Ũ im2G0d̄ im!, ~161!

(
l ,k51

3

Ũnlt ldl
21d̄ l i d̄ lkdi

mD0id iktkdk
21Ũkm

5~Ũni2G0d̄ni!di
21di

mdi
21t i Ũ im . ~162!

Thus
04400
n

-

s,

f

~ Ũ I 21G i
mD0i

21Ũ!nm

5 d̄nmdi
mD0i1(

l 51

3

Ũnlt ldl
21d̄ lmdi

mD0i

1 (
k51

3

di
mD0i d̄nktkdk

21Ũkm1Ũnit idi
21di

mdi
21

3~Ũ im2G0d̄ im!1~Ũni2G0d̄ni!di
21di

mdi
21t i Ũ im

1 (
l ,k51

3

Ũnlt ldl
21d̄ l i d̄ lkdi

mD0i d̄ iktkdk
21Ũkm . ~163!

Using that

(
l 51

3

Ũnlt ldl
21d̄ lmdi

mD0i2Ũnit idi
21di

mdi
21G0d̄ im

5(
l 51

3

Ũnlt ldl
21d̄ lmdi

mD0i@12d i l #

5(
l 51

3

Ũnlt ldl
21d̄ lmd̄ l i di

mD0i ~164!

and similarly

(
k51

3

di
mD0i d̄nktkdk

21Ũkm2G0d̄nidi
21di

mdi
21t i Ũ im

5 (
k51

3

di
mD0i d̄nktkdk

21Ũkm@12d ik#

5 (
k51

3

di
mD0i d̄nkd̄ iktkdk

21Ũkm , ~165!

we obtain that

~ Ũ I 21G i
mD0i

21Ũ!nm

5 d̄nmdi
mD0i1(

l 51

3

Ũnlt ldl
21d̄ lmd̄ l i di

mD0i

1 (
k51

3

di
mD0i d̄nkd̄ iktkdk

21Ũkm12Ũnit idi
21di

mdi
21Ũ im

1 (
l ,k51

3

Ũnlt ldl
21d̄ l i d̄ lkdi

mD0i d̄ iktkdk
21Ũkm . ~166!

Substituting into Eq.~158! we finally obtain
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FIG. 8. Graphical representation of Eq.~167! for the gauged AGS Green functionŨnm
m .
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Ũnm
m 5(

i 51

3 F d̄nmdi
mD0i1(

l 51

3

Ũnlt ldl
21d̄ lmd̄ l i di

mD0i

1 (
k51

3

di
mD0i d̄nkd̄ iktkdk

21Ũkm1Ũni~ t iG i
m1t i

mdi
21!Ũ im

1 (
l ,k51

3

Ũnlt ldl
21d̄ l i d̄ lkdi

mD0i d̄ iktkdk
21ŨkmG . ~167!

This form for Ũnm
m has no subtraction terms and can be us

directly to generate the corresponding perturbation the
expansion. This is seen especially well from the graph
representation of Eq.~167! given in Fig. 8.

Taking left and right residues ofŨm at the three-body
bound-state poles leads to the three-body bound-state cu
j m ~see Sec. III C 5 below!. In that case only the last thre
terms of Fig. 8 contribute. If we then consider the case
one-body currents with separable two-body interactions,
see that Fig. 8 reduces down to Fig. 6~a!.

4. j„ki …˜ i jk transition current

The strong interaction processj (ki)→ i jk where the final
state consists of three free particles is described by tht
matrix

T0 j5U0 jc j5U0 jD0 jf j , ~168!

whereU0 j is given by

U0 j5(
i

TiG0Ui j 5
1

2 (
i

Ui j 2G0
21 . ~169!

To find the j (ki)→ i jk electromagnetic transition currentj 0 j
m

~which can be used to describe processes likepd→gnpp),
we proceed as before and define the Green function qua

T̃0 j5G0T0 jdj5S 1

2 (
i

Ũ i j 2G0Df j . ~170!

It is T̃0 j which may now be gauged, thereby obtaining
04400
d
ry
l

ent

f
e

ity

j 0 j
m 5G0

21T̃0 j
m dj

21 . ~171!

Using the product rule we have that

T̃0 j
m 5S 1

2 (
i

Ũ i j
m2G0

mDf j1S 1

2 (
i

Ũ i j 2G0Df j
m

~172!

and therefore the electromagnetic current can be written

j 0 j
m 5S 1

2 (
i lk

Uil G0G lk
m G0Uk j2G0

mDD0 jf j1U0 jD0 jf j
m .

~173!

5. Three-body bound-state current

The three-body bound-state current was already discu
in Sec. III B above. There we obtained an expression,
~83!, which givesj m in terms of the two-body potentialsv i

and the gauged two-body potentialsv i
m . Here we would like

to give an alternative expression that results from the ga
ing of the AGS equations. This has the advantage of giv
j m in terms of the two-bodyt matricest i and the gauged
two-body t matricest i

m .
We recall that the AGS amplitudesUi j are defined

through the expression for the 3→3 Green function:

G5Gid i j 1GiUi j Gj , ~174!

whereGi is given by Eq.~117!. Thus it is clear thatUi j has
a pole at the three-body bound state:

Ui j ; i
x i

Px̄ j
P

P22M2
as P2→M2, ~175!

where

x i
P5Gi

21CP . ~176!
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By writing Ui j 5G0
21Ũ i j G0

21 we may gauge Eq.~174! in the
usual way. Then taking the left and right residues at
three-body bound state poles and using Eq.~140! we obtain
that

j m5(
lk

x̄ l
KG0G lk

m G0xk
P. ~177!

From Eq.~176! it is easy to see that

G0x i
P5C j

P1Ck
P , ~178!

whereC j
P and Ck

P are Faddeev components of the boun
state wave function as in Eq.~89!, with i jk defined to be
cyclic. By introducing the column matrix

CP5S C2
P1C3

P

C3
P1C1

P

C1
P1C2

P
D , ~179!

with the same symbolCP being used as for the bound-sta
wave function, we may write Eq.~177! in the matrix form

j m5C̄KGmCP , ~180!

giving us a formally identical expression to that of Eq.~83!
but where now each term on the RHS is a matrix. Interpre
as a matrix equation, this result expresses the currentj m in
terms of two-bodyt matrices and gauged two-bodyt matri-
ces @see Eq.~143!#, while interpreted as a scalar equatio
~i.e., not a matrix equation! it expressesj m in terms of two-
body potentials and gauged two-body potentials@see Eq.
~77!#.

6. „ i jk …˜ i „ jk … transition current

In the previous subsection we found the (i jk )→( i jk )
electromagnetic transition current by first gauging Eq.~174!
for the green functionG, and then taking left and right res
dues at the three-body bound-state poles. By contrast, in
III C 1 the j (ki)→ i ( jk) transition current was found by firs
taking left and right residues of Eq.~174! at the two-body
bound-state poles, which leads to Eq.~122!, and then gaug-
ing this equation. It is straightforward to see that the fin
expressions for the electromagnetic transition currents do
depend on the order in which the gauging and the taking
residues is done.

To determine the (i jk )→ i ( jk) electromagnetic transition
current it is convenient to first take the left residue of E
~174! at the two-body bound-state pole, then gauge the
sulting expression, and finally take the right-hand residue
the three-body bound-state pole. Taking the left residue
Eq. ~174! at the bound-state pole of particlesj and k, but
keeping the left propagator for particlei, leads to the Green
function quantity

Xi j 5f̄ iG0Ui j Gj5f̄ i Ũ i j G0
21Gj . ~181!
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Gauging this equation, taking the residue at the three-b
bound-state pole on the right, and then eliminating the
propagator of particlei, gives the (i jk )→ i ( jk) electromag-
netic transition current:

j i
m5di

21S f̄ i
mG0x i

P1(
lk

f̄ iG0Uil G0G lk
m G0xk

PD .

~182!

This expression can be written using matrix notation as

j i
m5F̄ i

mCP1F̄ i Ũ GmCP , ~183!

whereF̄ i andF̄ i
m are row matrices whosej th elements are

defined bydi
21f̄ id i j anddi

21f̄ i
md i j , respectively.

7. „ i jk …˜ i jk transition current

The (i jk )→ i jk electromagnetic transition currentj 0
m de-

scribes the photodisintegration of the three-body bound s
leading to three free particles,g( i jk )→ i jk . To find j 0

m we
may start with the seven-point function of Eq.~65!, take the
right-hand residue at the three-body bound state, and m
ply on the left byG0

21, in this way obtaining

j 0
m5G0

21GGmCP . ~184!

This gives the transition current for the photodisintegrat
process in terms of two-body potentialsv i and gauged two-
body potentialsv i

m .
Alternatively, to obtain the corresponding expression

terms of two-bodyt matricest i and gauged two-bodyt ma-
tricest i

m , we may proceed as in the previous two subsecti
and start with Eq.~174! which may be written as

G5d i j Gj1GiG0
21Ũ i j G0

21Gj

5d i j Gj1~11G0Ti !Ũ i j G0
21Gj . ~185!

Gauging the latter form of the equation, taking the right-ha
residue at the three-body bound state, and then multiply
on the left byG0

21 gives

j 0
m5G0

21~G0
mTi1G0Ti

m!G0x i
P

1(
lk

~11TiG0!Uil G lk
m G0xk

P . ~186!

Now since (11TiG0)Uil 5U0l , the electromagnetic transi
tion current can also be written as

j 0
m5~G0

mG0Ti1Ti
m!G0x i

P1(
lk

U0lG lk
m G0xk

P , ~187!

with G0x i
P given by Eq.~178!.
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IV. SUMMARY

In this article we have presented a general method
incorporating an external photon into a system of partic
whose strong interactions are described nonperturbativel
integral equations. This method consists of gauging the i
gral equations themselves, and has the important featur
coupling the external photon to all possible places in
strong interaction model. As the photon is coupled eve
where, gauge invariance of all expressions for on-mass-s
electromagnetic transition currents is guaranteed.

To discuss the details of our approach we have chosen
case of three distinguishable particles~with no coupling to
two-particle channels! whose strong interactions are d
scribed by standard four-dimensional integral equations
quantum field theory. This type of three-particle system p
sents the simplest case for which no practical gaug
method has so far been available. In the two-particle se
there have been previous gauging procedures that establ
the conserved currents for theNN system@1# ~no coupling to
one-particle channels! and thepN system@21# ~coupling to
the one-nucleon channel included!, yet even in these case
the gauging of equations method provides a much sim
way to derive the same results@10#.

By gauging the integral equation for the three-body Gre
function where the kernel consists of two-body potentialsv i ,
we obtained an expression, Eq.~118!, that describes all pos
ali

w
. S
t

04400
r
s
by
e-
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e
-
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f
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sible electromagnetic transition amplitudes of the three-b
system in terms of thev i and the gauged potentialsv i

m . We
have also shown how our method can be used to gauge
Alt-Grassberger-Sandhas equations for three particles in
der to get more practical relations where the electromagn
transition amplitudes are expressed in terms of two-bodt
matricest i and gaugedt matricest i

m ; see Sec. III C.
Although we have presented the gauging of equati

method within the context of quantum field theory where t
integral equations are four-dimensional, it should be no
that the method itself can be used in a wider context. Ind
we have already used this method to incorporate an exte
photon into the three-dimensional equations of the spect
approach@12,13#. Similarly, one could apply the gaugin
procedure to the three-dimensional approach of time-orde
perturbation theory when the equations are expresse
terms of convolution integrals@22#. The gauging method also
does not depend on the nature of the external field involv
so our results remain valid if the external field is due to
strongly or weakly interacting probe. In this sense the ga
ing of equations method provides the solution to the lon
standing problem of how to incorporate an external field in
a nonperturbative description of quarks or hadrons.

The authors would like to thank the Australian Resea
Council for their financial support.
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