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Gauging of equations method. I. Electromagnetic currents of three distinguishable particles
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We present a general method for incorporating an external electromagnetic field into descriptions of few-
body systems whose strong interactions are described by integral equations. In particular, we address the case
where the integral equations are those of quantum field theory and effectively sum up an infinite number of
Feynman diagrams. The method involves the idea of gauging the integral equations themselves, and results in
electromagnetic amplitudes where an external photon is effectively coupled to every part of every strong
interaction diagram in the model. Current conservation is therefore implemented in the way prescribed by
quantum field theory. We apply our gauging procedure to the four-dimensional integral equations describing a
system of three distinguishable relativistic particles. In this way we obtain the expressions needed to calculate
all possible electromagnetic processes of the three-body system. An interesting aspect of our results is the
natural appearance of a subtraction term needed to avoid the overcounting of diagrams.
[S0556-281®9)04609-9

PACS numbgs): 11.10.St, 13.40:f, 21.45+v, 25.30-cC

[. INTRODUCTION the case of a two-body system, this result does not apply to
systems consisting of three or more particles. There is also
With the advent of new experimental facilities like the no straightforward way to use this result to construct the
Thomas Jefferson National Accelerator FaciliyJAF), the  electromagnetic current of three particles even in the case
Electron Stretcher Accelerat¢ELSA), and the Mainz Mi-  where only two-body strong interactions are present.
crotron(MAMI ), there is currently great interest in the use of Here we would therefore like to present a different
photons and electrons to probe the structure of hadronic sys$nethod for constructing conserved currents that is applicable
tems. In practice, this means using electromagnetic probes {§ any number of particles whose strong interaction pro-
induce a variety of reactions among hadrons. Here we shallesses are described nonperturbatively by integral equations.
be concerned with those reactions where effectively only ongpis method involves a direct gauging of the equations them-
external photon is involved. This includes not only photoab-g4|es in the sense that a vector ingeis added to all terms

sorption and photoproduction reactions, but also eIectror&]c the equations in such a way that a linear equation in

scattering and electroproduction when calculated to the IOW,ZL-IabeIed quantities results. Proceeding in this way, we ob-

est order in the electromagnetic interaction. On the theoreti,[-alin intearal equations for the qauged quantities of interest
cal side such reactions are described (B¢), the matrix 9 g gauged g

element of the electromagnetic current operator, and it muéfa'g" the gauged Green functi@ or the gauged scattering

ultimately be the goal of the theorist to construct modelst matrix T¥) expressed in terms of other gauged quantities

where(J*) describes the experimental data as accurately agiat are known or that can be easily construdtggically
possible. the gauged one-particle propagatht and the gauged two-

An essential constraint ofJ*) is that it must obey cur- particle potentigt/“). This approach, which we shall simply
rent conservation, expressed by the continuity equatiofiefer to asgauging the equationsesults in the external pho-
d,(3*)=0. Current conservation is a consequence of chargéon being effectively coupled everywhere in the strong inter-
conservation and is therefore a fundamental property of an§iction model, so that current conservation is guaranteed.
theory. On the other hand, because one uses models to ap-Using this method for the case of two nucleons, we obtain
proximate the full theory, current conservation is not guar-that the hadronic current is a sum of matrix elements of the
anteeda priori. For this reason, much effort has been de-gauged nucleon propagators and the gauged BS kernel. Thus
voted to the question of how to impose current conservatiomur result, in this case, coincides with the one of GR. How-
within a particular model of strong interactions. In a seminalever, our method is also easily applied to other systems. As
paper, Gross and Risk&R) [1] have shown how to con- the simplest strongly interacting system going beyond the
struct the conserved current of two nucleons described by thigvo-body problem is that of three particles, we choose to
Bethe-Salpete(BS) equation. By analyzing specific meson- illustrate the general nature of our gauging method by apply-
exchange diagrams of the BS kernel, they showed that cuing it to the relativistic three-body problem whose strong
rent conservation is achieved when the two-nucleon interadnteractions are described by standard four-dimensional inte-
tion current is constructed by attaching photons to allgral equations. That is, we consider systems like that of three
possible places in the BS kernel. Although indispensable fonucleons or three quarks whose strong interaction processes
do not involve coupling to the two-body sector. To keep the

presentation as simple as possible we restrict the discussion

*On leave from Mathematical Institute of Georgian Academy ofto the case of three distinguishable particles. The gauging of
Sciences, Thilisi, Georgia. three identical particles involves additional considerations of
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particle exchange symmetry and is the subject of the accom >+~ ' L
panying papef2]. (2) % ®) EE (e) K @ g
Although four-dimensional three-body equations have al- ) ' —A—

ready been pursued numerically by Rupp and Tgh there FIG. 1. Examples of last cutslashed linesin relativistic three-

has not been a ge.nerallzatlon of the Gross_,—Rlska result to .t%d four-body processe&) Ambiguous last cuts in the four-body
case of three particles. As a result, there is presently no rigsgplem. (b) Unique last cut in the three-body problefig) Am-
orous del’lvatIOI’l Of the Conserved current fOI’ a relat|v|st|cb|guous last cuts in electron Scatteriﬁgp ||ne) off three partic|es
three-body systems. This paper is therefore devoted to showhottom three straight lings(d) The traditional picture of elastic
ing how the gauging of relativistic three-body equationselectron scattering off a three-body bound state in impulse approxi-
leads to gauge-invariant expressions for the various electranation. Interpreted as a Feynman gréapith the ellipses represent-
magnetic transition currents of a three-particle system. It is éng the bound state wave functiprthis diagram is consistent with
feature of our approach that the gauge invariance of our exhe graph ofc) being included twice, once for each last cut shown.
pressions is not imposed in ad hoc fashion, but rather The diagram in(d) therefore contains overcounting.
according to the way prescribed by field theory, namely, by
coupling photons to all possible places in the strong interacbation series for the electron scattering process. For example,
tion model. to find the expression describing electron scattering off a
To show the flexibility of the gauging method, we apply it bound three-body system in the relativistic impulse approxi-
to two different relativistic three-body equations. The first of mation, one cannot simply use the direct generalization of
these is the integral equation for the-3 Green function the nonrelativistic expression as given diagrammatically in
whose kernel is defined in terms of two-body potentials. Thig=ig. 1(d). Interpreted as a Feynman graph, this diagram over-
leads to three-body electromagnetic currents which are exeounts interactions between the two spectator partighes
pressed in terms of two-body potentialsand gauged two- lowest two lines in the diagransince such interactions are
body potentialsv”. In the second approach, we gauge thecontained in both the initial and final three-body bound-state
four-dimensional version of the Alt-Grassberger-Sandhasvave functions. This overcounting corresponds to the dia-
equationg4] in order to obtain electromagnetic currents thatgram of Fig. 1c) being included twice, once for each last cut
are expressed in terms of two-botlynatricest and gauged shown. Just this type of overcounting appears to be present
two-body t matricest*. Our final results consist of gauge- in Rupp and Tjon’s calculation of the electromagnetic form
invariant expressions for the electromagnetic current of théactors of *H.
three-particle bound state, as well as the various electromag- An important feature of the gauging of equations method
netic transition currents of three particles. Thus, in the cases that it not only attaches photons everywhere in the three-
of three distinguishable nucleons, our expressions descridedy amplitude, but it also does this without introducing any
the electromagnetic form factors of the boud&IN system  overcounting. Indeed, it is found that the gauging procedure
(®H), and the processedld—Ndy, Nd—yNNN, y°H itself gives rise to subtraction terms that effectively remove
—Nd, andy®*H—NNN. all overcounted contributions. In this way the complications
A notorious problem plaguing many four-dimensional ap-brought about by ambiguous last cuts like that of Fige) 1
proaches is the overcounting of diagrams. For perturbatioare taken care of automatically.
graphs, such overcounting can be corrected simply by sub- Preliminary results of the present pagbrand the follow-
tracting the overcounted terms. However, when overcountingng paper(ll) were first reported a few years a§8]. At
occurs within the scattering integral equations themselvesibout the same time, an effectively identical gauging method
the way to solve the overcounting problem becomes highlyvas presented independently by Haberzettl and applied to
non-trivial. Indeed, only recently has such an overcountinghe =N system[10]. In the meantime we have applied the
problem been solved in the context of four-dimensional in-gauging of equations method to the spectator formalism of
tegral equations for theeNN system[5,6]. Gross[11] to generate gauge-invariant three-dimensional ex-
Overcounting can arise when reducible diagrams hav@ressions describing any hadronic or quark system interact-
ambiguous last cutf5,7,8. An example of an ambiguous ing with an external electromagnetic profde]. In particu-
last cut for the four-body problem is given in Figal Luck-  lar, we have derived the three-dimensional expressions for
ily, there is no overcounting in the four-dimensional scatter-the various electromagnetic transition currents of the three-
ing equations considered here. This is because of the puretyjucleon system within the spectator approft8]. In this
three-body nature of our systetihere is no coupling to two- sense, the results of R¢fL3] can be considered as a gauge-
body channelswhich makes all last cuts unigue—see Fig. invariant three-dimensional reduction of the four-
1(b). However, as soon as coupling to an external photon islimensional results presented in | and Il. We have also ap-
made, the system effectively obtains coupling to the fourplied the gauging of equations method to thBIN system
body sector and overcounting again becomes a possibility14] where, as previously mentioned, the overcounting of
To see this explicitly, consider the calculation of electronsdiagrams provides an extra degree of complexity. For these
scattering off a three-body system in the relativistic impulseworks the present paper and Il together form the basic theo-
approximation. One contribution to this process is given inretical foundation, and provide the references where all the
Fig. 1(c). The diagram shown contains ambiguous last cutsnissing details are given.
of the same type as in Fig(d. This ambiguity needs to be Although the power of the gauging of equations method is
carefully taken into account when summing the full pertur-well demonstrated in the example of the three-body system
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considered here, it should be emphasized that the samg, G*(kika;p1p2)
method is just as easily applied to other strongly interacting

systemgquark or hadronincluding those where the number =i[e1G(ky—0a,kz;p1p2) +€,G(Ky ko —q;p1p2)

of particles is not conserved. Indeed, as mentioned above, — G(k.Ks:Dr+ e—G(kks: +q)e,], (1)
this method has recently been used to gaugerfd10] and (kikz Pt 0.P2)€s~ Glkikai Py P2+ )],
7NN systemq 14] where pion absorption is included. where p;p, (k;k,) are initial (final) momenta of the par-

As the gauging of equations method couples one externaicles, the photon is taken to be incoming with momentym
photon everywhere in the strong interaction model, it alsoso thatk;+k,=p;+p,+q, G is the full two-body Green
forms the basis for exact descriptions of more complicatedunction given by
electromagnetic processes. For example, we have recently
shown how to use this method to incorporate iaternal  (2m)*8*(p;+ ps—pP1—P2)G(P1P5:P1P2)
photon into all possible places in a strongly interacting sys-
tem[15]. The resulting expressions provide a way t_o calcu- :f d4y1d4y2d4xld4xzei(piyl+ PoY2—P1X1— P2Xo)
late the complete set of lowest order electromagnetic correc-
tions to any strong interaction model described by integral
equations. Being complete, these electromagnetic corrections
are therefore gauge-invariant. The gauging method can also . N . .
be used to describe processes with more than one photoﬂ'f‘dGM is the corresponding five-point function:
For example, by gauging a strong interaction scattering equabﬂ(k k.- )
tion twice, we would obtain gauge-invariant expressions for 1K2,P1P2
the corresponding Compton scattering process.

Finally, it is important to note that although we are con-
cerned in this paper with the electromagnetic interaction for _ _
which gauge invariancéor current conservatioris a major X (0| T D(y ) W@ (y,) WD (x,)¥(2)(x,)I4(0)]0).
issue, the gauging of equations method itself is totally inde- 3)
pendent of the type of external field involved. In this context

the vector nature of the external field is not of importance, . — . ] .
and can equally well be a scalar, axial vector, or even 4" the above® and () are Heisenberg fields of particle

tensor field. Thus, for example, all the expressions for tranl correésponding to some strong interaction Lagranglarm

sition currents developed in this paper hold also for case!$ the time ordering operata¥! is the quantized electromag-
where the external field is due to strongly or weakly inter-N€tic current operatof0) the physical vacuum, angl is the
acting probes for which current is not consenvefl course charge of theith particle. If the particles are isotopic

the exact form of the gauged inputs would need to be chosefoublets, ther; includes an isospin factor; e.g., for nucleons
appropriately. e=3[1+7{)]e, where 75 is the Pauli matrix for the third

component of isospin, angl, is the charge of the proton.
It is evident from the application of Wick's theorem to

X (0| TU D(y,) W (y,) WO (x,) W P(x,)[0),  (2)

= f d4yld4y2d4xld4xzei (k1y1+Koyo—=p1X1—pP2Xo)

Il. GAUGING TWO DISTINGUISHABLE PARTICLES Eq. (3) thatG* cqntains all diagrams that can be cc_)nstructed
from G by attaching an external photon to all possible places
A. Gauging the two-particle Green function G (i.e., to all propagators and all vertigea the Feynman dia-

Gross and Risk&l] have shown how to construct a con- 9rams ofG. It might_ also be useful t_o Wrifte_: down another
served current for the two-particle system described by th&/ell-known expression foG* which identifies the proce-
Bethe-Salpeter equation. In addition to the one-body currenfluré of attaching single external photons with the math-
which in general is not conserved, one also needs the twgMmatical procedure of taking a functional derivative:
body interaction current obtained by attaching a photon to
each place inside all the Feynman diagrams defining the BS
kernel. Such a current satisfies the two-body Ward-
Takahashi(WT) identity [16] corresponding to the given
model of strong interactions. On mass shell, this identitywr1er
guarantees that the matrix element of the current operator
satisfies the continuity equation. To obtain their result, Grosg, (kyky:P1P2)
and Riska applied the one-body WT identitj¢§] to a num- A2 12
ber of meson-exchange diagrams of the BS kernel. Here we

)
G*(kqiky; =i —Ga(k{ky; , (4
(kika;p1p2) 5A,(0) a(kika;p1p2) o (4)
w

e

_ i(Kqyq+Koyp—PrXg—
would like to introduce a different method, that of gauging = | d*Vad%y2d*x d®x, e/t varieyampra=pa)
equations, by rederiving the Gross-Riska result for the case o o

of two particles. In the subsequent sections, we shall illus- X (O] TY M (y ) WO (y,) ¥ O(x,) ¥ 3)(x,)

trate the general nature of our method by applying it to the
case of the three-particle system. . u a
The two-body WT identity{16] can be written as xexp{ 'f JH )AL X

0), (5
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The WT identity is usually given in terms of the exact

strong interaction Green functions of the underlying field

é ‘.:\ theory. It follows that this identity must also be valid to any

(a) (b) R order with respect the strong interaction coupling constant.
— E— Here we would like to point out that the WT identity is also

FIG. 2. Examples of the two types of Feynman diagram makingvalid for any particular single diagram of the strong interac-
up G*. (a) A diagram that can be constructed by attaching a photorfion. This is because one can always construct a Lagrangian
to a strong interaction diagram &. (b) A diagram that cannot be With respect to which the diagram in question represents the
constructed by attaching a photon to a diagranGof only case of some given order of the strong interaction. In

this case, theG in the WT identity is given by just one

with A,(x) being an external nonquantized electromagnetidiagram of the strong interaction, a@t is the sum of the
field. Note thatG, is just the translationally noninvariant diagrams obtained fron® by attaching the photon every-
Green function corresponding to the LagrangidR(x) Whgre. In thg same way, the WT |d¢nF|ty is valid for any sum
= £(x) = J*(X)A,(X). of dlagrar_ns included 5. Having this in mmd, we consider
i G to be given by the Bethe-Salpeter equation where the ker-

nel V is given by a model consisting of any number of con-
nected two-particle irreducible Feynman diagrams.

We start by expressinG in terms of its fully discon-
nected parG, and the kerneV:

For local field theory with distinguishable particles the
electromagnetic current operator is given by

JH(X)=—Ii 2 L—eiq’(i)+~]gthef(x)’ (6)
=1 9(9,¥0) G=Gy+GyVG. @)

This is a symbolic equation that, for the case of two-particle

u . : o .
whereJ%,, .(X) consists of partial derivatives with respect to scattering, represents a shorthand notation for

all other fields that are present in the Lagrangfamote that

we have used translational invariance to write E8). in gl - = "pl -

terms ofJ*(0), and wehave defined botls and G* to be GPP2iP1P2)= GolPiPziPap2)

without total four-momentum conservingfunctions. In Eq. d%r, d?s; L

(1) we have used a notation where the two-body Green func- f 2 = —2C0(P1P2;r1r2)
tion G is labeled by four momentum variables even though (2m)" (2m)

only three are independent. Such notation allows us to write X V(T 12:51S0)G(51S0;P1P2), (8)
down the WT identity in an especially simple form that eas-

ily generalizes to any number of particles. where it is understood thap;+ps=p;+p,=ri+r,=s;

One can classify the contributions " into two groups  +s,. In Eq. (8), neither the Green functions nor the kernel
[18]. The first of these consists of all Feynman diagrams thatontain & functions corresponding to total momentum con-
can be constructed froi® by attaching a photon to an ap- servation. Thus the disconnected Green funcGgrcontains

propriate diagram of5. An example is given in Fig.(@).  only oneé function and can be written as
The second group consists of diagrams that cannot be ob-

tained fromG by attaching a photon, an example of which is Go(pPip5;p1P2) =(2m)*8*(p1—p1)d1(p1)da(p2)
given in Fig. Zb). The special feature of the second group is 4 ,

that each contributing Feynman diagram satisfies gauge in- =(2m)*8%(py—p2)d1(p1)da(p2), (9)
variance all on its own.

The goal of this paper is to show how to construct a
gauge-invariantG# by attaching a photon to all possible
places in every Feynman diagram contributing Go We Ga=d.d (10)
shall refer to this attaching of photons everywhere as the o Ttz

gauging of G On the other hand, diagrams like that of Fig. where momentum labels and the momentum consending
2(b) are current conserving from the outset, and their confynction[together with factor (2)*] have been suppressed.
struction is a separate problem W_hlch will not be considered Equation(7) is basically a topological statement regarding
here. Thus for the purposes of this paper, we t@keto be  the two-particle irreducible structure of Feynman diagrams
the result of the gauging dB, with the understanding that pelonging toG; as such, it can be utilized directly to express
the neglected contributions can aIWayS be added Separatqb{e structure of the same Feynman diagrams’ but with pho_

without affecting the question of gauge invariance. tons attached everywhere. Thus from Eg. it immediately
In a similar way, we use a superscriptto indicate the  fgllows that

vector quantity obtained by attaching photons everywhere to

an amplitude or potential. However, in this case we will re- G*=Gl+GHVG+GV*G+ GV GH. (12)
quire thatno photons be attached to external lingflsFeyn-

man diagrams making up the amplitude; nevertheless, wehis result expresse&* in terms of an integral equation,
shall still refer to the process of attaching the photons to aland illustrates what we mean lyauging an equationn this
other places in the amplitude gauging case the gauging of Eq7). Implied in Eq.(11) is the result

whered; is the dressed propagator of partitlefo save on
notation we write Eq(9) symbolically as

044003-4



GAUGING OF EQUATIONS METHOD. I. ... PHYSICAL REVIEW G0 044003

[GoVG]#=GEVG+GoVFG+ GV GH, (12)  The advantage of the topological argument is its simplicity:
its validity does not depend on the model chosenMoit is

which illustrates a rule for the gauging of products that isindependent of the nature of the external field or particle
identical to the product rule for derivatives. Indeed, althoughbeing attachede.g., the external particle could just as soon
we stress the topological origin of E¢ll) and Eqg.(12)  be a pion as a photgnand it can be applied to any nonper-
(namely, that photons are attached everywhettee same turbative descriptioite.g., a three-dimensional orthat may
result can be obtained by writing an integral equationGgr  not even be based on field theory. Again, Efj) is a sym-
and taking the functional derivative A, =0 as in Eq.4).!  bolic equation representing

4rp d%s,

—— ——GH(kiko;r1r2)V(rir»;5:8,)G(S1Sy;
(2m) (2m) 0(Kika;rara)V(rar,;s:5;)G(S1S7;P1P2)

G (ka1 P1P2) = G Kikoipap) + |

d*, d*
+J' 1 uz
(2m)* (2m)*

J' d4V1 d4Wl

Go(KiKa:tyto) VA(t ity U U2) G(U Uo; p1P2)

——Gg(kko;ViVo)V(V1Vo;WiW5) GH (W Wo; , 13
(2m)* (2m)* o(kiK2;v1vo)V(V1va;WiW,) GH(WiWa i p1p2) (13

where now the presence or absence of a photon with momemvhere

tum g needs to be taken into account in specifying the mo-

mentum conservation relationk; +k,=p;+p,+q, where I4=Ggy'GLGy . (17)
kKitky=t;+t,=v;+vo=w;+w,, and p;+p,=ri+r,
=S;+S,=U;+Uy.

In Eqg. (11), bothG* andG§ are obtained from the Green
functions G and G, respectively, by attaching photons ev-
erywhere. It is therefore important to note that the gauged Gp=did,+d;d5, (18
potential V# is similarly obtained fronV, but with no pho-
tons attached to external legs. This is because such contribgg that
tions are already taken into account in the tek®&§3/G and
GOVG” of Eq.-(ll). Equationd7) and(11) are a set of linear Fé‘:Ffdgl+d[1T’2‘, (19)
integral equations fo andG*, and could be solved as such
if V and V#* were given. However, we can also formally . . . .
solve the equation fo6#, and thus express it directly in wherel'# is the one-particle electromagnetic vertex function

terms ofG. Simple algebra gives defined by the equation

By gauging Eq.(10) one obtains

“_ ey IS Iz
G*—GoVG*=Gh+ GEVG+ GyV-G, df=d; T¥d;. (20)

GF=(1—GyV) Y{GH(1+VG)+ GV G] , )
Note that for nucleons, to lowest order in the strong interac-

=G(G, 'GAG, 1+ V)G, (14)  tion, T#=gy* wherey* is a Dirac matrix. In Eq(16), T'4
is thus the sum of single-particle currents, auti is the
where Eq/(7) was used in the last step. Defining the electro-two-body interaction current of the given model. Equation
magnetic vertex functiol’” by (16) is illustrated in Fig. 3. This is the essential result of
Gross and Riska, and has been derived here using the gaug-

r= G H* . .

G#=Gr'*G, (15) ing of equations method.
Eq. (14) gives the essential result of this section:

CE=T§~+VH, (16) T % §

= Z + Vv
1
We note that in Ref[10] the product rule, as illustrated in Eq. FIG. 3. lllustration of Eq(16) expressing the two-particle elec-

(12), was by contrast obtained through the use of the minimal subtromagnetic vertex functioh* as a sum one-body currents and the
stitution prescription. two-particle interaction current.
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B. Ward-Takahashi identity for G* 2
The validity of Eq.(11) for the gauging ofG is clear from qurﬂ(klkz?plpz):'z«l [G™ (kika;pi+a)e
the topological argument given above. We would neverthe-
less like to show explicitly that th&#, constructed in this —e,G Yki—q;pip2)]. (27)

way, satisfies the WT identity. To do this, we first prove that _ o _
the gauged potentiaV* satisfies the WT identity even Using this result and Eq15) it immediately follows that
though no photons are attached to its external legs. Using a

shorthand notation defined by 2

%G#(klkz;plpz):i; [eG(ki—q;p1p2)

G(K:Ks"Di+q) = G(kikz;p1t+Q,p2) (i=1), o1
B I ~G(kikyspitael,  (28)
G(ki—a.kz;p1p2)  (1=1) thus proving the WT identity for th&* obtained by the
G(ki_q;plpZ):[G(k G Gpipy (=2, (22 9auging of equations method.
1827 Y, V12 =Z),

we can write the WT identities foG% and the quantity C. Gauging the two-body bound-state wave functionj

[GoVGy* as So far we have defined “gauging” to be the process
where photons are attached to all places in perturbation dia-

2 grams. As Green functions and potentials have a diagram-

q,u.GlOL(klkz;plp2):iZl [eGo(ki—d;p1p2) matic interpretation, the gauging of these quantities has
- therefore a clear meaning. On the other hand, the bound-state
—Go(kiko;pita)e], (23)  wave function is a purely nonperturbative quantity, and thus
cannot be associated with perturbation diagrams. One can
2 nevertheless define the gauged bound-state wave fungtion

qM[GOVGO]“(klkz;plpz):iE [6GoVGo(ki—q;p1P2) by formally gauging the bound-state Bethe-Salpeter equation
=1 using our product rule. Thus by gauging the equation

—GoVGo(kikz;pi+a)e]. W=GoV i, (29)
(24)
we obtain
Note that[ GoV Gy]* satisfies the WT identity because, un-
like V¥, it has photons attached everywhere. Although Eg. = (GoV)* i+ GV iy, (30

(23) and Eq.(24) would be automatically true if field theory

were being solved exactly, here we work within a strongin this way definingy*. Here the symbol) represents the
interaction model specified by the input quantiitandG,;  two-body bound-state wave functiaf:(p;p,) defined by
as such, these equations are assumed to be true by construc-

tion. (2m)*8*(P—p1—P2) hp(P1P2)
Using the product rule of Eq12), we have that

d,.[GoVGol#(kikz;p1p2) =0,G5V Go(kiKz; p1P2)

+Goq,V#*Go(kikz;p1p2)
+ GV, G (KiKa:p1p2).- whereP?=m? with m being the mass of the bound two-body
system. To save on notation, we do not write explicit spin
(25  and isospin labels in the statf) or in the wave function
¥p; nevertheless, such labeland, if necessary, sums over
such labelsare to be understood as implicitly present.
It is now straightforward to show that thg* defined by

= f d*x,dx,e! (Prat PR 0| TP (M (x,) W ()(x,) | P),

(31)

Writing out the integrals implied by this expressi@ee Egs.
(8) and (13)] and using Egs(23), (24), and(9), we obtain

that Eq. (30) is just the quantity/*(k,k,;P) given by
2
qMVM(klkZ;plpZ):iZl [&V(ki—d;p1P2) :/;“(klkz;P):f d*x,d*x e kxatkax) (o] T¥ (M(x,)
—V(kikz;pi+a)ei], (26) X W )(x,)I#(0)|P), (32)

which is the WT identity fov#. We may now use Eq$26)  wherek, + k,=P-+q. The proof of this proceeds as follows.
and (23) together with Eqg. (16) to evaluate Assuming the field theory under consideration admits a two-
q,.I*(kikz;p1p2). Taking into account thaBgl—V=G*1, body bound state, the Green functi@y defined by Eq(2),

we obtain exhibits a pole atP?=m? where P is the total four-
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momentum of the bound two-body system. Indeed from Eq. d*=(1+TGo) [ *yy—THy. (43)
(2) it can be shown that, aB%—m?,

t//p(pipé)%(plpz) D. Ward-Takahashi identities for ¢* and ¢*
G(P1p2.P1P2) ~I P2 m2 ' (33 The WT identity for¢* follows from Eq. (37) and the
WT identity for I'*, Eq. (27). Writing Eq. (37) in its full
where P=p;+p,=p;+p, and yp is given by Eq.(31).  humerical form
Similarly from Eq.(3) one can show that, fdP>—m?,

d*t, d%p;
—G(kqk,:tt
(2m) (2m)* (kika;tsto)

XTH(tyty;p1P2) ¥(P1P2;P), (44)

- pkakoiP)= |
“(k ko P
G"(klkz,plpz)Ni'J/ (ky 22 )'J/;(Plpz)
P“—m

. (39

with ¢*(k.k,;P) given by Eq.(32). Using the last two re-
sults in Eq.(11), equating the residues Bf=m?, and writ-
ing ¢* as shorthand for*(k.k,;P), we obtain that

we may use Eq(27) to obtain

d*t; d'p, .
¢u$:(GOV)M¢E+GOV¢ME. (35) q,u,l)bﬂ(leZYP):f (2m) (ZT)ztG(klkz’tltZ)l
We therefore deduce that thg* given by Eq.(32) does 2
indeed satisfy Eq(30). Equations(29) and (30) form a XE [G Yyt pi+Q)e—g
coupled set of equations which can be formally solved for =1
¥*. giving X Gt~ q;p1p2) 1 P1p2; P).
PH=(1=GoV) HGoV)*4h=G Gy {(GoV) 4 (45
=G(Gy 'GEGy VA i, (36)  Since G yp=0, the second term in the square brackets
) ) does not contribute and the above equation reduces down to
Recalling Eq.(16) we obtain the WT identity fory“,
L=GI'*y. 3 .
WEGLEy (D (kkeiP)=ilesi(ks = a.koi P) + stk ko= GiP)].
A comparison with Eq(15) shows that/* can be obtained (46)

from G* by taking the right-hand residue at the two-body

bound-state poléthis of course is also obvious from Eg.

(34)]. As such,Gglz,//" is just the transition current describ-

ing the photodisintegration and electrodisintegration of the

two-body bound state, as discussed shortly. d)“(klkz'P):f
It is often convenient to work with the bound-state vertex ’

function ¢ defined by the equations

The WT identity for¢* is found in a similar manner. Writ-
ten out numerically, Eqé4l) is

d*; d*p;
(2m)* (2m)*
X[VGol#(t1to;p1P2) p(P1P2;P).  (47)

[Go 'Gl(Kiky;tats)

=G = $Gy. 38
V= Cobr =G0 38 Note that the square brackets here indicate the resultant func-
To gaugee we follow the same idea as for the bound-statetion to which the following momentum variables refer. As
wave function; namely, we defing* by formally gauging [VGg]* is a gauged input, it satisfies the Ward-Takahashi
the bound-state equation fap [which follows from Eqg. identity from the outset. We can therefore write
(29)]. In this way we obtain the coupled set of equations
d*t, d%p,;

4=VGos, @ aeraar= [ Do

d*=(VGp)“p+ VG, (40) 2
X(klkz;tltz)izl 1&i[VGol(ti—a;p1p2)

G, 'G]

which can be solved as above to give
¢"=Gg 'G(VGp)*¢. (41) ~[VGol(tsts;pi+a)e} d(p1ps;P).

Writing (VGg)*=V*Go+VGE andG, 'G=1+TG, where
T is thet matrix defined by

(48)

The first term in the curly brackets can be integrated gqer
G=Gy+G,TGy, (42)  using the fact thaV/ Gy¢p= ¢. Similarly the second term in
the curly brackets can be integrated oterusing the fact

Eq. (41) reduces after some simple algebra to the result thatGglGVG():GalG— 1. Only one term survives,

044003-7



A. N. KVINIKHIDZE AND B. BLANKLEIDER

4 2
d pl .Zl (277)454

. 0akziP) = | oo

X(ki—pi—q)e ¢(p1p2;P), (49

which gives the Ward-Takahashi identity fer*:
q,0"(Kiky;P)=i[e1d(Ki—0a,ky;P)+eyd(ky,ko—q;P) .
(50)

Note that neither of the WT identities of E¢46) nor Eq.
(50) are zero, even for on-mass-shiejlandk,. Thus neither
Y™ nor ¢* obey current conservation.

E. Two-body electromagnetic transition currents

To obtain the physical matrix for any reaction involving

PHYSICAL REVIEW C 60 044003

momentum shifts { q) contained in the WT identity fog*,
Eq. (46), ensure that the poles af,¢* do not cancel the
zero of G, .

Last, we consider the case where an electromagnetic
probe interacts with two particles which are bound in both
initial and final states, for example, elastic electron-deuteron
scattering. Such processes are described by the electromag-
netic bound-state current* which can be found from Eqg.
(15) by taking residues at both the initial and final bound-
state poles. As these bound states can have different total
momenta, we write the bound-state current as

j#= g ipp, (56)

whereK?=P2?=m?. Current conservation fgr* is obtained
by using the WT identity fol'#, Eq. (27), and the bound-

state equation/G 1=G 1y=0.

an electromagnetic probe interacting with a quark or had-
ronic system, it is sufficient to specify the corresponding !ll. GAUGING THREE DISTINGUISHABLE PARTICLES
matrix element of the electromagnetic current operator. We

refer to such a matrix element simply as electromagnetic
transition currentand denote it using the symbpt. Thus,

Having gauged the two-body system, we are ready to ap-
ply the gauging of equations method to the substantially

for example, a process like two-nucleon bremsstrahlungnore complicated case of three strongly interacting particles.

NN— yNN is described by théNN— NN electromagnetic
transition currenjf, given by
j60=Go 'G*Go - (5

The physicalt matrix is then found by contracting, with
the photon polarization vectar, .

A. Gauging the three-particle Green function

The Ward-Takahashi identity for three particles can be
derived by following the same procedure as used by Bentz
[16] for the two-particle case. One obtains

q,G*(kikoKz;p1p2P3)

For processes with one two-body bound state, like deu-

teron photodisintegration, one determines the electromag-

netic transition currenjty from G* by taking the appropriate

residue at the bound-state pole. Thus, to determineithe (
—1ij electromagnetic transition current describing the pro-

=i[e;G(k;—0,koK3;p1P2P3)
+e,G(kq,ko—0,k3;p1P2p3)
+e3G(kika,K3—q;p1p2p3) — G(kikoKs; Py

cessy(ij)—ij where a photon is absorbed on the bound

state {j) producing free particlesandj in the final state, we
take the residue of Eq15) on the right to obtain

j6=Go GIy (52
=(1+TGy)I'*y, (53

whereT is the off-shell two-bodyt matrix. As noted previ-
ously, a comparison with Eq37) shows that theif)—ij

electromagnetic transition current and the gauged bound-

state wave function are simply related by

j6=Go 'yt (54)
It is also interesting to examine the relationship betwggn
and the gauged bound-state vertex functipfh From Eq.
(43) one immediately obtains that

jo=¢*+T5God. (59

From this equation it is evident that the difference between

¢* and the electromagnetic transition currgfjtis that ¢*

has no photons attached to external legs. This suggests that

¢* does not conserve current, whijg does. Indeed,j§

+0,P2p3) €1~ G(k1KoK3;p1,P2+0,p3) €
—G(kikoks;p1p2,p3ta)es]. (57)

By extending the shorthand notation of E¢&1) and(22) to
the case of three particles, the three-particle Ward-Takahashi
identity can then be written more concisely as

3
04,.G"(KikoKz;p1pops) =i Zl [eiG(Ki—d;p1P2P3)

—G(kikoks;pi+q)e]. (59

HereG is the full Green function of the three-particle system

! ! !

(2m)*6%(p1+ps+P3—P1—P2—P3)G(P1P2P4;P1P2P3)
= f d*y,d*y,d%y5d*x, d*x,d*x,

% @i (P1Y1+P2Ya+P3Y3—P1X1—P2Xa~ PaXa)

X (O] T® My ) WP (y,)wE)(ys)

X WD (x) W O(x,) W 3)(x3)|0) 59

=GglqMW‘:0 for on-mass-shell external legs since theandG* is the corresponding seven-point function:
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G*(kikoks;p1p2p3) %

1
_ by, A, Ad Ay by A4 V,-” = J 0] - J ]
dy;d%y,d"y3d "X, d"X,d" X3 k k

x @l (K1y1+kayot+kaysz—piXg—PoXp—P3Xa)
_ FIG. 4. lllustration of Eq(72) for the gauged disconnected po-
X(O[TW M (y) WP (y) ¥ (y4) wH(xy) tential V{*.

X W @)(x,) W) (x3)I#(0)|0). (60)  unambiguous answer is provided by gauging 64) with V
explicitly given by Eq.(62) and Eq.(64). In this case we
In practice, the Green function for three distinguishablewrite Eq. (61) as
particles is specified by the integral equation

G=Gy+GyVG, (61) G=Gy+ Y, GoV,G=Gy+ >, DgV;G, (69)
I |

where the potentiaV is three-particle irreducible and, in the _ _ _
absence of three-body forces, is written as a sum of thre@hereDy; is the fully disconnected two-particle propagator
disconnected potential : defined by

Here we use the usual spectator notation of three-bodyhe gauging of Eq(68) thus involves the term
theory: defining {jk) to be a cyclic permutation dfL23), V;
is the potential where particlgsandk are interacting while (GoViG)#=(DviG)*=(Dv;+DgvF)G+Dgv;GH.
particlei is a spectator. Explicitly we have that (70)
Vi(P1P2P3,P1P2P3) Now using the fact thaD/ = (GA—Dgd#)d; *, the above
! ! - ! t i
=Vi(p] P PP (P (27)* 5 (P — o), cuation gives
(63 (GoViG)*=[GHV;— GoI'*v;+ Gy(vid 1) ]1G+ GV, G*

wherev; is the two-body potential between particjeandk. =GhV,G+Go(— T v +vid 1 G+ GV, GH,
Neither V; nor v; contains total momentum conserving 71
functions, and the presence &f(p/ — p;) in Eq. (63) is due
purely to the disconnectedness of the potendial In keep-  #.0m which it follows that
ing with our shorthand notation, we write E@®3) as

VE=yid v T, (72)

Vi=v;d; *. (64)

Our goal is to gauge Eq61) and in this way obtain the It is seen that the same result would follow from gauging Eq.
electromagnetic transition currents for the three-body sys(64 directly using our product rule, as long as we use the
tem. As the gauging procedure is symbolically identical toPr€scription

that already presented for the two-body system, we conclude .

that Egs.(15)—(17) apply also to the three-body system. (di H#=-Tf. (73

Thus the seven-point function can be written as . o ) i
This prescription can also be obtained by formally gauging

G*=GI'*G, (65  the identityd;d. *=1 and taking ¥*=0. The expression for
the gauged potential, Eq.(72), is illustrated in Fig. 4. The
$egative sign in front of the terna;I'f* may appear to be
surprising, yet it is just what is needed to stop overcounting.
(66) Consider for example the gauging of the te@yV G appear-
ing in Eqg.(61): (GoVG)#*=G{VG+ GoV*G+GyVGH. Itis
In the three-particle case, howevatjs given by Eqs(62)  apparent that the rightmost diagram of Fig. 4 appears in each
and (64) so that of the three term$GHVG, GoV#G, and GoVG*. Thus the
negative sign in question is needed to ensure that this dia-
VE=VE+VE+VE. (67)  gram contributes only once to the gauging@fVvG.
The fully disconnected three-particle Green funcii&nis
To obtainV# all that is needed is to gauge thieof Eq. (64). given by

Yet because of the presence of the inverse propag:iitbm
V;, there is some question of how to do this consistently. An Go=d;d;dy, (74)

where the electromagnetic vertex function for three particle
is given by

=G, 'GEG, 1+ V-,
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% N o G(P;P3P5:P1P2Pa)
= ) * +° _t _
i o vl Vp(p1p2p3) ¥ p(P1P2pPs)

1 - 2 2
g i 57112 as P*—M-~,
FIG. 5. lllustration of Eq(77) expressing the three-particle elec- (80)
tromagnetic vertex functiol’# as a sum of one- and two-particle

currents. where ¥, is the three-particle bound-state wave function

. _ ~ defined by
where two momentum conservirgfunctions are implied in

the used shorthand notation. Gauging this expressions gives (2m)4 84 (P—py—Po—Pa) VY p(P1P2P3)

3

3 .
— 4 4 4 1(p1Xq+ PoXo+p3axsz)
Gh=2, dfdjde=2, di'Dy, (75) f dxadoxd xge e R b
i=1 i=1

X (O] T¥ M (x) WP(x) ¥ B)(x3)[P).  (81)
where the sum is over the three cyclic permutations j&)(

The impulse term in Eq(66) can then be written as Here |P) is the eigenstate of the full Hamiltonian corre-
sponding to the three-particle bound state with momentum
3 P#. We thus find that
Go'GEGo "= 2, I'('Dy". (76) _
- j=WTh, (82

Using this and Eq(72) in Eq. (66) then gives

w

U (THD g +vid, L= v T W (83)
1

3
[r=2, (MfDg +vid t=vil't), 7
=1 Note that the wave functioW p used here satisfies E(0),

and thus fulfills the normalization conditigfor distinguish-
which we illustrate in Fig. 5. able particles

Noting that the full two-body Green functiob; satisfies
the equation 9
i\pp?(egl—vazl. (84)
D;=Dgi+DgviD;, (78) J

This result follows upon taking residues of the identiy
=GG !G and using the fact th& =G, '— V. By expos-
ing the bound-state poles in ti&* of Eq. (60), one finds that
j* is also the matrix element of the current operator

we can also write Eq.77) as

3
w:Z1 (TED; Y+vid Y. (79
j#=(3")=(K[3*(0)|P), (85)

Equation(79) [or equivalently Eq(77)] is the main result of N 5 . .

this section and extends the Gross-Riska result of B).to ~ WhereK“=P“=M<.In terms ofj*, the familiar charge and
the three-particle sector. It gives the precise way that th&agnetic form factors of spin-1/2 bound three-body systems
one- and two-body currents need to combine in order to ob@'€ given by

tain proper gauge invariance.

Faa®)=2 1i%? (86)
B. Three-body bound-state current
The three-body bound-state curréfitdescribes processes 2 2 2
: : e i 2M§ Q? Q%

where a system of three strongly interacting particles is g2 (q?)= 2 — ——j2+ ( 14+ —— |J|2],
bound both before and after the interaction with an electro- w?Q? 4M?2 4M?
magnetic probe. Examples include elastic electron scattering (87)
from 3H and 3He [19], and elastic electron scattering from
the proton considered as a bound three-quark syE2€in whereZ indicates a sum over final spins and an average over

The bound-state currerjt* is found by taking left and initial spins(recall that stateP) and wave function¥’ are
right residues of Eq(65) at the initial and final three-particle to be understood as having implicit spin and isospin Igbels
bound-state poles. Withl being the mass of the bound state, In Eq. (87), w is the magnetic moment of the bound state,
it can be shown that My is the nucleon mass, ar@?= —q?2.
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1. Role of the subtraction term in the bound-state current

When used to calculate the bound-state curijéntthe (a) E(jz + + @)E
role of the subtraction term in Eq77) is seen especially
well by writing the bound-state wave function in terms of its
usual Faddeev components: (b)

3
quE 3 (88) FIG. 6. (@ The one-body electromagnetic current when two-
= body interactions are separab{b) The overcounting term present

in ¥I'§'¥. The double line with the black dot represents the dressed
quasiparticle propagator, the small open circle represents the
separable potential form factdr, and the large ellipses represent

whereWV is written without a momentum subscript to save on
notation, and where

W, =Dgv; V. (89) the spectator bound-state form fackr
For this purpose it is sufficient to consider just the one-bodyvhereh; is the separable potential form factor with particle
current contributions tg*, being a spectator. We write E¢QJ) in our shorthand nota-
tion as
3 —
4= WTH(Dgt—v) W (90) —h\h
Jone-body ~ {(Doi"—vi)W. vi=hi\h;. (99

Using Eq.(89) this then evaluates to The two-bodyt matrix is then given by

. = ti=hizih;, (95
Jhne-boa™ 2 WTIDGH(W +W). (91)
=1 where

This equation is not symmetrical with respect to the initial-
and final-state wave functions. That this must be so can be
seen as follows. The teri¥“D ;" corresponds to a first order
electromagnetic interaction with partidleDuring this inter-

action, particleg andk can be interacting, and this contribu-

tion is contained fully in the final-state wave functigh To ¥, =Goh; 1 X; . (97)
avoid overcounting, there must be no precedifginterac-

tion coming from the initial-state wave function. This indeed As the Faddeev equation for the wave function components
is the case since, as is evident from E89), the very last is

interaction inV,; is between particleg andk, and just this

mi=N"1—hDgh;. (96)

For separable potentials we follow Rg3] and introduce the
“spectator bound-state form factorX; defined by

component is missing from the right-hand si@RHS) of Eq. Wi=Dgiti(V;+V¥y), (98)
(9D).
Another way to write Eq(91) is whereijk are cyclic, it follows that
3 =
| _ _— X, =d Ty (W +W,). (99)
Jgne—body:lprgql_izl \PF{LDOil\I’i ' (92) I I I :

Using these relations in E49Y) it is easy to show that

wherel'#=32% . T#D,;" is the electromagnetic vertex func-

tion in the impulse approximation. In a three-dimensional jgne_bodyzz (Zdiﬂﬂxﬁ > YjTjthOidip'hkaxk ,
approach, the term that is graphically similar YoI 4% ' bl

would correspond to the correct expression for the total one- (100

body current. In a four-dimensional approach, however, onguhich has a straightforward graphical interpretation. De-

needs to subtract the last term of E@2) in order to avoid picted in Fig. §a) are the topologically distinct contributions

the overcounting just discussed. In this regard we note thab the sums in Eq(100). One can similarly write

the pioneering four-dimensional calculation of Rgf] used

VYI'EW as the expression for the one-body current, and B NG N

theroefore the results of this calculation contain overcounting. YW= E, (x‘diﬂTixi +1%i X;7ihDoidhimX
Further insight into the nature of the overcounting prob-

lem can be gained by assuming, as was done in[Rgfthat

the input two-body potentials are separable. In this case we

have

+Zdi“ﬂ>\ilﬂxi), (102

L L which, compared to the previous equation, contains an extra
Vi(P;j P PjPK) = hi(pj Pi)Nhi(p;PK), (93)  term given by

044003-11



A. N. KVINIKHIDZE AND B. BLANKLEIDER PHYSICAL REVIEW C 60 044003

o 3
WIEviw =2 Xdf X (102 q,> (vid'-vid ldid Y =[e,V], (109
i=1

This term, depicted in Fig. (B), represents what is being whereV is the full potential as given by Eq62). We have
overcounted in Eq.(101). Considering this overcounting thus shown that

term together with the first term in EGLO1) [depicted by the

first term in Fig. a)], we see that the role of the overcount- q.l*= —[é,G‘l], (110

ing term is to overdress the quasiparticle propagator while

the spectator particle is being gauged. Thus, in the separabtéhereG =Gy '~V is the inverse of the full Green func-
case, the use of the expressi®4¥ to calculate the one- tion. It is recognized that E(110 is just the shorthand
body electromagnetic current is equivalent to overdressin§iree-particle version of the two-particle result given in Eq.

the quasiparticle propagator in the first term of Fitg)6 27). Current conservation and therefore the gauge invari-
ance of the bound-state current follows immediately. It is
2. Gauge invariance of the bound-state current worth noting that the presence of the subtraction tfliast

To prove the gauge invariance of E@3) for the three- term in Eq.(105] is essential for current conservation.

body bound-state current, it is convenient to use a symbolic
notation for the WT identities. To do this we introduce the

operatorséi whose numerical form is defined by

3. Generalization to all transition currents

Electromagnetic currents for all possible transitions can
be constructed by following the same procedure as above for
A . 12 the three-body bound-state current. That is, one can begin
&i(kikoks, p1pops) =iei(2m) 5" (k —pi—q) with the expressiorG*=GI'*G and then take residues at

X 54(kj—pj)54(kk— Py, (103 the relevant initial- and final-state poles. In this respect it is
important to note that the Green functi@has poles corre-
whereijk represents a cyclic ordering of 123. Then the WTsponding not only to single-particle propagators and three-
identities for the gauged two-body potential and gauged onglody bound states, but also to two-body bound states. For
particle propagator can be written in three-particle space igxample, it can be shown that, in the vicinity of a two-body
terms of commutators as bound state of particles 2 and 3,

QuE=[8+8cvi], qudr=[6.d]. (104 OlkikekePaPopa)

i, (Kaka)d(ky) —
/\/I —_—

Here the quantitiey!* andv; are understood to implicitly \sztkl(plpng) as K2-m?,

contain an identity operator in the space of particla this Kf— m?
way making them operators in three-particle space. Similarly

df* andd; are understood to contain identity operators in the (11D
space of particleg andk. wherem is the bound-state mass of particles 2 and 3, and
Writing Eqg. (77) in the form K,=Kkyo+ks. Similarly
3
G(kikoK3,p1p2p3)
Te=", (d *dfd; 2d; dy o vidy T vidy Tded ) hene e
=1 _
: d(p1) ¥p,(P2P3)
(109 ~'Tglpl(k1k2k3)W as P§—>m2,
and using the WT identities of E¢LO4), the first term on the
RHS of Eq.(105) gives (112

3 where P,=p,+p;. The seven-point functiols* has the
qﬂz di’ldi“di’ldj’ldlzlz —[e,Gy 1, (106)  same poles a& and one can show, for example, that, in the
i=1 vicinity of these poles,

where G*(kykoks3,p1p2p3)
e=e;+e,+e;. 10 i, (Kokz)d(ky)
v (107 ~ i ——————(0ULK 1kq| 3#(0)| P1p; in)i
Similarly for the last two terms of Eq105 we have that Ki—m
. O T d(py) i, (P2P3)
A, (vid = vid Tt =6+ &, vi]d v ,di ] x— (113
. Pi—m
—[evid Y] (108 !

Analogous expressions f@ andG* hold in the vicinity of
and therefore any poles of G corresponding to physical initial and final
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states. The in- and out-wave functions appearing in thesef current conservation for Eql118 is the same for all

expressions are defined generally by cases: one uses E@.10 and the fact that
(2m)*6%(P—p1—pz—p3) ¥ {'(p1P2P3) PouG—1=, G lyih=0 (119
:f d*x,d*x,d*x5e! (PrX1F P2X2TPaxs) to deduce

X<0|Tq’(l)(xl)q,(Z)(XZ)\I,(S)(XQ:)|j!in>! d4k1 d4k2 d4p1 d4p2 )

q, YT = f

|
(119 2m)* (2m* (2m)* (27)*
— 3
(23K ke ko Hakaka X 3, WPkoka) (6 kikoks,pr+ e
— 4 4 4, —i(kyyqt+koyot+kaya) _ .
f dy1dy,d7yse TR TR — &G~ (K — 0;P1P2Pa) 1W (P pops) =O0.
X (OULi [ TW Dy, ) W@y, W )(y5)]0), (120
(119 C. Gauging the AGS equations

where|j,in) and|i,out) are the in and out states of quantum  In the previous subsection we constructed the electromag-
field theory(QFT) for the physical initial and final states of netic currents for all possible transitions of the three-particle
total momentunP andK, respectively. Here we follow the System. The expression derived, E3.18), expresses the
usual convention where the indgx=1,2,3 labels a state transition currents in terms of the vertex functibf which
where particlg is free and the other two particles are bound,in turn is given in terms of the gauged three-body potential
andj =0 labels the state where all three particles are free. IIV*—see Eq(66). Although this formally solves the problem
the case of an initial three-body bound state, the ifdexd  of how to gauge a three-body system, it needs to be recog-
label “in” are dropped(for three-body bound states there is hized that Eq(118) may not always be very useful for prac-
no difference between in and out states as only one physicéical calculations. For example, in the present four-
particle is involved. Similar conventions hold for the index dimensional case where the three-particle potential is
i. For a given model specified by the three-body poteitjal assumed to be of the simple form given by E8R) and Eq.
the in- and out-wave functions are specified by the equatione4), the numerical evaluation of Eq4.16) for the scattering

in- and out-wave functions is problematic. This difficulty is

a?ut: \I_,i(0)+\§?ut(v_vi)ei, dut_a to the disconnectedness o_f the three—pgrticle potential
which forms the kernel for these integral equations. For other
\If}“=\Ifj(°)+ GJ(V—VJ)\I’E”, (116 cases the use of E(L18) can similarly be impractical. In the

four-dimensional description of theNN system[5,6], the
possibility of pion absorption together with overcounting
problems makes theNN potentialV difficult to specify, let
alone calculate. Likewise in the spectator approach to the
three-nucleon problem where spectator nucleons are put on
mass shel[11], the effective three-nucleon potential is not
easily revealed.

All these problems can be resolved by avoiding the use of
G =dD. (117 potentials in the formulation of the strong interaction three-

o body problem. This is just what is done in the case of three-
dimensional quantum mechanics by using the Alt-

) —0) 0) ) Grassberger-Sandhd&GS) equations[4] to describe the
drop the inhomogeneous termig” and W) but otherwise strong interactions of three particles. The AGS equations
usei,j=0. take as input two-body matrices, rather than potentials, re-

Taking the right and left residues Gf“ at the initial- and  sylt (after one iterationin a connected kernel, and form one
final-state poles, it is easy to see from the above equationsf the standard tools for doing practical three-body calcula-
that the general expression for an electromagnetic transitiofions. These same benefits can be obtained in four dimen-
current Is sions by using equations that are the four-dimensional analog

_ ‘ of the AGS equations. Indeed such equatiomisich we also
jfi=(outi|3#(0)[j ,in)=‘lff’”tl"“\l"j”. (1189  refer to as the AGS equationisave already been used in the
successful formulation of theNN problem[5,6] and in the
Equation(118) is valid no matter whether the initial or final three-nucleon problem within the spectator approfth.
states consist of three free particles, one free and two bounthus for practical reasons it is important to apply our gaug-
particles, or the three-body bound state. Likewise the prooing of equations method directly to the AGS equations them-

where, fori=0, V;=0, ¥(9 is the wave function of three
free particles, and; is the free Green function, while, for
i=1,2,3,V; is given by Eq.(64), ¥(? is the wave function
of a free particlei and a bound jk) pair, andG; is the
disconnected Green function with particleandk interact-
ing andi being a spectator, i.e.,

Equations(116) hold also for three-body bound states if we
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selves. In this way we shall obtain a gauge-invariant generThen thet matrix of Eq.(122) can be written as
alization of the AGS formulation to systems consisting of o o
three particles with an added external photon. Tij=¢iDoiU;j Doy = ¢id; *Ujid M. (131)
1. j(ki)—i(jk) transition current As previously discussed, gauged potentials tmatrices do

Our starting point is the four-dimensional version of the "0t have photons attached to external legs. Yet such attach-
AGS equations describing the scattering of three strongl)'/"”ents are necessary for gauge invariance. For this reason we
interacting particles. These AGS equations can be written iif© N0t gauge thematrixT;; , but instead introduce the quan-
the two forms tity

_ 3 _ :I"” :d|T|JdJ y (132)

—_ -1
Uij=Gq 5ij+z Sk TkGoUy _ _ o _
k=1 which contains extra propagators for the initial- and final-

3 state spectator particles. It is by gaugﬁ'\g that photons get
Uij:GalgijJr 2 UikGOTkgkjv (121) attached to all possml_e pla_ce_s in theki)—i(jk) process.
k=1 Of course, after gauging, it is necessary to remove these

) ] o propagators to get the corresponding electromagnetic transi-
where the AGS amplitudé&);; describes the proceggki)  tion currentj; thus

—i(jk), i.e., the scattering of particleoff the (ki) quasi-

particle, leading to a final state consisting of particland jE=d FrdL, (133
the (jk) quasiparticle. If the quasiparticles form bound et

states, then the amplitud; is related to theé matrix for the  From Eq.(131) we find that

physicalj(ki)—i(jk) process by

Ti=¢0; 4. (134

Gauging this equation gives

Tij:%Uij‘/’ja (122

where i; is the two-body bound-state wave function of the
(jk) system. In Eq(121), T, is defined by rri’f:¢f’“0ij¢j+¢i0ij¢f‘+¢i0ﬁ¢j- (135
Te=ted (123 —

Here ! and¢{ are the gauged two-body bound-state vertex

wheret, is the two-particlet matrix for the scattering of functions discussed in Sec. II. Bei_ng gauged quantities of the
particlesi andj. The AGS equations of E¢121) can be two-body problem, they form an input to the gauged three-

written in matrix form as body problem. AsUij is assumed to be known from the
solution of the strong interaction three-body problem, only

the gauged AGS Green functidly! is left to be determined.
where the {,k)th elements of matricel, 7, andZ are de- We could findU by gauging Eqs(129 explicitly; how-

U=Gy T+ TTGU, U=Gy T+UGTT, (124

fined by ever, this is not really necessary as there is a one-to-one
correspondence with the previous gauging of E&f). In-
(U= Vj;, (129  deed Eq(129 follows formally from Eq.(61) upon the fol-
lowing substitutions:
[7]ik= 6Tk, (126
_ G—U, Gyg—IG,, V—T. (136)
[Z]ik=6k=1—bik- (127

Moreover, just as Eq(62) expressed/ as a sum of three

Although one could now gauge the mattikby gauging  components/;=v;d; *, we can similarly writeZ7 as a sum
Egs. (124) in the usual way, the presence 6§ ' in Egs.
(124 makes it more convenient to instead gauge the Green T=W,+ W+ W;s, (137
function quantity
where
U=GolUGy, 128
oo (128 Wi=wd 1. (139
which satisfies the equations o N )
As matrix 7 is specified by Eqs(123 and(126), it follows

U=TGo+IGTU, U=GeI+UTG,T. (129  thatw; is a matrix whose rf,m)th element is given by

At this stage it is convenient to make use of the two-body [Wi]nm= 6niSimti - (139

bound-state vertex functios; , defined as in Eq438) by ) ) )
With the correspondence now complete, we can immediately

i =Doidi, i=dDy. (130  use Eq.(77) to write down the gauged matrix“. We obtain
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qg this we first show that the gauged AGS Green funcfiin

k. DB B satisfies the Ward-Takahashi identity. Writing E$43) as
k3

=% B Pe=1716,164G, "+ 3 (wid; *-wil'), (144

we may use the Ward-Takahashi identities for the input

FIG. 7. lllustration of the variables involved in the evaluation of L “.
quantitiesw! andI'f*:

0,608 ¢;(kiK; ;p;P;) as in Eq.(154).

U=Ur=u, (140 qMWi’L(kjkk;pjpk):ié Leywi(ki—d;p;Pk)
wherel* is a matrix whose rf,m)th element is —wi(kike:pi+ Q)] (145
3
Phn= 2 (Zoml Do+ Snidimtl d = 05 imti ') q, T (ki p)=ild; (k)e—ed (p)], (149
=
(142

where the former equation follows from identical arguments
3 to that proving Eq(26), and where the latter equation fol-

=z;n§i21 TEDG + Sty = St T, (142 lows from
Alternatively, we may writd* in matrix form as A0 (ki P =iledi(py) —dick)e. (147
3 From the Ward-Takahashi identity f@% , it is also easy to
I#=> (I TFDg'+wkd *—wT#). (143  show that
i=1 ,
The use of the same symbBt* for both the vertex function 0, T4 (Kikoks: p1pops) :iiz‘l [Gg L(kikoks:pi+q)e,

of Eqg. (77) and the matrix of Eq(143 should not cause
confusion as only the latter appears in matrix expressions.

-1 .
On the other hand, using the same symbol has the advantage —&Go (ki=a;p1P2P3) ],
of emphasizing the formal similarity between the two. For (148
example, the matrix form of Eq143) is equally well illus-
trated by Fig. 5 withv’s replaced byw’s. where
2. Current conservation T4=Gg 166‘651. (149

In this subsection we would like to show that the current
j{j as specified by Eq$133) and (139 is conserved. To do Using these results in E4144) gives

3
q,ur'u(klk2k3;plp2p3):i§1 T G '(KykoKs; pi+a)e;— G (ki —a;p1p2ps) 1+ d (ki ,pi)

x> [e|wi(k.—q;pjpk>—wi<k1kk;p.+q>e.]—wi<k,-kk;pjpk>[di1<ki>ei—eidil(pi>]].

1#i

(150

As3? 3 .ab=3% 3 .ab;, we can rewrite Eq(150 as

3
q,U-F#(klkZKB;plprS):i;l [IlGol(klk2k3;pi+q)—§ di Ky, POW (KK s i+ ) — Wi (KK pip di (ko) (e

3
_|2 €;
i=1

I_lGal(ki—Qiplpzps)_; dl_l(kl:pI)WI(ki_q;pmpn)_wi(kjkk;pjpk)di_l(pi)}’
(151)
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where (jk) and (mn) are both cyclic permutations of (123). Recognizing that the square bracket terms ¢f5y.
correspond exactly to the expression or' derived from Eqs(129), we may write
3

9, (kikoKs; p1p2ps) =i 241 [U Y(kokoks; pi+a)e —eld *(ki—q; p1paps)]. (152

Using Eq.(140), we thus obtain the Ward-Takahashi identity ét:
3
qﬂaﬂ(klkzks 1P1P2P3) =i iZl [el(ki—d; p1p2Pps) —U(KiKoKs; pi+ )€l (153

Next we use this result and the last term of EB5) to write

qyagﬁ(ﬁj(kiKi 7P Pj):if (2m) 884K —k; — ki) 8*(P;— pi — pi) d*k; d*ky d*py d*p;
[a(kjkk;Ki)[eiﬁij(ki_q;plpzps)_oij(klk2k3;pj+q)ej]¢j(pkpi;Pj)
+; gi(kjkk;Ki)eIDij(kl_q;p1p2p3)¢j(pkpi 'Pj)

_;j gi(kjkk;Ki)Dij(k1k2k3;pl+q)el¢j(pkpi;Pj) : (154

where the momentum variables are as specified in Fig. 7. To f|nd the contrlbutlon of this tgjfjtowe need to multiply

it by d;” Yk )d; (pJ) and then take the on-mass-shell limit, id., Yk)—0 andd;” (pJ)—>0 Doing this we see that the first

term |n the curly brackets will give zero and in this sense is gauge invariant. On the other hand, the last two terms in the curly
brackets will not give zero since the facthr 1(ki)dj’ 1(pj) will be canceled by propagatods(k;) andd;(p;) contained in the

Uij . Thus, the contribution of the last two terms of Ej54) to j{j will not be gauge invariant. However, it is now easy to

check that gauge invariance is restored by including the other two terms de‘ﬁﬁﬁirhg Eqg. (135. To do this, we change
integration variables in the last two terms of Efj54):

q,uaoi;f(ﬁj(kiKi ;pjpj):if d*k; d*ky d*p, d*p; (277) 8 54(Ki_kj_kk)54(Pj_pi_pk)a(kjkk;Ki)[eioij(ki_q;p1p2p3)
— Ui (kakoks; pj+ a)ej16;(pupi s Pj) + 8*(Ki — Kk — ke — ) 8*(P;— pi— pi)

x 2, ¢i(ki+a;K)e Ui (kikoks; papaps) dj(pipi s Pj) — 8*(Ki—k; —ky)

1 #i

X 54(Pj+q_pi_pk)2:j a(k,‘kk;Ki)Dij(klkzkaiplpzps)e|¢j(P|_q;Pj)]- (159

Making use of the WT identity of Eq50), we have that -
qMTﬁ: i f d4kl d4kk d4pk d4pi(277)_8

X 8Y(Ki—kj— ki) 8*(P;— pi — py)
Xa(kjkk;Ki)[eioij(ki_q;plpzpa)
—Ujj(kakoks:pj+a)e] by (pupi s Pp), (157)

9P (PP ;F’;)=i|2¢j e ¢;(pi—a;P)),

a. ¢ (KikK) =12 di(ki+a;K)e, (156
1#i and the current conservation q]‘ follows.

and it becomes evident that the last two terms of @&5) 3.u* written without subtraction terms
correspond exactly to—q,¢{'Uj;¢;— ¢iU;;q,4( . Thus The gauged AGS Green functidﬁﬁm is expressed by
contracting Eq(139 with g, gives Egs.(140 and (142 as
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(UL TDgi U)nm
3
= Onmd{' Do + 21 Unitid; 810Dy

3
Uﬁm: ;1 [(azilri/"D(;ilZ{)nm"' Dnit#dfloim

— Ut T#0 ] (158
3

; [~ i i — ~ ~
This form forU/,, may be the best for practical calculations, +k§=:1 d#D s Snitilic U Uity *dld

but the presence of the minus sign in the subtraction term
—U,tiT#U0;,,, does make the perturbation theory expansion

~ U —G.5 U.—G-8.9)d " Yd*d . U
of U~ difficult to see. Indeed, if we were to use H459 X (Uim=Goim) +(Uni = Godni)di "di*d; “tiUim

directly for this purpose, we would need to carefully keep S o . 5
track of the cancellations between contributions of the sub- + > Uit d; 185 610D g Sictiedy 20 - (163
traction term and the contributions coming from the term k=1

(UZ T Dy *U)nm. For this reason we would like to find
an alternative expression f&* . where all terms contribute Using that
with a positive sign.
In order to expose the term i/ ~‘I'“Dy;*U)nm that
will cancel the subtraction term, we use the AGS equations,

3
Egs. (129, to write 21 Unitidy 610D — Upitid; tdidi *Go i
UL Do U = (1+UT)dDs ZL(TUH 1) ]
3
:EnmdiMDOi"'Zl DnltldflglmdftDOi

3
= 21 Ontid; 2 8md! Doil 1— 8]

w

3 =& Untid *6imd:d/“Dgi (164)
+k21 dDoi Snidticic "Tem
3 and similarly
+I,§l Unitidy 81 dfDitiedic U
(159

3
kzl d¥D i Sntiy “Om— Godnid; *dfd; 't;0i,
The last term in this equation can be written as

M o

. 1 S~ =2, d'Doi Sty Uiend 1 8]
> Untid; Ty d!Doitedy "Oxm= > Unityd, k=1
= 1521 ,
X (8 + 81) Ok “Di( e+ S i Ui = k§=:1 d“D i Sty *Uem, (165

Expanding out the brackets we obtain four terms, three of

which can be simplified: we obtain that

3
> Untid; 8y 60Dy ity "Uym=0, (160

Lk=1 (UL Do U)nm
3 3
|§1 Dn|t|d|715|i 5|kdiMD0i 5iktkd|;10km = 5nmdiMDOi+|Zl Un|t|d|_15|m5”dqu0i
U td7d*d Y0 —G-5 3 — - - -
Unitid “dFdi = (Vim = Godim), (163 +k21 d/Dg; Sty U+ 20 tid *ded; 05,
, =
> U,td 18y 8,d#Dg; 8ty di tU S _ _ N
=P e + > Uatid 16, 64d"Do; otidi Um.  (166)
I,k=1
=(Uni—Gosd; tdidi 0. (162
Thus Substituting into Eq(158) we finally obtain
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:
—o— = 2 | 5.
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k
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+ Z 5,,: _ffm \}/\ﬁm_
Lk
FIG. 8. Graphical representation of E3§.67) for the gauged AGS Green functi(ﬂ‘{;‘m.

j6=Go 'Thd, . (172

3
Dﬁm:;l 5nmdiMDOi+|Zl Untid; ' 6,m8idf Dy

3 Using the product rule we have that

+k21 d“D i Sty "yt Uni(tiTE+td H Uy 1
ng:(i }I‘, Ur—cg

1 ~
, ¢+ EZi Uij_GO)d’iu
+|gl Unitid 6y 80D i Sty Ui |- (167 172
- and therefore the electromagnetic current can be written as
This form for U%,, has no subtraction terms and can be used
directly to generate the corresponding perturbation theory
expansion. This is seen especially well from the graphical jgj:(i E Ui,GOFfﬁGOUkj—Fg)DOJ ¢;+UoDoj o}
representation of Eq167) given in Fig. 8. itk 173
Taking left and right residues df* at the three-body (173
bound-state poles leads to the three-body bound-state current
j* (see Sec. IlIC5 belo In that case only the last three
terms of Fig. 8 contribute. If we then consider the case of The three-body bound-state current was already discussed
one-body currents with separable two-body interactions, wén Sec. Il B above. There we obtained an expression, Eq.

5. Three-body bound-state current

see that Fig. 8 reduces down to Figa6 (83), which givesj* in terms of the two-body potentials
o N and the gauged two-body potentials. Here we would like
4. j(ki)—ijk transition current to give an alternative expression that results from the gaug-

The strong interaction proceggki)—ijk where the final ing of the AGS equations. This has the advantage of giving
state consists of three free particles is described bytthe j* in terms of the two-bodyt matricest; and the gauged

matrix two-bodyt matricestf.
We recall that the AGS amplitudebl;; are defined
Toj=Uoj4hj=UgiDoj 9, (168  through the expression for the-83 Green function:
whereUy; is given by G=G;5;+GiU; G, (174)
1 -1
Uon TiGoUjj=5 EI Uij—Go ™. (169 whereG; is given by Eq.(117). Thus it is clear that;; has

a pole at the three-body bound state:
To find thej(ki)—ijk electromagnetic transition currey;

(which can be used to describe processes fide- ynpp), _ Xf’}f 5 5

we proceed as before and define the Green function quantity Ujj~i ez S P —M*, (179
~ 1 ~
Toj=GoToid;j= EEi Uij—Go| ¢;.- (170 where

It is To; which may now be gauged, thereby obtaining XP=G W, (176)
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By writing Uj; =G510ijG51 we may gauge Eq174) inthe  Gauging this equation, taking the residue at the three-body
usual way. Then taking the left and right residues at thé>ound-state pole on the right, and then eliminating the left

three-body bound state poles and using @40 we obtain  Propagator of particle, gives the {jk)—i(jk) electromag-
that netic transition current:

jr=2 X'Gol i Goxp - (177 jr=dit giuGOXiP_’_% giGoUnGoFkaGoXE .

(182
From Eq.(176) it is easy to see that
This expression can be written using matrix notation as
Goxi =¥/ +Wg, (178
o o jr=OMY o+ O UTH T, (183
where ¥ and ¥, are Faddeev components of the bound-
state wave function as in E@89), with ijk defined to be

cyclic. By introducing the column matrix where®; and®/ are row matrices whosgth elements are

defined byd; *¢;8; andd; *¢{5; , respectively.

vh+wE
7. (ijk)—ijk transition current
Wo= | WEHWE |, (179 oo o |
WP P The (jk)—ijk electromagnetic transition currejf de-
1 2

scribes the photodisintegration of the three-body bound state
leading to three free particleg(ijk)—ijk. To find j§ we

may start with the seven-point function of E§5), take the
right-hand residue at the three-body bound state, and multi-
ply on the left byG, *, in this way obtaining

with the same symboV , being used as for the bound-state
wave function, we may write Eq177) in the matrix form

=T THP,, (180
it=GgIlgr~

giving us a formally identical expression to that of £§3) Jo=Go "Gl We. (189
but where now each term on the RHS is a matrix. Interprete
as a matrix equation, this result expresses the cuijréi
terms of two-bodyt matrices and gauged two-bodynatri- _
ces[see Eq.(143], while interpreted as a scalar equation POdy potentials/f*. , _ o
(i.e., not a matrix equatiorit expresseg” in terms of two- Alternatively, to obtain the corresponding expression in

body potentials and gauged two-body potentigdse Eq. terms of two-bodyt matricest; and gauged two-bodiyma-
77)]. tricest/, we may proceed as in the previous two subsections

and start with Eq(174) which may be written as

q’his gives the transition current for the photodisintegration
process in terms of two-body potentialsand gauged two-

6. (ijk)—i(jk) transition current

In the previous subsection we found thgk()— (ijk) G=8,Gj+GiG, 'U;;G; 'G;
electromagnetic transition current by first gauging Ely.4) ~
for the green functiors, and then taking left and right resi- =8Gj+(1+GoT)VU;;Go "G . (189

dues at the three-body bound-state poles. By contrast, in Sec.
[1C1thej(ki)—i(jk) transition current was found by first Gauging the latter form of the equation, taking the right-hand
taking left and right residues of E@l74) at the two-body residue at the three-body bound state, and then multiplying
bound-state poles, which leads to E#j22), and then gaug- on the left byGal gives
ing this equation. It is straightforward to see that the final
expressions for the elgctromagnetic transition currents QO not ju= Gal(G’{)‘Ti n GOTi,L)GoxiP
depend on the order in which the gauging and the taking of
residues is done. u b

To determine thei{k)—i(jk) electromagnetic transition +% (1+TiGo) Ui I'i Goxic - (186)
current it is convenient to first take the left residue of Eq.
(174 at the two-body bound-state pole, then gauge the re- , . .
sulting expression, and finally take the right-hand residue ahlow since (I TiGo)Ui=Ug, the electromagnetic transi-
the three-body bound-state pole. Taking the left residue ofion current can also be written as
Eq. (174 at the bound-state pole of particlgsand k, but
keeping the left propagator for particleleads to the Green

PR (T M ) “ P M P
function quantity i§=(T6GaTi+ T)Goxi + 2 Ual'iGoxk» (187

Xij= ¢iGoU;;G;= ;0;; G, 'G; . (181)  with Gox! given by Eq.(179.
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IV. SUMMARY sible electromagnetic transition amplitudes of the three-body

In this article we have presented a general method fopYStem In terms of the; and the gauged potentialy’. We
incorporating an external photon into a system of particles'@ve also shown how our method can be used to gauge the
whose strong interactions are described nonperturbatively bjlt-Grassberger-Sandhas equations for three particles in or-
integral equations. This method consists of gauging the inteder to get more practical relations where the electromagnetic
gral equations themselves, and has the important feature @nsition amplitudes are expressed in terms of two-bbdy
coupling the external photon to all possible places in thgnatricest; and gauged matricest!"; see Sec. Ill C.
strong interaction model. As the photon is coupled every- Although we have presented the gauging of equations
where, gauge invariance of all expressions for on-mass-shethethod within the context of quantum field theory where the
electromagnetic transition currents is guaranteed. integral equations are four-dimensional, it should be noted

To discuss the details of our approach we have chosen that the method itself can be used in a wider context. Indeed
case of three distinguishable particl@gith no coupling to  we have already used this method to incorporate an external
two-particle channe)swhose strong interactions are de- photon into the three-dimensional equations of the spectator
scribed by standard four—dimensional integral equations ofpproach[12,13. Similarly, one could apply the gauging
quantum field theory. This type of three-particle system preprocedure to the three-dimensional approach of time-ordered
sents the simplest case for which no practical gaugingertyrpation theory when the equations are expressed in

method has so far be;en availa_ble. In the two-particle Se_Ct%rms of convolution integral@2]. The gauging method also
there have been previous gauging procedures that establishggag 1ot depend on the nature of the external field involved,

the const_e rlvedhcurrelnts ;o:r':hH\INsysteinil]z(lno coupll_lng tto so our results remain valid if the external field is due to a
one-particle channglsind thewN system{21] (coupling to strongly or weakly interacting probe. In this sense the gaug-

the one-nucleon channel includeget even in these cases ing of equations method provides the solution to the long-

the gauging of equations method provides a much Slmpleétanding problem of how to incorporate an external field into
way to derive the same results0].

By gauging the integral equation for the three-body Greer® nonperturbative description of quarks or hadrons.
function where the kernel consists of two-body potentigls The authors would like to thank the Australian Research
we obtained an expression, EG18), that describes all pos- Council for their financial support.
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